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Correlation energies of inhomogeneous many-electron systems
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Using ideas from general density-functional theory, we generalize the uniform-gas correlation-energy for-
malism of Singwi, Tosi, Land, and Sjo¨lander to the case of an arbitrary inhomogeneous many-particle system.
For jellium slabs of finite thickness with a self-consistent local-density approximation ground-state Kohn-Sham
potential as input, our numerical results for the correlation energy agree well with diffusion Monte Carlo
results. For a helium atom we also obtain a good correlation energy.
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Despite 80 years of study, the accurate calculation of
correlation energy of interacting quantal many-electron s
tems is still a challenge, even for some systems not rega
as ‘‘strongly correlated.’’ For realistic many-electrons sy
tems the current state of the art includes diffusion/Gre
function quantum Monte Carlo~DMC!, variational formal-
isms and quantum chemical methods such as
configuration-interaction~CI! approach. These all have strin
gent practical limitations to relatively small and/or not-to
complex systems. Approximate density functionals of
local-density~LDA ! and generalized gradient~GGA! class1

are, in principle, less accurate than the above approaches
they remain feasible even for very large, complex syste
and often provide useful accuracy. They fail complete
however, to describe long-ranged correlations in cases w
these differ qualitatively from those of the homogeneo
electron gas. A case in point is the van der Waals~vdW! or
dispersion interaction: all LDA/GGA approaches miss
long-ranged part completely,2–4 and give at best patchy re
sults at short range.5 Thus DMC, CI, and standard DFT
methods are all likely to be problematic for large compl
vdW systems of practical interest, including many so
matter cases.

Here we present a general approximation method~ISTLS!
for the correlation energy ofinhomogeneouselectronic sys-
tems, which we believe will be appropriate for vdW pro
lems among others. It employs a self-consistent scheme
the pair distribution based on the surprisingly accur
homogeneous-gas correlation-energy method of Singw
Tosi, Land, and Sjolander~STLS!.6 We take as input an ap
proximate Kohn-Sham~KS! potentialvKS(rW) of the inhomo-
geneous system, and produce the correlation energyEc as
output. Tractable input theories such as the LDA
exchange-only Krieger-Li-Iafrate~KLI ! theory,7 by them-
selves, make large correlation-energy errors of order1100%
and2100%, respectively, yet starting from their KS pote
tials our ISTLS theory yields correlation energies accurate
a few percent. In its numerical complexity, and also in
accuracy forEc of large systems, ISTLS appears to be int
mediate between LDA/GGA and the more microscopic
proaches mentioned above.

Our original motivation for deriving ISTLS was primaril
to address soft-matter problems such as polymer cohesio
the energetics of graphite and its intercalates. For such v
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systems, the random-phase-approximation~RPA!-like3 na-
ture of the method, together with its uniquely self-consist
local-field correction, suggests it will accurately descri
vdW interactions2 while also correctly treating other kinds o
bonding.4 The method is by no means restricted to vd
problems, however, and should provide a useful alterna
approach both for soft and for hard matter. In particular
appears to be highly competitive with recently propos
correlation-energy theories based on theGW method;8 it
gives a more accurate correlation energy in the homogene
gas at larger s , for example. Being intrinsically approximate
ISTLS needs to be tested. Therefore, in the present pape
benchmark our method against state-of-the-art results for
simple but highly inhomogeneous situations: finite-thickne
jellium slabs and the He atom. The results suggest that
scheme, while based on approximations known to work w
in uniform electron gases, also gives a good treatmen
strong inhomogeneity in one to three space dimensio
Details follow.

The ground-state energy of an inhomogeneous ma
electron system with external potentialvext(rW) and ground-
state electron densityn(rW) is given exactly by the constant
density adiabatic connection formula of the formal Koh
Sham density-functional theory,9

E05Ts@n#1E n~rW !vext~rW !drW

1
1

2E e2

urW2rW8u
n~rW !n~rW8!drWdrW81Exc@n#, ~1!

Exc@n#5
1

2E0

1

dlE e2

urW2rW8u
~n2l~rW,rW8!2n~rW !n~rW8!!drWdrW8.

~2!

Here Ts@n#5\2(2m)21(k occ* u¹W fk(rW)u2drW is the KS ki-
netic energy, and$fk% are the occupied KS orbitals, eigen
functions of the one-electron KS potentialvKS(rW). vKS is
defined to be such thatindependentelectrons moving invKS
yield the true ground-state density,

vKS⇒$fk~rW !%:n~rW !5 (
k occ

ufk~rW !u2. ~3!
©2002 The American Physical Society08-1
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The l integration in Eq.~2! accounts for the kinetic part o
the KS correlation energy. The ground-state pair distribut
n2l(rW,r 8) is that of al systemdefined to have a reduce
electron-electron interactionle2/r 12, and a modified exter-
nal potentialvl

ext(rW) chosen to maintain the true (l51)

ground-state density at anyl:nl(rW)5nl51(rW)[n(rW).
Remarkably,9 only the true external potentialvext[vl51

ext ap-
pears in Eq.~1!. Note that from Eq.~3! the KS potential of
eachl system is the same as that of the true (l51) system,
because the density is the same,

vKS,l[vKS . ~4!

The ground-state pair distributionn2l in Eq. ~2! can be
related to the Kubo density-density response functionxl of
the l system by the T50 K fluctuation-dissipation
theorem,10

n~rW !n~rW8!@gl~rW,rW8!21#[n2l~rW,rW8!2n~rW !n~rW8!

52
\

pE0

`

xl~rW,rW8,v5 iu !

3du2n~rW !d~rW2rW8!. ~5!

Equation~5! also introduces the equilibrium pair correlatio
factor gl(rW,rW8).

The Kohn-Sham density-density responsexKS
11 is defined

to be that ofindependentelectrons moving in the KS poten
tial vKS . Note that, by Eq.~4!,

xKS,l[xKS[xl50 . ~6!

xKS is exactly expressible11 by perturbation theory in term
of KS orbitals$fk%. From this expression it is readily show
that, whenxl is replaced byxl50[xKS , Eq. ~5! gives the
‘‘exact density-functional theory~DFT! exchange’’ energy,
i.e., it gives the Hartree-Fock energy integral in which t
self-consistent Hartree-Fock orbitals are replaced by the
orbitals fk . Thus this formalism easily deals with the e
change. Subtracting this DFT exchange energy from Eq.~2!
we obtain the exact DFT correlation energy

Ec5
2\

2p E drWdrW8
e2

urW2rW8u
E

0

1

dlE
0

`

du@xl~rW,rW8,v5 iu !

2xl50~rW,rW8,v5 iu !#. ~7!

At eachl value the interacting and KS responses are rela
exactly by a Dyson-like screening integral equation11 xl

5xl501xl50* (lVcoulomb1 f xcl)* xl , where the spatia
convolution is represented by asterisks. Thexc kernel f xcl

contains the many-bodyxc effects and has traditionally bee
treated by a local-density approximation.11,12 At finite fre-
quency the local approximation actually requires a ten
current-current version of the screening theory.13 Here, how-
ever, instead of using a local uniform-gas-based approxi
tion we effectively generate a nonlocal, nonscalarf xc self-
consistently for the particular inhomogeneous system. To
this we extend the semiclassical approach of STLS to n
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uniform systems. Thus we relate the independent-elec
and interacting responses by solving the time-evolut
equation ~first Bogoliubov-Born-Green-Kirkwood-Yvon hi-
erarchy equation14! for the one-electron distribution functio
f (rW,pW ,t) of the classicall system,

S ]

]t
1m21pW •

]

]rW
1FW l

ext~rW,t ! •
]

]pW
D f ~rW,pW ,t !

5E S ]

]rW

le2

urW2rW8u
D •

]

]pW
f l

(2)~rW,pW ;rW8,pW 8,t !drW8dpW 8. ~8!

This equation is exact but requires the dynamic pair dis
bution f l

(2) . The essential contribution of STLS was to u

the equilibrium pair-density factorgl(rW,rW8) of Eq. ~5! in a
semiclassical truncation scheme

f l
(2)~rW,pW ;rW8,pW 8,t !'gl~rW,rW8! f ~rW,pW ,t ! f ~rW8,pW 8,t !, ~9!

where the true dynamic correlation factorgl should depend
on both the momenta and the time, but this dependenc
ignored and gl is taken to be the static, momentum
independent equilibrium density correlating factor from E
~5!. Using Eqs.~9! in ~8! and linearizing about the equilib
rium distribution, f 5 f 0(rW,pW )1d f (rW,pW ,t), we obtain a
closed one-body kinetic equation

S ]

]t
1m21pW •

]

]rW
1FW (0)~rW ! •

]

]pW
D d f ~rW,pW ,t !

52dFW e f f~rW,t ! •
] f 0~rW,pW !

]pW
. ~10!

Here

FW (0)~rW !5FW 0l
ext~rW !2E S ]

]rW

le2

urW2rW8u
D gl~rW,rW8!n0~rW8!drW8

corresponds to the gradient of the KS potential in the qua
case, and is independent ofl by choice ofF0l

ext(rW). Further,

dFW e f f~rW,t !5dFW ext~r ,t !1E WW l~rW,rW8!dn~rW8,t !drW8,

~11!

WW l~rW,rW8!5gl~rW,rW8!
2]

]rW

le2

urW2rW8u
. ~12!

Because Eq.~10! is linear and time invariant, its solution
dn(rW,t)[*d f (rW,pW ,t)dpW can be expressed in the form

dn~rW,t !5E nW 0~rW,rW8,t2t8!•dFW e f f~rW8,t8!drW8dt8, ~13!

where anW 0 is al-independent classical vector response fu
8-2
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tion giving the independent-electron density response to

applied force, with (]/]rW8) •nW 05xl50.

In the case ofhomogeneouselectron gases,FW 0 is zero and

gl is a function only of the separationR[urW2rW8u, and then

¹W 3WW 50W so that the effective pair forceWW l is irrotational
and can be expressed as a gradient of a scalar pote

WW l(RW )52(]/]RW )wl(R). Then, assumingdFW ext comes
from a potentialdVext we can use integration by par
~Green’s theorem! followed by space Fourier transformatio
to write Eq. ~13! in q space as dn5xl50dVe f f

5xl50(dVext1wldn). This yields xl(q,v)5xl50(q,v)
3(12wl(q)xl50(q,v))21. This equation resembles a cla
sical RPA, withwl(q) replacing the bare coulomb pair po
tential 4ple2/q2. This responsexl depends ongl via wl ,
and gl is determined byxl using Eq.~5!, giving a closed
self-consistent scheme. STLS applied this theory to the
generate electron gas by replacing the classical Boltzm
equation density responsexl50 with the quantal Lindhard
response. Despite the crudeness of the factorization~9!, the
STLS formalism gives excellent correlation energies for b
three-dimensional~3D! and 2D homogeneous electron gas
up to relatively large values of the interelectron spacing
rameterr s . For example, in 3DEc

STLS is within about 1% of
the 3D diffusion Monte Carlo results15 for 2,r s<5. The
error is still under 4% atr s520 and under 7% atr s550, a
regime including gases generally regarded as significa
correlated. These results are significantly better than re
GW-based many-body methods,8 which give 20% error at
r s520. The homogeneous STLS scheme has a numbe
shortcomings, including unphysical negative values of

on-top pair factorg(rW,rW) and failure to satisfy the compres
ibility sum rule. Further work addressing these difficulties16

did not, however, significantly improve the predicted u
form gas correlation energy. Therefore, in the present w
we have concentrated on generalizing the original semic
sical STLS scheme to inhomogeneous systems. This doe
appear to have been attempted previously: bilayered elec
gases have certainly been treated,17 but these are isomorphi
to a two-specieshomogeneous2D electron gas. We will
show that the formalism is tractable for cases of genu
inhomogeneity.

In an inhomogeneoussystem we have ¹W 3WWl5

2¹W gl(rW,rW8)3¹W (le2/urW2rW8u)Þ0W so that there is no scala
potential corresponding toWW l , and thevectorbare response
nW 0 from Eq. ~13! must be used: the scalar versionx0 is not
sufficient. This is an essential difference between the in
mogeneous case and the homogeneous one. As in the h
geneous case, we postulate that a degenerate Fermi sy
can be treated within the above semiclassical analysis
using the quantal Fermi independent-electron response
nW 0: this also amounts to using the quantal KS potential
place of its classical counterpartFW 0. By perturbation of the
occupied independent-electron~KS! orbitals f j (rW), we ob-
tained for the inhomogeneous quantal response at imagi
frequencyiu
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nW 0~rW,rW8,v5 iu !5
1

u
ReF i\

m (
j

f jf j* ~rW !

3@G~rW,rW8,E5\v j1 i\u!¹W 8f j~rW8!

2f j~rW8!¹W 8G~rW,rW8,E5\v j1 i\u!#,

~14!

where f j is the Fermi occupation factor andG is the Green
function for a single electron moving in the ground-sta
Kohn-Sham potentialvKS(r ). The Coulomb screening con
ditions~11, 12, 13! for the inhomogeneous case can be wr
ten as a Dyson-like ‘‘screening’’ integral equation for th
interacting responsexl(rW,rW8,v),

xl5xKS1E Ql~rW,rW9,v!xl~rW9,rW8,v!dr9, ~15!

Ql5E nW 0~rW,rW-v!•WW l~rW-,rW9!drW-,xKS5¹W 8•nW0 . ~16!

We term this the ‘‘inhomogeneous STLS’’~ISTLS!
scheme. To demonstrate its feasibility and accuracy we h
carried it out numerically for two highly inhomogeneous b
spatially symmetric cases, namely~i! charge-neutral jellium
slabs and~ii ! a helium atom.

The jellium slabs were first solved in the ground-sta
PW91-LDA18 to give vKS

LDA(z) and densityn(z), wherez is
the space coordinate in the thin dimension of the slab. O
ISTLS formalism was applied as a ‘‘postfunctional’’ givin
the correlation energy starting from the fixedvKS

LDA(z),
though, of course, ideally one would choose av(z) to mini-
mize the total energy including the STLS corrections.@This
OPM method would also give an improved densityn(rW)#.
We then implemented Eqs.~5!, ~12!, ~14!–~16!, and ~7!,
starting the iterations from an exchange-onlyg factor.

Figure 1 gives the jellium slab correlation energy per el
tron for a number of positive background densitiesn01 , pa-
rametrized by the dimensionless interelectron spacingr s
5me2\22(3n01/4p)1/3. We show results from ISTLS~solid
line!, DMC19 ~dotted line!, RPA ~diamonds!, Perdew-Burke-
Ernzerhof~PBE!20 correlation-only GGA~long dashes!, and
LDA ~pluses! schemes. The thickness of the positive bac
ground in each slab isL57.21r saB , to match the available
DMC results. Uniform-gas results are also shown~filled
symbols!. ISTLS gives the best agreement with the sl
DMC data, within 3%. This is comparable to the agreem
of STLS with DMC for the uniform 3D gas with 2<r s
<20 . We have also checked that ISTLS recovers 2D res
in the thin-slab limit, in contrast to, e.g., GGA.

For small finite systems, such as atoms, one needs a
interaction correction in the starting KS potential and de
sity. Otherwise~as, for example, when one uses the sim
LDA ! unrealistic response functions are obtained because
asymptotic2e2/r potential is missing invKS. We solved
helium using the Krieger-Li-Iafrate exchange-on
description7 of the atomic ground state. This has the adva
tage of a common potentialvKLI[vKS for all orbitals. The
8-3
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FIG. 1. Correlation energy of neutral jellium
slabs~Hartree/electron!.
v
n

E
-
al

ne
as

d
ou
fin
f t

t is
’’
be
rgy
u-
on
ith

ncil
ot,

ar,
s-
explicit spherical form of Eqs.~14!–~16! involves spherical
harmonics but is somewhat cumbersome because of the
tor character ofnW 0. We obtained a total ISTLS He correlatio
energy of 240.0 milliHartree, within 5% of the ‘‘exact’’
nonrelativistic value21 of 242.0 mH. Our result is of
‘‘chemical accuracy,’’ but does not improve on the PB
GGA20 value of243 mH. The KLI starting potential is ad
equate: we re-ran our method starting from the numeric
exact He KS potential,22 obtaining!1% change inEc .

In summary, we have derived an inhomogeneous ge
alization~ISTLS! of the rather successful STLS uniform-g
correlation-energy formalism: see Eqs.~12!, ~14!, ~16!, ~15!,
~5!, and~7!. We have shown that ISTLS gives good groun
state correlation energies in some highly inhomogene
electronic systems. The scheme can also encompass
temperatures, and plasmon calculations. An advantage o
ev
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ISTLS scheme is that it gives pair correlation physics tha
‘‘self-tailored’’ to the system at hand, rather than ‘‘stolen
from the uniform gas. Our tests suggest that ISTLS will
tractable numerically wherever the RPA correlation ene
is,3,23 but evaluation will take 5–20 times as long. We spec
late that interesting density functionals for the correlati
energy might be derived by using the ISTLS scheme w

semi-local-density approximations for the bare responsenW 0,
somewhat as in Ref. 3.

J.F.D. acknowledges an Australian Research Cou
Large grant and the hospitality of Professor M. Combesc
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