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Quasiparticle properties of a simple metal at high electron temperatures
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We compute the real and imaginary parts of the quasiparticle self-ederdye to the electron-electron
interaction for electrons and holes in jellium and crystalline Al at electron temperatures approaching the Fermi
temperatureT-. ReX and Im3 are computed using a finite temperature generalization oGGtWéapproxi-
mation. We find a decrease in the electron lifetime and an increase in the valence and conduction bandwidths
asT is increased. Calculation of the spectral functifk,E) reveals that the total weight in the quasiparticle
peak is a very weak function of, and that the basic peak structure remains Terfewx 0.1T. These
predictions suggest that at these electron temperatures, the prominent peak in the absorption spectrum of Al at
~1.5 eV should be washed out due to lifetime broadening, even if the ions remain in their crystalline
positions.
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[. INTRODUCTION meaningful, and in particular that the quasiparticle lifetimes
are long. This is always a good assumption for a simple
Experimental and theoretical advances over the past fewetal as long as the temperature is low, and the quasiparticle
years have made it possible to investigate the properties @nergy is close to the Fermi energy.°
solid-density matter at extreme temperatures. On the experi- Unfortunately, the meaningfulness of the quasiparticle
mental front, shock experimentsand laser and resistive concept is not at all guaranteed when the electron tempera-
heating measuremeAtsrobe the equation of state and radia- ture T is of the order of the Fermi temperatufg. The large
tive properties of hot dense materials. On the theoretical sidélumber of final states available at higifacilitates the rapid
high-temperature local-density approximatirDA) calcu- ~ decay of a quasielectron via emission and absorption of plas-
lations using the Mermin formulation have been applied tonons and electron-hole pairs. In addition, even if the quasi-
the Hugoniot equation of state of Al, exhibiting excellent particle approximation is justified, we might still expect sig-
agreement with the shock datdn such a theoretical treat- nificant renormalizations of the quasiparticle energies due to
ment, individual single-particle energies and wave functionghe electron-electron interaction, since such self-energy cor-
appear only through the total electron density and(thet-  rections(to bandwidths and band gapsomputed in th&s W
ably weightedl sum over occupied electron energies in theapproximation are already important®0.° It is not clear,
construction of the free energy. This is in the spirit of the@ priori, as to what theT dependence of these corrections
density-functional prescription, appropriate for the determi-should be.
nation of properties involving the thermodynamic ground To this end, we present calculations of the real and imagi-
state. In contrast, determination of spectroscopic propertiedary parts of the electron self-energy operatbrdue to
(optical absorption, photoemission, @ttypically involves  €lectron-electron interaction and determined with a fiflite-
explicit reference to single-particle-like excitations. Compu-variant of theGW approximation. We first consider electrons
tations of the optical conductivity of hot dense Al have re-and holes in jellium, in an attempt to generalize early work
cently appeared which make use of the single-particle stateg the electron gasto high temperatures. For all calcula-
of a high-temperature density-functional calculatfon. tions, we focus on densities comparable to that of solid Al
One of the most useful concepts in understandingrs=2), andT between 0 and’r. By computing Im (k,E
condensed-matter spectroscopy is the notion of a#%%k?2m) and R& (k,E=72k%2m), we show that the in-
quasiparticl€. This object, consisting of a particle together verse lifetime increases wiffias expectedas does the qua-
with its surrounding screening cloud, can be thought of asiparticle bandwidth. Calculation of the spectral function
interacting only weakly with other quasiparticles, therebyA(k,E) demonstrates thaéat least within the single-iteration
justifying an effective independent particle picture. A famil- GW approximation the quasiparticle peak is broadened, but
iar use of this concept is in the computation of the opticalremains well defined and separated from the satellite peaks at
absorption spectrum within the random-phase approximatiothe temperatures of interest. We then consider crystalline Al
(RPA). Here, absorption of a photon by a many-electron sysat high electroril, relevant for the understanding of subse-
tem can be thought of as excitation of an individual quasi-quent ultrashort pulsed laser pump-probe measurerients.
electron from one quasiparticle state to another. Such a dédere we compute IR (k,E=E,) and Rex(k,E=E))
scription requires that the quasiparticle concept bewithin the GW approximation, usin@b initio pseudopoten-
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tial LDA band energies and wave functions. We show thatwvhere  ng(E)=1fexd B(E—u)]+1} and ng(E)
these results are remarkably similar to the jellium results for= 1[exp(BE) — 1] are the usual statistical factors for a sys-
r<=2, suggesting that details of the Fermi surface, etc. aréem of fermions(with T-dependent chemical potential)

not crucial to understanding the qualitative features of theand a system of bosons, respectively. Finally, we replace
energy-dependent quasiparticle lifetimes and energies of thig(r,r’) in the above expression by/(r,r’;E'—E) using
system. We then argue that at these electron temperaturesg. (3) (with i w,,—E’—E+i6), and collect terms to g&t

the inclusion of quasiparticle lifetime effects should wash out
a prominent feature in the absorption spectrum arising from
transitions between parallel bands.

Section Il contains the derivation of our finife-GW ex-
pressions using the Matsubara Green’s-function technique,
and a discussion of the computational details for jellium and
crystalline Al calculations. Sec. Il presents the results along
with a discussion of our findings. We conclude in Section IV.

1 )
E(r,r’;E):—;f dE'ImG(r,r';E’)
XW(r,r';E'—E)ng(E")
1 0
——f dE'ImG(r,r’;E")
) -

Il. THEORY AND COMPUTATION 1 (=
_ ) x—f dE"ImW(r,r'";E")
A. Formalism for the calculation of ReX and Im X mJo
We consider a spatially inhomogeneous many-electron
systeni at temperaturdl with an electron-electron interac-
tion v(r,r’). The homogeneougellium) system is consid-
ered later as a special case. The expression for the quasipar-
ticle self-energy in th&W approximation is

1+ng(E") ng(E")
E-E'-E"—i§ E—-E'+E"—ié|
(5)

We evaluate the above expression in a first-order approxi-
mation by assuming that the spectral weightGns entirely
taken up in quasiparticle peaks. In other words, we take
be thenoninteractingGreen'’s function, with

> G(r,r vy — i) W(r, i o),
" 0

whereG is the one-electron Green’s function, (=€ 'v)

is the screened interactiow,, and w,, are Matsubara fre-
guencies equal to (2+1)x/B and 2nw/B, respectively,
andB=1/(kgT). Writing G andW in their spectral represen-
tations, we have

S(r,r'ivy) !
Hv)=——
L] 1 n B

ImG(r,r';E)=7wA(r,r";E)

=wn2k GNP (1) S(E—Epy), (6)

L 1 (> ImG(r,r’;E)

G(r,rjive) = ;J@dEivn——E’ 2 where ¢, (r) andE,,  are wave functions and energies of
single-particle states from, say, an LDA calculation for a
crystalline system. Using Eq&) and(6), together with the

WOt o) =u(t r’)+£fwdE2Elm W(r,r’;E) 3 periodic translational invariance of the crystal, we can write
Tom ' 7)o w§1+ E2 ' down expressions for the matrix elements of ®heperator

between two Bloch states. The matrix element oBRis™*

If we plug these expressions into Ed), evaluate the sums
overiw,,,'°and perform the Wick rotatiorw,—E+i 8, we

obtain an expression for the retarde@E), (n.kIReX(r,r’;E)[n’ k)

©

2(r,r’;E)=—%f_ dE'ImG(r,r";E")nz(E")ov(r,r")

=3 2 MS,(kaIMy (k)] u(q+G")

N q,G,G’

—%f dE'ImG(r,r";E’")
- L .
1 (= x;Pﬁde Imeg6.(Q.E )
><7—_rfO dE"ImW(r,r’;E")

1+ng(E")

n,:(E’)-I—nB(E”) _nF(Enl,qu) : (7)

Ne(E")—ng(E")—1
X +
E'—E+E"+i6

E+E'—E'—id
(4)

E—En k- E'

The matrix element of I, is
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(n,k[ImZ(r,r’;E)|n’ k) unrenormalized energy, and,.(r) is the mean-field
exchange-correlation potential. We compute the quasiparticle

' lifeti from th tiof?
=E 2 Mﬁnl(k:Q)[MSr,nl(k'Q)]*U(Q+G’) ifetimes 7, from the equatio

N1 q,G,G’
-1 _ 1
XIM €6,6/(4.E~En, -o) =27, KM (rrEln k). (12
n,k
><[:I-—+_r]B(E_ Enl,k—q)_nF(Enl,k—q)]- (8)
In Egs.(7) and(8), q is a wave vector in the first Brillouin The matrix elements(n,k|ReX|n,k) and(nk[ImX|n k),
zone(BZ), G and G’ are reciprocal-lattice vectorsn(n’,  are calculated with Eqg7) and (8). For the jellium case,

n,) are band indices, anmﬁnl(k,q)=<n,k|e‘(‘*+G)'r|n1,k vxc(f) is a constant, so we do not include it in the determi-
—q). The dielectric function appearing in the above express—r?""t'On Of the band energies. It should be noteq that the quan-
sions,e, is related to the polarizability through the relation tity Z_”lk IS equal to the amount of speciral We'g.ht “”d?r th_e
e(r,rE)=8(r—r")— [dr"u(r",r") x(r.r":E). We compute quaglpartlcle peak of _the electron speptral function. This will
the polarizability in the RPA be discussed further in the next section.
' Because we are considering the many-electron system at
1 high T, Hy should beT dependent. Self-consistent calcula-
x(r,riwyn) =— B > G(r,rion—ivy)G(r,r';ivy). tions with T-dependent Hartree and electron-ion terms sug-
tn ©) gest that the unrenormalized energies and wave functions are
only weakly dependent oi for crystalline Al at the tem-
Fourier transformation, summation over,, and analytic peratures of interest to tis(while for jellium, this is simply
continuation to real energy yields the expression éoat  not an issug Thus, we takeH, to be theT=0 mean-field
nonzero-T: Hamiltonian, and include allT-dependent corrections
through the self-energy.

2 We now describe some of the calculational details for our

4e

€6,6/(0,®)= g6~ m 2 Mﬁn'(kﬂ) evaluation of Eqs(7),(8), and,(10) for the cases of jellium
q nnk and crystalline Al. In jellium, all two-point functions depend
o Ne(Enr k—q) —Ne(En ) only on|r—r’| rather than om andr’ separately. So the only
X[M, (k) ]* ’ —. nonzero elements in reciprocal space correspon@+dG’
' En kg~ Enkthotis =0. Furthermore, the single-particle eigenstates arise from a

(100  single band and are of the forgr|k)=(1//Q)e'*". This
eliminates the sum over bands, and all nonzero matrix ele-
ments,Mﬁnl(k,q), are equal to unity. The expression fer

in Eq. (10) reverts to the nonzerd- Lindhard formula.

i Renormahzed qua3|part|cle wave functions, energies, an‘iihough this is easily evaluated directly for infinitesimal
ifetimes can be determined frol through the quasiparticle broadening, 5—0 (the imaginary parte, can be written

equation down analytically in this cagethe resulting poles ie~* are

T;ﬁ infinitesimally narrow ifT is much less thaff . This makes

rr Epg—i ?”lp”*k(r) the sums oveq in Egs.(7) and(8) very difficult to evaluate
whengq is small. We choose to introduce a honzero broaden-

B. Computational details

Ho+3

T;& ing which in turn enables us to perform this sum with a

Enk—i 7) Ynk(r), reasonable number of points. This is acceptable as long as
the final results are independent of the broadening chosen.

whereH, is the LDA (or other mean-fieldHamiltonian con- ~ We computee, from the expression

taining kinetic, electron-ion, and Hartree terms, but exclud-

ing the exchange-correlation term. In principle, this equation

should be solved to self-consistency to obtain the quasiparti- B 2 = p4dp 1 d
cle wave functionsy, , quasiparticle energief, ., and €2(0,0)= 5 0 efEmi1) 1"
quasiparticle lifetimesr, . We assume, as in previous
work? that the quasiparticle wave functions are close to the hpqy _
unrenormalized wave functions and compute quasiparticle XIL|Egt ———hwd
energies by first-order perturbation ¥
hpqy
Enk=E58 +Z, (N KI[ReS (1,1 iELSY) —vye(n)]In.K). _L(Eq+—m theis) (13

(11)

- ~1; -
Zn,k_[l_aReE(“’)/&MEhﬁA] is the renormalization fac-  \yhereL (x; 8) = (8/7)/(x2+ 62) is a Lorentzian of widths,
tor, |n,k) is the unrenormalizetk.g. LDA) state E;}* isthe  E,=#%2p?/2m, and E,=%2g%/2m. After this integral is per-
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formed numerically, €;(q,w) is obtained by numerical 5
Kramers-Kronig transform. Re ! and Ime ™! are then com- — T=0
puted frome; and e. 4 ol
The expressions of Eqg7) and (8) are of the foom |  ___ T- 90000 K
(K|Z(E)|K)=fd*qu(q)F(k,E,q). For an isotropic system = :

like jellium, we are free to choosk=kz. Then the inte- K
grandgF can be shown to depend an only. through its E
magnitudeg, andk-g=kqv. Thus we can write -

o 1
<k|2(E)|k>=2wf qquv(q)f dvF(k,E,v,0), 0 .

0 -1 0 15 30

E - Ec(eV)

so we reduce the three-dimensional integral to two succes- g 1. Im S (k, E=#%2k%/2m)| vs E— Eq for jellium at a den-
sive one-dimensional integrals. An added feature is that thgjyy given byr,=2.0 andT=0, 0., 0.4, and 0.€, where
g? factor in the volume element cancels the?Lin v(q), Er=12.5 eV (~150000 K) is the Fermi energy at=0.
making it unnecessary for us to consider the long-
wavelength limit separately, as is often done€3iV calcula-
tions performed on a three-dimensional meshqopoints.
The y integration of Eq.(13) is performed analytically. For A. Jellium
the p integral, we use 2000 points, and integrate up to a
maximump of 10kg. The inverse dielectric function is tabu-
lated for 2000qg points (from 0 to 1kg) and 400w points
(from 0 to Z). In the determination of the self-energy ma-
trix elements, we use 200 integration points, and 200§
points, and integrate up totg,., 0f 10ke. The expression for
(k|ReZ|k) involves an integral over enerd¥’ in Eq. (7)].
We use 400 integration points and take the upper limit o L e ;
integration to be B-. There are two positive infinitesimals (so the_l|fet|me is infinite aff=0), and|ImX| INCreases
used in the calculation. We use 0.2 eV for the Lorentzianquadrat'call.y away fronEF. At nonze.roT,_th.ercla IS no en-
broadening in Eq(13), and a very small broadening of 0.005 ergy for which the quasgalectron Ilfet|.me is infinite, and the
eV is used to take the principal part of the integrals involvedMiniMuM value_ of ImX| INCreases W'.thT' Note, however,_ .
in the Kramers-Kronig transform of,, as well as the prin- that th_e approxmate guadratic behavior away from the mini-
cipal part of the integral in Eq.7). These choices produce mum is retained.

s The temperature dependence seen in Fig. 1 can be under-
converged results for the densitieg{2) and temperatures S
(T between 0 and'p) of interest to us. stood by examining Eq$8) and(10). Here, the temperature

For crystalline Al, we use Eqs7), (8), and (10) exactly dependence is contained entirely in the statistical factors,

as written, and take single-particle wave functiaps,(r) Ne(E) and ng(E). The T—0 limit corresponds to taking
and energie&,, , from ab initio pseudopotential LDA calcu- N(E)— 6(u—E) andng(E)— 6(E)— 1. Although Eq.(8)
lations perforrﬁed at the experimental lattice constant. Thé’fe-?‘?”ts a compact way of writing i a more phyS|c_aIIy
cutoff in G space with which the wave functions are ex- Intuitive expression can be obtained bY decompo;mg the
panded is taken to be 6 Ry. We use 60 valence plus conduE'—ght'hand side into four terms, _representlng four distinct de-
tion bands and discrete meshesgopoints (6<6X6 and 8 cay pl‘.OCQSSESNe Supress matrix elemgnt@, vectors, and
%8x8) in the first BZ in the sums of Eq€7), (8), and band indices for simplicity electron with emission, hole

(10).2 We use 33E’ points and an upper limit of 100 eV in with emission, electron with absorption, and hole wih ab-

the integration of Eq(7). The broadening in Eq(10) is sorption,
chosen to be 0.3 eV, consistent with the size of loyroint
mesh, and adequate for evaluating the sums gvier Egs. _
(7) and(8). As mentioned above, our use of a discrete mesh (klim ZJk) = (k[Im Zedk) + (k[Im Zpd k) + (k[ Im Z e k)
in g space forces us to treat tlie—~0 case separately, as +(k[Im 3 k).

discussed by Hybertsen and Loufer T=0. TheT>0 case

we consider here poses no extra difficulties in this regard.

Finally, we find it necessary to eliminate the divergence in

ng(E) asE— 0 in order to obtain converged results at high ~ (k|Im S Jk)=>, Im e (q,E— Ex-g)v(aq)

for both Al and jellium calculations. We handle this by set- a

Ill. RESULTS AND DISCUSSION

We estimate the temperature dependence of the quasipar-
ticle lifetimes by computing InX (k,E=#2k?/2m) from the
procedures outlined above. Figure 1 shdims2 | as a func-

tion of E—Ef for therg=2.0 electron gas ai=0, 0.,
0.4Er, and 0., whereE= 12.5 eV is the Fermi energy

at T=0. Our T=0 result is essentially identical to that of
1B.I. Lunqvist! In particular, at the Fermi energy, =0

ting Ng=nNgmaxif Ng>Ngmax- AS lONg asngmaxiS chosen to X[14+na(E—E 1—ne(E O(E
be between 19 and 1@, our results are independent of the [ 2 o) Il F(Ec-a)16(
precise choice. —Ek-q),
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T=0
(kM= dky=2 Im e (q,Ey—q—E)v(q) 5
4 he 7
X[1+ng(Ex—q—E)IN(Ex— o) 6(Ey g~ E), af e
o~ | //
(K[Im3Jk)=> Ime X(q,E,_—E) 3’ /
q i /
Eat
X v(QNe(Eyq—E)[1-Ne(Exg)] =
X 6(Ex-q—E), 1 \
KM= k)= > Ime X(q,E—Ey_yg) %0 T 2 3 4 5
q
q @ E/E.
Xv(q)ng(E—Ex_g)Ne(Ex_q) 0(E—Ex_q). T- 0.6E,
Each term can be thought of as the transition rate for an S "o ‘ ‘ ‘ -
electron or hole in statgk) (with energyE) to decay into e e ’/'/
state|lk—q) by emitting or absorbing a plasmon or electron- 4} ha /,/ ]
hole pair. ImX ¢, and ImX,, are the only nonzero terms at T fi | o //
T=0, due to the fact that the absorption terms are both pro- =5 I\ ot Py
portional to numbers of plasmons excited prior to decay, 2 o - ey
which are zero al =0. Note that the electron terms ([ VEJ N T /,/
and Im2 ., involve an electron in the statk) filling a hole = yd
in state|k—q), while the hole terms involve an electron in ///
the statgk—q) filling a hole in statgk). Each process con- LN SN St
tributes to the lifetime oflk). Note also that InX .. and e
Im 2., involve transitions in whichE>E,_, while ImX, ()
and ImX ¢, involve transitions withE<E_. 0 ! 2 E/E 8 4 >
Figure 2a) shows the two nonzer@mission terms as a (b) F

function of energy forT=0 (rg=2.0). Im3 .. is nonzero
only for E>Eg, while ImX,. is nonzero only forlE<Eg,
due to the zero-temperature form wf(E,_,). Figure Zb)
shows all four nonzero terms fdr=0.6Eg, along with their

sum(which also appears in Fig. 1 as the 90 000-K gatae o . . .
two emission terms are now nonzero at all energies, thougRMission and absorption processes. In addition, there is the

Im3,. is exponentially decreasing at high energies. This idemperature dependence of the loss functione Tr(q, ).
because a nonzero [Hy, requires that the statk—q) be Through theng factors in EQ.(10), the plasmon peaks at

occupied, and the energigg _, which contribute(roughly a ~ @(4—0)~* y4mne’/m are broadened at high This tends
plasmon energy abovE) are quite high ifE is above the to smooth out the sharp features in the energy dependence of
Fermi energy. The electron with absorption term is apprelm= seen afT=0 (see, for example, the disappearance of
ciable at this temperature, and is roughly constant in energyh€ Kink atE~3Eg for T>0 in Fig. 9. However, this effect
due to the requirement that the stdte-q) (with E, , 'S cifl secorjdary importance; |f the zero-temperature
>E) be empty, a condition easily met for all energies, adme (q,w) is used in thg calculations of Figs. 1 and 2, the
long asfiw,>Eg, as is the case far,=2.0. The hole with ~qualitative features remain the same. _
absorption term, on the other hand, decreases at high ener- In orgler to estimate tempe_rature-dependent corrections to
gies, because a nonzero ¥y, requires that the statfk the noninteracting single-particle ener%lezs of a hqmogeneous
—q) be occupied. Note that both absorption terms are, iff!€ctron gas, we compute Re¢k,E=%°k°/2m). Figure 3
general, smaller than the emission terms. The relatively smafinows R& as a function of — E for an electron gas with
number of plasmons present at this temperature ensures thfs=2-0 at temperatures of 0, &2, 0.4€¢, and 0.€.
As T increases, both absorption terms become more impo2gain, ourT=0 result is identical to that obtained by Lun-
tant, and eventually become comparable to the emissiofldvist for rs=2.0" Note that for T=0, ReX(E-Ef
terms. <15 eV) is roughly constant. This means that if we use Eq.
So we see that the temperature dependendénol| in  (11) to predict the quasiparticle energies( is also roughly
Fig. 1 is due to{i) an increase in the plasmon population asconstant for these energies, see belote bottom of the
T increases, which causes plasmon absorption and emissidwand is shifted down by the same amount as the states.at
rates to increase, ar(d) increased availability of states into The occupied bandwidth is therefore relatively unchanged.
which electrons and holes can decay, which affects botii\s T is increased, RE increases with energy; states at the

FIG. 2. Various terms(see text contributing to ImX(k,E
=#2k?/2m) vs E/E for jellium with r= 2.0 at(a) T=0, and(b)
T=0.6E~90000 K.
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=75 hole pairs at highl. In fact, there are four distinct virtual
— T1=0 processes which are the exact analog of the four decay pro-
85 777 I-30000K cesses involved in I®. For example, one process involves
an electron in statgk) undergoing a virtual transition to the
< intermediate staték—q), and then jumping back tfk). If
[% -95 Ex—4<E, this second-order process, which renormalizes the
&£ energy of|k), is the counterpart of what we called “electron
o5 with emission” above. The final state of the Enprocess has

become the intermediate state of a corresponding Reo-
cess. Thus the decompositiotk|ReX|k)=(k|ReX dk)
115 +(k|ReXd k) +(k|ReXZ k) +(k|ReXJk) is possible.
-15 0 15 30 45 . . .
While we do not write expressions for each term here, they
E - E-(eV) . :
have been discussed elsewhere in the context of electrons
FIG. 3. Re3 (k,E=#%2k?2m) vs E—Eg for jellium at a density ~ renormalized by phonors.The effect of these processes on
given byrs=2.0 andT=0, 0.E, 0.4E¢, and 0.&r, whereEr ~ ReX can best be understood by noting that3R&) and
=12.5 eV (~150000 K) is the Fermi energy at=0. Im X (E) satisfy the Kramers-Kronig relation. Thus peaks or

) ~ shoulders in one correspond to inflection points in the other.
bottom of the band are shifted down more than the highefg it the dip in RE& atE~24 eV forT=0 (see Fig. 3
energy states, so the bandwdth is widened. Th|§ W|den|ng '%an be thought of as arising from the shoulder at that energy
however, quite small relative to the total bandwidth. For N ims (Ref. 7) (see the kink visible in Fig. @) at E/Eg

stance, forT=0.6E, the band is widened by about 1.5 &V _; gy "Thjs shoulder comes from strong plasmon emission

over a 50-eV range. Note that the dipeat 24 eV disappears which occurs ifE is slightly larger thamiw,. As T is in-

asT increases. It should be mentioned that we find the reNOfzreased, the shoulder broadens dusiltdncreased impor-
malization factoerF to be practically independent df for

tance of other proceses such as absorption,(indroaden-
this density(and for comparable densitieg=orrs=2.0, our  jng of the plasmon peak in IrT X(g, ). These same effects
T=0 value is 0.77, in agreement with LundgvisThough  therefore cause the disappearence of the dip i& Re
we findZ,_to increase monotonically witfi, we compute it In order to investigate the extent to which the interacting
to be only 0.82 forT=Eg. Green’s function differs from the noninteracting one given in
All of the T-dependent changes to Recan be interpreted Eq. (6), we compute the electron spectral function, defined
as changes in the quasielectron effective mass due to tHey ImG(r,r’;E)==A(r,r’;E). It can be calculated from
virtual emission and absorption of plasmons and electronReX and ImX. In thek representation,

AKE) = 1 [Im S (k,E+ )|

TE+u—El—ReX (k,E+u) 2= [Im3(k,E+u)]?’ (19

wherepu is theT-dependent chemical potential. Note that thisour observation above tha_ is roughly independent of.

expression involves the self-energif the energy shellor g4 githough the quasiparticle peak is broadened at Tiigh
E#Ey. Figure 4a) shows our results foh(k,E) atT=0for  (resulting in a short lifetime the quasiparticle is still a well-
an electron gas withs=2.0." The quasiparticle peak is in- gefined excitation in this theory, in the sense that it is distinct
finitesimally narrow fork=kg, as it should bethe slight  from the background and its total spectral weight is roughly

The satellite structure at roughly a plasmon energy away 000 mewhat lower densities as wédlg.,r.=5.0), where elec-

either side of the quasiparticle peak corresponds to thtte . . .
o fon correlations are more important agg is farther from
coupled electron-plasmon  excitations  known as F

“plasmarons.” Figure 4b) showsA(k,E) for T=0.4E.  unity.
The quasiparticle peaks are significantly broadened, but the
basic peak structure remains for edclitven atT = E [Fig.

4(c)], we find that the remnants of quasiparticle and plasma-

ron features are clearly present. It is true, however, that spec- A real material, such as Al, at a single temperatiire
tral features for a givek move to highelE asT is increased, describes a state in which the ions are in motion. AtTra#

a result of the fact thgt decreases withi. It is interesting to  interest to us in this worki.e., far above melting the ions
note that thelapproximate total weight in the quasiparticle would be in a fluid state. However, there is a class of experi-
peak atk=Kkg is roughly independent df, a consequence of ments in which the system is best describedTRycyoi= T

B. Crystalline Al
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FIG. 5. |[Im=(k,E=E”")| vs E'PA—E( for crystalline Al at
electronT of 0, 30 000, 60 000, and 90 000 K. Open symbols rep-
resent selected data from the jellium results at the corresponding
temperatures appearing in Fig. 1.

curves. The similarity with Fig. 3 is, however, readily
apparent’ The deviation of the Al electronic structure from
the free-electron picturéanisotropy of constant-energy sur-
faces ink space, avoided band crossings, complex spatial
dependence of the periodic part of Bloch wave functions,
etc) does not seem to play a strong role in determining the
T-dependent bandwidth and lifetime in crystalline Al.

Our calculations predict that crystalline Al &t~few
X 0.1T¢ will have the following features{i) a quasiparticle
bandwidth which increases with, but only by a few per-
cent;(ii) a quasiparticle inverse lifetime which increases rap-

FIG. 4. A(k,E) for k between 0 and 2 at (a) T=0, (b) T idly with T, equal to several eV fof ~10 eV. What might
=0.4E¢, and(c) T=Eg, for jellium with r;=2.0. In this figurew, be the experimental consequences of these predictions? A
denotes the plasmon enerdy/47ne?/m. typical pump-probe experiment measures the optical conduc-

tivity o(w), or alternatively the imaginary part of the dielec-

and Tj,,=0. These are measurements performed with ultratric function e,(w). One way to calculate,(w) would be to
short pulsed lasers, in which the electrons are excited iniuse Eq.(9), but with therenormalized Gobtained from our
tially, and then(roughly a ps latgrthey exchange energy self-energy calculations. Unfortunately, this suffers from the
with the much heavier ionfSWe performab initio calcula- problem of neglecting vertex correctiofsa very serious
tions of the quasiparticle properties of crystalline Al at non-problem when computing the response using renormalized
zero electroriT in order to investigate the properties of the propagators. A full, conserving calculation of the response
laser-excited metaprior to the motion of the ions. including vertex corrections is extremely difficult and, to the

Figure 5 shows|Im3.(k,E=E>*)| vs E'PA—E for  best of our knowledge, has not yet been performed for an
crystalline Al at electron temperatures of 0, 30 000, 60 000¢lectron gas al =0.1° Thus it is beyond the scope of this
and 90000 K(which correspond td=0, 0.2F¢, 0.4,

and 0.6%r, whereEr is the Fermi energy at =0). With -65 .

the exception of the noise in the curves, which is due prima- *T=0K
rilly to the use of a small discrete-point mesh(but also to ,sl oS0k
the dependence d& on the direction ok), the results are e 2 T=90000 K
very similar to ther ;=2.0 jellium results at the correspond- <

ing temperatures. See, for example, the selected points from 5 -85

the jellium calculations appearing in Fig. 5. Thus the same &

quasiparticle lifetime found in jellium a3 is increased is

also seen for crystalline Al. Figure 6 shows Rgk,E 98

=ELPA) vs EPA—E. for the same set of temperatures. ¢ . e
Again the results are quite similar to those of jellidfras 105 L -

seen by compari_son with Fig. (3_\/e r_efrair_1 frqm including EoA _ éi (V) % *®
points from the jellium calculation in this figure, because
absolute energies are different, and the scatter in the points FIG. 6. ReX(k,E=ELP*) vs E'PA—E for crystalline Al at

from each curve is comparable to the spacing betweeerlectronT of 0, 30 000, 60000, and 90 000 K.
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of jellium and crystalline Al quasiparticle lifetimes presented
- T=0, 5=0.01eV 1 here suggests that the jellium results should be relevant for
\ E ggggg ﬁ g: 2'8;3\’ liquid Al as well. Measurements and calculations on liquid
\ o ] Al at temperatures lower than those we consider here have
| ‘\ already been reportéd: RPA calculations ofr(w) peformed

80 r

\

1
N 7 of electron populations result in an effective Drude mean
scattering time of~fewx10 % s, leading to an energy
broadening of~1-10 eV for Al at near-solid density arid
between 1000 and 8000 K. This is comparable to the values
that we compute due to electron-electron scattering at much
higher T. While Silvestrelli’'s calculations using an infinit-
photon energy (eV) essimal lifetime broadening should be appropriate for the
. lower temperatures he considers, our results indicate that
FIG. 7. &;"*(w) for crystalline Al atT=0, andT=90000 K.  guasiparticle lifetime effects should contribute a significant
The 90 000-K results are presented with two energy broaden'ng%omponent to the broadening af(w) when T~ few
0.01 eV(meant to approximate the zero-broadening kased 2.0 . 11_ However, since the ion disorder already contributes
eV (consistent with our prediction dfm 3| for T=90000 K). N : i ) ;
a significant broadening to the absorption spectrum in a lig-

work. However, we can approximate the effects of this renoruid, the effect of quasiparticle lifetime broadening will be
malization one,(w) by performing an RPAEQ. (10)] cal- less pronounced than in the crystalline case.
culation for Al including the shift in the single-particle ener-
gies, and an energy broadenipgiven by & in Eq. (10)]
equal to the characteristic inverse lifetime. This is equivalent IV. CONCLUSIONS
to the assumption that quasiparticle states before and after a
scattering event are completely uncorrelét&while this is
incorrect in principle, the results should provide a reasonabl
qualitative picture of the response.

~ Figure 7 shows the results of our LDA calculations of
€5""*"(w), the interband contribution te,(w), for crystalline
Al. The intraband contribution which we do not compute,

e'"¥(w), is a smooth function peaked at=0, devoid of

ﬁ
|
3 f \ by Silvestrelli show that ion disorder and thermal broadening

We have presented calculations of the real and imaginary
garts of the electron self-energy operator for jelliumy (
=2.0) and crystalline Alnormal solid densityat high elec-
tron temperatures. The self-energy was computed with a
nonzeroT variant of the GW approximation. We found
bandwidths to increase and lifetimes to decrease with in-
creasing temperature. Crystalline Al results were shown to be
. . remarkably similar to those of jellium at the same density. In
structure(peaks at high frequency. The dashed line repre-ition we computed the spectral function for jellium and

sents the result forelectron temperatureT=90000 K,  gnoped that quasiparticle and satellite peaks remain distinct
wh|le the dotted line |s.thé’=0 .result. Both were computed ¢ T__fayyx 0.1T¢, even though the quasiparticle peak is

with 6=0.01 eV, consistent with the procedure for calculat-ghstantially broadened. We predict that optical conductivity
ing the dielectric function al =0 with a 32<32x 32 mesh  gyperiments performed on solid-density Al reaching electron
of k points:™ Note that although the 90 000-K spectrum is temperatures in excess of a few eV will not exhibit sharp

considerably broader, both curves exhibit a sharp peak gfa1yres resulting from the band structure, even when the
1.55 eV resulting from transitions between a set of nearlynaterig| is crystalline. Changes to the optical properties re-

2 . . .
parallel Al band§.' The solid line is the result of the same g ting from the renormalization of the bandwidth should not
calculation, but witho= 2.0 eV (consistent with the lifetime pq apparent.

results at 90 000 K of Fig.)5Renormalizing the band ener-
gies according to Fig. 6 produces negligible changes on this
scale. Note that the magnitude &f'®'(w) is significantly
altered; spectral weight is spread out considerably, a conse-
guence of the lifetime broadening. Note in particular that the We thank T. W. Barbee, Ill, M. P. Surh, E. L. Shirley, and
prominent peak atiw~ 1.55 eV in theT=0 case(and D. Hess for helpful discussions. Collaborations between
present even in th€= 90 000-K casavithoutlifetime broad- LLNL and LBNL were facilitated by the U.S. Department of
ening is absent in the solid curve. This spectral feature isEnergy’s Computational Materials Science Network. Por-
completely washed out once lifetime effects are includedtions of this work were performed under the auspices of the
Though the inclusion of vertex corrections may change thid).S. Department of Energy by University of California
picture somewhat, we suggest that most or all of the spectralawrence Livermore National Laboratory under contract No.
features arising from details in the band structure will beW-7405-Eng-48. This work was supported by the NSF under
absent in the results of pump-probe experiments reachinGrant No. DMR0087088, Office of Energy Research, Office
such temperaturesyen during the short time that the mate- of Basic Energy Sciences, Materials Sciences Division of the
rial remains crystalline U.S. Department of Energy under Contract No. DE-ACO03-
Spectroscopy performed on liquid Al at high temperatures7f6SF00098. Computer time was provided by the DOE at the
and near-solid densities is also of interest. The near equalityawrence Berkeley National Laboratory’s NERSC center.
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