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First-principles elastic and structural properties of uranium metal
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Density-functional electronic structure calculations have been used to investigate the ambient pressure and
low-temperature structural and elastic properties of uranium metal. The equilibrium volume and bulk modulus
have been calculated within the generalized gradient approximg®i@a). Also, the effect of the relativistic
spin-orbit interaction on these properties has been investigated. Calculated structural properti¢<oin-
pare very favorably with experimental data. The nine elastic constants of this ground-state orthorhombic phase
have also been calculated, and compare reasonably well with experimental data, especially when experimental
data are extrapolated to zero temperature. The results of the present investigation suggest that density-
functional theory, in its GGA formulation, accurately describe the electronic structure of uranium, and possible
correlation effects are well accounted for within this theory.
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[. INTRODUCTION pseudopotential techniqd&This latter theory, however, was
neither successful in reproducing details of the experimental
Uranium, being the heaviest naturally occurring elementgrystal structure nor equilibrium properties of U.
has received a lot of attention for its nuclear properties and The electronic structure of uranium is dominated by 5
the nuclear energy that can be harvested. Less discussed lectron states which form bands that are very narrow and
the properties of uranium metal which are largely determinedend to bond the atoms in complex and distorted wéyhe
by its electrons surrounding the nuclei in the solid. Interestcombination of narrow & states and an open and distorted
ing properties of uranium include low temperature chargecrystal structure make a theoretical treatment nontrivial. The
density waves (CDW) transitions: anisotropic thermal problem is further made difficult by the increased importance
expansiorf, and a relatively complex crystal structure of relativistic effects that arise for such a heavy material. In
(orthorhombig.® The behavior of U at elevated pressure andthe following we apply an accurate electronic structure
temperature was recently studied experimenfallgnd it  method, previously shown to be able to treat ground-state
was shown that the: phase is stable up to at least 1 Mbar atproperties of the light actinides to carefully study the crys-
ambient temperature with a bcc phase developaichigher  tal structure of uranium. Moreover, we will calculate the nine
temperatures. Modern reviews of the physical properties ohdependent elastic constants @fU with this technique.
uranium were given by Fishtand Landeret al. With the exception of TH? which has a simple face-
Theoretically, U is best treated with methods that are freeentered-cubidfcc) structure, elastic constants for an ac-
from geometrical approximation@ull potential) because of tinide metal have never been calculated from first principles,
its open and distorted crystal structure. Density-functionato our knowledge. The determination of elastic constants is
and full-potential calculations a decade ago were able to rémportant because these contain detailed information about
produce the correct ground-state structure of U, using th#&e chemical bond and provide a very sensitive test of the
local density approximatiofLDA), but the equilibrium vol-  theory.
ume was not very well describ&ah few years later the LDA In Sec. Il we describe technical details of our method,
was replaced by a generalized gradient approximatioincluding typical setup parameters for the calculations. This
(GGA) treatment of the electron exchange/correlation, ands followed by Sec. Ill, which deals with optimizing the
now the equilibrium volume was in much better agreemenstructure of uranium. In Sec. IV we report our elastic con-
with experimenf Since then, several theoretical investiga- stants fora-U and compare with experimental data. Finally,
tions of the equilibrium volumes in the actinides have beerin Sec. V, a comparison with previous theories is made, and
published, and a summary was given in the paper by Jonegources of errors in the computational approach and future
et allf prospects will be discussed. A detailed description of the
As regards details of the crystal structure, Akedleal?  elastic-constant calculation is provided in the Appendix.
measured the axial ratios @f-U as a function of pressure
and compared with first-principles theory. Of the two axial
ratios, thec/a ratio was more sensitive to pressure and the
theory accurately reproduced the experimental finding of a The total energy is calculated for uranium with the crystal
pressure induced increase of tbea axial ratio. Later, the structure, lattice constant, and the atomic number as the only
same theoretical technique was used to study the CDW imputs. By varying the internal parametet¥' 4, c/a, andy)
uranium? which was shown to be driven by nesting featuresas well as the lattice constaatwe can fully relax the crystal
of the Fermi surface. The above theoretical results were aBtructure. For this relaxed geometry very small strains
obtained from all electron full-potential methods, but more(<1%) were applied so that the elastic constants could be
recently the structure of U was investigated by a plane-wavextracted using relevant equations that, for completeness, are

Il. COMPUTATIONAL DETAILS
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included in the Appendix. About 4—6 magnitudes of strains ~ ' ' ' ' ' '
were used for every elastic constant, and a third degree polyE 041 7
nomial was fitted to the corresponding energies so that thes
harmonic coefficient could be obtained. In most cases ncg 3 4
geometrical relaxations during the deformations were al-g
lowed, but test calculations suggested that this effect on theZ”
elastic constants is rather small.

For these calculations we used the full potential version of
the linear muffin-tin orbitalFP-LMTO) method"® This elec-
tronic structure method is an implementation of density--
functional theory as applied for a bulk material. It is a first-
principle method, no experimental numbers are used in the
calculations except for the nuclear charge which is 92 for U.
The errors in this approach are limited to the approximation
of the exchange/correlation energy functional, cut offs in the
expansion of basis function&:point sampling in integra-

fi the Brilloui d the B o hei FIG. 2. Calculated energy dependence of the lattice conatant
lons over the briliouin zone, an € born-Uppenneimerye , \; Here the solid line is only to guide the eye. For this varia-

approximation. For sthe (_exchange/correlation approximatioqion b/a andc/a are kept constant and equal to 2.045 and 1.756
we used the GGA® which has proven to be better for resp;ectively '

f-electron metafsthan the more commonly used LDA. Spin-
orbit coupling was included and implemented in a first-order . . .
variational proceduré for the valenced andf states. For the (Se€ Fig. 1 that can be described with two atoms per cell.
core states a fully relativistic Dirac equation was solved. ~ This a-U structure is a fingerprint dband involvement in
The use of full nonsphericity of the charge density and_the chemical bpna(,’ and has also been seen experimentally
one-electron potential is essential for accurate total energid8 the phase diagram of thef 4netals Ce, Pr, and Nd, and
and in particular when elastic constants are calculated. Thigieoretically in the 5 metal P&* This structure can be re-
is accomplished in our method by expanding the charge der@ted to both the body-centered-culflico and the hexago-
sity and potential in cubic harmonics inside nonoverlappingh@lly close-packedhcp) structures through a Burgers-like
muffin-tin spheres and in a Fourier series in the interstitiatransformatiort” _ o
region. In all calculations we used two energy tails associ- Before calculating the elastic constantsalJ, which is
ated with each basis orbital and fos @nd 6 and the va- theé main purpose of this paper, we try and determine the
lence states (§, 7p, 6d, and &) these pairs were different. fully relaxed structure and density of the metal. The total
With this “double basis” approach we used a total of six energy was calculated while varyirg b/a, c/a, andy in
energy tail parameters and a total of 12 basis functions pefearch for the absolute ground-state energy minimum. With
atom. Spherical harmonic expansions were carried oufh® €xperimental room temperature data as a starting point,
throughl =6 for the bases, potential, and charge densitythese four parameters were varied independently one at a
The sampling of the irreducible Brillouin zone was donetime. When all four were optimized in a first iteration we
using the speciak-point method® and the number ok repeated the procedure iteratively until a convergence criteria
points used were about 200—600 for the elastic constants arf about 10° was fulfilled. Figures 2, 3, and 4 show the
54-128 for the crystal-structure relaxations. To each energ§nergy as a function &, b/a, andc/a, close to their respec-
eigenvalue a Gaussian was associated with 20 mRy width téve equilibrium values(2.845 A, 2.045, and 1.756Note
speed up convergency. In some cases we used the LDA fépat the energies vary smoothly even for very small changes
comparisons, and the chosen parametrization was that of von
Barth and Hedirt? —_ L
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Ill. CRYSTAL STRUCTURE

Uranium at low temperature up to at least 1 Mba
stable in a face-centered-orthorhombi€nicny structure
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FIG. 3. Calculated energy dependence of ltihe axial ratio of
FIG. 1. The a-U crystal structure(Ref. 3. This is a face- «-U. Here the solid line is to guide the eye. For this variatiota
centered orthorhombic unit celC(mcm) with nonequak, b, andc. (1.756 and the atomic volume (20.67 34 are kept constant.
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in the lattice parameters which is essential when determining TABLE I. Ground-state properties ef-U from FP-LMTO. Vol-
their equilibrium values to the third decimal. It should be ume and lattice constants are in units of A and the bulk modulus in
noted here that variations df/a and c/a (Figs. 3 and §  kbar. Experimental lattice constar{ef. 23 measured at about 40
were performed for a constant atomic volume (20.67).A K, andBandB’ are measureRef. 5 at room temperature.

The data from these figures are comprised in Table | together

with those from experiment. The experimeftaixial ratios, Atomic
and alsoy, show a linear decrease with decreasing tempera- volume  a b ¢ y B B
ture over a wide range from at least 180 K down to the firstrpeory 2067 2.845 5.818 4.996 01025 1330 5.4

CDW transition in the vicinity of 40 K. To best compare with Experiment 20.52 2.836 5.866 4.935 0.1017 1355 3.8
our zero temperature calculations, the experimeatdd, c,

andy in Table | are measurétiat a temperature just above
the CDW transition(an extrapolationd 0 K yields essen- . . .
tially the same resulis The bulk modulugB) and its pres- In Table Il we summarize our theoretical elastic constants

sure derivative B'), however, are measured at room and compare with experimental data. In this tableare the
temperaturé. deformations corresponding to the same column elastic con-

The agreement with experiment for all calculated proper-St?‘r.‘t(O.r linear combipation therepﬂvhich are described ex-
ties in Table | is impressive. With the exceptionsf, which  Plicitly in the Appendix. The experimental data denoted “Ex-
is very dependent upon the equation-of-state fitting proceperiment” in the table are room temperature data from Fisher
dure, theory, and experiment are within about 1% of eacind McSkimin’® These same authors studied the tempera-
other. For a comparison, full-potential scalar relativisticture dependence af; a few years latet? and these data
GGA calculations of the @ and 5 transition metals yield were also reviewed by Landet al.” The temperature depen-
atomic equilibrium volumes that are in about 2% root-mean-dence of the elastic constants of uranium is rather strong, and
square error compared to room temperature experiffent. with the exception ofc;; which is nearly constang;; in-

creases linearly with decreasing temperature from about 100
IV. ELASTIC CONSTANTS K approaching the CDW transitions at about 50 K. To best
compare our theoretical zero-temperature data with experi-

About a decade ago, accurate calculations of elastic corment we can easily do a linear extrapolatiorcgffrom 100
stants of metals were report&dyhich were done for non- K to zero, and the data obtained are denoted “EXpt:0” in
magnetic and cubic transition metals. Later, these studiesaple II. For thec;; no such temperature variation has been
were extended to include hexagonal transition métalad  measured and no extrapolation was therefore attempted. Fo-
more recently, elastic constants of complex orthorhombiGuysing first on the;; , theoretical data overestimate the room
systems were reportéd’’ To date, no theoretical elastic temperature experimental data with an average amount of
constants of an actinide metal, with the exception of fcc Thahout 27% with the worst case being, that is almost 43%
(Ref. 14 and fcc () Pu?® can be found in the literature. too large in the calculations. When extrapolating experimen-
Here we present calculations for nine independent elastifa| data to zero K the average 27% error is decreased to about
constants forx-U. The calculations were performed for the 150 To give a perspective to this result, calculations for fcc
relaxed phase as described in Sec. Ill. In general, no furtherh (with three elastic constants;, C1,, andc,y) resulted in
relaxation was allowed in conjunction with the distortions an average error of about 20% compared to experirﬁlenF_
used in calculating the elastic constants and the proceduige extracted from linear combinations of elastic constants,
follows closely that of Ravindrast al,”® but for complete-  and their relative error could be much larger because small
ness the relevant equations are included in the Appendix. relative errors of these linear combinations could propagate
to large relative errors for the; . This is clearly the case for
the small shear constaoi;, see Table lic,, andc,3, how-
ever, are in surprisingly good agreement with experimental
room-temperature data.

The bulk modulus is of course also an elastic constant,
0.02 | i and corresponds to an isotropic change in volume and in-
volve radial but no angular distortions. Hence the energy
versus volume relation can be used to directly calcukate
This was done in Sec. Il by fitting the total energiesact)
versus volume to a Murnaghan forthln practice, a very
0.00 - . small volume interval was utilized for this purpose 8% of
the equilibrium volumg and the obtained value is given in
Table | as 1.33 Mbar. The bulk modulus could, however, also

0.03 |- -

0.01 - 4

Relative Energy ( mRy/atom )

1.750 1.755 1.760 1.765 . . 7 - ;
o/a Axial Ratio be expressed in terms of the elastic constahes)d in this
case
FIG. 4. Calculated energy dependence of ¢the axial ratio of
a-U. Here the solid line is to guide the eye. For this variatiofa
(2.045 and the atomic volume (20.67 3 are kept constant. B=3%(Cy1+ Copt Cag+ 2C 5+ 2C13+ 2C03). (1)
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TABLE IlI. Elastic constantyMbar) for «-U. No relaxation effects were accounted for in the theory,

except for theDg deformation(see main tejt D, Dg, andDg correspond to linear combinations of elastic

constants; see EgeA13), (A14), and(A15). Experimental datéRef. 29 are measured at room temperature

and “Expt: T=0" refers to data obtained from a linear extrapolation of experime(Raf. 30 elastic

constants tof =0 K (see the main text

Ci1 C22 Cs3 Caq Css Ces (%) Ci3 C23
Theory 3.0 2.2 3.2 15 0.93 1.2 4.2 6.1 3.1 0.50 0.05 1.1
Experiment 215 199 267 124 0.734 0.743 3.20 438 251 0.465 0.218 1.08
Expt: T=0 210 2.15 297 145 0.945 0.871

Using the theoretical data of Table Il the calculatds correlation is tested on some key propertiesvetf).
equal to 1.3 Mbar, which is clearly consistent with the 1.33  |n Fig. 5 the calculated total electronic density of states
Mbar obtained from the Murnaghan fit. Experimentally, the(DOS) is plotted, with and without spin-orbit interaction
room temperature bulk modulus evaluated from EQ.is (SO for a-U. The dotted line represent the more approxi-
equal to 1.15 Mbar, SWh'Ch is about 15% smaller than thajyate scalar relativistic calculatidscalay that exclude spin-
reported by Yocet al” (1.355 Mbay. This discrepancy be- it offects. Note that above the Fermi level, showing the

tween the experimental reportsBis large and the reason is unoccupied states, there is a substantial difference between

not known, but it could indicate that the older measurementy, o o calculations whereas at or below the Fermi level the
underestimate elastic constants somewhat and this could p 0S's are very similar. Hence the effect of spin-orbit cou-

sibly explain some of the difference between the presenpling on the total energy should be small fefU. Figure 5

; 30
theory and experimerit seems to suggest, however, that for a largeb&nd occupa-
tion, such as in Np or Pu, the SO effect could be of greater
importance. The SO effect on the equilibrium volume and
As mentioned in Sec. &-U is expected to be difficult to bulk modulus ofa-U is very small. In Fig. 6 the total energy
treat accurately in any first-principles theory. Here, we haveversus volume is plotted far-U and bcc U with(SO) and
used a full-potential technique to be able to study the relawithout (scalay spin-orbit coupling. For both structures, the
tively open and distorted structure afU and also converge SO expands the atomic equilibrium volume but no more than
total energies sensitive to small distortions in evaluating th€%. The calculated bulk modulus is correspondingly lower
elastic constants. All relativistic terms are accounted for, andput not by much(4% for bcc U and 8% fow-U). The SO
the GGA is utilized for the exchange/correlation effects ofenergy difference betweea-U and bcc U is about 16.4
the electrons. In order to give some guidance to other, lesgRy/atom, which increases to about 17.3 mRy/atom for the
accurate, numerical treatments @fU we perform calcula- scalar relativistic calculation. For reference, we also calcu-
tions with the spin-orbit coupling switched off. Furthermore, lated fcc, hcp(ideal c/a), and bct ¢/a=0.825) uranium
the effect of gradient corrections to the electron exchangelotal energies, and their difference relativedeJ are sum-
marized in Table Ill. The bcc and the bct energies are of

V. DISCUSSION
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FIG. 5. Total electronic density of states ferU at the theoret-

ical equilibrium atomic volume 20.67 & The full line represents a
calculation that includes spin-orbit couplif§0O), and the dashed
line a calculation without spin-orbit couplingcalaj. The energies
are shifted so that the Fermi level is equal to zero.

FIG. 6. Relative energies fat-U and bcc U, from calculations
including spin-orbit couplingSO) and without spin-orbi{scalay.
The «-U energies are shifted so that the minium energy is equal to
zero for both the SO and scalar calculation.
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TABLE IlI. Total-energy differencegmRy/atom for bce, fce,  as a function ob/a for the four permutations of GGA, LDA,
hep (ideal c/a), and bet €/a=0.825) uranium, relative ta-U. SO, and scalar. For this test calculatiofa, y, and the vol-
Present results are obtained from FP-LMTO within the GGA, with yme were kept fixed to their experimental values. As is clear
(SO and without(scalay spin-orbit coupling included. PP results from this figure,b/a is rather insensitive to the approxima-
(Ref. 11 were calculated within the LDA and no spin-orbit cou- tjong with all values within less than 1%. To further test the
pling. results of the PP calculations, we calculatedlife with the
volume, c/a, andy given by the PP treatment. Our FP-

Theory BocBe  BrecBu  EnopBa  Boorka LMTO approach then produced t#a value equal to 2.05

FP-LMTO SO 16.4 19.1 17.7 6.8 which should be compared to the 1.939 PP result. Here we
FP-LMTO scalar 17.3 24.7 21.1 7.8 made an effort to make our all electron computation as simi-
PP 11.5 15.9 lar as possible to the PP calculation, i.e., the LDA was used

and no spin-orbit coupling. Still, the difference bia is
almost 6% between FP-LMTO and PP methods, and our con-
particular interest because these phases have been predictédsion must be that the pseudopotential dSésinot accu-
at high compression of uraniutf. rate enough to correctly reproduce the all-electi@iP-
Recently a pseudopotentiéiPP approach was usédto  LMTO) results or experiment for the crystal structure of
study point defects in uranium dioxide. The obvious draw-uranium. Also, the PP energy difference betweety and
back with this treatment is the uncertainty in accuracy of thebcc U is about 11.5 mRy/atom which is in poor agreement
pseudopotential itself. Théfrcalculations also suffered from with our result of about 17 mRy/atom; see Table Il
neglecting spin-orbit coupling and more importantly gradient The main purpose of the paper by Crocombettal®
corrections to the electron exchange/correlation functional. ltvas to study point defects in uranium dioxide, and therefore
is well known that for transition metals, afieélectron metals it could be of interest also to compare the present technique
in particular, the LDA severely overestimates the chemicalvith theirs for UG,. This is a traditional Mott insulator
bond, and consequently the PP calculation gave an atomighich is antiferromagnetic with a bandgap at the Fermi
volume for a-U that was about 8% smaller (18.98%and  level. The present GGA calculations do not reproduce either
a bulk modulus about 39% larg¢t.88 Mbaj than the ex- of these properties but predict YQo be a ferromagnetic
perimental data. These discrepancies are consistent with timeetal, a finding that is consistent with previous density-
use of the LDA and could most likely be improved by re- functional studies as well as that of Crocombedtel. The
placing the LDA with the GGA. In the PP stuththe lattice  present theory predicts a lattice constant5.46 A which
parameters ofr-U were optimized as well, and wet®a  should be compared t8=5.24 A from Crocombettet al.
=1.939, c/a=1.767, andy=0.107. These data should be and the experimental valuea=5.47 A. The present bulk
compared to the experimental data and the present theory modulus(1.7 Mbayp is somewhat soft compared to experi-
Table I. The PP calculations afa andy are consistent with  ment(2.07 Mbay, whereas the bulk modulus of Crocombette
experiment(1.74 and 0.101)7and present theor§l.756 and et al. (2.52 Mbay is too stiff.
0.1025. b/a, however, is in remarkable disagreement with  Next we discuss the elastic-constant calculation. Overall,
experiment(2.068 and our FP-LMTO resul(2.045. The the agreement with experiment is good in light of the ex-
cause for this could be the use of the LDA, or the neglect opected density-functional error for elastic constants of met-
spin-orbit coupling, or possibly a less than accurate pseudals. This is especially true when the experimental data are
potential. The two former approximations can easily beextrapolated to zero temperature. Upon closer inspeati@n,
tested with our FP-LMTO code, and the result of this test isis very small, and in relative terms in poor agreement with
given in Fig. 7. Here the total energy afU was calculated room-temperature data. Some of this error could likely be
decreased if temperature effects could be accounted for, but
020 F ' ' ' ' ' ' ' ] the main problem wittc,5 is an unfavorable error propaga-
tion in the evaluation of this elastic constant. The distortion
s | o [Datslar: 200 used to extract,sis Dg (see the Appendix which involves
o GGA+scalar : 2.034 a linear combination of elastic constants that is about 20
—e—GGA+SO  :2.028 times larger tharc,; itself. Consequently, a relative error
- associated witlDg is increased by 20 times fay; due to the
way the error propagates. Foy this is not a problem be-
cause they are directly evaluated from the deformatns
Note in Table Il that all distortionsL;) give rise to the-
oretical elastic constantsr linear combinations thereathat
: arelarger than experimental data. This is actually expected
because no relaxations of the structure have been allowed

0.05

Relative Energy ( mRy/atom )
<o
S
T

0.00 -

| 1 | | | |
200 2001 202 203 204 205 206 . . ) .
. . during the distortions. Relaxation effects could only cause
b/a Axial Ratio

the distorted system to lower its energy and therefore lower

FIG. 7. Relative energies as a functionosf axial ratio for four ~ the elastic constant. Unfortunately, with the present tech-
sets of calculations as marked in the figure. The optimizgal  nique, it is very difficult to allow for such relaxation when

value is given next to the legend. calculating elastic constants. We did, however, try to calcu-
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late the effect of relaxation for thBg distortion by optimiz-  elastic constants of this phase. The internal energy of a crys-
ing the geometry during this deformation, in which we alsotal under straing, can be Taylor expanded in powers of the
increaseds from less than 1% to about 2%. The increase tostrain tensor with respect to initial energy of the unstrained
2% distortion made the evaluation of the elastic constant lesgrystal in the following way:

sensitive to errors made in the relaxation process. Dhe

distortion increasea and decreaseswith an equal amount, 1

while b is unchanged. Hence, in the relaxatidws andy E(V,8)=E(V,,00+Vo Z Ti&ioit 5 IE Cij 9i£i 5
and the volume were optimized one at a time, whila was §

determined by the deformation. This decreased the energy +0(8%). (A1)
associated with the distortion about 5% and most of this was

due to the relaxation of thb/a axial ratio. The relaxation The volume of the unstrained system is denotegd ahd

effects upon the other elastic constants could be more or les5(V,,0) is this system’s internal energy. The Voight notation
than 5%, but because of the extremely small distortions useflas been used in the equation above, x&, yy, zz yz, xz,

for these ¢ less than 1%we will assume that the relaxation andxy are replaced with 1—6. Of coursgz, xz, andxy are
error in the calculations is not substantially more than 5%equal tozy, zx, andyx, and for this reasos; is equal to 1
The calculation of the bulk modulus supports the notion thayr =1 2 and 3 and 2 foi=4, 5, and 6.7; above is a
relaxation effects on the elastic constants are rather Smau:omponent of the stress tensor.

When determinindd from the Murnaghan fit as described in The three first elastic constarts;, C,,, andcss are ob-

Sec. lll, the total energy was calculated as a function ot5ined from the following distortions:

volume. The volume was varied for the fully relaxed equi-

librium configuration ofa-U by scaling the lattice constant 1+6 0 O

a. In principal, the geometry should have been relaxed as a | o 10

function of volume and the corresponding total energies used Dy= ' (A2)
for the Murnaghan fit. Test calculations, that allowed for a 0 01

structural relaxation at the smallest (20%)Aand largest

(21.7 A3) volumes used for the fit of the bulk modulus, 1 0 O

lowered the total energywith respect to the energy mini- D,=[ 0 1+6 0], (A3)
mum) by about 2%. It is therefore safe to assume that relax-

ation effects on the bulk modulus will not be greater than 0 0 1

about 2%. The bulk modulus is also a linear combination of nd

elastic constantfEqg. (1)], and it therefore seems plausible

that relaxation effects are also limited for a calculation of 10 0

these constants.

To summarize, we have studied the crystal structure of D;=({0 1 0 |, (Ad)
a-U in detail, and calculated the elastic constants for this 0 1+¢
phase. To our knowledge, elastic constants have never been
calculated for such a compléselectron system, although the ~ The internal energies for these three distortions can be
crystal structure has been investigated theoretically beforebtained from
For the most part elastic constants agree well with experi-
ment and, for the crystal structure, the present theory is much
better than other recently published theories. We believe that
the present report provides evidence that carefully performed
density-functional theoryDFT) can accurately describe ura-  NextCas, Css, andces, are related to the distortion equa-
nium at low temperatures. This gives us confidence that DFTions:
has predictive power for this material and could be used, for

o

E(V,8)=E(Vo,0)+V,

o+ 52) (A5)
I 2 "

example, to aid in developing interatomic potentials that ul- 1
timately could be utilized to study mechanical properties of (1-64)D,=( 0 1 , (AB)
uranium.
0 1
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APPENDIX 1460
N -
In this appendix, we describe the strains of the orthorhom- (1-8%)De=| o 0 (A8)
bic (a-U) structure used to calculate the nine independent 0 0 1
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These three elastic constants can then be extracted from The internal energies associated with these three distor-

the corresponding internal energy:
E(V,8)=E(V,,0)+2Vy( 76+ Cj; ). (A9)

Finally, we introduce the following three distortions:

1+6 0 0
(1-65)D,=( 0 1-6 0], (A10)
0 0 1
1+6 0 O
(1-8)Dg=| O 1 0 |, (A11)
0 0 1-6
and
1 0 0
(1-6%)Dg=| 0 1+6 O (A12)
0 0 1-6

tions are given by the equations

E(V,8)=E(Vy,0)
+ Vol (71— 72) 8+ 3(Cq1+ Cop—2C17) 671,
(A13)

E(V,8)=E(V0,0)+ Vo[ (71— 73) 8+ 3(Cq3+ Caz— 2C13) 67,
(A14)

and

E(V,8)=E(V0,00+ V[ (72— 73) 8+ 5(Cop+ Ca3— 2C23) 6],
(A15)

which can be solved for the three remaining elastic con-
stants,C1,, Ci3, andcos.
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