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Lower and upper bounds to photonic band gap edges
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~Received 11 March 2002; published 2 August 2002!

A photonic band gap is determined by its edges, which are frequently calculated by the Rayleigh-Ritz
method, producing a sequence of upper bounds. Since there are no error estimates available on these approxi-
mations, the level of accuracy of the computed band-gap edges, and thus of the extent of the band gap, remains
undetermined. We adopt the method of intermediate problems to develop a procedure to calculate the lower
bounds to the photonic band-gap edges. Lower bounds, supplemented with the Rayleigh-Ritz approximations,
determine a band gap with arbitrary and known degree of accuracy, as well as provide error bounds on
approximate calculations by other methods. Calculation of the lower bounds by the present method requires
slightly more computational effort than the Rayleigh-Ritz method with a plane-wave basis. A parallel method
to compute the alternative upper bounds is also developed in the process.

DOI: 10.1103/PhysRevB.66.085102 PACS number~s!: 42.70.Qs, 41.20.Jb
ck
o

he
th
a
a
to

e
tin

, i
s

u

ffe
te

e
er

ox
b
s

ity
y
xt
a
x
t

io
d
h
a
th

e
d

ten-
the
the
es,
to
ex-
an

ith
rly
a

en
b-
u-
he
al-

ex

ter-
by
llel

mic
um
sis
ems
th-
u-
r
hod

on-
o-
al.
und

ex-
se-

om
I. INTRODUCTION

Mediums with periodic structures are known to blo
electromagnetic waves except for a discrete set
frequencies.1,2 The allowed frequencies, as functions of t
wave number, form the edges of the interior, containing
prohibited frequencies and defining the band gap. The
lowed frequencies, for a wide class of realistic structures,
determined by the eigenvalues of a self-adjoint opera
~Ref. 3, pp. 11–14!. A widely used algorithm to determin
the boundaries of the photonic band gaps is by compu
the eigenvalues by the Rayleigh-Ritz~RR! method. While
this method may be used with a variety of basis functions
the case of periodic crystals plane waves are frequently u
for convenience4–8 ~Also see Ref. 3, pp. 127–129!. With any
basis, the RR method produces a sequence of upper bo
to the exact values.

With plane wave basis, the RR method is known to su
from a slow rate of convergence for the geometries of in
est, due to the Gibbs phenomenon.9–11A variety of methods
have been developed to determine the band gaps more
ciently, some with an overlap with the RR method and oth
with quite independent foundations.9–16 To the best of our
knowledge, no error estimates are available on the appr
mations produced by the RR method with any basis, or
these methods. The convergence and accuracy of the re
are intuitively inferred on the basis of the numerical stabil
For the lack of error estimates, the degree of the accurac
the band-gap edges remains undetermined, leaving the e
of the band gap correspondingly uncertain. If a band g
determined by these methods is narrow, then even its e
tence remains uncertain. Existence and a knowledge of
extension of the band gaps, are critical for their exploitat
to design usable devices, and for an adequate understan
of the properties of the photonic band-gap material. T
availability of the upper and lower bounds to the band-g
edges would substantially improve the understanding of
extension of a band gap.

In the present paper, we develop a numerical schem
determine converging lower bounds to the edges, base
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the method of intermediate problems.17 These approxima-
tions, together with the upper bounds, determine the ex
sion of a band gap with certainty, as it covers at least
region between the upper bound to the lower edge and
lower bound to the upper edge. Although useful in all cas
this information is quite valuable, if a band gap is narrow,
establish its existence, and if one exists, to establish its
tent, which for a narrow band gap is even more critical th
for a broader one.

Supplementing the Rayleigh-Ritz approximations w
lower bounds has been a topic of wide interest, particula
in calculations of the atomic binding energies for which
number of methods with differing properties have be
developed.18–22 We use the method of intermediate pro
lems17 for its suitability to the present problem. The comp
tational procedure is simplified with a special choice of t
basis functions, of the type first proposed by Bazley, to c
culate the lower bounds to the He binding energy.18 The
resulting numerical procedure is only slightly more compl
than the Rayleigh-Ritz method with a plane-wave basis.

A parallel procedure was also developed to obtain al
native upper bounds. While the lower bounds calculated
the present method provide valuable information, the para
procedure for the upper bounds is mainly of an acade
interest. The RR method, since it is based on a minim
principle, yields the optimal upper bounds, with a given ba
set. Also, the methods based on the intermediate probl
are computationally more complex, as are all the other me
ods to compute lower bounds. While the additional comp
tational effort is justified for the calculation of the lowe
bounds, for the upper bounds it is not, since a better met
is available.

Test calculations were carried out for a standard case c
sisting of cylindrical dielectric material arranged in a tw
dimensional periodic structure to form a photonic cryst
The upper bounds produced by the present method are fo
to be higher than the Rayleigh-Ritz approximations, as
pected. Both sequences of the upper bounds, and the
quence of the lower bounds, converge to each other fr
above and below, respectively.
©2002 The American Physical Society02-1
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II. RAYLEIGH-RITZ METHOD

In this section, we formulate the basic problem in a fo
suitable for the present analysis, and briefly describe the
method for a comparison with the method to determine
lower bounds, developed here. For the materials of inter
Maxwell’s equations can be reduced to~Ref. 3, pp. 8–11!

¹3S 1

«~r !
¹3H~r ! D5v2H~r !, ~1!

where«~r ! is the dielectric distribution of the material,H~r !
is the magnetic field, andv is the frequency of the propaga
ing electromagnetic wave, in units with the speed of light
vacuum being equal to 1. By Bloch’s theorem,H~r ! can be
expressed asH(r )5ei (k"r )Hk(r ), where it is sufficient to re-
strict the wave vectork to the irreducible Brillouin zone.
HereHk(r ) is a periodic function with period equal to that o
the crystal. Substitution forH~r ! in Eq. ~1! yields

~ ik1¹!3S 1

«~r !
~ ik1¹!3Hk~r ! D5v2~k!Hk~r !. ~2!

Let H be the Hilbert space of the square-integrable vec
functions covering the region occupied by the crystal w
the scalar product~ , ! defined by

~u,y!5E dr u* ~r !"y~r !,

where the dot denotes the usual scalar product of the vec
in the pertaining Euclidian space, and the integral is over
region covered by the material. The spaceH can be ex-
pressed as a direct sum of the copies of the spaceH8, where
H8 is the Hilbert space of the square integrable, scalar fu
tions, with the scalar product^ , & defined by

^u,y&5E dr u* ~r !y~r !.

The scalar product~u,y! is then expressed as (u,y)
5( j^uj ,y j&, where the indexj runs over the dimension o
the underlying Euclidian space, anduj and y j are the com-
ponents of vectorsu and y, respectively. Equation~2! may
be expressed as an eigenvalue equation inH,

~ABA!Hk5v2~k!Hk , ~3!

where (Au)(r )5( ik1¹)3u(r ), and (Bu)(r )5u„r …/«(r ).
The operator~ABA! is defined on the divergence-free fun
tions, with further restrictions imposed by the boundary co
ditions. For the periodic condition and various other boun
ary conditions of interest,~ABA! is a non-negative operato
in addition to being self-adjoint~Ref. 3, pp. 11–15, 31, and
32!. Thus the determination of the frequencies of the wa
propagating through a crystal is reduced to the calculatio
the eigenvalues of a non-negative operator in a Hilbert sp
H.

In the RR method, the eigenvectorHk(r ) is expanded as

Hk~r !5 (
~Gl!

h~Gl!f~Gl!~r !,
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where$f (Gl)% is a suitable basis set,G are the vectors de
scribing the reciprocal lattice,l is the index for the polariza-
tion vectorel , andh(Gl) are as yet undetermined constan
The minimization principle reduces Eq.~3! to the matrix
eigenvalue equation

(
~Gl!8

Q~Gl!~Gl!8
k h~Gl!5vR

2~k!h~Gl! , ~4!

whereQ (Gl)(Gl)8
k

5(f (Gl) ,(ABA)f (Gl)8).
The set of plane waves $f (Gl)(r )%5$elei (G"r )%

5$elfG
0 (r )%, being a set of eigenvectors of a self-adjoi

operator with discrete spectrumA2 in H, forms a basis. This
property of the plane waves also simplifies the computatio
procedure. For this reason, they are frequently used as b
which reduce the matrix elements to

Q~Gl!~Gl!8
k

5@~k1G!3el#"@~k1G8!3el8#BGG8 ~5!

with BGG8 being the matrix elements ofB, in H8, given by
BGG85^fG

0 ,(1/«)fG8
0 &, i.e., the coefficients in the Fourie

series expansion of@1/«(r )#. With bases, other than th
plane waves, the RR method yields a matrix with more co
plicated structure than given by Eq.~5!.

III. LOWER BOUNDS

The present procedures to calculate the lower and up
bounds tov2, based on the method of intermediate pro
lems, are described below. The exposition is focused on
lower bounds. The scheme for the upper bounds follows
obvious modifications, which are indicated.

Let «max be the maximum value of the dielectric functio
«(r ), and a0,(1/«max) be a positive constant. Witha0
.(1/«min), where«min is the minimum value of«(r ), the
following inequalities are reversed, yielding a parallel proc
dure to determine the upper bounds. For the lower bou
case, the operator~ABA! can be expressed as (ABA)
5(a0A21ACA), whereC5(B2a0) defines a positive op-
erator inH8, as well as inH, and hence, from the monoto
nicity principle ~Ref. 17, Sec. 2.5, Theorem 1!, sn0<vn

2,
where$vn

2% and $sn0%, for n50,1,2...., are the eigenvalue
of ~ABA! and the base operator (a0A2), respectively, ordered
in a nondecreasing sequence. The eigenvalues$sn0% are
given by sn05a0u@(k1Gn)3el#u2, where@elfGn

0 (r )# and

Gn are the corresponding eigenvector and the recipro
lattice vector, respectively. Let$(ACA)N% be a sequence o
operators inH such that

05~ACA!0<~ACA!N<~ACA!~N11!<~ACA!`5~ACA!
~6!

for N51,2,... . A sequence of the intermediate operat
(ABA)N may now be defined by (ABA)N5@a0A2

1(ACA)N#. It follows from the monotonicity principle tha
snN<sn(N11)<vn

2, where $snN% is the nondecreasing or
dered set of the eigenvalues of the operators (ABA)N . Since
(u,ACAu)5(y,Cy)5( j^y j ,Cy j&, wherey5Au, it is suf-
2-2
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ficient to find a sequence$CN%, such that 05C0<CN
<C(N11)<C`5C, in H8, and let (ACA)N5(ACNA), for
Eq. ~6! to hold in H.

Let ZN be the inverse ofpNCpN , restricted to the
N-dimensional subspacepNH8, of H8, wherepN is the or-
thoprojection defined bypNu5( j 51

N c j^c j ,u&, with $c j% be-
ing an arbitrary orthonormal basis inH8. The operatorCN ,
defined byCNu5CpNZNpNC, satisfies the above require
ment~Ref. 17, pp. 79–82!. This result may also be obtaine
as a special case of the standard variational inequality for
positive operators@see, e.g. Ref. 22, Lemma 3~ii !#,

^pN ,g,ZNpNg&<^g,C21g&.

The inequalityCN<C follows by lettingg5Cu, for an ar-
bitrary u in H8, and the monotonicity, by takingg
5p(N11)Cu, together with pNp(N11)5p(N11)pN5pN . In
detail, the operatorCN is defined by

CNu5 (
j ,m51

N

@ZN# jmCc j^Ccm ,u&,

where@ZN# is the inverse of the matrix@CN#, with elements
@CN# jm5^c j ,Ccm&. In this representation ofCN , the basis
$c j% need not be orthonormal. It is sufficient that$c j% be a
linearly independent basis.

Computational evaluation of$snN% is considerably sim-
plified with the special choice18 cm(r )5C21fGm

0 . With

these basis functions, the eigenvalues and the eigenvecto
(ABA)N , for n.N, are identical to those of (a0A2), i.e.,
snN5sn0 , with the corresponding eigenvectorelfGn

0 (r ).

For n<N, snN are the solutions of the matrix eigenvalu
equation:

(
~Gjl8!

F
~Gml!~Gjl8!

k h
~Gjl8!
8 5snN~k!h~Gml!8 . ~7!

The matrix elements on the left side of Eq.~7! are given by

F
~Gml!~Gjl8!

k
5@~k1Gm!3el#"@~k1Gj !3el8#

3$a0dm j1@CN
21#GmGj

21 %,

where@CN
21#GmGj

21 are the elements of the inverse of the m

trix with elementŝ fGm

0 ,C21fGj

0 &, anddmj is the Kronecker

delta. Forn.N, we have thatsnN5sn0<vn
2, and, for n

<N8<N, snN provide nontrivial bounds tovn
2, i.e., snN

<vn
2, as long assN8N<s (N11)N . This condition restricts

the smallest value allowed fora0 .
The present method to calculate the lower bounds pa

lels the RR method with a plane-wave basis, quite clos
differing as follows. In the RR method, the second multip
cative factor, defining the matrix in Eq.~5!, is equal to the
matrix elements of~1/«!, which in the method for lower
bounds, is replaced by$a01@CN

21#GmGj

21 %. The elements

(a0dmj) define a constant, diagonal matrix, and@CN
21#GmGj

21

are the matrix elements of the inverse of the matrix w
elements ^fGm

0 ,@«/(12a0«)#fGj

0 &. The function @«/(1
08510
e
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2a0«)# has properties similar to~1/«!. In the limit of infinite
basis set,$a01@CN

21#GmGj

21 % reduces to a matricial represen

tation of ~1/«!. Additional computational effort in calculating
the lower bounds by this method arises out of the need
invert @CN

21#.
The method of intermediate problems may be used w

basis different from the one used here. However, the pre
choice simplifies the computational procedure considerab

IV. EXAMPLE

The method was applied to a standard test case, o
square lattice of cylindrical dielectric columns, with«
58.9, embedded in air with«51. The lattice was assume
to be homogeneous in theZ direction, and periodic alongX
and Y axes, with the lattice constant equal toÄ, and the
radius of the dielectricr50.2Ä ~Ref. 3, pp. 54–57!. In this
structure,Gm5m, and the two polarization modes decoup
into transelectric~TE! and transmagnetic~TM!, enabling one
to obtain the solutions separately. In case of the RR meth
we have used the plane-wave basis for a comparison with
bounds calculated by the present method.

For the TE mode, only theZ component of the magneti
field is nonzero. The matrix elementsQ (Gml)(Gjl8)

k and

F (Gml)(Gjl8)
k , in this case reduce toQmj

TE and Fmj
TE , respec-

tively, given by

Qmj
TE5«mj

21@~k1m!"~k1 j !#

and

Fmj
~TE!5@~k1m!"~k1 j !#~a0dmj1@j21#mj !, ~8!

wherem and j are the integer vectors with componentsmx ,
my and j x , j y , respectively,«mj

215^fm
0 ,@1/«#f j

0& are the
Fourier coefficients of@1/«#, and@j21# is the inverse of the
matrix with elementŝ fm

0 ,@«/(12a0«)#f j
0&. The range of

integersmx , my , j x , j y52L to L, and thus the size of the
basis set, is equal to (2L11)25N.

For the TM case, both, theX and Y components of the
magnetic field are nonzero. This increases the rank of
matrix in Eqs.~4!, and ~7! by a factor of 2. However, each
mode Ek(r ) of the electric fieldE(r ), defined by E(r )
5ei (k"r )Ek(r ) satisfies

~A8BA8!Ek85v2~k!Ek8 , ~9!

where @(A8)2u#(r )5( ik1¹)3( ik1¹)3u(r ), and Ek8
5A8Ek . Equation~9! has all the properties of Eq.~3!, re-
quired for the derivations based on the method of interme
ate problems. Thus the above results are applicable in
present case, yielding a similar method. The matrices for
case,Q (Gml)(Gjl8)

k
5Qmj

TM andF (Gml)(Gjl8)
k

5Fmj
TM , are given

by

Qmj
TM5«mj

21uk1muuk1 j u

and
2-3
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Fmj
TM5uk1muuk1 j u~a0dmj1@j21#mj !, ~10!

with the symbols as defined above.
Similarity of the present method with the RR method w

a plane wave basis is transparent from the sets of Eqs~8!
and ~10!, which is, in replacing«mj

21 of the RR method with
(a0dmj1@j21#mj). Thus the two methods differ only b
similar, but different, approximations of~1/«!. An additional
computational effort is required in the present method in
taining @j21#.

The calculations were carried out for the lowest three f
quencies in both the TE and TM modes. The behavior of
approximations was found to be similar to the cases
played in Figs. 1, 2, and 3. Figure 1 compares the low
bounds obtained by the method of intermediate proble
and the upper bounds obtained by the RR method, with p
waves, for the third lowest frequency for the TE mode pro
gation for different values ofL. The same comparison i
made in Fig. 2 for the second lowest frequency in TM mo
In these and all the other cases studied, the sequences o
lower and upper bounds show monotonically convergent
haviors toward each other as the size of the basis set is
creased. The accuracy of the lower bounds is compar
with that of the upper bounds, with a moderate size basis
Two sets of bounds determine the accuracy of the edges

FIG. 1. Comparison of the lower bounds~LB! and the Rayleigh-
Ritz ~RR! upper bounds to the third lowest, normalized frequen
v85vÄ/2p, for the TE mode.

FIG. 2. Comparison of the lower bounds~LB! and the Rayleigh-
Ritz ~RR! upper bounds to the second lowest, normalized freque
v85vÄ/2p, for the TM mode.
08510
-

-
e
-
r
s,
ne
-

.
the
e-
in-
le

et.
nd

thus of the extension of the band gap, which may be
ploited in designing, and in the studies of, photonic band-g
material.

Figure 3 compares the upper bounds obtained by
method of intermediate problems and by the RR method
the third lowest frequency in the TE mode, which al
closely represents all the other cases. While the upper bou
obtained by the method of intermediate problems are hig
than the RR values for all values ofL, both sequences con
verge to each other as the basis size is increased. There
modest increase in computational complexity in obtain
both bounds by the method of intermediate problems, co
pared to the RR method with the same size basis set.

V. CONCLUDING REMARKS

We have developed a convenient numerical scheme
calculate lower bounds to the photonic band-gap edg
which are determined by the eigenvalues of a non-nega
operator. The present procedure adopts the method of in
mediate problems to calculate the lower bounds to the eig
values of the type of operators encountered in the studie
the photonic band-gap material. The exploitation of some
the properties of this class of operators results in consid
able computational simplification, by allowing the use
special basis functions to construct a sequence of opera
converging from below to the exact operator. A paral
method to calculate the upper bounds is also develope
the process. Both these methods are computationally slig
more complex than the RR method, which is widely used
determine the upper bounds. In a realistic test case, the
of convergence of the lower bounds from below is found
be comparable with that of the RR approximations fro
above. The upper bounds obtained by the present method
higher than the RR approximations, but converge to the
yielding almost the same values for moderate basis s
While it is interesting to note that the method of intermedia
problems, although motivated by a need to determine lo
bounds to the eigenvalues, may be used to calculate the
per bounds, the resulting procedure is less attractive than
RR method for the present case.

The lower bounds complement the upper bounds, co

y

y

FIG. 3. Comparison of the upper bounds~UB! by the method of
intermediate problems and the Rayleigh-Ritz~RR! method to the
third lowest, normalized frequencyv85vÄ/2p, for the TE mode.
2-4
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puted by the RR method or by the present method, to de
mine the accuracy of the band-gap edges and thus of
extension of the band gap for all basis sizes. The availab
of the opposite bounds, or other error bounds, is desirabl
all cases, to establish a confidence level in the calcula
values, and to determine the extent of the band gap, irres
tive of the rate of convergence of the method used. I
number of cases, the extent of the band gap determine
any of the other methods is quite narrow. In such cases,
tt

po
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lower and upper bounds would be useful in determin
whether an exploitable band gap exists or not, with certai
before attempts to experimentally exploit it are undertake
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