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Using ideas from general density-functional theory, we generalize the uniform-gas correlation-energy for-
malism of Singwi, Tosi, Land, and 9ander to the case of an arbitrary inhomogeneous many-particle system.
For jellium slabs of finite thickness with a self-consistent local-density approximation ground-state Kohn-Sham
potential as input, our numerical results for the correlation energy agree well with diffusion Monte Carlo
results. For a helium atom we also obtain a good correlation energy.
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Despite 80 years of study, the accurate calculation of theystems, the random-phase-approximati&PA)-like® na-
correlation energy of interacting quantal many-electron systure of the method, together with its uniquely self-consistent
tems is still a challenge, even for some systems not regardddcal-field correction, suggests it will accurately describe
as “strongly correlated.” For realistic many-electrons sys-vdW interactioné while also correctly treating other kinds of
tems the current state of the art includes diffusion/Greenbonding® The method is by no means restricted to vdW
function quantum Monte CarldDMC), variational formal- problems, however, and should provide a useful alternative
isms and quantum chemical methods such as thapproach both for soft and for hard matter. In particular, it
configuration-interactiofiCl) approach. These all have strin- appears to be highly competitive with recently proposed
gent practical limitations to relatively small and/or not-too- correlation-energy theories based on & method® it
complex systems. Approximate density functionals of thegives a more accurate correlation energy in the homogeneous
local-density(LDA) and generalized gradiefGGA) class  gas at large ¢, for example. Being intrinsically approximate,
are, in principle, less accurate than the above approaches, HSTLS needs to be tested. Therefore, in the present paper, we
they remain feasible even for very large, complex systemshenchmark our method against state-of-the-art results for two
and often provide useful accuracy. They fail completely,simple but highly inhomogeneous situations: finite-thickness
however, to describe long-ranged correlations in cases wheijellium slabs and the He atom. The results suggest that our
these differ qualitatively from those of the homogeneousscheme, while based on approximations known to work well
electron gas. A case in point is the van der WaatdV) or  in uniform electron gases, also gives a good treatment of
dispersion interaction: all LDA/GGA approaches miss itsstrong inhomogeneity in one to three space dimensions.
long-ranged part completefy’ and give at best patchy re- Details follow.
sults at short range.Thus DMC, ClI, and standard DFT The ground-state energy of an inhomogeneous many-
methods are all likely to be problematic for large complexelectron system with external potentis*(r) and ground-
vdW systems of practical interest, including many soft-state electron density(r) is given exactly by the constant-
matter cases. density adiabatic connection formula of the formal Kohn-

Here we present a general approximation meth8@LS)  Sham density-functional theoty,
for the correlation energy dhhomogeneouslectronic sys-

tems, which we believe will be appropriate for vdW prob- _ et g2

lems among others. It employs a self-consistent scheme for Eo=Tyn]+ | n(rju™(r)dr

the pair distribution based on the surprisingly accurate X

homogeneougas correlation-energy method of Singwi, 1 e .o

Tosi, Land, and SjolanddSTLS).® We take as input an ap- ) [ n(rn(r’)drdr’+E[n], (1)

proximate Kohn-SharnkS) potentialv «<(r) of the inhomo-

geneous system, and produce the correlation enEgggs 11 e?
output. Tractable input theories such as the LDA or Exc[n]:_f dkfa—ﬂ(nzx(F,F’)—n(F)n(F'))dFdF"
exchange-only Krieger-Li-lafratéKLI) theory! by them- 2Jo Ir=r’|

selves, make large correlation-energy errors of ord&00% 2
and —100%, respectively, yet starting from their KS poten- .0 1 S o0 .
tials our ISTLS theory yields correlation energies accurate td::tr.g Z;[;r] _har(ém)} a%é ?ﬁce”cfcﬁﬁ(riﬂ dd}ESISo:Qi?aIESeiklen-
a few percent. In its numerical complexity, and also in its ! ] a9y, P P ) B g
accuracy forE, of large systems, ISTLS appears to be inter-functions of the one-electron KS potentiaks(r). vks is
mediate between LDA/GGA and the more microscopic apdefined to be such thandependenelectrons moving ings

proaches mentioned above. yield the true ground-state density,

Our original motivation for deriving ISTLS was primarily
to address soft-matter problems such as polymer cohesion or D> )V:n(r) = 02, 3
the energetics of graphite and its intercalates. For such vdwW ks> {An}n(r) k%:c |40 ®
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The \ integration in Eq.2) accounts for the kinetic part of uniform systems. Thus we relate the independent-electron
the KS correlation energy. The ground-state pair distributiorand interacting responses by solving the time-evolution
N, (r,r') is that of a\ systemdefined to have a reduced equation(first Bogoliubov-Born-Green-Kirkwood-Yvon hi-
electron-electron interactione?/r 1,, and a modified exter- erarchy equatiol) for the one-electron distribution function

nal potentialv®(r) chosen to maintain the truexg&1)  f(r.p.t) of the classicak system,

ground-state density at anmy\:n,(r)=n,_(r)=n(r).
Remarkably, only the true external potentiaP*'=v X', ap-
pears in Eq(1). Note that from Eq(3) the KS potential of

each\ system is the same as that of the trile=(1) system,

J = e Llirg
—oFmTip =+ FY(r ) - — [ f(r,p,t)
at ar ap

because the density is the same, Jd  A\e? 0 @7 =2 = I
= —= == —=H7(rp;r’,p’,tydr'dp’. (8)
Uks\=Uks- (4) ar [r=r'|] ap

The ground-state pair distributiam, in Eq. (2) can be This equation is exact but requires the dynamic pair distri-
related to the Kubo density-density response funciigrof ~ bution f(3). The essential contribution of STLS was to use
the A system by the T=0 K fluctuation-dissipation the equilibrium pair-density factog,(r,r’) of Eq. (5) in a

theorem™® semiclassical truncation scheme
n(ON(Gy(r.r") = 1]=na, (1) = n(rn(r’) OB B 0~ay (DB B, (9)
= EJWX (F.F, w=iu) where the true dynamic correlation facwy should depend
m)o N on both the momenta and the time, but this dependence is

.. ignored andg, is taken to be the static, momentum-
xdu—n(r)s(r—r’). (5  independent equilibrium density correlating factor from Eq.
(5). Using E@gs.(9) in (8) and linearizing about the equilib-
rium distribution, f=fq(r,p)+f(r,p,t), we obtain a
closed one-body kinetic equation

Equation(5) also introduces the equilibrium pair correlation
factorg, (r,r').

The Kohn-Sham density-density responsg* is defined
to be that ofindependentlectrons moving in the KS poten-

i J o d L. s 0 N
tial vks. Note that, by Eq(4), 2 rm 15 L RO . L st B
o at ar ap
XKSA=XKS=Xr=0- (6)
xks is exactly expressibté by perturbation theory in terms — SR ) - dfo(r,p) (10
of KS orbitals{ ¢,}. From this expression it is readily shown ' p

that, wheny, is replaced byy, -o=xks, EQ. (5) gives the
“exact density-functional theoryDFT) exchange” energy, Here

i.e., it gives the Hartree-Fock energy integral in which the

self-consistent Hartree-Fock orbitals are replaced by theKS =~ 9 2
orbitals ¢, . Thus this formalism easily deals with the ex- F(O)(r)=FS;“(r)—f <__) =
change. Subtracting this DFT exchange energy from(Exg. ar |r—r’|
we obtain the exact DFT correlation energy

gy (r,r")ne(r')dr’

corresponds to the gradient of the KS potential in the quantal
case, and is independent ofby choice ofFS{t(F). Further,

—h .. € 1 o .
E.=— drdr'——= J d)\J du r,r',o=iu
C 271_ |r_r,| 0 0 [X)\( w )

SFei(r,t)=oF=Y(r,t) + f Wi (r,r")én(r’,tydr’,

—Xa=o(F,1 @=iu)]. (7) a1
At each\ value the interacting and KS responses are related
exactly by a Dyson-like screening integral equationy, i 5 a2
= Xr=0FXa=0* (AMVeoulomst Fxa)* xa» Where the spatial Wx(rar'):gx(hr')?m- (12

convolution is represented by asterisks. Mekernel f,
contains the many-bodyc effects and has traditionally been . . . . . .
treated by a local-density approximatitn2 At finite fre- Bec?use Eq(10) is linear and time invariant, its solution
quency the local approximation actually requires a tensoPn(r.t)=/of(r,p,t)dp can be expressed in the form
current-current version of the screening theGriere, how-
ever, instead of using a local uniform-gas-based approxima-
tion we effectively generate a nonlocal, nonscdlar self-
consistently for the particular inhomogeneous system. To do R
this we extend the semiclassical approach of STLS to nonwhere av, is a\-independent classical vector response func-

5n(F,t)=fZO(F,F',t—t')-5ﬁeff(F',t')dF’dt', (13)
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tion giving the independent-electron density response to an _ _ _ 1 [in .
applied force, with §/ar") - vo= Y, —o. vo(r,r',w=iu)= GR{E 2 fjif(r)
In the case ohomogeneouslectron gasesFTo is zero and
g, is a function only of the separatidR=|r —r’'|, and then
VX W=0 so that the effective pair forc@, is irrotational — oy (TV'G(T, " E=fiw; +ihu)],
and can be expressed as a gradient of a scalar potential,
W, (R) = — (3/dR)W, (R). Then, assumingsF&*' comes
from a potential 5V**' we can use integration by parts wheref; is the Fermi occupation factor ar@ is the Green
(Green’s theoreinfollowed by space Fourier transformation function for a single electron moving in the ground-state
to write Eq. (13) in g space as dn=y,_ooVe'f Kohn-Sham potentiad«s(r). The Coulomb screening con-
= xr—o(8VEXHw, 8n). This yields x,(d,®)= xr-o(q, ®) ditiong11, 12, 13 for the inhomogeneous case can be writ-
X (1 =W, (0) xx—o(d,®)) ~ L. This equation resembles a clas- ten as a Dyson-like “§cIeening” integral equation for the
sical RPA, withw, (q) replacing the bare coulomb pair po- interacting responsg,(r,r’, ),
tential 4r\e?/g2. This responsg, depends om, via w, ,
andg, is determined byy, using Eq.(5), giving a closed _ = n S "
self-consistent scheme. STLS applied this theory to the de- XA_XKSij Q@) (e e)dr, a9
generate electron gas by replacing the classical Boltzmann
equation density responsg -, with the quantal Lindhard
response. Despite the crudeness of the factorizafiprthe
STLS formalism gives excellent correlation energies for both
three-dimensionaBD) and 2D homogeneous electron gases, We term this the “inhomogeneous STLSUSTLS)
up to relatively large values of the interelectron spacing pascheme. To demonstrate its feasibility and accuracy we have
rameten .. For example, in 3[E§TLSiS within about 1% of camgd it out numgrlcally for two highly mhomogem_aoqs but
the 3D diffusion Monte Carlo resulsfor 2<r.<5. The spatially symmetric cases, namely charge-neutral jellium

error is still under 4% at,=20 and under 7% at;=50, a slabs a’?d'.') a helium atom. _
. . . S The jellium slabs were first solved in the ground-state
regime including gases generally regarded as S|gn|f|cantl}5

1 NALS ta mive , LDA : :
correlated. These results are significantly better than rece WOL-LDA™ to givevis™(2) and densiyn(z), wherez is

e space coordinate in the thin dimension of the slab. Our
GW-based many-body methofisyhich give 20% error at : ; p : 0
ISTLS f I lied tfunct |
r<=20. The homogeneous STLS scheme has a number ormalism was applied as a ‘postiunctiona’ giving

; ; ; DA
shortcomings, incltiding unphysical negative values of the[hgu;ﬁrrs:aci)our:s:niedrgglIyst)arzgnv?/osﬁ?jn;h:)t:)esef(lg)e'%)sngizr?i:
on-top pair factog(r,r) and failure to satisfy the compress- mjze the total energy including the STLS correctiofhis
ibility sum rule. Further work addressing these difficuttfes  5pm method would also give an improved densit)]

did not, however, significantly improve the predicted uni-\we then implemented Eqg5), (12, (14—(16), and (7);
form gas correlation energy. Therefore, in the present Worlétarting the iterations from an exchange-oglfactor.

we have concentrated on generalizing the original semiclas- Figure 1 gives the jellium slab correlation energy per elec-
sical STLS scheme to inhomogeneous systems. This does NOE, for a number of positive background densitigs , pa-
appear to have been attempted previously: bilayered electrqQ \atrized by the dimensionless interelectron spading
gases have certainly been treatéut these are isomorphic _ me?h ~2(3ny. /47) 3. We show results from ISTL&olid

X[G(r,r" E=fw;+ihu)V' ¢;(r")

(14)

szf V(T 1" @) - Wy (1", 1) dr" xxs=V " vo. (16)

to a two-specieshomogeneouD electron gas. We will line), DMC™® (dotted ling, RPA (diamonds, Perdew-Burke-

show that the formalism is tractable for cases of gen“i”%rnzerhof(PBE)zo correlation-only GGAlong dashes and

mhomogen_eny. o LDA (pluse$ schemes. The thickness of the positive back-
Inan inhomogeneoussystem we haveVXW=  ground in each slab is=7.21r@ag, to match the available

—Vg,(r,r")xV(re?|r—r'|)#0 so that there is no scalar DMC results. Uniform-gas results are also shoitied

potential corresponding td/, , and thevectorbare response Symbols. ISTLS gi:)/es the best agreement with the slab
;O from Eq. (13 must be used: the scalar versigg is not DMC data, within 3%. This is comparable to the agreement

sufficient. This is an essential difference between the inho(—)f STLS with DMC for the uniform 3D gas with 2r,
mogeneous case and the homogeneous one. As in the homg<0 - We have also checked that ISTLS recovers 2D results
geneous case, we postulate that a degenerate Fermi systHHhe th'n'S|a.b.|'m't' in contrast to, e.g., GGA.

can be treated within the above semiclassical analysis b(ir/ljt For small finite systems, such as atoms, one needs a self-

using the quantal Fermi independent-electron response f eraction c_orrectlon in the starting KS potential and_den-
> . this al . h | KS il i sity. Otherwise(as, for example, when one uses the simple
vo: this also amounts to using the quantal potential In Ay ynrealistic response functions are obtained because the

place of its classical counterpdf. By perturbation of the asymptotic—e?/r potential is missing inXS. We solved
occupied independent-electrdS) orbitals ¢j(F), we ob- helium using the Krieger-Li-lafrate exchange-only
tained for the inhomogeneous quantal response at imaginadescriptiod of the atomic ground state. This has the advan-
frequencyiu tage of a common potential-'=vX® for all orbitals. The
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explicit spherical form of Eqs(14)—(16) involves spherical ISTLS scheme is that it gives pair correlation physics that is
harmonics but is somewhat cumbersome because of the vetself-tailored” to the system at hand, rather than “stolen”
tor character of,. We obtained a total ISTLS He correlation from the uniform gas. Our tests suggest that ISTLS will be
energy of —40.0 milliHartree, within 5% of the “exact” tractable numerically wherever the RPA correlation energy
nonrelativistic valug' of —42.0 mH. Our result is of is,>?*but evaluation will take 5-20 times as long. We specu-
“chemical accuracy,” but does not improve on the PBE late that interesting density functionals for the correlation
GGA? value of —43 mH. The KLI starting potential is ad- energy might be derived by using the ISTLS scheme with
equate: we re-ran our method starting from the numericallsemi-local-density approximations for the bare respanse
exact He KS potentiaf? obtammg< 1% change irk;. somewhat as in Ref. 3.

In summary, we have derived an inhomogeneous gener-
alization(ISTLS) of the rather successful STLS uniform-gas  J.F.D. acknowledges an Australian Research Council
correlation-energy formalism: see Eq$2), (14), (16), (15), Large grant and the hospitality of Professor M. Combescot,
(5), and(7). We have shown that ISTLS gives good ground-Universite de Paris VII. The atomic application of ISTLS
state correlation energies in some highly inhomogeneoufrms part of the Ph.D. thesis of T.G. We thank C. Umrigar,
electronic systems. The scheme can also encompass finiké Fuchs, X. Gonze, U. von Bath, and S. Kurth for discuss-
temperatures, and plasmon calculations. An advantage of tteons and data.
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