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First-principles elastic and structural properties of uranium metal

Per So¨derlind
Department of Physics, Lawrence Livermore National Laboratory, Livermore, California 94550

~Received 22 April 2002; published 16 August 2002!

Density-functional electronic structure calculations have been used to investigate the ambient pressure and
low-temperature structural and elastic properties of uranium metal. The equilibrium volume and bulk modulus
have been calculated within the generalized gradient approximation~GGA!. Also, the effect of the relativistic
spin-orbit interaction on these properties has been investigated. Calculated structural properties ofa-U com-
pare very favorably with experimental data. The nine elastic constants of this ground-state orthorhombic phase
have also been calculated, and compare reasonably well with experimental data, especially when experimental
data are extrapolated to zero temperature. The results of the present investigation suggest that density-
functional theory, in its GGA formulation, accurately describe the electronic structure of uranium, and possible
correlation effects are well accounted for within this theory.

DOI: 10.1103/PhysRevB.66.085113 PACS number~s!: 62.20.Dc, 71.20.2b, 71.15.Mb
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I. INTRODUCTION

Uranium, being the heaviest naturally occurring eleme
has received a lot of attention for its nuclear properties
the nuclear energy that can be harvested. Less discusse
the properties of uranium metal which are largely determin
by its electrons surrounding the nuclei in the solid. Intere
ing properties of uranium include low temperature char
density waves ~CDW! transitions,1 anisotropic thermal
expansion,2 and a relatively complex crystal structu
~orthorhombic!.3 The behavior of U at elevated pressure a
temperature was recently studied experimentally,4,5 and it
was shown that thea phase is stable up to at least 1 Mbar
ambient temperature with a bcc phase developing5 at higher
temperatures. Modern reviews of the physical properties
uranium were given by Fisher6 and Lander.et al.7

Theoretically, U is best treated with methods that are f
from geometrical approximations~full potential! because of
its open and distorted crystal structure. Density-functio
and full-potential calculations a decade ago were able to
produce the correct ground-state structure of U, using
local density approximation~LDA !, but the equilibrium vol-
ume was not very well described.8 A few years later the LDA
was replaced by a generalized gradient approxima
~GGA! treatment of the electron exchange/correlation, a
now the equilibrium volume was in much better agreem
with experiment.9 Since then, several theoretical investig
tions of the equilibrium volumes in the actinides have be
published, and a summary was given in the paper by Jo
et al.10

As regards details of the crystal structure, Akellaet al.4

measured the axial ratios ofa-U as a function of pressur
and compared with first-principles theory. Of the two ax
ratios, thec/a ratio was more sensitive to pressure and
theory accurately reproduced the experimental finding o
pressure induced increase of thec/a axial ratio. Later, the
same theoretical technique was used to study the CDW
uranium,1 which was shown to be driven by nesting featur
of the Fermi surface. The above theoretical results were
obtained from all electron full-potential methods, but mo
recently the structure of U was investigated by a plane-w
0163-1829/2002/66~8!/085113~7!/$20.00 66 0851
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pseudopotential technique.11 This latter theory, however, wa
neither successful in reproducing details of the experime
crystal structure nor equilibrium properties of U.

The electronic structure of uranium is dominated byf
electron states which form bands that are very narrow
tend to bond the atoms in complex and distorted ways.12 The
combination of narrow 5f states and an open and distort
crystal structure make a theoretical treatment nontrivial. T
problem is further made difficult by the increased importan
of relativistic effects that arise for such a heavy material.
the following we apply an accurate electronic structu
method, previously shown to be able to treat ground-s
properties of the light actinides,13 to carefully study the crys-
tal structure of uranium. Moreover, we will calculate the ni
independent elastic constants ofa-U with this technique.
With the exception of Th,14 which has a simple face
centered-cubic~fcc! structure, elastic constants for an a
tinide metal have never been calculated from first principl
to our knowledge. The determination of elastic constant
important because these contain detailed information ab
the chemical bond and provide a very sensitive test of
theory.

In Sec. II we describe technical details of our metho
including typical setup parameters for the calculations. T
is followed by Sec. III, which deals with optimizing th
structure of uranium. In Sec. IV we report our elastic co
stants fora-U and compare with experimental data. Final
in Sec. V, a comparison with previous theories is made,
sources of errors in the computational approach and fu
prospects will be discussed. A detailed description of
elastic-constant calculation is provided in the Appendix.

II. COMPUTATIONAL DETAILS

The total energy is calculated for uranium with the crys
structure, lattice constant, and the atomic number as the
inputs. By varying the internal parameters (b/a, c/a, andy)
as well as the lattice constanta, we can fully relax the crysta
structure. For this relaxed geometry very small strain
(,1%) were applied so that the elastic constants could
extracted using relevant equations that, for completeness
©2002 The American Physical Society13-1
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PER SÖDERLIND PHYSICAL REVIEW B 66, 085113 ~2002!
included in the Appendix. About 4–6 magnitudes of stra
were used for every elastic constant, and a third degree p
nomial was fitted to the corresponding energies so that
harmonic coefficient could be obtained. In most cases
geometrical relaxations during the deformations were
lowed, but test calculations suggested that this effect on
elastic constants is rather small.

For these calculations we used the full potential version
the linear muffin-tin orbital~FP-LMTO! method.15 This elec-
tronic structure method is an implementation of dens
functional theory as applied for a bulk material. It is a firs
principle method, no experimental numbers are used in
calculations except for the nuclear charge which is 92 for
The errors in this approach are limited to the approximat
of the exchange/correlation energy functional, cut offs in
expansion of basis functions,k-point sampling in integra-
tions over the Brillouin zone, and the Born-Oppenheim
approximation. For the exchange/correlation approximat
we used the GGA,16 which has proven to be better fo
f-electron metals9 than the more commonly used LDA. Spin
orbit coupling was included and implemented in a first-ord
variational procedure17 for the valenced andf states. For the
core states a fully relativistic Dirac equation was solved.

The use of full nonsphericity of the charge density a
one-electron potential is essential for accurate total ener
and in particular when elastic constants are calculated. T
is accomplished in our method by expanding the charge d
sity and potential in cubic harmonics inside nonoverlapp
muffin-tin spheres and in a Fourier series in the intersti
region. In all calculations we used two energy tails asso
ated with each basis orbital and for 6s and 6p and the va-
lence states (7s, 7p, 6d, and 5f ) these pairs were different
With this ‘‘double basis’’ approach we used a total of s
energy tail parameters and a total of 12 basis functions
atom. Spherical harmonic expansions were carried
throughl max56 for the bases, potential, and charge dens
The sampling of the irreducible Brillouin zone was do
using the specialk-point method18 and the number ofk
points used were about 200–600 for the elastic constants
54–128 for the crystal-structure relaxations. To each ene
eigenvalue a Gaussian was associated with 20 mRy widt
speed up convergency. In some cases we used the LDA
comparisons, and the chosen parametrization was that of
Barth and Hedin.19

III. CRYSTAL STRUCTURE

Uranium at low temperature up to at least 1 Mbar4 is
stable in a face-centered-orthorhombic (Cmcm) structure

FIG. 1. The a-U crystal structure~Ref. 3!. This is a face-
centered orthorhombic unit cell (Cmcm) with nonequala, b, andc.
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~see Fig. 1! that can be described with two atoms per ce
This a-U structure is a fingerprint off-band involvement in
the chemical bond,20 and has also been seen experimenta
in the phase diagram of the 4f metals Ce, Pr, and Nd, an
theoretically in the 5f metal Pa.21 This structure can be re
lated to both the body-centered-cubic~bcc! and the hexago-
nally close-packed~hcp! structures through a Burgers-lik
transformation.22

Before calculating the elastic constants ofa-U, which is
the main purpose of this paper, we try and determine
fully relaxed structure and density of the metal. The to
energy was calculated while varyinga, b/a, c/a, and y in
search for the absolute ground-state energy minimum. W
the experimental room temperature data as a starting p
these four parameters were varied independently one
time. When all four were optimized in a first iteration w
repeated the procedure iteratively until a convergence crit
of about 1023 was fulfilled. Figures 2, 3, and 4 show th
energy as a function ofa, b/a, andc/a, close to their respec
tive equilibrium values~2.845 Å, 2.045, and 1.756!. Note
that the energies vary smoothly even for very small chan

FIG. 2. Calculated energy dependence of the lattice constaa
of a-U. Here the solid line is only to guide the eye. For this var
tion, b/a andc/a are kept constant and equal to 2.045 and 1.7
respectively.

FIG. 3. Calculated energy dependence of theb/a axial ratio of
a-U. Here the solid line is to guide the eye. For this variation,c/a
~1.756! and the atomic volume (20.67 Å3) are kept constant.
3-2
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FIRST-PRINCIPLES ELASTIC AND STRUCTURAL . . . PHYSICAL REVIEW B 66, 085113 ~2002!
in the lattice parameters which is essential when determin
their equilibrium values to the third decimal. It should b
noted here that variations ofb/a and c/a ~Figs. 3 and 4!
were performed for a constant atomic volume (20.67 Å3).
The data from these figures are comprised in Table I toge
with those from experiment. The experimental23 axial ratios,
and alsoy, show a linear decrease with decreasing tempe
ture over a wide range from at least 180 K down to the fi
CDW transition in the vicinity of 40 K. To best compare wit
our zero temperature calculations, the experimentala, b, c,
andy in Table I are measured23 at a temperature just abov
the CDW transition~an extrapolation to 0 K yields essen-
tially the same results!. The bulk modulus~B! and its pres-
sure derivative (B8), however, are measured at roo
temperature.5

The agreement with experiment for all calculated prop
ties in Table I is impressive. With the exception ofB8, which
is very dependent upon the equation-of-state fitting pro
dure, theory, and experiment are within about 1% of e
other. For a comparison, full-potential scalar relativis
GGA calculations of the 4d and 5d transition metals yield
atomic equilibrium volumes that are in about 2% root-me
square error compared to room temperature experiment.24

IV. ELASTIC CONSTANTS

About a decade ago, accurate calculations of elastic c
stants of metals were reported,8 which were done for non-
magnetic and cubic transition metals. Later, these stu
were extended to include hexagonal transition metals25 and
more recently, elastic constants of complex orthorhom
systems were reported.26,27 To date, no theoretical elasti
constants of an actinide metal, with the exception of fcc
~Ref. 14! and fcc (d) Pu,28 can be found in the literature
Here we present calculations for nine independent ela
constants fora-U. The calculations were performed for th
relaxed phase as described in Sec. III. In general, no fur
relaxation was allowed in conjunction with the distortio
used in calculating the elastic constants and the proce
follows closely that of Ravindranet al.,26 but for complete-
ness the relevant equations are included in the Appendix

FIG. 4. Calculated energy dependence of thec/a axial ratio of
a-U. Here the solid line is to guide the eye. For this variation,b/a
~2.045! and the atomic volume (20.67 Å3) are kept constant.
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In Table II we summarize our theoretical elastic consta
and compare with experimental data. In this table,Di are the
deformations corresponding to the same column elastic c
stant~or linear combination thereof! which are described ex
plicitly in the Appendix. The experimental data denoted ‘‘E
periment’’ in the table are room temperature data from Fis
and McSkimin.29 These same authors studied the tempe
ture dependence ofcii a few years later,30 and these data
were also reviewed by Landeret al.7 The temperature depen
dence of the elastic constants of uranium is rather strong,
with the exception ofc11 which is nearly constant,cii in-
creases linearly with decreasing temperature from about
K approaching the CDW transitions at about 50 K. To b
compare our theoretical zero-temperature data with exp
ment we can easily do a linear extrapolation ofcii from 100
K to zero, and the data obtained are denoted ‘‘Expt:T50’’ in
Table II. For theci j no such temperature variation has be
measured and no extrapolation was therefore attempted.
cusing first on thecii , theoretical data overestimate the roo
temperature experimental data with an average amoun
about 27% with the worst case beingc11 that is almost 43%
too large in the calculations. When extrapolating experim
tal data to zero K the average 27% error is decreased to a
15%. To give a perspective to this result, calculations for
Th ~with three elastic constantsc11, c12, andc44! resulted in
an average error of about 20% compared to experiment.14 ci j
are extracted from linear combinations of elastic consta
and their relative error could be much larger because sm
relative errors of these linear combinations could propag
to large relative errors for theci j . This is clearly the case fo
the small shear constantc13, see Table II.c12 andc23, how-
ever, are in surprisingly good agreement with experimen
room-temperature data.

The bulk modulus is of course also an elastic consta
and corresponds to an isotropic change in volume and
volve radial but no angular distortions. Hence the ene
versus volume relation can be used to directly calculateB.
This was done in Sec. III by fitting the total energies ofa-U
versus volume to a Murnaghan form.31 In practice, a very
small volume interval was utilized for this purpose (63% of
the equilibrium volume! and the obtained value is given i
Table I as 1.33 Mbar. The bulk modulus could, however, a
be expressed in terms of the elastic constants,27 and in this
case

B5 1
9 ~c111c221c3312c1212c1312c23!. ~1!

TABLE I. Ground-state properties ofa-U from FP-LMTO. Vol-
ume and lattice constants are in units of Å and the bulk modulu
kbar. Experimental lattice constants~Ref. 23! measured at about 40
K, andB andB8 are measured~Ref. 5! at room temperature.

Atomic
volume a b c y B B8

Theory 20.67 2.845 5.818 4.996 0.1025 1330 5
Experiment 20.52 2.836 5.866 4.935 0.1017 1355 3
3-3
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TABLE II. Elastic constants~Mbar! for a-U. No relaxation effects were accounted for in the theo
except for theD8 deformation~see main text!. D7 , D8, andD9 correspond to linear combinations of elast
constants; see Eqs.~A13!, ~A14!, and~A15!. Experimental data~Ref. 29! are measured at room temperatu
and ‘‘Expt: T50’’ refers to data obtained from a linear extrapolation of experimental~Ref. 30! elastic
constants toT50 K ~see the main text!.

D1 D2 D3 D4 D5 D6 D7 D8 D9

c11 c22 c33 c44 c55 c66 c12 c13 c23

Theory 3.0 2.2 3.2 1.5 0.93 1.2 4.2 6.1 3.1 0.50 0.05 1
Experiment 2.15 1.99 2.67 1.24 0.734 0.743 3.20 4.38 2.51 0.465 0.218
Expt: T50 2.10 2.15 2.97 1.45 0.945 0.871
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Using the theoretical data of Table II the calculatedB is
equal to 1.3 Mbar, which is clearly consistent with the 1.
Mbar obtained from the Murnaghan fit. Experimentally, t
room temperature bulk modulus evaluated from Eq.~1! is
equal to 1.15 Mbar, which is about 15% smaller than t
reported by Yooet al.5 ~1.355 Mbar!. This discrepancy be
tween the experimental reports ofB is large and the reason i
not known, but it could indicate that the older measureme
underestimate elastic constants somewhat and this could
sibly explain some of the difference between the pres
theory and experiment.29,30

V. DISCUSSION

As mentioned in Sec. Ia-U is expected to be difficult to
treat accurately in any first-principles theory. Here, we ha
used a full-potential technique to be able to study the re
tively open and distorted structure ofa-U and also converge
total energies sensitive to small distortions in evaluating
elastic constants. All relativistic terms are accounted for,
the GGA is utilized for the exchange/correlation effects
the electrons. In order to give some guidance to other,
accurate, numerical treatments ofa-U we perform calcula-
tions with the spin-orbit coupling switched off. Furthermor
the effect of gradient corrections to the electron exchan

FIG. 5. Total electronic density of states fora-U at the theoret-
ical equilibrium atomic volume 20.67 Å3. The full line represents a
calculation that includes spin-orbit coupling~SO!, and the dashed
line a calculation without spin-orbit coupling~scalar!. The energies
are shifted so that the Fermi level is equal to zero.
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correlation is tested on some key properties ofa-U.
In Fig. 5 the calculated total electronic density of sta

~DOS! is plotted, with and without spin-orbit interactio
~SO! for a-U. The dotted line represent the more appro
mate scalar relativistic calculation~scalar! that exclude spin-
orbit effects. Note that above the Fermi level, showing
unoccupied states, there is a substantial difference betw
the two calculations whereas at or below the Fermi level
DOS’s are very similar. Hence the effect of spin-orbit co
pling on the total energy should be small fora-U. Figure 5
seems to suggest, however, that for a larger 5f band occupa-
tion, such as in Np or Pu, the SO effect could be of grea
importance. The SO effect on the equilibrium volume a
bulk modulus ofa-U is very small. In Fig. 6 the total energ
versus volume is plotted fora-U and bcc U with~SO! and
without ~scalar! spin-orbit coupling. For both structures, th
SO expands the atomic equilibrium volume but no more th
2%. The calculated bulk modulus is correspondingly low
but not by much~4% for bcc U and 8% fora-U). The SO
energy difference betweena-U and bcc U is about 16.4
mRy/atom, which increases to about 17.3 mRy/atom for
scalar relativistic calculation. For reference, we also cal
lated fcc, hcp~ideal c/a), and bct (c/a50.825) uranium
total energies, and their difference relative toa-U are sum-
marized in Table III. The bcc and the bct energies are

FIG. 6. Relative energies fora-U and bcc U, from calculations
including spin-orbit coupling~SO! and without spin-orbit~scalar!.
The a-U energies are shifted so that the minium energy is equa
zero for both the SO and scalar calculation.
3-4
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particular interest because these phases have been pre
at high compression of uranium.13

Recently a pseudopotential~PP! approach was used11 to
study point defects in uranium dioxide. The obvious dra
back with this treatment is the uncertainty in accuracy of
pseudopotential itself. Their11 calculations also suffered from
neglecting spin-orbit coupling and more importantly gradie
corrections to the electron exchange/correlation functiona
is well known that for transition metals, andf-electron metals
in particular, the LDA severely overestimates the chemi
bond, and consequently the PP calculation gave an ato
volume fora-U that was about 8% smaller (18.98 Å3) and
a bulk modulus about 39% larger~1.88 Mbar! than the ex-
perimental data. These discrepancies are consistent with
use of the LDA and could most likely be improved by r
placing the LDA with the GGA. In the PP study11 the lattice
parameters ofa-U were optimized as well, and wereb/a
51.939, c/a51.767, andy50.107. These data should b
compared to the experimental data and the present theo
Table I. The PP calculations ofc/a andy are consistent with
experiment~1.74 and 0.1017! and present theory~1.756 and
0.1025!. b/a, however, is in remarkable disagreement w
experiment~2.068! and our FP-LMTO result~2.045!. The
cause for this could be the use of the LDA, or the neglec
spin-orbit coupling, or possibly a less than accurate pseu
potential. The two former approximations can easily
tested with our FP-LMTO code, and the result of this tes
given in Fig. 7. Here the total energy ofa-U was calculated

TABLE III. Total-energy differences~mRy/atom! for bcc, fcc,
hcp ~ideal c/a), and bct (c/a50.825) uranium, relative toa-U.
Present results are obtained from FP-LMTO within the GGA, w
~SO! and without~scalar! spin-orbit coupling included. PP result
~Ref. 11! were calculated within the LDA and no spin-orbit co
pling.

Theory Ebcc-Ea Ef cc-Ea Ehcp-Ea Ebct-Ea

FP-LMTO SO 16.4 19.1 17.7 6.8
FP-LMTO scalar 17.3 24.7 21.1 7.8
PP 11.5 15.9

FIG. 7. Relative energies as a function ofb/a axial ratio for four
sets of calculations as marked in the figure. The optimizedb/a
value is given next to the legend.
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as a function ofb/a for the four permutations of GGA, LDA,
SO, and scalar. For this test calculation,c/a, y, and the vol-
ume were kept fixed to their experimental values. As is cl
from this figure,b/a is rather insensitive to the approxima
tions with all values within less than 1%. To further test t
results of the PP calculations, we calculated theb/a with the
volume, c/a, and y given by the PP treatment. Our FP
LMTO approach then produced ab/a value equal to 2.05
which should be compared to the 1.939 PP result. Here
made an effort to make our all electron computation as si
lar as possible to the PP calculation, i.e., the LDA was u
and no spin-orbit coupling. Still, the difference inb/a is
almost 6% between FP-LMTO and PP methods, and our c
clusion must be that the pseudopotential used11 is not accu-
rate enough to correctly reproduce the all-electron~FP-
LMTO! results or experiment for the crystal structure
uranium. Also, the PP energy difference betweena-U and
bcc U is about 11.5 mRy/atom,11 which is in poor agreemen
with our result of about 17 mRy/atom; see Table III.

The main purpose of the paper by Crocombetteet al.11

was to study point defects in uranium dioxide, and theref
it could be of interest also to compare the present techni
with theirs for UO2. This is a traditional Mott insulator
which is antiferromagnetic with a bandgap at the Fer
level. The present GGA calculations do not reproduce eit
of these properties but predict UO2 to be a ferromagnetic
metal, a finding that is consistent with previous densi
functional studies as well as that of Crocombetteet al. The
present theory predicts a lattice constanta55.46 Å which
should be compared toa55.24 Å from Crocombetteet al.
and the experimental valuea55.47 Å. The present bulk
modulus~1.7 Mbar! is somewhat soft compared to expe
ment~2.07 Mbar!, whereas the bulk modulus of Crocombet
et al. ~2.52 Mbar! is too stiff.

Next we discuss the elastic-constant calculation. Over
the agreement with experiment is good in light of the e
pected density-functional error for elastic constants of m
als. This is especially true when the experimental data
extrapolated to zero temperature. Upon closer inspectionc13
is very small, and in relative terms in poor agreement w
room-temperature data. Some of this error could likely
decreased if temperature effects could be accounted for,
the main problem withc13 is an unfavorable error propaga
tion in the evaluation of this elastic constant. The distorti
used to extractc13 is D8 ~see the Appendix!, which involves
a linear combination of elastic constants that is about
times larger thanc13 itself. Consequently, a relative erro
associated withD8 is increased by 20 times forc13 due to the
way the error propagates. Forcii this is not a problem be-
cause they are directly evaluated from the deformationsDi .

Note in Table II that all distortions (Di) give rise to the-
oretical elastic constants~or linear combinations thereof! that
are larger than experimental data. This is actually expect
because no relaxations of the structure have been allo
during the distortions. Relaxation effects could only cau
the distorted system to lower its energy and therefore lo
the elastic constant. Unfortunately, with the present te
nique, it is very difficult to allow for such relaxation whe
calculating elastic constants. We did, however, try to cal
3-5
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PER SÖDERLIND PHYSICAL REVIEW B 66, 085113 ~2002!
late the effect of relaxation for theD8 distortion by optimiz-
ing the geometry during this deformation, in which we al
increasedd from less than 1% to about 2%. The increase
2% distortion made the evaluation of the elastic constant
sensitive to errors made in the relaxation process. TheD8
distortion increasesa and decreasesc with an equal amount
while b is unchanged. Hence, in the relaxationsb/a and y
and the volume were optimized one at a time, whilec/a was
determined by the deformation. This decreased the en
associated with the distortion about 5% and most of this w
due to the relaxation of theb/a axial ratio. The relaxation
effects upon the other elastic constants could be more or
than 5%, but because of the extremely small distortions u
for these (d less than 1%! we will assume that the relaxatio
error in the calculations is not substantially more than 5
The calculation of the bulk modulus supports the notion t
relaxation effects on the elastic constants are rather sm
When determiningB from the Murnaghan fit as described
Sec. III, the total energy was calculated as a function
volume. The volume was varied for the fully relaxed eq
librium configuration ofa-U by scaling the lattice constan
a. In principal, the geometry should have been relaxed a
function of volume and the corresponding total energies u
for the Murnaghan fit. Test calculations, that allowed fo
structural relaxation at the smallest (20 Å3) and largest
(21.7 Å3) volumes used for the fit of the bulk modulu
lowered the total energy~with respect to the energy mini
mum! by about 2%. It is therefore safe to assume that rel
ation effects on the bulk modulus will not be greater th
about 2%. The bulk modulus is also a linear combination
elastic constants@Eq. ~1!#, and it therefore seems plausib
that relaxation effects are also limited for a calculation
these constants.

To summarize, we have studied the crystal structure
a-U in detail, and calculated the elastic constants for t
phase. To our knowledge, elastic constants have never
calculated for such a complexf-electron system, although th
crystal structure has been investigated theoretically bef
For the most part elastic constants agree well with exp
ment and, for the crystal structure, the present theory is m
better than other recently published theories. We believe
the present report provides evidence that carefully perform
density-functional theory~DFT! can accurately describe ura
nium at low temperatures. This gives us confidence that D
has predictive power for this material and could be used,
example, to aid in developing interatomic potentials that
timately could be utilized to study mechanical properties
uranium.
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APPENDIX

In this appendix, we describe the strains of the orthorho
bic (a-U) structure used to calculate the nine independ
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elastic constants of this phase. The internal energy of a c
tal under strain,d, can be Taylor expanded in powers of th
strain tensor with respect to initial energy of the unstrain
crystal in the following way:

E~V,d!5E~V0,0!1V0S (
i

t ij id i1
1

2 (
i , j

ci j d ij id jj j D
1O~d3!. ~A1!

The volume of the unstrained system is denoted V0, and
E(V0,0) is this system’s internal energy. The Voight notati
has been used in the equation above, i.e.,xx, yy, zz, yz, xz,
andxy are replaced with 1–6. Of course,yz, xz, andxy are
equal tozy, zx, andyx, and for this reasonj i is equal to 1
for i 51, 2, and 3 and 2 fori 54, 5, and 6.t i above is a
component of the stress tensor.

The three first elastic constantsc11, c22, andc33 are ob-
tained from the following distortions:

D15S 11d 0 0

0 1 0

0 0 1
D , ~A2!

D25S 1 0 0

0 11d 0

0 0 1
D , ~A3!

and

D35S 1 0 0

0 1 0

0 0 11d
D . ~A4!

The internal energies for these three distortions can
obtained from

E~V,d!5E~V0,0!1V0S t id1
cii

2
d2D . ~A5!

Next c44, c55, andc66, are related to the distortion equa
tions:

~12d2!D45S 1 0 0

0 1 d

0 d 1
D , ~A6!

~12d2!D55S 1 0 d

0 1 0

d 0 1
D , ~A7!

and

~12d2!D65S 1 d 0

d 1 0

0 0 1
D . ~A8!
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These three elastic constants can then be extracted
the corresponding internal energy:

E~V,d!5E~V0,0!12V0~t id1cii d
2!. ~A9!

Finally, we introduce the following three distortions:

~12d2!D75S 11d 0 0

0 12d 0

0 0 1
D , ~A10!

~12d2!D85S 11d 0 0

0 1 0

0 0 12d
D , ~A11!

and

~12d2!D95S 1 0 0

0 11d 0

0 0 12d
D . ~A12!
H
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08511
m The internal energies associated with these three dis
tions are given by the equations

E~V,d!5E~V0,0!

1V0@~t12t2!d1 1
2 ~c111c2222c12!d

2#,

~A13!

E~V,d!5E~V0,0!1V0@~t12t3!d1 1
2 ~c111c3322c13!d

2#,
~A14!

and

E~V,d!5E~V0,0!1V0@~t22t3!d1 1
2 ~c221c3322c23!d

2#,
~A15!

which can be solved for the three remaining elastic c
stants,c12, c13, andc23.
D.J.

v. B
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