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Lower and upper bounds to photonic band gap edges
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A photonic band gap is determined by its edges, which are frequently calculated by the Rayleigh-Ritz
method, producing a sequence of upper bounds. Since there are no error estimates available on these approxi-
mations, the level of accuracy of the computed band-gap edges, and thus of the extent of the band gap, remains
undetermined. We adopt the method of intermediate problems to develop a procedure to calculate the lower
bounds to the photonic band-gap edges. Lower bounds, supplemented with the Rayleigh-Ritz approximations,
determine a band gap with arbitrary and known degree of accuracy, as well as provide error bounds on
approximate calculations by other methods. Calculation of the lower bounds by the present method requires
slightly more computational effort than the Rayleigh-Ritz method with a plane-wave basis. A parallel method
to compute the alternative upper bounds is also developed in the process.
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[. INTRODUCTION the method of intermediate problefisThese approxima-
tions, together with the upper bounds, determine the exten-

Mediums with periodic structures are known to block sion of a band gap with certainty, as it covers at least the
electromagnetic waves except for a discrete set ofegion between the upper bound to the lower edge and the
frequencies:? The allowed frequencies, as functions of the lower bound to the upper edge. Although useful in all cases,
wave number, form the edges of the interior, containing thehis information is quite valuable, if a band gap is narrow, to
prohibited frequencies and defining the band gap. The alestablish its existence, and if one exists, to establish its ex-
lowed frequencies, for a wide class of realistic structures, aréent, which for a narrow band gap is even more critical than
determined by the eigenvalues of a self-adjoint operatofor a broader one.
(Ref. 3, pp. 11-14 A widely used algorithm to determine Supplementing the Rayleigh-Ritz approximations with
the boundaries of the photonic band gaps is by computingpwer bounds has been a topic of wide interest, particularly
the eigenvalues by the Rayleigh-RiRR) method. While in calculations of the atomic binding energies for which a
this method may be used with a variety of basis functions, imumber of methods with differing properties have been
the case of periodic crystals plane waves are frequently useteveloped®-2? We use the method of intermediate prob-
for conveniencé& 8 (Also see Ref. 3, pp. 127—-12With any  lems" for its suitability to the present problem. The compu-
basis, the RR method produces a sequence of upper bountgional procedure is simplified with a special choice of the
to the exact values. basis functions, of the type first proposed by Bazley, to cal-

With plane wave basis, the RR method is known to sufferculate the lower bounds to the He binding enéfyfhe
from a slow rate of convergence for the geometries of interresulting numerical procedure is only slightly more complex
est, due to the Gibbs phenomerifoft A variety of methods than the Rayleigh-Ritz method with a plane-wave basis.
have been developed to determine the band gaps more effi- A parallel procedure was also developed to obtain alter-
ciently, some with an overlap with the RR method and othersative upper bounds. While the lower bounds calculated by
with quite independent foundatioRs!® To the best of our the present method provide valuable information, the parallel
knowledge, no error estimates are available on the approxprocedure for the upper bounds is mainly of an academic
mations produced by the RR method with any basis, or bynterest. The RR method, since it is based on a minimum
these methods. The convergence and accuracy of the resufienciple, yields the optimal upper bounds, with a given basis
are intuitively inferred on the basis of the numerical stability.set. Also, the methods based on the intermediate problems
For the lack of error estimates, the degree of the accuracy @re computationally more complex, as are all the other meth-
the band-gap edges remains undetermined, leaving the extesds to compute lower bounds. While the additional compu-
of the band gap correspondingly uncertain. If a band gapational effort is justified for the calculation of the lower
determined by these methods is narrow, then even its exissounds, for the upper bounds it is not, since a better method
tence remains uncertain. Existence and a knowledge of this available.
extension of the band gaps, are critical for their exploitation Test calculations were carried out for a standard case con-
to design usable devices, and for an adequate understandinigting of cylindrical dielectric material arranged in a two-
of the properties of the photonic band-gap material. Thedimensional periodic structure to form a photonic crystal.
availability of the upper and lower bounds to the band-gaprhe upper bounds produced by the present method are found
edges would substantially improve the understanding of théo be higher than the Rayleigh-Ritz approximations, as ex-
extension of a band gap. pected. Both sequences of the upper bounds, and the se-

In the present paper, we develop a numerical scheme tquence of the lower bounds, converge to each other from
determine converging lower bounds to the edges, based above and below, respectively.
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Il. RAYLEIGH-RITZ METHOD where{ )} is a suitable basis seg are the vectors de-
scribing the reciprocal lattice, is the index for the polariza-

In this section, we formulate the basic problem in a form_. .
. X : . on vectore, , andhg,) are as yet undetermined constants.
suitable for the present analysis, and briefly describe the R ST SN ;
he minimization principle reduces E@3) to the matrix

method for a comparison with the method to determine thei envalue equation
lower bounds, developed here. For the materials of interes?, 9 q
Maxwell’'s equations can be reduced(®ef. 3, pp. 8—11

k

1 E, ® (a0 Mo = wR(K)hey) (4)

%VXH(”):‘”ZHM M @)
where ®X = (bon (ABA drny)-

wheree(r) is the dielectric distribution of the materiadi(r) The ((?e)t(eh)of pl(;;r);)e Waves({e‘;)(G}\)(r)}:{e)\ei(G.r)}

is the magnetic field, and is the frequency of the propagat- —{e.62(1)}, being a set of eigenvectors of a self-adjoint

Lnfcﬁbergt?er?naggeﬂy\igvf ’ g] u§|'(t)scﬁ,’\!:?ht:§r§§h?f)dc(:nl'ggt Ir]operator with discrete spectruit in H, forms a basis. This
9 €q - By property of the plane waves also simplifies the computational

=gikn) it o - ’ -
etxprtefsed aBl(r) et K rk(t;\)’ yvh%re I'tblls s;f.f;lme.nt tore procedure. For this reason, they are frequently used as basis,
strict the wave vectok to the irreducible Brillouin zone. . 1 teduce the matrix elements to

HereH,(r) is a periodic function with period equal to that of

VX

the crystal. Substitution for(r) in Eq. (1) yields ,
y () in Ea. (1)y 0%, en=[(k+G) X [[(k+G)xe, 1Bsg:  (5)
1
(ik+V)X m(ik%—V)XHk(r)) =w?(k)H(r). (2)  with Bgg' being the matrix elements @&, in ', given by

BGG,=(¢8,(1/8)¢2,>, i.e., the coefficients in the Fourier
Let H be the Hilbert space of the square-integrable vectoseries expansion of1/s(r)]. With bases, other than the
functions covering the region occupied by the crystal withplane waves, the RR method yields a matrix with more com-

the scalar produdt, ) defined by plicated structure than given by E).

(u,u)zf dru*(r)-u(r), IIl. LOWER BOUNDS

The present procedures to calculate the lower and upper
where the dot denotes the usual scalar product of the vectoBsoundSptsz bgsed on the method of intermediate prglg)-
in the pertaining Euclidian space, and the integral is over th‘?ems, are deécribed below. The exposition is focused on the

region dcovereéj_ byt the mﬁﬁ”al' The sfpter)]ﬂecan beh €X" " lower bounds. The scheme for the upper bounds follows by
pressed as a direct sum of the copies of the spécavhere obvious madifications, which are indicated.

‘H' is the Hilbert space of the square integrable, scalar func- Let &, be the maximum value of the dielectric function

tions, with the scalar produt, ) defined by e(r), and ag<(llena) be a positive constant. Witla,
>(1/emin), Where e, is the minimum value of(r), the
(u,v)y= J dru*(r)uv(r). following inequalities are reversed, yielding a parallel proce-
dure to determine the upper bounds. For the lower bounds
The scalar product(u,v) is then expressed asu, () case, the operatoABA) can be expressed asABA)
=3(uj,v;), where the indej runs over the dimension of =(ay,A?+ACA), whereC=(B—a,) defines a positive op-
the underlying Euclidian space, ang and v; are the com- erator in{’, as well as inH, and hence, from the monoto-
ponents of vectorsi and v, respectively. Equatiof2) may nicity principle (Ref. 17, Sec. 2.5, Theorem),lgnogwﬁ,
be expressed as an eigenvalue equatiof,in where{w?} and{ono}, for n=0,1,2...., are the eigenvalues
of (ABA) and the base operatoadA?), respectively, ordered
(ABAHy=0?(K)Hy, ) in a nondecreasing sequence(% The eigenvalueg} are
where @Au)(r)=(ik+V)xu(r), and Bu)(r)=u(r)/e(r).  given by oyo=a|[(k+G,) X e ]|?, Where[q¢%n(r)] and
The operatoi(ABA) is defined on the divergence-free func- G are the corresponding eigenvector and the reciprocal-

tions, with further restrictions imposed by the boundary conqattice vector, respectively. LE(ACA)\} be a sequence of
ditions. For the periodic condition and various other bound-pperators irH such that

ary conditions of interes{ABA) is a non-negative operator,
in addition to being s_elf-adjow(tRef. 3, pp. 1:!.—15, 31, and 0=(ACA)o=<(ACA)\=(ACA) ;1) <(ACA).,=(ACA)
32). Thus the determination of the frequencies of the waves (6)
propagating through a crystal is reduced to the calculation of
the eigenvalues of a non-negative operator in a Hilbert spacer N=1,2,.... A sequence of the intermediate operators
H. (ABA)y may now be defined by ABA)\=[ajA?
In the RR method, the eigenvectdy(r) is expanded as +(ACA)y]. It follows from the monotonicity principle that
onNson(NH)swﬁ, where{o,\} is the nondecreasing or-
_ dered set of the eigenvalues of the operaté&BA), . Since
He(r)= >, h r), N
1) %) (@ Penln) (U, ACAU)=(v,Cv)=2(»;,Cy}), wherev=Au, it is suf-
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ficient to find a sequencgCy}, such that 6=Cy<Cy
<Cn+1)=C.=C, in H', and let ACA)y=(AC\A), for
Eq. (6) to hold inH.

Let Zy be the inverse ofpyCpy, restricted to the
N-dimensional subspageyH', of H', wherepy is the or-
thoprojection defined prUZE}\lepJ(z//j ,u), with {4} be-
ing an arbitrary orthonormal basis #i’'. The operatoCy,
defined byCyu=CpnZnpnC, satisfies the above require-
ment(Ref. 17, pp. 79—8R This result may also be obtained

as a special case of the standard variational inequality for the

positive operatorgsee, e.g. Ref. 22, Lemmadii3],

(Pn.9,ZnPnG)=<(9,C™'0).

The inequalityCy=<C follows by lettingg=Cu, for an ar-
bitrary u in H’, and the monotonicity, by takingy

=pn+1)CU, together withpypn+1)=Pn+1)Pn=Pn- IN
detail, the operato€,, is defined by

N
Cru= m2=1 [Zn]imC¥j{ Cthm 1),

where[ Zy] is the inverse of the matrixCy], with elements
[Cnljm=(¥; ,C¢pm). In this representation oEy, the basis
{#;} need not be orthonormal. It is sufficient tHak;} be a
linearly independent basis.

Computational evaluation dfo,\} is considerably sim-
plified with the special choic apm(r)=C‘1¢°Gm. With

these basis functions, the eigenvalues and the eigenvectors of

(ABA)y, for n>N, are identical to those ofagA?), i.e.,
onN=0no, With the corresponding eigenvectem;gn(r).

For n=<N, o\ are the solutions of the matrix eigenvalue

equation:

>

!
(Gj\

k , . ,
) q)(Gm)\)(Gj)\’)h(Gj)\')_UnN(k)h(Gm}\) . (7)

The matrix elements on the left side of E@) are given by
(DI((Gm)\)(GjA’):[(k+Gm)Xe)\]'[(k+Gj)xe)\’]

x{admi+[Cn'lale ).

Where[C,Ql]g;Gj are the elements of the inverse of the ma-

trix with eIements(gﬁon,C*ld)gj), and sy, is the Kronecker

delta. Forn>N, we have thato-nN=anOSw§, and, forn
<N’=<N, o,y provide nontrivial bounds touﬁ, i.e., onN
swﬁ, as long ason <o (n+1yn- This condition restricts
the smallest value allowed fax,.
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—age)] has properties similar tfl/e). In the limit of infinite
basis set{a0+[C,;1]5;Gj} reduces to a matricial represen-

tation of (1/e). Additional computational effort in calculating
the lower bounds by this method arises out of the need to
invert[Cy 1.

The method of intermediate problems may be used with
basis different from the one used here. However, the present
choice simplifies the computational procedure considerably.

IV. EXAMPLE

The method was applied to a standard test case, of a
square lattice of cylindrical dielectric columns, with
=8.9, embedded in air wite=1. The lattice was assumed
to be homogeneous in th&direction, and periodic aloni
and Y axes, with the lattice constant equal ¢ and the
radius of the dielectrip=0.2a (Ref. 3, pp. 54-5) In this
structure,G,,=m, and the two polarization modes decouple
into transelectri¢TE) and transmagnetic’™), enabling one
to obtain the solutions separately. In case of the RR method,
we have used the plane-wave basis for a comparison with the
bounds calculated by the present method.

For the TE mode, only th& component of the magnetic

. . . k
f|ekld is nonzero. The matrix elemenl@(GmM(ij,) and

G+ 1N this case reduce t;; and®[-, respec-

tively, given by
Oy =i [(k+m)-(k+])]
and

8

wherem andj are the integer vectors with componenisg,
my and jy, jy, respectively,e,'=(¢7.[1/e]¢) are the
Fourier coefficients of1/e], and[ ¢ 1] is the inverse of the
matrix with elements ¢, [e/(1—a9e)]4]). The range of
integersm,, my, j,, jy=—L toL, and thus the size of the
basis set, is equal to (2+ 1)?=N.

For the TM case, both, th& andY components of the
magnetic field are nonzero. This increases the rank of the
matrix in Egs.(4), and(7) by a factor of 2. However, each
mode E,(r) of the electric fieldE(r), defined byE(r)
=e (KNE,(r) satisfies

DUE =[(k+m)-(k+)1(agSm +[E ),

(A'BA")E, = w?(k)EL, 9)
and Eg
. Equation(9) has all the properties of E@3), re-
ed for the derivations based on the method of intermedi-

where [(A")?u](r)=(ik+ V)X (ik+V)xu(r),
— ,Ek

The present method to calculate the lower bounds paraguir
lels the RR method with a plane-wave basis, quite closelyye problems. Thus the above results are applicable in the

dif{_erin? ats fOICIjO\]'C\.’S: In :Ee RRtme_thoEd,;?e_ secontljtml::;[ipli- present case, yielding a similar method. The matrices for this
cative factor, defining the matrix in E¢§), is equal to the ok ~O™ ando* _ o™ are given

matrix elements of(1/e), which in the method for lower (Gm\)(GjA') (GmM)(GjN") mj
bounds, is replaced b){a0+[C,Ql]gnij}. The elements by

(aody;) define a constant, diagonal matrix, a[r@gl]giej
are the matrix elements of the inverse of the matrix with
elements (¢gm,[s/(1—a08)]¢‘éj>. The function [/(1

0= e lk+m|[k+j]
and
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FIG. 1. Comparison of the lower boundsB) and the Rayleigh- _F!CG- 3. Comparison of the upper boun(@8) by the method of
Ritz (RR) upper bounds to the third lowest, normalized frequency/Ntérmediate problems and the Re}ylelgh-mm) method to the
o' =wal27, for the TE mode. third lowest, normalized frequenay’ = wa/27, for the TE mode.
D™ =|k+ml|k+]|(agSm +[£ 1), 10 thu_s of_ the e_xte_nsion of_ the band_gap, which may be ex-
mi = | k110 dm 1€ Im) (10 ploited in designing, and in the studies of, photonic band-gap

with the symbols as defined above. material.
Similarity of the present method with the RR method with ~ Figure 3 compares the upper bounds obtained by the
a plane wave basis is transparent from the sets of @js. method of intermediate problems and by the RR method for
and (10), which is, in rep|acinggr;jl of the RR method with the third lowest frequency in the TE mode, which also
(a05mj+[§7l]mj)- Thus the two methods differ only by closgly represents all the other cases. While the upper b(_)unds
similar, but different, approximations @1/¢). An additional  obtained by the method of intermediate problems are higher
computational effort is required in the present method in obthan the RR values for all values bf both sequences con--
taining[£1]. verge to each other as the basis size is increased. There is a
The calculations were carried out for the lowest three fre/nodest increase in computational complexity in obtaining
quencies in both the TE and TM modes. The behavior of th&0th bounds by the method of intermediate problems, com-
approximations was found to be similar to the cases disPared to the RR method with the same size basis set.
played in Figs. 1, 2, and 3. Figure 1 compares the lower
bounds obtained by the method of intermediate problems, V. CONCLUDING REMARKS
and the upper bounds obtained by the RR method, with plane
waves, for the third lowest frequency for the TE mode propa- We have developed a convenient numerical scheme to
gation for different values of.. The same comparison is Calculate lower bounds to the photonic band-gap edges,
made in Fig. 2 for the second lowest frequency in TM modeWwhich are determined by the eigenvalues of a non-negative
In these and all the other cases studied, the sequences of tBeerator. The present procedure adopts the method of inter-
lower and upper bounds show monotonically convergent bemediate problems to calculate the lower bounds to the eigen-
haviors toward each other as the size of the basis set is ivalues of the type of operators encountered in the studies of
creased. The accuracy of the lower bounds is comparablée photonic band-gap material. The exploitation of some of
with that of the upper bounds, with a moderate size basis sethe properties of this class of operators results in consider-
Two sets of bounds determine the accuracy of the edges ar@ble computational simplification, by allowing the use of
special basis functions to construct a sequence of operators
0.65 : , converging from below to the exact operator. A parallel
: : method to calculate the upper bounds is also developed in

06 the process. Both these methods are computationally slightly
—- more complex than the RR method, which is widely used to
:3,055_ determine the upper bounds. In a realistic test case, the rate
) ) of convergence of the lower bounds from below is found to
S 05 be comparable with that of the RR approximations from
g above. The upper bounds obtained by the present method are
v higher than the RR approximations, but converge to them,
0.45 yielding almost the same values for moderate basis size.

While it is interesting to note that the method of intermediate

problems, although motivated by a need to determine lower

bounds to the eigenvalues, may be used to calculate the up-
FIG. 2. Comparison of the lower boundsB) and the Rayleigh- per bounds, the resulting procedure is less attractive than the

Ritz (RR) upper bounds to the second lowest, normalized frequenciRR method for the present case.

' =wal2m, for the TM mode. The lower bounds complement the upper bounds, com-
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puted by the RR method or by the present method, to detetewer and upper bounds would be useful in determining
mine the accuracy of the band-gap edges and thus of the@hether an exploitable band gap exists or not, with certainty,
extension of the band gap for all basis sizes. The availabilitypefore attempts to experimentally exploit it are undertaken.
of the opposite bounds, or other error bounds, is desirable in

all cases, to establlsh a confidence level in the ca_lculated ACKNOWLEDGMENTS

values, and to determine the extent of the band gap, irrespec-
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