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Excitation gaps in fractional quantum Hall states: An exact diagonalization study
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We compute energy gaps for spin-polarized fractional quantum Hall states in the lowest Landau level~LL !
at filling fractions n5

1
3 , 2

5 , 3
7 , and 4

9 using exact diagonalization of systems with up to 16 particles and
extrapolation to the infinite system-size limit. The gaps calculated for a pure Coulomb interaction and ignoring
finite width effects, disorder and LL mixing agree well with the predictions of composite fermion theory
provided the logarithmic corrections to the effective mass are included. This is in contrast with previous
estimates, which, as we show, overestimated the gaps atn52/5 and 3/7 by around 15%. We also study the
reduction of the gaps as a result of the nonzero width of the two-dimensional~2D! layer. We show that these
effects are accurately accounted for using either Gaussian or ‘‘z3 Gaussian’’ (zG) trial wave functions, which
we show are significantly better variational wave functions than the Fang-Howard wave function. The Gauss-
ian andzG wave functions give Haldane pseudopotential parameters which agree with those of self-consistent
local density approximation calculations to better than60.2%. For quantum well parameters typical of het-
erostructure samples, we find gap reductions of around 20%. The experimental gaps, after accounting heuris-
tically for disorder, are still around 40% smaller than the computed gaps. However, for the case of tetracene
layers in metal-insulator-semiconductor~MIS! devices we find that the measured activation gaps are close to
those we compute. We discuss possible reasons why the difference between computed and measured activation
gaps is larger in GaAs heterostructures than MIS devices. Finally, we present calculations using systems with
up to 18 electrons of the gap atn5

5
2 including width corrections.

DOI: 10.1103/PhysRevB.66.075408 PACS number~s!: 73.20.Mf, 73.43.Cd, 73.21.2b, 73.43.Lp
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I. INTRODUCTION

Our understanding of the fractional quantum Hall effe1

~FQHE! is primarily based on the Laughlin wave functio
~WF! ~Ref. 2! and its appropriate hierarchica
generalizations3–5 for the so-called higher order ‘‘daughter
fractions which are many-electron wave functions in the lo
est Landau level with no adjustable parameters. The fun
mental property underlying the FQHE phenomenon is
existence, at certain filling fractions of the lowest Land
level, of an incompressible ground state and an energy gaD
in the many-body excitation spectrum. This gap is produ
entirely by the electron-electron interaction while the cor
sponding noninteracting single particle energy levels are
degenerate at the particular fractional filling@i.e., all nonin-
teracting single particle levels have energy\vc/2 in the low-
est Landau level, wherevc5eB/(mc) is the cyclotron fre-
quency in the magnetic fieldB#.

The excitation gapD is the key measure of the robustne
of the FQHE—the incompressibility cannot be destroyed
weak disorder in the system if the gap is large. The beha
of the gap as a function of filling fraction in the main s
quence of FQHE states can also be compared to predic
of the composite fermion~CF! picture and used to extract th
CF effective mass. The excitation gap atn51/3 has been
theoretically estimated on the basis of exact diagonaliza
studies6,7 and Monte Carlo calculations8,9 as have the gaps a
filling fractions n52/5 andn53/7.10 The numerically com-
puted estimates of the gap are, however, significantly la
~by a factor of 2 to 3 atn51/3, for example! than the mea-
sured gapsDa deduced from the activated temperature d
0163-1829/2002/66~7!/075408~18!/$20.00 66 0754
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pendence of the longitudinal resistivity minimum for ea
fraction.11–14

Here we report the results of extensive finite-size stud
of the gap for spin-polarized excitations of electrons co
fined to the lowest Landau level~LLL ! at filling fractionsn
5 1

3 , 2
5 , 3

7 , and 4
9 as well as detailed results for the quantu

Hall state atn5 5
2 . We give a detailed analysis of the finit

size corrections and show that previous estimates of
gap10 for the pure Coulomb interaction atn52/5 and 3/7
were around 20% too high as a result of inaccurate extra
lation methods. For the simple exactly solvable case o
single hole in a filled polarized lowest Landau level, w
demonstrate how an optimized extrapolation scheme
matically reduces errors in the estimate for the infinite s
tem result. We compare our more accurate results with
predictions of composite fermion theory.15–17 We find that,
whereas previous estimates were consistent with a CF e
tive mass which was independent of filling fraction, the
estimates are in better agreement with the CF theory wh
predicts a logarithmically divergent effective mass as a fu
tion of filling factor asn51/2 is approached.15,16The results
are also closer to the estimates of the effective mass f
another type of finite-size calculations atn51/2.18

Other previous larger estimates of the pure Coulo
gap19 may also involve an inaccurate extrapolation to t
infinite system limit, but as these results were obtained us
CF trial WF’s and Monte Carlo techniques we cannot say
certain where the origin of this difference lies. However, w
mention that our calculated excitation gaps are lower by
much as 30% than those in Ref. 19, and some discrepa
exists even for the pure Coulomb interaction results an
©2002 The American Physical Society08-1
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51/3 where our extrapolation to the thermodynamic limit
most reliable.

We clarify to what extent the discrepancy between n
merically computed gaps and those extracted from trans
measurements can be attributed to finite-width effects.
large disagreement between experimental activation gapDa
and the numerically computed gapsDc has been an outstand
ing problem in the subject since the first accurate meas
ment of activation gaps was reported more than fifteen ye
ago.14 There have been several previous theoretical attem
to compute realistic estimates of the energy gap and to id
tify the source of the large discrepancy betweenDc and
Da .20–25 These took account of the finite thickness corre
tion ~i.e., relaxing the pure 1/r Coulomb interaction approxi
mation by including the softening introduced by the tran
verse width of the 2D layer!, and of the Landau level mixing
corrections.26,27 There have also been studies of the sp
reversed excitations which are the lowest lying excitatio
for small g-factors and small magnetic fields.9,28–30

There are reports in the literature22 that the finite-width
effects account for all the difference between measured
theoretically predicted gaps. Our results are at variance w
this conclusion22 and consequently also with the results
Ref. 23 which were based on incorrect results from Ref.
The error in Ref. 23 was originally corrected in Refs. 24,2
We find on the basis of the largest finite-size diagonalizati
to date and of a careful analysis of the finite-size correcti
that the finite-width corrections account for at most half
the difference between the computed gaps and those
served in GaAs heterostructures. On the other hand the
observed recently in tetracene in metal insulator semicond
tor structures are only slightly smaller than our estimates.
discuss the possible reasons for these discrepancies. W
gue that they are unlikely to be due to spin-reversed exc
tions or Landau-level mixing and suggest that they are
result of disorder effects which may affect the activation e
ergy for transport differently in heterostructures and me
insulator-semiconductor~MIS! devices.

We show that it is unlikely for there to be a transitio
from an incompressible to a compressible state at fixed
ing factor, forn5 1

3 , 2
5 , 3

7 , caused by a gap collapse induc
entirely by the softening of the Coulomb interaction due
the finite thickness corrections. Such a transition has b
conjectured to occur in the second Landau level,31,32 where
the FQHE is much less robust. It may also happen in sit
tions where increasing the width in the transverse direc
changes the symmetry of the subband wave function~WF!.33

Alternatively, another kind of FQH state can arise in squa
parabolic, or double wells, where, for large enough w
width, the WF may split into an effective double layer stru
ture at the two ends of the well with a central self-consist
barrier separating these two effective layers.34 In the regular
GaAs heterostructure system11–14we find the lowest Landau
level n5 1

3 , 2
5 , 3

7 FQHE to be robust with respect to the fini
thickness effect, withD.0 even for the largest possible~and
physically allowed! transverse thickness. However the actu
value ofD may become rather small and one might have
go to very low temperatures~and very high quality, low dis-
order samples! to observe the FQHE. Our results are in co
07540
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flict with the claim by Parket al.23,25,35that the finite width
alone can lead to the loss of incompressibility at a filli
fraction n5p/(2p11) for some finite valuep5pc .

We also compare the various approximate methods
accounting for finite thickness effects based on interfac
trial WF’s with those taken from self-consistent local dens
approximation ~SCLDA! calculations.22,36 Previous model
calculations have used Gaussian and Fang-Howard enve
WF’s and the Zhang-DasSarma~ZDS! model interaction.20

We introduce a variational envelope WF, the ‘‘z3Gaussian’’
(zG). We find that both thezG and Gaussian envelope WF
give Haldane pseudopotential parameters which agree
within fractions of a percent with those from the full SCLD
WF’s with thezG giving slightly more accurate results at th
densities used in experiment. However, both give essent
indistinguishable results for excitation energies and g
from those taken from the SCLDA WF’s. This result show
that accurate finite-size studies of finite-width effects requ
only the determination of the appropriate width paramete
either the Gaussian orzG description and do not require th
use of SCLDA based tables of parameters.22

We show that depending on the subband density either
Gaussian orzG variational WF provide substantial quantit
tive improvements over the well-known Fang-Howard var
tional WF37 which has been employed extensively in hete
structure electronic calculations. Indeed, it turns out that
Fang-Howard WF generally overestimates the kinetic ene
and consequently predicts significantly too large width. T
expectation value of the energy and other quantities of in
est in this context can be calculated analytically for the
variational WF’s, and in the case of the Gaussian, it is eas
perform expansions for either very small or very large wid
Finally in the Appendix, we explain why the ZDS model
not reliable directly for predicting finite thickness corre
tions, but we present a simple modification which corrects
main shortcoming.

The remainder of this paper is organized as follows.
Sec. II we describe the diagonalization of theN-particle
Hamiltonian in the spherical geometry and give the defi
tions of the quasiparticle, quasihole, and gap energies
Sec. III, we discuss the extrapolation to theN→` limit and
in Sec. IV we compare the variation of the calculated ga
with filling fraction n with the predictions of composite fer
mion theory.15–17 In Sec. V we show how variational WF’s
can be used to model finite width effects. In Sec. VI, w
compute the reduction of the energy gaps as a function of
finite width and in Sec. VII we compare our results for th
gap energies with experimentally reported estimates of g

II. QUASIPARTICLE AND QUASIHOLE ENERGIES

We model the two-dimensional electron gas usi
Haldane’s spherical geometry.3 Particles with coordinates
(R,u i ,f i) move in a monopolar magnetic field of streng
B5S\/eR2 which gives rise to 2S11 linearly independent
cyclotron orbits in the lowest Landau level. The single p
ticle orbitals on the surface of the sphere for the particles
the lowest Landau level are then functionsc(u i ,f i) which
are the lowest energy eigen states of the kinetic energy.
8-2



a

s
-
e

io

fo
f.

-
e

b

s
n
E

m

i

cl

es

ly,

n

er-
size
ody-

is
b
of

or

y,
d

gies

ion
the
of
ci-

rest

ge

to
ed

of

i-

r-

EXCITATION GAPS IN FRACTIONAL QUANTUM HALL . . . PHYSICAL REVIEW B 66, 075408 ~2002!
In the lowest Landau level, the interaction between p
ticles is written

V~ i j !5(
m

(
i , j

N

VmPm~ i j !, ~1!

wherePm( i j ) projects onto states in which particlesi and j
have relative angular momentumm\ andVm gives their in-
teraction energy for this relative angular momentum. The
Vm , called Haldane pseudopotentials,3 completely character
izes the interaction between particles confined to the low
Landau level. In terms of the electron-electron interact
V(r ) they are defined in the plane by38

Vm
(n)5

1

~2p!2E drWV~r !E dqW eiqW .rW2(ql0)2

3FLnS q2l 0
2

2 D G2

Lm~q2l 0
2!, ~2!

wheren refers to the Landau level andV(r ) stands for the
electron electron interaction. The corresponding integrals
electrons on the surface of a sphere are described in Re
In the lowest Landau leveln50, the first Laguerre polyno
mial in Eq. ~2! is equal to unity. As we shall discuss in th
next section, the effect of the finite width of the WFf(Ri) is
incorporated in these pseudopotential parametersVm

(n) . In the
following, we will drop the superscriptn50 and denote the
Haldane pseudopotentials for the lowest Landau level
Vm .

The method for computing excitation energies and gap
this geometry has been described in detail in ma
places.3,7,10 According to the hierarchy model, the FQH
ground states at filling fractionn occur for a system ofN
particles when the total flux 2S is given by

2S0~n,N!5n21N1X~n!, ~3!

whereX(n) is the shift function,10 which is a characteristic
of the geometry of the system~in this case the sphere!.39

Laughlin’s2 elementary fractionally charged excitations fro
the FQHE ground state at filling fractionn5p/(2p11) cor-
respond to the ground state configuration of a system w
additional/missing flux61/p,

2S61/p~n,N!52S0~n,N!6
1

p
. ~4!

At n51/m there are systems with both 2S0 and 2S61/p both
integer for all integerN. At other filling fractions 2S0 and
2S61/p are never both integer for the sameN. For example at
n53/7, 2S0 is integer when the particle number isN53n (n
integer! while 2S61/3 is integer forN53n71, respectively.
We take the energy to nucleate a single quasiparti
quasihole in a system ofN particles at filling fractionn,
en

6(N), to be the total energy difference between the low
energy state with total flux 2S61/p(n,N) and the total ground
state energy the system would have at 2S0(n,N) for the
sameN, i.e.,
07540
r-

et

st
n

r
6.

y

in
y

th

e/

t

en
6~N!5E2S61/p

~N!2E2S0
~N!. ~5!

HereE2S61/p(N) is the total energy of the system ofN par-
ticles in their ground state in 2S61/p flux quanta. For filling
fractions n51/m we can calculate both energies direct
while at filling fractionsn5p/(2p11) with pÞ1 we have
to estimateE2S0

(N) by interpolating~or extrapolating for the
largest system sizes! between system sizes for which we ca
computeE2S0

(N).

III. ENERGY GAPS:
FINITE SIZE EFFECTS

AND THE THERMODYNAMIC LIMIT

From studying the variation with system size of the en
gies to nucleate quasiparticles and quasiholes in finite-
systems we estimate the excitation energies in the therm
namic limit. It is essential that the extrapolation procedure
carried out carefully. First, if working with the Coulom
interaction it is usual to quote energies in units
e2/« l

0
8 , where l 085A\c/eB is the magnetic length and«

is the dielectric constant for the medium. However, f
systems with number densitynS on the sphere, l 08
5A@1/(2pnS)#@N/(2S)# and so for systems at fixed densit
the magnetic lengthl 08 depends on the particle number an
the total flux through the ratioN/2S. In order to compare
quantities measured in the same units we convert all ener
by using the magnetic length in the infinite systeml 0

5An/(2pnS).
There is also a systematic contribution to the excitat

energy in a finite size system which scales to zero in
thermodynamic limit, which we can take account
explicitly.10 When the localized quasiparticle/quasihole ex
tation which is formed in a system ofN particles around the
point on the sphereRVW with VW a unit vector pointing away
from the origin a charge6qe with q51/(2p11) is concen-
trated around this point. This charge has come from the
of the system. There is then a contribution,Aq , to the energy
of the system from the nonuniform distribution of char
on the surface of the sphere which, in units ofe2/« l 0, is
given by

Aq~n!52q2A n

2N
. ~6!

To extrapolate to the infinite system size limit it is better
remove this contribution explicitly and study the correct
quasihole and quasiparticle energies

ẽn
6~N![en

6~N!2Aq~n!. ~7!

We also define the corrected gap energies to be the sum
quasiparticle and quasihole energies

ẽn
g~N![ẽn

1~N!1ẽn
2~N!. ~8!

We denote the limitN→` of the gap and quasihole, quas
particle excitation energies byẽn

(g) and ẽn
6 , respectively.

To illustrate the importance of working with these co
rected energies, we show results for a single hole atn51,
8-3
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R. H. MORF, N. D’AMBRUMENIL, AND S. DAS SARMA PHYSICAL REVIEW B66, 075408 ~2002!
which is a case for which the energy can be computed a
lytically using the exact expression for the energy of a fill
Landau level.40 We find

e1
1~N!52

1

2

EN21~N!

N S 11
3

2N11D2
1

A2N
. ~9!

The contribution21/A2N is just the correctionA1(1) for
the casen51. Bothe1

1(N) andẽ1
1(N) are shown as a func

tion 1/N in Fig. 1. It is clear from the figure that extrapola
tion of e1

1(N) with 1/N would give spurious results becau
of the contribution ofA1(1), which varies as 1/AN. By con-
trast, extrapolation ofẽ1

1(N) with 1/N gives the correct
result41 limN→`@2EN21(N)/(2N)#5 1

4 Ap/2.
In Fig. 2 we showẽ1/3

1 (N) and ẽ1/3
2 (N) and their extrapo-

lations to N5` using least squares fits to linear and qu
dratic functions in 1/N. We take the difference, 0.0005 fo
the quasiparticle and 0.0002 for the quasihole, in the e
mates from the two different extrapolation procedures as
measures of the accuracy of the extrapolation. In fact, in
sion of the 1/N2 term in the fit does not improve thex2 value
significantly. So, in the following, we will always use linea
extrapolation in 1/N to compute gaps in the thermodynam
limit. Figure 3 shows the gap energies atn51/3 and 2/5 as
functions of 1/N and the extrapolations toN5` limit to-
gether with the estimates based on the study of trial
WF’s.19 Plotted are the sum of quasiparticle and quasih
energiesẽ2(N)1ẽ1(N), using the correctionAq(n) ~6! and
the energyẽexc(n) of the neutral excitation withL5Lmax
~see caption to Fig. 3!, corresponding to maximum separ
tion of the quasiparticle~QP! and quasihole~QH! on the
sphere, again corrected by the termAq(n) which stands for

FIG. 1. The energy of a single hole. The asterisks showe1
1(N)

and the circles show the corrected energyẽ1
1(N). The extrapolation

in 1/N of the corrected energies pass through the exact value1
4Ap/2

whereas extrapolation ofe1
1(N) in 1/N would give incorrect results
07540
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the Coulomb energy between the quasiparticle and quasih
As can be seen, the size dependence of the exciton ene
is much less smooth than that of the sum of QP and
energies. Indeed, if they were known only for small system
extrapolation to the bulk limit would be inaccurate. Only f
the largest systems, does the size dependence of excito
ergies become smooth and allow reliable extrapolation to
thermodynamic limit, which is consistent with that based
the sum of QP and QH energies, although less accurate~see
Fig. 3!.

Figure 4 shows the quasiparticle and quasihole energie
n53/7 and 4/9. Although the estimate atn51/3 is close to
the values quoted previously,10 the values atn52/5 and 3/7
are around 20% smaller although still within the large unc
tainties of the earlier calculation. Our latest estimates
more accurate as a consequence of a better understandi
finite size effects in addition to being able to diagonalize
Hamiltonians for larger systems~with up to around 100 mil-
lion basis states!—15 particles instead of 11 particles for th
quasiparticle and quasihole atn52/5 and 16 particles instea
of 13 for the quasiparticle atn53/7. It is interesting to note
that the extrapolation of quasiparticle and quasihole ener
at n51/3 based on small sizes (N54,5,6) yields the values
ẽ1/3

2 '0.0757, ẽ1/3
1 '0.0267 and for the gapD1/3'0.1024.

These are within about one percent of our best estimate
the bulk limit of ẽ1/3

2 50.0749, ẽ1/3
1 50.0263 and for the gap

D1/350.1012, obtained using system sizes up toN512 and
performing the extrapolation by linear polynomial fit in 1/N.

FIG. 2. The quasiparticle@ ẽ1/3
2 (N)# and quasihole@ ẽ1/3

1 (N)# en-
ergies atn51/3 and the extrapolation using linear and quadra
functions of 1/N. We take the small differences in the extrapolat
result as a measure of the accuracy of the extrapolation.
8-4
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EXCITATION GAPS IN FRACTIONAL QUANTUM HALL . . . PHYSICAL REVIEW B 66, 075408 ~2002!
Likewise at n52/5, extrapolation using the results atN
55,7,9 yields values for the bulk limit for the quasipartic
and quasihole energies ofẽ2/5

2 '0.0431 andẽ2/5
1 '0.00920

and a value for the gapD2/5'0.0523, while our best estimat
based on system sizes 7<N<15 are ẽ2/5

2 50.0398, ẽ2/5
1

50.0102 and the gapD2/550.0500, corresponding to a dif
ference for the gap of about 5%. This observation makes
confident that it is now also possible to compute reliable b
limit values for the gaps atn53/7 and 4/9. Our values ar
D3/750.035 andD4/950.027. The systems atn54/9 were
inaccessible in our earlier work.10

IV. EFFECTIVE MASS OF COMPOSITE FERMIONS

Our estimates of the gap energies in the sequence of s
n5p/(2p11) are compared in Fig. 5 with the predictions
CF theory,15–17 which for this sequence gives~in units of
e2/« l 0)

ẽn
g[ẽn

g~`!5
p

2

1

u2p11u~ lnu2p11u1C8!
. ~10!

ChoosingC854.11 to fit the gap atn51/3 gives the gaps a
n52/5, 3/7, and 4/9 to be 0.0549, 0.0371, and 0.0276 wh
are remarkably close to the estimates we obtain. We also
that, whereas the earlier estimates were better fitted by

FIG. 3. The gap energiesẽn
g(N) at n51/3 and 2/5, computed

using Eq.~8! ~small solid dots!, and the neutral exciton energies fo
L5N at n51/3 andL5(N12)/2 at n52/5 ~large shaded dots!.
Also shown by circles on the vertical axes are the estimates of
gap energies of Jain and Kamilla~Ref. 19! obtained from an analy-
sis of trial composite fermion WF’s. The straight lines denote
best linear~in 1/N) fit to the data points. The intercepts give th

estimate of the gap energyẽn
g(`) neglecting corrections due t

nonzero width effects and higher Landau levels.
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suming that the gaps were simply proportional to 1/(2p
11) ~i.e., ignoring the logarithmic corrections!, Fig. 5 shows
that our results are better described by the theory when
logarithmic corrections to the gap are included. This tra
lates into an effective mass

m* ~p!5\2S «

e2l 0
D F~p!, ~11!

where

F~p!5
2

p
@ lnu2p11u14.11#. ~12!

The effective mass of CF’s has also been estimated
studying the variation with system size of the ground st
energy for systems of electrons close ton51/2 on the sphere
with 2S0(1/2,N)52N22.18 These studies gaveF;5, which
is about 25% larger than the value we obtain forp54. One

e

e

FIG. 4. The quasiparticle and quasihole energiesẽn
6(N) at n

53/7 and 4/9 and the best linear fits to these points. The sum o
two linear functions can be taken as a measure of the gap ene

ẽn
g(N) ~these cannot be computed directly for these filling fractio

as the systems with single quasiparticle and quasiholes have d
ent numbers of particles!.
8-5
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R. H. MORF, N. D’AMBRUMENIL, AND S. DAS SARMA PHYSICAL REVIEW B66, 075408 ~2002!
would expect that, in systems close ton51/2, the effective
mass would be larger than atn54/9 but still finite as the
long-wavelength fluctuations of the Chern-Simons gau
field, which give rise to the logarithmic divergence in th
effective mass, will be cut off by the level spacing.

In Ref. 10 estimates of the gap energies based on co
tive excitations were also presented. On a sphere the e
tive wavevector of a collective excitation iskeff5L/R where
L is the total angular momentum of the system. This lowe
lying collective excitation should correspond to a we
separated quasiparticle-quasihole pair in the limit of largeL.
In the hierarchy picture, the separation of the particle a
hole should be 2RL/N, so the maximum separation possib
occurs whenL5Ni . Here Ni is the number of particles in
the condensate of the highest (i th) level of the hierarchy tha
occurs: N05N, N15(N12)/2, N25(N16)/3, and N3
5(N112)/4 for n51/3, 2/5, 3/7, and 4/9, respectively.3,6,10

Extrapolations to the infinite system limit of theL5N exci-
tations should therefore give an estimate of the gap energ
The results forn51/3 and 2/5 are also included in Fig. 3.
is clear from the figure that an extrapolation based on
exciton energies would not be as smooth as that based o
charged excitations.

We believe that the exciton energies in the small syste
accessible to direct diagonalization are not as reliable a b
for extracting estimates of the gaps as the sum of the qu
hole and quasiparticle energies. The principal reason for
is that the quasihole and quasiparticle states are actu
ground state configurations ofN particles in total flux 2S61/p
and they are well separated in energy from all excitatio
On the other hand, although the neutral excitations are m
mum energy states for the quantum numbers concerned,
are close to the continuum of excitations for these quan
numbers and this gives scope for large finite size effects
addition to leading to poor convergence and numerical in
bility of vector iteration ~Lanczos type! diagonalization

FIG. 5. The gap energy as a function of level in the hierarchyp.
The estimates based on our finite-size studies of systems win
51/3, 2/5, 3/7, and 4/9 are shown as dots. The lower~upper! curve
shows the prediction of the CF theory with~without! and logarith-
mic corrections from Eq.~10!. The constantsC andC8 are chosen
to give the correct gap atp51 (n51/3).
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methods. With the possible exception of the systems an
51/3, it is also clear that the system sizes accessible to d
diagonalization are not large enough to accommodate
excitations without significant overlap of the charge profi
of the quasiparticle and quasihole. In Fig. 6, we show
density profile of the 14 particle exciton atn52/5, with the
corresponding quasiparticle and quasihole density profi
for a 13 particle system overlaid for comparison. The qua
particle and quasihole at the opposite poles are clearly
ible, but the system is not large enough for the density p
files not to interfere.

V. INTERFACIAL WAVE FUNCTION AND MODIFIED
INTERACTION

The finite width of the sub-band envelope WF in the d
rection perpendicular to the plane of the two-dimensio
electron gas can be incorporated into an effective interac
between electrons in the plane. With the magnetic field p
pendicular to the plane the single-particle orbitals can
written

C~x,y,z!5z~z!c~x,y!. ~13!

The in plane WF’sc(x,y) are eigenfunctions of the fre
electron Hamiltonian in a perpendicular magnetic fie
while z(z) satisfies the Schro¨dinger equation for a particle in
the confining potential of the quantum well o
heterostructure.22 The effective interaction between particle
V( uWrW12rW2u) at positionsrW15(x1 ,y1) and rW2 in the two-
dimensional electron gas is then given by

FIG. 6. Density profiles of excitations atn52/5 as a function of
great circle distance from the north pole: TheL58 collective exci-
tation ~exciton! for the 14 particle system, the quasihole (L57/2)
and the quasiparticle (L54) for the 13 particle system. The projec
tion of angular momentum is maximal (Lz5L) in all cases. The
origin for the quasiparticle has been shifted, so that the point at
south pole coincides with that for the exciton. In the thermod
namic limit, the exciton with these quantum numbers become
quasihole localized at the north pole and a quasiparticle localize
the south pole. It is clear that, even with 14 particles atn52/5,
there is still significant overlap between the density variations as
ciated the quasiparticle and the quasihole localized about opp
poles. This probably explains the large finite size effects seen~Fig.
3! in the exciton energy as a function ofN.
8-6
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TABLE I. Width parameters for all tabulated results of Ref. 22. The electron densityns is measured in
units of 1011/cm2 while the widthw of the interfacial WF is given in nm.

I II III IV
Parabolic QW Heterointerface Square QW Heterointerface

ns w@nm# ns w@nm# ns w@nm# ns w@nm#

0.49 19.3813 0.10 9.306 90 0.10 3.216 28 0.60 6.727 8
0.60 24.1478 0.50 7.135 56 0.50 3.218 54
0.73 28.9638 1.00 5.760 01 1.00 3.226 10
0.85 33.1890 2.00 4.618 01 5.00 3.310 37
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V~ urW12rW2u!5~e2/«!E dz1E dz2

uz~z1!u2uz~z2!u2

A~rW12rW2!21~z12z2!2
.

~14!

The study of finite-size systems is based on exact dia
nalization or the study of variational trial WF’s for particle
in a given Landau level with the interparticle interactio
taken to beV(urW12rW2u). For particles on a sphere, the inte
action V(urW12rW2u) projected onto a given Landau level
characterized by Haldane’s pseudopotential parameters$Vm%
(m50,1, . . . ).Once these are known the exact diagonali
tion proceeds exactly as in the zero-width case.~We note that
as the pseudopotential parameters are computed from th
fective interaction, which assumes a planar geometry, the
no attempt to account for any effects of the curvature of
sphere on the finite width effects.!

Within a local density functional scheme the WFz(z)
satisfies the equation

S 2
\2

2

d

dz

1

m* ~z!

d

dz
1Veff~z!D z~z!5Ez~z!, ~15!

where Veff includes the effect of the confinement potent
~including the effect of the depletion layer!, the Hartree self-
interaction and exchange correlation. For GaAs-GaA
quantum wells the jump inm* and the dielectric constant,«
across the interface are small and to a good approxima
both quantities can be taken to be independent of ofz ~see
Table I in Ref. 36! and the equation simplifies. In Ref. 22 th
equation was solved numerically for various geometries
the results presented in the form of tables of pseudopoten
for quantum wells and heterostructures for various value
the electron density and device parameters. Here we s
that the values of the pseudopotentials characterizing
Coulomb interaction in the finite-width geometries can
very accurately computed using a Gaussian and a trial
the ‘‘z3Gaussian’’ (zG), thereby allowing the effect on th
pseudopotentials of a finite width in the direction perpe
dicular to the 2D electron gas to be encoded in just o
variational parameter, i.e., the width of the WF, parametriz
by the standard deviationw of the probability density.

The self-consistent computation ofz(z) and Veff(z) is
standard and follows the procedure given in Refs. 22,37.
potentialVeff(z) is written
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Veff~z!5VW~z!1VH~z!1VXC~z!, ~16!

whereVW(z) is the confining potential of the quantum we
or heterostructure~including image charge effects and th
effect of the depletion layer! and VXC is the exchange-
correlation potential

VXC5@110.7734x ln~11x21!#S 2

pbr s
DR, ~17!

whereb5(4/9p)1/3, x5r s/21, r s5@4pa* n(z)/3#21/3, with
a* andR the effective Bohr radius and Rydberg in GaAs. T
Hartree potential is given by

VH~z!5
2pe2

« E dzE dz8uz2z8u@ uz~z!u22r~z!#

3@ uz~z8!u22r~z8!#, ~18!

wherer(z) is the~neutralizing! charge density of the doping
ions which are taken to be far way from the interface. In R
37 VH is referred to as the potential due to the induc
charges orVS . In the presence ofNA acceptors per unit
volume in the semiconductor there will bendepl (5NAzD)
charges per unit area of the interface distributed eve
across the depletion layer of widthzD .

We obtainz(z) by solving Eq.~15! using trial forms for
z(z) and compare the results with those obtained by num
cal solution in Ref. 22. The trial waveforms we have stud
are the Fang-Howard~FH! wave forms, which are zero fo
negativez and for positivez are given by

z~z!}z exp~2bz/2!, ~19!

the Gaussian

z~z!}exp@2~z2aw!2/4w2#, ~20!

and the ‘‘z3Gaussian’’ (zG) WF, which is again zero for
negativez and for positivez is given by

z~z!}z exp~2z2/9c2!. ~21!

The widthW of these wave functions can be characterized
the standard deviation of the corresponding probability d
sity. It is given in terms of the parametersb,w,c as follows,

WFH5
A3

b
~22!
8-7
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for the Fang-Howard WF,

WG5w ~23!

for the Gaussian WF, and

WzG5
3A813p216

2Ap
c'1.010163c ~24!

for the zG WF.
We determine the parametersb, w, a, andc variationally.

We have found that, expanding the expression forVXC in Eq.
~17! in x and keeping only the constant and linear term
reproduces the correct expectation value for the excha
correlation energy to within 0.1% for all three trial WF’
while including the quadratic term affects only the fifth si
nificant figure. The smallx expansion works well because th
dominant contribution to the exchange-correlation ene
comes from the region in which the density is high (x small!.
Using this expansion allows us, for the three trial forms
z(z), to compute analytically all the integrals involved
computingVeff(z) and, hence, also the expectation value
the subband energyE. For the case of the Gaussian trial W
the effective interaction~14! can be written in closed form in
terms of the Bessel functionK0 ,

VG~r !5
1

2Apw2
er 2/8w2

K0~r 2/8w2!. ~25!

In Fig. 7 we compare the estimates@see Eq.~15!# of the
subband energy for the three variational WF’s:E(zG),
E(Gauss), and E(FH). For higher densities (nS
*1011/cm2), E(Gauss) gives the lowest variational es
mate, while for lower densitiesE(zG) gives the lowest esti
mate. For all densities in the range we have studied, we
that the Fang-Howard WF is worse as a variational WF th
the zG and significantly worse at higher densities than
Gaussian. This is because the FH WF has too high a kin
energy which it can only reduce by spreading the den
wider. Although the variational estimate of the energy for t
FH WF differs by a factor which only varies between 5 a
20 %, the width of its distribution, as measured by the st
dard deviation, is significantly larger (;50%) than for the
other two WF’s.

Given that the integrals involved in using the Gaussian
zG WF’s can be performed analytically and are more ac
rate as trial WF’s, it is perhaps surprising that these W
have not been more widely used in the study of heterost
tures and quantum wells. Of the two, the Gaussian is ea
to use, although it will be less well adapted to MOS devic
with large band gap discontinuities. For the heterostructu
considered below we use a~conduction! band gap disconti-
nuity of 200 mV—the value appropriate for
GaAs/GaAs0.66Al0.33 heterostructure. On the other hand, t
‘‘ zG,’’ should become more favorable as a variational W
when the band gap discontinuity is large and the effect of
boundary is well approximated by a hard wall.

Figure 8 shows the Haldane pseudopotentials for the
teractionV(urW12rW2u) projected onto the lowest and seco
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Landau levels for heterostructures with densities appropr
to samples studied experimentally. Here, we determine
width of the trial interfacial WF’s by requiring that th
Haldane pseudopotentialV1 from Ref. 22 is exactly repro-
duced. We note here, that results for the pseudopotentia
Ref. 22 were for a value of the magnetic lengthl 0 which
coincides with the Bohr radiusaB* '10 nm of electrons in
GaAs. The results for the second Landau level were for
densityns5631010 cm22 used in Ref. 22. The study of th
second Landau level in Ref. 22 was motivated by the res
reported in Ref. 42 at filling fractionn55/2. However, the
interfacial wave function is determined by thetotal number
of electrons, which for the sample studied in Ref. 42 w
ns'331011 cm22, and not by the fraction occupying th
second LL (ns

(1)5631010 cm22) incorrectly used in Ref.
22. For this reason, the conclusions regarding then55/2
state of Ref. 22 are incorrect.

It is clear that the use of the Gaussian trial WF yiel

FIG. 7. Comparison of the variational estimates for the subb
energies@see Eq.~15!# and of the standard deviation of the char
distribution ~width! for the three variational WF’s. The results fo
the width from direct numerical solution of the equation by Ort
anoet al. ~Ref. 22! are also included. The top panel shows the ra
of the variational estimatesE(FH)/E(zG) and the second pane
showsE(Gauss)/E(zG). The depletion layer densityndepl is quoted
as a fraction of the electron density in the subband.
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EXCITATION GAPS IN FRACTIONAL QUANTUM HALL . . . PHYSICAL REVIEW B 66, 075408 ~2002!
results which are essentially indistinguishable from the
sults of the exact numerical solution forz(z). We find very
similar results for thezG. In Fig. 9 we show the differenc
between the pseudopotentials computed exactly by sol
numerically for the interface WFz(z) ~taken from Ref. 22!
and those obtained using the Gaussian and FH WF’s.
errors obtained using the FH WF are at the 1% level wh
those obtained for the Gaussian are at the 0.1% level. Th
obtained using the Gaussian trial WF are smaller than o
uncertainties in the model such as those related to the v
chosen for the depletion densityndepl. Finite-width effects
on the Haldane pseudopotentials are clearly accurately
tured by the Gaussian~and zG! trial WF’s. Given the fact
that the pseudopotentialsVm only depend on the width pa
rameter (w for the Gaussian WF,b for the Fang-Howard WF,
andc for the zG), it is clear that the use of these trial WF
massively simplifies the study of finite-width effects wh
compared to the numerical integration of Eq.~15! and tabu-
lation of pseudopotentials used in Ref. 22. For the case of
Gaussian, we also have an analytic expression for the e
tive interactionV(urW12rW2u), see Eq.~25!.

Tables I–IV of Ref. 22 can be summarized by listing t
effective width of the Gaussian interface WF for which t
Haldane pseudopotential of orderm51 is exactly repro-
duced. In Table I we list the width parameters for all tab
lated cases.

VI. FINITE WIDTH EFFECTS ON ENERGY GAPS

A. Filling fractions nÄpÕ„2p¿1…

With these modified potentials we have repeated the
culations described in Sec. II. Using the Gaussian WF

FIG. 8. The Haldane pseudopotentials for the interact

VG(urW12rW2u) ~25! projected onto the lowest and second Land
levels as a function of angular momentumL for particles in hetero-
structures with densitiesn. The results of direct numerical solutio
of Eq. ~15! taken from Ref. 22 are shown as crosses and res
based on the Gaussian trial WF forz(z) as circles. The width pa-
rameterw of Eq. ~20! for the trial wavefunction is chosen so that th
Haldane pseudopotentialV1 matches that obtained by numeric
integration. The differences between the results based on the G
ian interface wave function and the numerically computed lo
density approximation is at the fraction of a percent level.
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rametrized by its widthw we compute the Haldane pseud
potentials as a function ofw. By exact diagonalization just a
in the pure Coulomb case of Sec. III, we compute wid
dependent excitation energies for all possible system s
and perform for each value of the width parameterw an
extrapolation to the thermodynamic limitN→`. As an ex-
ample we show in Fig. 10 the size- and width-depend
quasiparticleẽ1/3

2 (N) and quasihole energiesẽ1/3
1 (N) at n

51/3. For each widthw we use linear extrapolation in 1/N to
estimate the gap energy in the thermodynamic limit a
function of width. The size dependence at finite width
qualitatively the same as atw50. This same procedure wa
also employed for the calculation of width dependent qua
particle and quasihole energies atn51/3 andn52/5, and the
corresponding energy gaps in the thermodynamic limit. T
result of these calculation are shown in Fig. 11. The full lin
in Fig. 11 correspond to interpolation functions of the for

EG~x!5EG
(0)3S cos2f

A11ax2
1

sin2f

11bx2D , ~26!

n

ts

ss-
l

FIG. 9. Errors in the Haldane pseudopotentials computed u
the Fang-Howard,z3Gaussian (zG) and Gaussian interface tria
WF’s for two different densities. The comparison is with the valu
reported in Ref. 22. The variational parameters are determined
that V1 is correctly reproduced. ThezG leads to errors for
Vm , mÞ1 which are roughly half as big as those with the Fan
Howard WF. The Gaussian WF is even better in reproducing
LDA results with a maximum error of less then 0.2%~for V0). The
width parameters for the three variational wave functions~given
above each curve! are approximately equal for both densities for a
three wave functions, implying that fixing the pseudopotentialV1 is
effectively equivalent to fixing the standard deviation of the cha
distribution.
8-9
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R. H. MORF, N. D’AMBRUMENIL, AND S. DAS SARMA PHYSICAL REVIEW B66, 075408 ~2002!
awherex5w/ l 0. The functional form~26! is suggested by
the following observations: The Haldane pseudopotent
Vm for m.0 behave forw→0 asVm'Vm

(0)1O(w2) while
for very largew they behave asVm'@ ln(w)/Ap1am#/w.
Indeed, as will be seen below, the energy gaps decreas
1/w for very large values of the widthw, implying that the
logarithmic term cancels out in this limit. The values of t
fitting parametersEG

(0) , f, a, and b are listed in Table II
for the filling fractionsn5 1

3 , 2
5 , 3

7 .
The results presented in Fig. 11 are similar to those

ported in Ref. 25. The results of Ref. 25 were based
Monte Carlo simulations~MC! of CF trial wave functions,

TABLE II. Interpolation function for the gap energy as a fun
tion of width ~26!: parameters for filling fractions n
51/3, 2/5, 3/7.

n
EG

(0)Fe2

el0
G f @degrees# a b

1/3 0.1012 34.18 0.1468 1.542
2/5 0.0500 36.07 0.1935 1.866
3/7 0.0350 34.98 0.2078 1.851

FIG. 10. The quasihole energyẽ1/3
1 (N) and quasiparticle energ

ẽ1/3
2 (N) and the best linear fits to these points computed as a fu

tion of the width w of the density distribution computed usin
Gaussian trial WF’s. The sum of the two linear functions can

taken as a measure of the gap energiesẽ1/3
g (N).
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which as mentioned in Sec. IV, give larger gaps than
results for the bare Coulomb interaction even atn51/3. This
discrepancy exists throughout the range ofw/ l 0 in the figure
with our estimates being between;5% smaller ~for n
51/3) and;25% smaller~for n53/7 and 4/9!. ~It is not
surprising that the difference does not depend strongly
w/ l 0: While the energies are affected by the widthw through
the variation of the effective interaction, the wave functio
are not expected to change significantly6.! The gaps as a
function of width have also been estimated using a fi
theoretic approach,43,44 which constructs explicit CF wave
functions out of Chern-Simons gauge-transformed fermio
Energies of ground and excited states can be comp
within this theory at the Hartree-Fock level. The theo
needs to cut off the interaction at large wave vectors a
should therefore be reliable for large widths where the
verse width provides a natural large wave vector cutoff. F
widths w/ l 0*2, the results are consistent with those of t
MC simulations using composite fermion trial WF’s.25 For
0.5,w/ l 0,2, the results are still comparable to those of t
MC simulations, although they imply gaps which are rapid
increasing asw/ l 0→0, in contrast to the results in Fig. 11

Evidence, also based on CF trial wave functions, was p
sented in Ref. 23 which suggested a phase transition
function of increasing width from incompressible states
compressible states at filling fractionsn5p/(2p11). We
have tested this theoretical prediction by computing
width-dependent energy of the lowest energy excitati
which corresponds to the roton minimum. We have not a
lyzed the extrapolation to the infinite-system size limit f
the roton minimum and present, instead, the variation w
width of the roton minimum energy for a system with fixe
particle number. We show the results forn51/3, 2/5, and 3/7
in Fig. 12. We find that even for very large and unphysic
widths up to hundreds of nanometers~corresponding to up to
50l 0), there is no evidence of the gap vanishing at any
these filling fractions. Instead we find that for such lar
width parameters the roton minimum scales simply as 1/w.

FIG. 11. Estimates of the energy gaps in the thermodyna
limit as a function of the width of the subband WF~taken as the
standard deviation of the charge distribution!. The solid lines show
the fits to the interpolation formula@see Eq.~26! and Table II#.
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EXCITATION GAPS IN FRACTIONAL QUANTUM HALL . . . PHYSICAL REVIEW B 66, 075408 ~2002!
B. nÄ 5
2 state

Here, we present the results of calculations of the fin
width effect on the energy gap of the mysteriousn55/2
state. If the effects of Landau level mixing are neglected, i
sufficient to solve for the ground state of the electrons oc
pying the second—half filled—Landau level and take t
filled lowest Landau levels of spin-up and spin-down ele
trons as inert, i.e., unpolarizable. This problem is charac
ized by a filling factorn (1) of the first excited Landau leve
of n (1)51/2. It is customary to represent the system of el
trons filling half the second Landau level by lowest Land
level wave functions but to take into account the interact
of electrons in the second Landau level by using the app
priate Haldane pseudopotentials of the second Landau le
Again, as for the computation of energy gaps atn5p/(2p
11), there are essentially two ways to compute the ene
Either one may calculate neutral excitation~exciton! energies
corresponding to a widely separated quasiparticle and qu
hole pair, or one may calculate the energy of ground sta
containing a~fractionally! charged excitation. In the case o

FIG. 12. The energy of the roton minimum as a function
width for systems with 11 particles atn51/3, 14 particles at 2/5
and 15 particles at 3/7. For clarity, the energies of the roton
scaled by a factor 1/10 atn52/5 and 1/100 atn53/7. If there were
to be phase transition to a compressible state the gap would ha
vanish at some finite width. Instead we find clear evidence that
large widths, the energy of the roton minimum~the lowest-lying
excitation at fixed total flux! tends to zero as 1/w with no sugges-
tion of a phase transition.
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the n55/2 state, or equivalently atn (1)51/2, there is the
problem that elementary charged excitations are predicte
occur only in pairs.

The polarized ground state atn (1)51/2 occurs on the
sphere when the number of flux units is

2S052N23, ~27!

and is thought to be described by a paired state, which m
be of the Moore-Read pfaffian type.45,31,32 However, great
care is needed when analyzing excitation energies in th
states on the sphere to avoid mistaking systems at con
tional filling fractionsnp5p/(2p11) or 12np for systems
at filling n (1)51/2. As we have discussed previously,10 sys-
tems on the surface of a sphere exhibit degeneracies wh
for a certain sizeN, states with different filling factor coin-
cide. This turns out to be a particularly severe problem in
sequence~27!. Indeed, of the possible systems with up to
electrons, only five are not aliased with conventional fra
tional states, namely, those withN58,10,14,16, and 18 par
ticles. Of these, the ones atN58 and 16 have the problem
that charged excitations of these states are aliased
ground states of conventional FQH states. Using th
aliased states for a calculation of the energy gap atn (1)

51/2 would be misleading and would give rise to systema
errors. In Table III, we list the relevant states and th
aliases. We first show the energy of neutral excitations~ex-
citon! with maximal angular momentumLmax, correspond-
ing to the largest possible separation of the quasiparticle
quasihole on the sphere. The angular momentum of this
citon is given byLmax5N/2 if N/2 is even, otherwiseLmax
5N/221. In Fig. 13 the exciton energy for zero width, co
rected for the Coulomb attraction between quasiparticle
quasihole (A1/4(1/2), equation~6!, is plotted as a function of
system size 1/N together with a linear fit in 1/N to the data at
N58,10,14,16 and 18, cf. Table III. Like atn52/5, the ex-
citon energy shows very large, and fluctuating finite size
fects. Extrapolation to the bulk limit using a linear fit in 1/N
yields the result

f

re

to
r

TABLE III. Total flux in the ground (2S0) and excited (2S0

61) states for systems atn (1)51/2 as a function of number o
particlesN. Where these states are aliased to conventional quan
Hall state ground states, we also show the corresponding fil
fractionsna . We note that the only sizes for which no aliases occ
areN510,14, and 18. Unaliased ground states occur in additio
N58 and 16.

N 2S0 ~GS! na 2S011 na 2S021 na

6 9 2/3 10 8
8 13 14 12 2/3
10 17 18 16
12 21 3/5 22 20
14 25 26 24
16 29 30 4/5 28
18 33 34 32
8-11
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D5/2
exc'0.028

e2

e l 0
. ~28!

Alternatively, the energy gap can also be computed
calculating individually the energy of quasiparticle a
quasihole excitations. The two quasiparticle state occur
2S021 while the two quasihole state occurs for 2S011.
Since in both cases the two excitations have the same ch
(q5e/4 for the quasiparticle andq52e/4 for the quasi-
hole!, one expects that the lowest energy state occurs w
the two charges are maximally far apart, which dema
maximum relative angular momentum, and conseque
minimum total angular momentum on the sphere. Althou
one might have expected that this would implyL50 for the
ground state, as a result of symmetry, the angular momen
of the lowest energy states isL5N/2 mod 2, i.e.,L51 for
N510,14,18. The energy of these two-quasiparticle or tw
quasihole states contains, in addition to the termA2q(n (1))
@Eq. ~6!#, the Coulomb interactionDAq of two quasiparticles
separated by twice the radiusR ~the maximal separation o
the sphere!:

DAq5q2An (1)

2N
. ~29!

Combining the two contributionsA2q(n (1)) and DAq gives
for the finite size correction termCq(N)

Cq~N!523q2An (1)

2N
52

3

32
A1

N
. ~30!

The gap calculation then proceeds by taking account exp
itly of the finite size correctionCq(N) @Eq. ~30!#, as de-
scribed for the cases atn5p/(2p11) in the previous sec
tion.

In Fig. 14~a!, we show our results for the gap atn55/2. In
the top figure, half the sum of quasiparticle and quasih
excitation energies are plotted as a function of system

FIG. 13. The exciton energy atn55/2 for zero width, corrected
for the Coulomb attraction between quasiparticle and quasih
@A1/4(1/2), Eq.~6!# is plotted as a function of system size 1/N.
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1/N for different values of the widthw. For zero width, re-
sults forN510,14, and 18 are plotted, the sizes at which
aliasing effects occur. They lie almost exactly on a strai
line in 1/N. Extrapolation to the bulk limit yields

D5/2'0.025
e2

e l 0
, ~31!

slightly lower, but consistent with the result~28! based on
the exciton energies. Based on our previous experience
gap calculations atn51/3 and 2/5, we believe that also a
n55/2 the extrapolation based on individual quasiparti
and quasihole energies is more reliable. However, the exc
energy calculation certainly supports our conclusion that
quasiparticle and quasihole states atn55/2 contain two
charged defects. Otherwise, there would be a factor o
difference between our extrapolated valuesD5/2

exc @Eq. ~28!#

le

FIG. 14. Energy gap atn55/2. The upper panel illustrates th
size dependence of the energy gap for different values of the w
parameter 0<w/ l 0<1.17. The width parameters arew/ l 0

50, 0.098, 0.195, 0.391, 0.586, 0.781, 1.17, with the topm
line referring to the casew50, and the rest in sequence down to t
lowermost line withw/ l 051.17. The extrapolations to theN→`
limit assume that the slopes for the cases withwÞ0 are the same as
for thew50 case. In the lower panel the gap values, extrapolate
the N→`, are plotted as a function ofw/ l 0.
8-12
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TABLE IV. Comparison of the measured gapsDn
m in samples A~nominal density 1.1231011 cm22) and

B ~nominal density 2.331011 cm22) reported in Ref. 12 with the gaps computed for a Coulomb interac
but taking account of the finite-width effectsDn

C . We have added a constant field-independent shiftG for each
sample which we estimate by comparing the functional dependence of the gap energies as a function
fractionn predicted by CF theory with that found in experiment. The range quoted forG gives the maximum
and minimum found when the constantC8 in Eq. ~10! varies between 4.11~our estimate ofC8 for the pure
Coulomb interaction! and 9.

Sample A (G51.2860.13 K) Sample B (G52.160.17 K)
n B@T# Dn

m 1G @K# Dn
c @K# Dn

m1G

Dn
c

B@T# Dn
m1G @K# Dn

c @K# Dn
m1G

Dn
c

1/3 13.9 9.03 15.2 0.59 28.5 13.2 18.9 0.70
2/5 11.6 4.48 6.9 0.65 23.8 6.5 8.6 0.75
3/7 10.8 3.23 4.8 0.67 23.2 4.5 5.7 0.79
4/9 10.4 2.23 3.6 0.61 21.4 3.3 4.9 0.68
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sult
and D5/2 @Eq. ~31!#. Finally, in Fig. 14~b!, the gap in the
thermodynamic limit is plotted as a function of widthw/ l 0.
These results indicate that the width effects reduce the ga
n55/2 slightly.

Very recently, Eisensteinet al.46 have investigated then
55/2 and 7/2 states in a sample of ultrahigh mobility (m
'3.13107 cm2/V s). They determined an activation ga
D5/2

m '0.31 K atn55/2 andD7/2
m '0.07 K atn57/2. Their

sample had an electron densityns5331011/cm2, which
leads to a widthw'4 nm. At n55/2, the fieldB54.96 T
corresponds to a valuew/ l 0'0.35, while atn57/2 we get
w/ l 0'0.30. According to the results shown in Fig. 14, T
calculated gap values~see Fig. 14! for w/ l 0'0.35 and 0.30
are around 0.0220 and 0.0225e2/e l 0, respectively. These lea
to theoretical values for the gap ofD5/2

m '2.5 K and D7/2
m

'2.1 K. A disorder broadening of the order of 2 K would
explain the measured gaps of 0.31 and 0.07 K. It is impor
to note that previous experimental values of the excitat
gap atn55/2 have been much smaller.47,48For samples with
densityns52.331011/cm2 the gap atn55/2 was 0.11 K.48

In this case, the width isw'4.5 nm, and at the fieldB
53.65 T, we obtainw/ l 0'0.34, and a theoretical gap valu
of 2.1 K. The factor of;3 difference between the recent
reported activation gap46 and the earlier estimate48 in
samples with similar densities suggests that the activa
gap is affected strongly by sample quality, and is likely to
dominated by the effects of disorder. By comparing the g
at 5/2 to those at 7/3 and 8/3, and also atn5p/(2p11), Pan
et al. also concluded that a disorder broadening of the or
2 K was to be expected.

VII. EXPERIMENTAL GAPS

Estimates of the gaps for fractional quantum Hall syste
have been reported for GaAs heterojunctions11,12 and more
recently for MIS structures using organic~pentacene and tet
racene! semiconductor layers.49 The recent measurements o
organic MIS structures are particularly interesting given
different separation of energy scales to that found in Ga
The dielectric constant in tetracene is in the rangee'3 to 4
~compared toe'12.7 in GaAs!, the band mass is;1.3me
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~0.07 in GaAs! and theg factor is close to 2~0.44 in GaAs!.
The larger band mass and the smaller dielectric cons
mean that, for samples with the same density, the ratio
interaction energies to the Landau-level splitting is mu
larger in the tetracene structures than in GaAs and hence
Landau-level mixing effects are expected to be larger. T
larger g factor gives a larger Zeeman energy, and hen
makes spin-reversed excitations less likely than in GaAs
erostructures.

We have estimated the gaps atn51/3, 2/5, and 3/7 for the
two samples A and B of Ref. 12. We take the quoted den
of the samples and assume a depletion densityndepl5nS/5
~this is typical of these samples,11 although the results are no
sensitive to the exact value ofndepl). From the results in Fig.
7 we estimate the standard deviation of the density distri
tion and this leads directly to an estimate of the gaps~see
Fig. 11!. We compare our results with those of the tw
samples A and B of Ref. 12 in Table IV. The effects
impurity scattering have been taken into account empirica
by assuming that the levels are broadened by a fie
independent broadeningG. This assumption has not bee
theoretically justified, However, for the purpose of compa
son we have reanalyzed the results of Ref. 12 under
assumption by fitting them to the functional form predict
by CF theory, i.e. including the logarithmic corrections@see
Eq. ~10!# to extract the broadeningG. We find that the gaps
measured are consistently between 60 and 70 % of wha
predict after taking account of finite thickness effects. This
consistent with the results of Refs. 24,25, correcting the e
of Ref. 23.

The results reported in Ref. 11 relate to filling fractio
p/3, wherep51, 2, 4, and 5 and were interpreted on t
assumption that the ground states and gaps were all m
mally spin-polarized states within the lowest Landau le
for a sample with densityns51.6531011 cm22 and mobil-
ity 53106 cm2/V sec ~to be compared with 6.8 and 1
3106 cm2/V sec in samples A and B in Ref. 12!. The au-
thors of Ref. 11 solved Eq.~15! numerically for the subband
WF, z(z), choosing the depletion densityndepl to reproduce
the experimentally observed subband splitting. As as a re
8-13
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we have a more precise estimate of width of the WF in
lowest subband than we have been able to make for
samples of Ref. 12. We have converted their estimate of
width to a standard deviationw and estimated the gaps at th
relevant filling fractions. The results are presented in Ta
V. We note that the measured valuesDm of the gap atn
51/3 and 2/3 are both larger than our theoretical values
about the same amountG'6 K. This might serve as an
estimate of the broadening. The authors of Ref. 11 also e
mated the gap reduction on account of finite thickness eff
based on the exact diagonalizations of six particle syst
reported in Eq.~A1! and we include these estimatesDn

w in
the table. The reduction of the gaps found in the ear
finite-size studies was significantly larger than what we
tain ~Sec. III!. It may have resulted from estimating the g
reduction using systems which were too small, or inaccu
extrapolation to the thermodynamic limit.

It is clear from both Tables IV and V that the discrepan
between measured gaps and computed gaps is signifi
This discrepancy may be due to Landau-level mixing, sp
reversed excitations and to impurity effects not accounted
by the use of the field-independent broadeningG used in
Table IV. Estimates in Ref. 21 based on diagonalizations
up to only five particles in a torus geometry suggested red
tions of the gap~identified with the zone boundary exciton!
as a result of Landau-level mixing of between 12 and 17
were possible atn51/3 in a magnetic field at 10 T for a pur
Coulomb interaction. These should scale as (e2/« l 0)/\vc

;1/AB. On this basis the reduction at a field of 28.5 T f
sample B atn51/3 would be at most 10%. However, as t
matrix elements between Landau levels of the effective
teractionV(rW12rW2u), which diverges only logarithmically a
r→0, will be significantly smaller than those of the ba
Coulomb interaction, the reduction of the gap due to Land
level mixing in these samples should, in fact, be significan
smaller than this figure of 10% and is probably negligib
Clearly, a new study along the lines of Ref. 50~which actu-
ally looked at the harder problem of Landau-level mixing
n55/2 for systems with a partially filled second Land
level!, taking account of the finite width of the subband W
would make for significantly more accurate estimates
Landau-level mixing effects.

TABLE V. The activation energies as deduced from the te
perature dependence of the longitudinal resistivity at filling fra
tions n51/3, 2/3, 5/3,Dn

m , reported in Ref. 11 are compared
our values for the gapsDn

c . For reference, we also show the calc
lated values of Willettet al. ~Ref. 11! in the last column. These
authors fixed the depletion densityndepl and hence the width param
eter w by requiring that the solution of Eq.~15! correctly repro-
duced the experimentally measured subband splitting. They
mated the finite width corrections on the basis of the mo
interaction~A1! to give Dn

w .

n B@T# Dn
m @K# Dn

c @K# Dn
w @K#

1/3 21.0 10.5 16.6 13.560.5
2/3 10.8 6.5 13.1 10.760.5
5/3 4.5 1.0 9.3 7.960.3
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We should also consider the role of excitations involvi
spin reversals. The gap atn51/3, corresponding to the cre
ation of a quasihole with no spin reversal and a quasipart
with one spin reversal, was estimated in Refs. 9,51 us
extensive Monte Carlo simulations of trial WF’s. Gap es
mates for various combinations of quasihole and quasipa
cles combined with spin reversals based on exact diago
izations of small systems~up to six particles! were reported
in Ref. 29. For the case of the pure Coulomb interaction a
ignoring the Zeeman energy the gap to create spin-reve
excitations was around 60% smaller than the spin-polari
gaps for systems atn51/3. When the Zeeman energy~in
GaAs! is taken into account this suggests that, for a p
Coulomb interaction, the spin-reversed excitation wou
have a lower energy for systems atn51/3 if the magnetic
field were smaller than;7 T. This is above the fields a
which the 4/3 and 5/3 states were observed in Ref. 11~see
Table V!, and may account for the larger discrepancy see
these filling fractions than atn51/3 or 2/3.

The estimate of 7 T, as the field below which the sp
reversed excitation drops below the spin polarized excitat
is well below the fields in Table IV making it unlikely tha
spin-reversed excitations are involved at these filling fr
tions. Although the explicit estimate of the spin-reversed
citation was made for a system atn51/3 it is unlikely that
the discrepancy at other filling fractions will be larger. This
because the difference between the spin-polarized and s
reversed quasiparticle energies should be largest atn51/3,
where it is possible to construct a spin-reversed quasipar
state which is a zero-energy eigenstate of the hard-core
tential ~with only the pseudopotentialsV0 andV1 nonzero!.
For the case of the Coulomb interaction, its energy is c
trolled by the size of the pseudopotentialV2, while the en-
ergy of the spin-polarized quasiparticle is determined by
larger V1. However, asV2 is reduced less by finite width
effects thanV1 ~see Fig. 9!, the spin-polarized quasiparticl
will be stabilized with respect to the spin-reversed excitat
by finite-width effects.9

The results for the activation gaps atn51/3 and 2/5 in
layers of tetracene reported in Ref. 49 can also be comp
with our numerical results. By simultaneously varying t
gate voltage and magnetic field the gaps could be tracke
a function of the ratiow/ l 0 for a range of fields 3,B@T#
,9. One intriguing feature of these organic layers is that
ratio of the Coulomb interaction to Landau level spaci
(e2/« l 0)/\vc , is approximately 30–40 times larger than
the GaAs samples for systems at the same magnetic fie

We have computed the widthw of the subband wave
functions in the tetracene samples of Ref. 49 excluding
effects of image charges using thezG trial wave function and
found that w varies between 17 Å at a densityns50.1
31011 cm22 and 7 Å forns5531011 cm22. The effects of
the image potential will be to reduce the width still furthe
At all the densities, at which the gaps were measuredw/ l 0
,0.1 and so the effects of the finite width of the wave fun
tion on the gaps in these samples are small~see Fig. 11! and
significantly smaller than were reported in Refs. 49,53. Ho
ever, our calculations summarized in Fig. 11 are a more
curate reflection of finite width effects than the old formu
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EXCITATION GAPS IN FRACTIONAL QUANTUM HALL . . . PHYSICAL REVIEW B 66, 075408 ~2002!
of Ref. 20 used in Ref. 49. We also note that the widths
obtain are about half the order of magnitude (w;35 Å)
quoted in Ref. 49.

In order to compare the results of our calculations w
the results of the experiments on the tetracene MIS st
tures, we need to take account of the large difference
tween the dielectric constant of the alumina insulating la
(«;9.8) and the value for tetracene («;3.5). Nearly all the
charge density is within 3w of the interface. This is signifi-
cantly less than the average interparticle spacing or ion
radius (a5A2/n l 0), which for these samples varies from 15
to 360 Å depending on density. We have used the simp
approximation which treats the 2D electron gas as if it w
trapped at the interface of the alumina and the semicond
tor. The effective dielectric constant is then just the aver
for the two materials.~Corrections to this, taking account o
the actual displacement of the charge away from the in
face, would involve image charge effects and give rise t
change in the functional form of the effective interacti
between particles.52! In Fig. 15, we compare the results w
obtain with the measured values reported in Ref. 49.

FIG. 15. Gap energies atn51/3 ~upper panel, unfilled symbols!
and 2/3~upper panel, filled symbols! and 2/5~lower panel! in tet-
racene samples from Ref. 49 compared with numerical estima
Triangles and squares denote experimental results for diffe
samples. The solid line in each panel shows the gap given by
quoted formula which is valid in the zero thickness limit~as dis-
cussed in the text the effects of the nonzero width are negligibl
these samples!. The effective dielectric constant is taken as the a
eragee56.65 of reported values for tetracenee53.5 and the value
e59.8 for the alumina insulating layer. The dashed line in the up
panel is an estimate for the energy of the gap for spin reve
excitations~see text!.
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show calculated gaps as a function of magnetic field ignor
the finite width of the charge distribution.

The difference between the computed and measured
ues of the gaps in Fig. 15 atn51/3 and 2/5 are remarkabl
small. Although there is some uncertainty associated with
computed gaps arising from the simple treatment of the la
difference in dielectric constant of tetracene and alumi
there is surprisingly little evidence of large Landau lev
mixing ~LLM ! or disorder-related effects at these filling fra
tions. The ratio of the Coulomb energy scalee2/« l 0 to the
cyclotron energy in tetracene is;93/AB or ;42 at B
55 T and LLM should be significant and might even b
expected to be dramatic. When the ratio of these two ene
scales is this large a perturbative treatment of LLM effe
may not even be possible.~We have assumed the same e
fective dielectric constant as used in Fig. 15!. Even though
the mobilities are not as high in the tetracene MIS structu
as in the GaAs-GaAlAs heterostructures,12,11 the agreement
between calculated and measured gaps suggest that the
not any strong effects of disorder scattering either.

For the systems atn52/3 ~filled symbols in upper pane
of Fig. 15!, it was suggested in Ref. 49 that the change
slope at around 6.5 T was related to a transition from a
larized state at high fields to a state which was not fu
polarized at lower fields. This seems unlikely. At a transiti
with a discontinuity in polarization~first order transition!,
there would normally be a discontinuity in the gap rath
than a discontinuity in its gradient with magnetic field, se
for example Ref. 54. There has been one report of a tra
tion from a polarized to partially polarized state atn52/3 in
GaAs heterostructures without any discontinuity of the gap55

However, the corresponding transition would be expected
occur in the tetracene samples at around 1.7 T well below
range of fields of Fig. 15. Even if there were no~or only a
small! discontinuity in the gap, the change in slope wou
normally be in the opposite sense to the one reported~see
Fig. 15!. The lowest-lying excitations from a partially pola
ized ~or unpolarized! state would be expected to involve sp
reversals which increased the total aligned spin~rather than
reduced it! and thereby gained a reduction in Zeeman ene
On the other hand, excitations from the fully polarized sta
either decrease the total spin or leave it constant. As a re
there would either be a contribution to the energy of t
excitation from the Zeeman energy, which was positive a
increasing as a function of field, or no contribution. In eith
case, the gap would be expected to grow faster with field
the high field~fully polarized! state than in the low field stat
but not not more slowly as reported in Ref. 49. This is wh
was observed for the transition seen atn58/5.54

An alternative explanation of the results atn52/3, as-
sumes a fully polarized ground state and identifies
change in slope atB'6.5 T with a change in the nature o
the lowest lying excitations. ForB*6.5 T, the lowest en-
ergy excitations would be within the fully spin-polarized se
tor, while for B&6.5 T they would involve a spin reversa
We can make a rough estimate of the energy of the s
reversed excitation gap ignoring Landau level mixing~LLM !
as follows. Previous estimates of the Coulomb energy o
spin-reversed quasiparticle energy put it at around 55%
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the energy of the spin-polarized quasiparticle.9 The Coulomb
energy of a spin-reversed quasihole is unlikely to be m
lower than that of the spin-polarized hole, while the ad
tional Zeeman energy will make this excitation unfavorab
We therefore take for the value of the quasihole energy
of the spin-polarized hole. The results for this ‘‘spi
reversed’’ energy gap are shown as a dashed line in Fig.~15!
and are seen to be quite close to the observed data po
although the difference between our results for the ‘‘pol
ized’’ gap and the ‘‘spin reversed’’ gap is small. Our estima
of the spin-reversed excitation applies both atn51/3 andn
52/3 as we have neglected LLM, which allows electrons
make virtual transitions to other Landau levels and ther
screen the interaction in the lowest Landau level. These
fects would be larger for systems atn52/3 than atn51/3 in
the same magnetic field and could explain why the the s
reversed excitation lies below the fully polarized excitati
up to higher magnetic fields atn52/3 than atn51/3. A tilted
field experiment54 would be one method to determin
whether our identification of the change of slope in the g
with field with a change in polarization of the lowest-lyin
excitation is correct.

The apparent absence of a significant reduction of the
in the tetracene MIS structures (m,2.53105 cm2/V s) on
account of disorder, given its importance in the ultra-hi
mobility (12.83106 cm2/V s) GaAs heterostructures, i
puzzling. It suggests that the activated gap measured
transport measurements is affected by disorder in diffe
ways in heterostructures and MIS structures. In the het
structures, the disorder scattering is that of the ionized
con donors which were in a layer about 800 Å from t
electrons.12 In the MIS structures, on the other hand, t
doping is controlled by a capacitance@;130 nF cm22 ~Ref.
49!# with the backgate of order microns from the carrie
Here the disorder scattering is likely to be that of neut
defects. It is possible that, in the heterostructures, the ac
tion studies do not measure directly the energy to crea
quasiparticle quasihole pair from the ground state, but ra
the energy to excite quasiparticle~or quasiholes! out of
bound states in the potential of the~charged! impurity distri-
bution.

VIII. CONCLUSIONS

We have used diagonalizations of the Hamiltonians
finite size systems on a sphere to obtain estimates of the
at filling fractions in the Jain sequencen51/3, 2/5, 3/7, and
4/9 and atn55/2. We have emphasized how taking accou
properly of the systematic contributions to the excitation
ergy from the charge redistribution on the sphere in exc
states is essential if one is to obtain accurate estimates o
gaps in the thermodynamic limit. Our results for the gaps
smaller than earlier estimates based on finite-size studies@for
n52/5 and 3/7~Ref. 10!# and those based on the study
trial wave functions@for n52/5, 3/7, and 4/9~Ref. 19!#.
This difference is important, as estimates of the gap a
function ofn provide the most direct numerical estimates t
effective mass of CF’s.15,17 Our results are consistent wit
the CF picture provided the logarithmic corrections to t
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effective mass are taken into account and are not well
scribed by assuming a filling-factor-independent effect
mass~see Fig. 5!.

We have shown that Gaussian and thez3Gaussian (zG)
variational functions accurately describe subband wave fu
tions and yield subband energies and lowest Landau le
pseudopotentials, which are essentially indistinguisha
from those obtained by solving for the subband wave fu
tions exactly by direct numerical integration. These tr
wave functions offer a significant improvement over t
standard Fang-Howard~FH! form, which overestimates the
standard deviation of the charge distributionw by as much as
50% depending on electron densityns ~see Fig. 7!. The low-
est Landau level pseudopotentials, which are the star
point for the study of the fractional quantum Hall gaps, tu
out to be accurately determined using any of the three t
forms ~Gaussian,zG, or FH! oncew is known ~see Fig. 9!.
This offers a huge simplification over the previousab initio
approaches which used numerical integration to find the s
band wavefunction and tables of pseudopoten
parameters.22 We have also computed the variation of th
gaps at fractionally quantized Hall states as a function
width of the subband charge distribution. The results are
rametrized in Eq.~26! and Table II.

We have compared our computed gaps with measured
tivated gaps. We have found that, even after taking acco
of disorder broadening of states, the measured activa
gaps in GaAs heterostructures are only around 60% of
computed gaps for the filling fractionsn51/3, 2/5, 3/7, and
4/9 ~see Table IV!. This is to be contrasted with the activate
gaps atn51/3 and 2/5 reported in tetracene MIS structur
which turn out to be reasonable agreement with compu
gaps~see Fig. 15!. We have suggested that the relationsh
between the computed gap and the measured activated
may be different depending on the type of disorder in
samples. In the GaAs heterostructures the charged d
ions, which are the main scattering centers, are only aro
800 Å from the quantum Hall layer, and this could lead
local variations in the energy required to excite quasipartic
quasihole pairs with the lowest excitation energies cont
ling the activated transport. On the other hand, the backg
in the MIS structures is of order microns from the quantu
Hall layer, and the main scattering centers are likely to
neutral. These are less likely to affect the energy to ex
quasiparticle-quasihole pairs and the gap controlling a
vated transport should then be close to the true thermo
namic gap as we have found. For filling fractionsn52/3 and
5/2, the reported activated transport gaps in GaAs het
structures are only around 10 and 5 %, respectively, of
values we compute, although we have not attempted to
count for disorder broadening in these cases. However,
experimental evidence suggests a disorder broadening w
is comparable atn55/2 with the computed gap48 so a large
discrepancy is to be expected.
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APPENDIX: ZdS INTERACTION

One previous attempt to model finite width effects us
the ‘‘model interaction’’20

VZdS~r !5
e2

«

1

Ar 21t2
, ~A1!

which introduces a width parametert. We have found that
this model interaction cannot reproduce accurately the va
tion with L of the Haldane pseudopotential parameters fo
sample with finite width with the errors significantly increa
ing as the width increases, Fig. 16.

The reason for this is probably the unphysical nature
this interaction as a model for electrons in a heterostruc
or quantum well interacting via the Coulomb interactio
Taking the Fourier transform of Eq.~14! and using the con-
volution theorem, one can show that it is not possible
construct a density distributionuz(z)u2 for which the effec-
tive interaction@see Eq.~14!# is VZdS(r ). This is essentially
becauseVZdS(r ) is the Coulomb interaction of two~distin-
guishable! particles confined to separate planes a distant
apart and, as such, misses the lnr found for smallr and large
widths for all realistic density distributionsuz(z)u2. However,
many of the results obtained on the basis of the effec
interaction are still valid if interpreted carefully.

FIG. 16. Errors in the Haldane pseudopotentialsVL computed
using the Zhang-DasSarma model interaction~A1!. The comparison
is with the values reported in Ref. 22. The variational parame
are determined such thatV1 is correctly reproduced. Note in pa
ticular the large errors forV0 and the slow decay of the error wit
increasingL for the low-density sample.
07540
i-

d

a-
a

f
re
.

o

e

For this purpose, we incorporate an overall scaling fac
of the interactionN

vZdS~r !5N
e2

«

1

Ar 21t2
, ~A2!

with N51 giving the original interaction~A1!. The gap en-
ergies and relative stability of fractional quantum Hall sta
in the principal Jain sequence are determined principally
the first two Haldane pseudopotentials for odd angular m
mentum V1 and V3. In Fig. 17 we show the values oft
required in Eq.~A2! to match the values ofV1 and ofV3 to
those obtained using the variational Gaussian WF as a fu
tion of the width parameter assumingN51. It is clear that it
is not possible to find a value oft which gives bothV1 and
V3 correctly. If we allowN andt to vary then bothV1 andV3
can be correctly reproduced by the effective interaction
~A2!. The results are also shown in Fig. 17. ChangingN
means that the asymptotic behavior of the pseudopoten
at large angular momentum is not reproduced correc
However, as the gaps and stability of the incompress
states in the Jain sequence are determined principally by
pseudopotentialsV1andV3 this should not be a problem. I
phase transitions between spin-singlet and polarized st
~e.g., atn52/5) are of interest, it is obviously possible t
correctly represent the in this case most important pseudo
tentials V1 and V2 for angular momentaL51 and 2, by
appropriate choice ofN and t.

rs

FIG. 17. The width parametert ~lower three curves! in the ZDS
model interaction in Eq.~A2! and the normalization parameterN
~top curve!, as a function of the Gaussian widthw of the density
distributionz(z)2. For the two curves labeledN51, the normaliza-
tion is held equal to 1 and the parametert is chosen so that the
Haldane pseudopotentialV1 ~lower curve! andV3 ~upper curve! for
the interaction in Eq.~A2! are equal to the values obtained from E
~14! using the Gaussian variational WF’s. The dashed-dotted cu
show the values oft and N required to reproduce bothV1 and
V3 /V1 correctly.
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