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We compute energy gaps for spin-polarized fractional quantum Hall states in the lowest LandduLlevel
at filling fractions v=%, £, % and% using exact diagonalization of systems with up to 16 particles and
extrapolation to the infinite system-size limit. The gaps calculated for a pure Coulomb interaction and ignoring
finite width effects, disorder and LL mixing agree well with the predictions of composite fermion theory
provided the logarithmic corrections to the effective mass are included. This is in contrast with previous
estimates, which, as we show, overestimated the gaps-&(5 and 3/7 by around 15%. We also study the
reduction of the gaps as a result of the nonzero width of the two-dimeng@Dalayer. We show that these
effects are accurately accounted for using either Gaussiam>rGaussian” ¢G) trial wave functions, which
we show are significantly better variational wave functions than the Fang-Howard wave function. The Gauss-
ian andzG wave functions give Haldane pseudopotential parameters which agree with those of self-consistent
local density approximation calculations to better thaf.2%. For quantum well parameters typical of het-
erostructure samples, we find gap reductions of around 20%. The experimental gaps, after accounting heuris-
tically for disorder, are still around 40% smaller than the computed gaps. However, for the case of tetracene
layers in metal-insulator-semiconduci®IS) devices we find that the measured activation gaps are close to
those we compute. We discuss possible reasons why the difference between computed and measured activation
gaps is larger in GaAs heterostructures than MIS devices. Finally, we present calculations using systems with
up to 18 electrons of the gap atc% including width corrections.

DOI: 10.1103/PhysRevB.66.075408 PACS nuni®er73.20.Mf, 73.43.Cd, 73.2%b, 73.43.Lp
[. INTRODUCTION pendence of the longitudinal resistivity minimum for each
fraction~14

Our understanding of the fractional quantum Hall effect ~ Here we report the results of extensive finite-size studies
(FQHB) is primarily based on the Laughlin wave function of the gap for spin-polarized excitations of electrons con-
(WF) (Ref. 2 and its appropriate hierarchical fined to the lowest Landau levélLL) at filling fractionsv
generalization§® for the so-called higher order “daughter” =% 2 2 and% as well as detailed results for the quantum
fractions which are many-electron wave functions in the low-Hall state atv=73. We give a detailed analysis of the finite
est Landau level with no adjustable parameters. The fundasize corrections and show that previous estimates of the
mental property underlying the FQHE phenomenon is theyap® for the pure Coulomb interaction at=2/5 and 3/7
existence, at certain filling fractions of the lowest Landauwere around 20% too high as a result of inaccurate extrapo-
level, of an incompressible ground state and an energydgap lation methods. For the simple exactly solvable case of a
in the many-body excitation spectrum. This gap is producegingle hole in a filled polarized lowest Landau level, we
entirely by the electron-electron interaction while the corre-demonstrate how an optimized extrapolation scheme dra-
sponding noninteracting single particle energy levels are alnatically reduces errors in the estimate for the infinite sys-
degenerate at the particular fractional fillifige., all nonin-  tem result. We compare our more accurate results with the
teracting single particle levels have enefgy./2 in the low-  predictions of composite fermion thedi.}’ We find that,
est Landau level, where,=eB/(mc) is the cyclotron fre- whereas previous estimates were consistent with a CF effec-
guency in the magnetic fielB]. tive mass which was independent of filling fraction, these

The excitation gap is the key measure of the robustnessestimates are in better agreement with the CF theory which
of the FQHE—the incompressibility cannot be destroyed bypredicts a logarithmically divergent effective mass as a func-
weak disorder in the system if the gap is large. The behaviotion of filling factor asv= 1/2 is approachet’'® The results
of the gap as a function of filling fraction in the main se- are also closer to the estimates of the effective mass from
quence of FQHE states can also be compared to predictiorsother type of finite-size calculations at 1/218
of the composite fermiofCF) picture and used to extractthe  Other previous larger estimates of the pure Coulomb
CF effective mass. The excitation gap @t 1/3 has been gap® may also involve an inaccurate extrapolation to the
theoretically estimated on the basis of exact diagonalizatioinfinite system limit, but as these results were obtained using
studie§” and Monte Carlo calculatioftS as have the gaps at CF trial WF’s and Monte Carlo techniques we cannot say for
filling fractions v=2/5 andv=23/7° The numerically com- certain where the origin of this difference lies. However, we
puted estimates of the gap are, however, significantly largamention that our calculated excitation gaps are lower by as
(by a factor of 2 to 3 ab=1/3, for exampl¢than the mea- much as 30% than those in Ref. 19, and some discrepancy
sured gaps\, deduced from the activated temperature de-exists even for the pure Coulomb interaction resultsvat
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=1/3 where our extrapolation to the thermodynamic limit isflict with the claim by Parket al?>?>%that the finite width
most reliable. alone can lead to the loss of incompressibility at a filling

We clarify to what extent the discrepancy between nudraction v=p/(2p+1) for some finite valug=p,.
merically computed gaps and those extracted from transport We also compare the various approximate methods for
measurements can be attributed to finite-width effects. Thaccounting for finite thickness effects based on interfacial
large disagreement between experimental activation ggps trial WF's with those taken from self-consistent local density
and the numerically computed gafs has been an outstand- approximation(SCLDA) calculations®*® Previous model
ing problem in the subject since the first accurate measuresalculations have used Gaussian and Fang-Howard envelope
ment of activation gaps was reported more than fifteen yeatd/F’'s and the Zhang-DasSarniaDS) model interactiorf?
ago!* There have been several previous theoretical attempdd/e introduce a variational envelope WF, thex Gaussian”
to compute realistic estimates of the energy gap and to ider{zG). We find that both theG and Gaussian envelope WF’s
tify the source of the large discrepancy betwekpn and give Haldane pseudopotential parameters which agree to
A,.?°"?These took account of the finite thickness correc-within fractions of a percent with those from the full SCLDA
tion (i.e., relaxing the pure /Coulomb interaction approxi- WF’s with thezG giving slightly more accurate results at the
mation by including the softening introduced by the trans-densities used in experiment. However, both give essentially
verse width of the 2D lay¢rand of the Landau level mixing indistinguishable results for excitation energies and gaps
correction€®2” There have also been studies of the spin-from those taken from the SCLDA WF'’s. This result shows
reversed excitations which are the lowest lying excitationghat accurate finite-size studies of finite-width effects require
for small g-factors and small magnetic fieftf-3C only the determination of the appropriate width parameter in

There are reports in the literat@fethat the finite-width ~ either the Gaussian @G description and do not require the
effects account for all the difference between measured andse of SCLDA based tables of parametérs.
theoretically predicted gaps. Our results are at variance with \We show that depending on the subband density either the
this conclusiof” and consequently also with the results of Gaussian oeG variational WF provide substantial quantita-
Ref. 23 which were based on incorrect results from Ref. 22tive improvements over the well-known Fang-Howard varia-
The error in Ref. 23 was originally corrected in Refs. 24,25 tional WP’ which has been employed extensively in hetero-
We find on the basis of the largest finite-size diagonalizationstructure electronic calculations. Indeed, it turns out that the
to date and of a careful analysis of the finite-size correction§ang-Howard WF generally overestimates the kinetic energy,
that the finite-width corrections account for at most half ofand consequently predicts significantly too large width. The
the difference between the computed gaps and those ofxpectation value of the energy and other quantities of inter-
served in GaAs heterostructures. On the other hand the gagst in this context can be calculated analytically for these
observed recently in tetracene in metal insulator semicondudariational WF's, and in the case of the Gaussian, it is easy to
tor structures are only slightly smaller than our estimates. Ww@erform expansions for either very small or very large width.
discuss the possible reasons for these discrepancies. We &inally in the Appendix, we explain why the ZDS model is
gue that they are un|ike|y to be due to Spin-reversed excitanot reliable directly for predicting finite thickness correc-
tions or Landau-level mixing and suggest that they are thdions, but we present a simple modification which corrects its
result of disorder effects which may affect the activation en-main shortcoming.
ergy for transport differently in heterostructures and metal- The remainder of this paper is organized as follows. In
insulator-semiconductaiMIS) devices. Sec. Il we describe the diagonalization of theparticle

We show that it is unlikely for there to be a transition Hamiltonian in the spherical geometry and give the defini-
from an incompressible to a compressible state at fixed filltions of the quasiparticle, quasihole, and gap energies. In
ing factor, forv=3, 2, 2, caused by a gap collapse induced Sec. lll, we discuss the extrapolation to tRe-oo limit and
entirely by the softening of the Coulomb interaction due toin Sec. IV we compare the variation of the calculated gaps
the finite thickness corrections. Such a transition has beewith filling fraction » with the predictions of composite fer-
conjectured to occur in the second Landau 1é¥&Rwhere ~ Mmion theory>™*"In Sec. V we show how variational WF's
the FQHE is much less robust. It may also happen in situacan be used to model finite width effects. In Sec. VI, we
tions where increasing the width in the transverse directioffompute the reduction of the energy gaps as a function of the
changes the symmetry of the subband wave fundtigk).>®>  finite width and in Sec. VIl we compare our results for the
Alternatively, another kind of FQH state can arise in squaregap energies with experimentally reported estimates of gaps.
parabolic, or double wells, where, for large enough well
width, the WF may split into an effective double layer s_truc— Il. QUASIPARTICLE AND QUASIHOLE ENERGIES
ture at the two ends of the well with a central self-consistent
barrier separating these two effective lay&rfn the regular We model the two-dimensional electron gas using
GaAs heterostructure systém'*we find the lowest Landau Haldane’s spherical geomeftyParticles with coordinates
level v=13,%,2 FQHE to be robust with respect to the finite (R, 6;,¢;) move in a monopolar magnetic field of strength
thickness effect, witlA >0 even for the largest possibland  B=Sfi/eR? which gives rise to $+1 linearly independent
physically allowed transverse thickness. However the actualcyclotron orbits in the lowest Landau level. The single par-
value of A may become rather small and one might have tdicle orbitals on the surface of the sphere for the particles in
go to very low temperaturggnd very high quality, low dis- the lowest Landau level are then function6; , ;) which
order samplesto observe the FQHE. Our results are in con-are the lowest energy eigen states of the kinetic energy.
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; In t_he Io_west Landau level, the interaction between par- ef(N):Ezsﬂ,p(N)—Ezso(N)- (5)
icles is written
HereE,s.1,(N) is the total energy of the system Nfpar-
N N N ticles in their ground state in&. ;;, flux quanta. For filling
V(ij)=2> 2 VinPm(i]), (1) fractions »=1/m we can calculate both energies directly,
mos while at filling fractionsy=p/(2p+1) with p#1 we have
whereP,(ij) projects onto states in which particleandj to estimatdEzso(N) by interpolating(or extrapolating for the
have relative angular momentumi andVy, gives their in-  |argest system sizgbetween system sizes for which we can
teraction energy for this relative angular momentum. The SectomputeEzso(N).
V,,, called Haldane pseudopotentidlspmpletely character-

izes the interaction between particles confined to the lowest IIl. ENERGY GAPS:
Landau level. In terms of the electron-electron interaction FINITE SIZE EFFECTS
V(1) they are defined in the plane By AND THE THERMODYNAMIC LIMIT
1 . o 5 From studying the variation with system size of the ener-
Vﬁ?)=—2f dFV(f)f dge'@"~(@lo) gies to nucleate quasiparticles and quasiholes in finite-size
(27) systems we estimate the excitation energies in the thermody-
q2|§ 2 namic limit. It is essentiql thqt the e>_<trapollation procedure is
X| Ly - Lm(q2|(2)), 2 carried out carefully. First, if working with the Coulomb
interaction it is usual to quote energies in units of

wheren refers to the Landau level ané(r) stands for the e’lel], wherelo=1hc/eB is the magnetic length and
electron electron interaction. The corresponding integrals fois the dielectric constant for the medium. However, for
electrons on the surface of a sphere are described in Ref. 8ystems with number densityng on the sphere,l|
In the lowest Landau levei=0, the first Laguerre polyno- = \[1/(2mng)][N/(2S)] and so for systems at fixed density,
mial in Eq. (2) is equal to unity. As we shall discuss in the the magnetic length) depends on the particle number and
next section, the effect of the finite width of the WKR;) is  the total flux through the ratid\/2S. In order to compare
incorporated in these pseudopotential paramet{#’s Inthe  quantities measured in the same units we convert all energies
following, we will drop the superscript=0 and denote the by using the magnetic length in the infinite systdm
Haldane pseudopotentials for the lowest Landau level by=/v/(27ng).
Vi There is also a systematic contribution to the excitation
The method for computing excitation energies and gaps irnergy in a finite size system which scales to zero in the
this geometry has been described in detail in manyhermodynamic limit, which we can take account of
places®”% According to the hierarchy model, the FQHE explicitly.° When the localized quasiparticle/quasihole exci-
ground states at filling fractiom occur for a system oN  tation which is formed in a system of particles around the

particles when the total flux&is given by point on the spher&Q with ) a unit vector pointing away
from the origin a charge- qe with q=1/(2p+1) is concen-
trated around this point. This charge has come from the rest

whereX () is the shift functiort® which is a characteristic ©f the system. There is then a contributiéy, to the energy
of the geometry of the systerfin this case the spheré of the system from the nonunlform d_|str|bgt|on of charge
Laughlin'® elementary fractionally charged excitations from ©n the surface of the sphere which, in units e3fel, is
the FQHE ground state at filling fractian=p/(2p+1) cor-  9iven by
respond to the ground state configuration of a system with
2 14
Aq(v): —q N

2So(v,N)=v IN+X(v), 3

additional/missing fluxt 1/p, (6)

4) To extrapolate to the infinite system size limit it is better to
remove this contribution explicitly and study the corrected
quasihole and quasiparticle energies

1
ZSil,p(v,N)ZZSO(V,N)iE.

At v=1/m there are systems with bott8g and 2S..,;, both

integer for all integem. At other filling fractions %, and e, (N)=e, (N)—Aq(v). (7
2S. 1, are never both integer for the safNeFor example at
v=23/7, 25, is integer when the particle numbemis=3n (n
integey while 2S. 45 is integer forN=3n=+ 1, respectively.
We take the energy to nucleate a single quasiparticle/ O/ N ~—
qguasihole in a system dfl particles at filling fractiony, eN)=e, (N)+e, (N). ®

e, (N), to be the total energy difference between the lowesWWe denote the limitN— < of the gap and quasihole, quasi-
energy state with total flux&.,,(»,N) and the total ground particle excitation energies b}fvg) and?f , respectively.
state energy the system would have &,@,N) for the To illustrate the importance of working with these cor-
sameN, i.e., rected energies, we show results for a single hole-af,

We also define the corrected gap energies to be the sum of
quasiparticle and quasihole energies
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in 1/N of the corrected energies pass through the exact \ialtse2

whereas extrapolation QE*(N) in 1/N would give incorrect results. 0.0 — o.|05 — 0{1 — 0.|15
system size 1/N

which is a case for which the energy can be computed ana-

lytically using the exact expression for the energy of a filled

Landau levef? We find

FIG. 2. The quasiparticlge;5(N)] and quasihol¢e;,;(N)] en-
ergies atry=1/3 and the extrapolation using linear and quadratic
functions of 1N. We take the small differences in the extrapolated

1 result as a measure of the accuracy of the extrapolation.

h 2N’ ©) the Coulomb energy between the quasiparticle and quasihole.
As can be seen, the size dependence of the exciton energies
The contribution—1/y/2N is just the correctiom,(1) for  is much less smooth than that of the sum of QP and QH
the casev=1. Bothe; (N) andB{“(N) are shown as a func- €nergies. !ndeed, if they were known only for small systems,
tion 1N in Fig. 1. It is clear from the figure that extrapola- extrapolation to the bulk limit unld be inaccurate. Only for
tion of e/ (N) with 1/N would give spurious results because the largest systems, does the size dependence of exciton en-

S : . _ ergies become smooth and allow reliable extrapolation to the
of the contribution ofA;(1), which varies as IN. By con thermodynamic limit, which is consistent with that based on

trast, extrapolation ofel*(N) with 1/N gives the correct ine sum of QP and QH energies, although less accisate

e (N)=—

1 En_1(N) 3
2 N 2N+1

resulf limy_..[ —En_1(N)/(2N)]=% /2. Fig. 3.
In Fig. 2 we shoméf,a(N) andE[,s(N) and their extrapo- Figure 4 shows the quasiparticle and quasihole energies at

lations toN=c using least squares fits to linear and qua-v=23/7 and 4/9. Although the estimate &t 1/3 is close to
dratic functions in IN. We take the difference, 0.0005 for the values quoted previousi§the values av=2/5 and 3/7

the quasiparticle and 0.0002 for the quasihole, in the estiare around 20% smaller although still within the large uncer-
mates from the two different extrapolation procedures as outainties of the earlier calculation. Our latest estimates are
measures of the accuracy of the extrapolation. In fact, inclumore accurate as a consequence of a better understanding of
sion of the 1IN? term in the fit does not improve thg value finite size effects in addition to being able to diagonalize the
significantly. So, in the following, we will always use linear Hamiltonians for larger systemgith up to around 100 mil-
extrapolation in IN to compute gaps in the thermodynamic lion basis statgs—15 particles instead of 11 particles for the
limit. Figure 3 shows the gap energies:at 1/3 and 2/5 as quasiparticle and quasihole &+ 2/5 and 16 particles instead
functions of 1N and the extrapolations thl=oc limit to- of 13 for the quasiparticle at=3/7. It is interesting to note
gether with the estimates based on the study of trial CRhat the extrapolation of quasiparticle and quasihole energies
WF’s.!® Plotted are the sum of quasiparticle and quasiholeat v=1/3 based on small sizedlE 4,5,6) yields the values
energiess™ (N)+e*(N), using the correctiody(») (6) and  €;,5~0.0757, €;,5~0.0267 and for the gaph3~0.1024.

the energye.{v) of the neutral excitation witl.=L,,, 1hese are within about one percent of our best estimates of
(see caption to Fig.)3 corresponding to maximum separa- the bulk limit of €;,;=0.0749, ¢;,,=0.0263 and for the gap
tion of the quasiparticldQP) and quasiholgQH) on the  A;,3=0.1012, obtained using system sizes upNte 12 and
sphere, again corrected by the teAy(v) which stands for performing the extrapolation by linear polynomial fit irNL/
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Likewise at v=2/5, extrapolation using the results Bt

=5,7,9 yields values for the bulk limit for the quasiparticle /G- 4- The guasiparticle and quasihole energig¢N) at v

. . ~ ~ =3/7 and 4/9 and the best linear fits to these points. The sum of the
and quasihole energies @hs~0.0431 ande;~0.00920 g [inear functions can be taken as a measure of the gap energies
and a value for the gafys~0.0523, Wh'l,e our best eSEmate e9(N) (these cannot be computed directly for these filling fractions
based on system sizessN<15 are €,5=0.0398, €55 as the systems with single quasiparticle and quasiholes have differ-
=0.0102 and the gap,5=0.0500, corresponding to a dif- ent numbers of particleés

ference for the gap of about 5%. This observation makes us

confident that it is now also possible to compute reliable bulksuming that the gaps were simply proportional to /(2
limit values for the gaps at=23/7 and 4/9. Our values are +1) (i.e., ignoring the logarithmic correctiop$-ig. 5 shows
A37=0.035 andA,=0.027. The systems at=4/9 were that our results are better described by the theory when the
inaccessible in our earlier work. logarithmic corrections to the gap are included. This trans-
lates into an effective mass

IV. EFFECTIVE MASS OF COMPOSITE FERMIONS

&
Our estimates of the gap energies in the sequence of states m*(p)= ﬁz( Z_I) F(p), (13)
v=p/(2p+1) are compared in Fig. 5 with the predictions of €0
CF theory!>~'7 which for this sequence give$n units of  where
eely)
2
1 F(p)=;[|n|2p+1|+4.11]. (12

=)= .
2 |2p+1|(In|2p+1|+C")

(10

The effective mass of CF’'s has also been estimated by
ChoosingC’ =4.11 to fit the gap at=1/3 gives the gaps at studying the variation with system size of the ground state
v=2/5, 3/7, and 4/9 to be 0.0549, 0.0371, and 0.0276 whictenergy for systems of electrons closeste 1/2 on the sphere
are remarkably close to the estimates we obtain. We also noteith 2S,(1/2N)=2N— 2 ® These studies gave~ 5, which
that, whereas the earlier estimates were better fitted by as about 25% larger than the value we obtain figr4. One
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FIG. 5. The gap energy as a function of level in the hieragzhy great circle distance from the north pole: Tlhe 8 collective exci-
The estimates based on our finite-size studies of systems miith tation (exciton for the 14 particle system, the quasihole<(7/2)
=1/3, 2/5, 3/7, and 4/9 are shown as dots. The lowppe) curve and the quasiparticle(=4) for the 13 particle system. The projec-

shows the prediction of the CF theory withithout) and logarith- ~ ion of angular momentum is maximaL{=L) in all cases. The
mic corrections from Eq(10). The constant€ andC’ are chosen  ©'igin for the quasiparticle has been shifted, so that the point at the
to give the correct gap ai=1 (v=1/3). south pole coincides with that for the exciton. In the thermody-

namic limit, the exciton with these quantum numbers becomes a
quasihole localized at the north pole and a quasipatrticle localized at
would expect that, in systems close ite- 1/2, the effective  the south pole. It is clear that, even with 14 particlesvat2/5,
mass would be larger than at=4/9 but still finite as the there is still significant overlap between the density variations asso-
long-wavelength fluctuations of the Chern-Simons gaugeiated the quasiparticle and the quasihole localized about opposite
field, which give rise to the logarithmic divergence in the poles. This probably explains the large finite size effects $E&n
effective mass, will be cut off by the level spacing. 3) in the exciton energy as a function f
In Ref. 10 estimates of the gap energies based on collec-
tive excitations were also presented. On a sphere the effegaethods. With the possible exception of the systems at
tive wavevector of a collective excitation kgz=L/R where = 1/3, it is also clear that the system sizes accessible to direct
L is the total angular momentum of the system. This lowestdiagonalization are not large enough to accommodate two
lying collective excitation should correspond to a well- €xcitations without significant overlap of the charge profiles
separated quasiparticle-quasihole pair in the limit of ldrge of the quasiparticle and quasihole. In Fig. 6, we show the
In the hierarchy picture, the separation of the particle andlensity profile of the 14 particle exciton at=2/5, with the
hole should be RL/N, so the maximum separation possible corresponding quasiparticle and quasihole density profiles
occurs wherL=N;. HereN; is the number of particles in for a 13 particle system overlaid for comparison. The quasi-
the condensate of the highesth) level of the hierarchy that particle and quasihole at the opposite poles are clearly vis-
occurs: Ng=N, N;=(N+2)/2, N,=(N+6)/3, and Nj ible, but the system is not large enough for the density pro-
=(N+12)/4 for v=1/3, 2/5, 3/7, and 4/9, respectivet§l® files not to interfere.
Extrapolations to the infinite system limit of the=N exci-
tations should therefore give an estimate of the gap energies. V. INTERFACIAL WAVE FUNCTION AND MODIFIED
The results forv=1/3 and 2/5 are also included in Fig. 3. It INTERACTION

is clear from the figure that an extrapolation based on the The finite width of the sub-band envelope WF in the di-

exciton energies would not be as smooth as that based on the .. . . :
0 rection perpendicular to the plane of the two-dimensional
charged excitations.

electron gas can be incorporated into an effective interaction

Wwe t_)eheve t.hat th‘? exciton energies in the S”?a” SyStem%etween electrons in the plane. With the magnetic field per-
accessible to direct diagonalization are not as reliable a bas|s

for extracting estimates of the gaps as the sum of the quas'f)-e.r|dICUIar to the plane the single-particle orbitals can be
e . o written

hole and quasiparticle energies. The principal reason for this

is that the quasihole and quasiparticle states are actually W(X,Y,2)=L(Z)P(X,Y). (13

ground state configurations dfparticles in total flux 3. 4, . , . ]

and they are well separated in energy from all excitationsThe in plane WF'sy(x,y) are eigenfunctions of the free

On the other hand, although the neutral excitations are minieléctron Hamiltonian in a perpendicular magnetic field,

mum energy states for the quantum numbers concerned, thé¥hile {(2) satisfies the Schedinger equation for a particle in

are close to the continuum of excitations for these quanturfi€ confining = potential ~of the quantum well or

numbers and this gives scope for large finite size effects, ieterostructuré® The effective interaction between particles

addition to leading to poor convergence and numerical instaV([r,—r5,|) at positionsr;=(x;,y;) andr, in the two-

bility of vector iteration (Lanczos typg diagonalization dimensional electron gas is then given by
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TABLE |. Width parameters for all tabulated results of Ref. 22. The electron dengity measured in
units of 13%cn? while the widthw of the interfacial WF is given in nm.

I Il 1] v
Parabolic QW Heterointerface Square QW Heterointerface

ng w[nm] ng w[nm] ng w[nm] ng w[nm|

0.49 19.3813 0.10 9.306 90 0.10 3.216 28 0.60 6.727 84
0.60 24.1478 0.50 7.13556 0.50 3.218 54

0.73 28.9638 1.00 5.760 01 1.00 3.226 10

0.85 33.1890 2.00 4.618 01 5.00 3.310 37

3.00 4.060 15
(2|3 ¢(2,)|? Vei(2) =Vw(2) +V(2) +Vxe(2), (16)

L |
V(|r1—r2|)=(e2/s)f d21J dz, \/(9
r

P (22 )2' whereV(2) is the. confi.ning' potential of the quantum well
rore ! 2(14) or heterostructurdincluding image charge effects and the
effect of the depletion laygrand Vyc is the exchange-
The study of finite-size systems is based on exact diagd=orrelation potential

nalization or the study of variational trial WF’s for particles

in a given Landau level with the interparticle interaction Vye=[1+0.773&In(1+x"1)]
taken to beV(|r,—r,|). For particles on a sphere, the inter- BT
action V(|r,—r,|) projected onto a given Landau level is Where 8= (4/9m)" x=r421, rs=[4ma*n(z)/3]~*3, with
characterized by Haldane’s pseudopotential paramgtgrs a* andR the effective Bohr radius and Rydberg in GaAs. The
(m=0,1, ...).Once these are known the exact diagonalizaHartree potential is given by
tion proceeds exactly as in the zero-width cg¥ée note that

) R, (17

as the pseudopotentia_ll parameters are computed from the gf- Vy(2)= ZweZJ' dzf dz'|z—2'|[|£(2)]2- p(2)]
fective interaction, which assumes a planar geometry, there is €
no attempt to account for any effects of the curvature of the 12 ,
sphere on the finite width effec}s. X141 p(2)], (18
Within a local density functional scheme the WKz)  wherep(z) is the(neutralizing charge density of the doping
satisfies the equation ions which are taken to be far way from the interface. In Ref.
37 Vy is referred to as the potential due to the induced
#2d 1 d charges orVg. In the presence oN, acceptors per unit

- ?d_zm*—(z) gz T Vei(2) | {(2)=EL(2), (15 volume in the semiconductor there will B®iep (=Nazp)

charges per unit area of the interface distributed evenly

where V¢ includes the effect of the confinement potential across the depletion layer of widt .

(including the effect of the depletion layethe Hartree self- We obtain{(z) by solving Eq.(15) using trial forms for

interaction and exchange correlation. For GaAs-GaAlAs((2z) and compare the results with those obtained by numeri-

guantum wells the Jump im* and the dielectric constant, cal solution in Ref. 22. The trial waveforms we have studied

across the interface are small and to a good approximatiogre the Fang-Howar@FH) wave forms, which are zero for

both quantities can be taken to be independent of Glee  Negativez and for positivez are given by

Table | in Ref. 36 and the equation simplifies. In Ref. 22 this

equation was solved numerically for various geometries and {(z)xzexp(—bz2), (19

the results presented in the form of tables of pseudopotentialfe Gaussian

for quantum wells and heterostructures for various values of

the electron density and device parameters. Here we show L(z)xexd — (z— aw)?/4w?], (20

that the values of the pseudopotentials characterizing the . - S :

Coulomb interaction in the finite-width geometries can beand the ZXGau55|aq .(ZG). W.F’ which is again zero for

very accurately computed using a Gaussian and a trial Wlfjegatlvez and for positivez is given by

the “zX Gaussian” €G), _th_ereby allqwing th_e eff_ect on the {(2)xzexp( —22/9c?). (21)

pseudopotentials of a finite width in the direction perpen-

dicular to the 2D electron gas to be encoded in just ondhe widthW of these wave functions can be characterized by

variational parameter, i.e., the width of the WF, parametrizedhe standard deviation of the corresponding probability den-

by the standard deviatiow of the probability density. sity. It is given in terms of the parametersw, c as follows,
The self-consistent computation @{z) and Vg4(2) is
standard and follows the procedure given in Refs. 22,37. The W _\/_§ 22)
FH™

potentialVex(2) is written b
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for the Fang-Howard WF,

12 -..... a) Fang-Howard vs. z xGaussian -

We=w (23 o | T e b
LI.IN .................................
for the Gaussian WF, and A Nepi=Ns/5 H
ur ke n_nS/ZO ................................... y

3\8+37—-16 =
W,g=————¢~1.01016<c (24) 10

2\/; + ————+—+—+—+}
A4 [ i .
for the 2G WE. 1 N b) Gaussian vs. z xGaussian |
We determine the parametdssw, «, andc variationally. @y p L, e Ngop=Ng/20 i

We have found that, expanding the expressiorMgs in Eq. u

(17) in x and keeping only the constant and linear terms,uf, ,| _ Meen=Ns/> -

reproduces the correct expectation value for the exchange ]
correlation energy to within 0.1% for all three trial WF's, gL )
while including the quadratic term affects only the fifth sig- A R R

nificant figure. The smak expansion works well because the 2t ¢ width Fang-Howard
dominant contribution to the exchange-correlation energy — z xGaussian
comes from the region in which the density is highsfnal)). - Gaussian

e Ortalano et al.

Using this expansion allows us, for the three trial forms for
{(2), to compute analytically all the integrals involved in _ -~
computingVex(z) and, hence, also the expectation value forg of
the subband enerdy. For the case of the Gaussian trial WF, £
the effective interactiofl4) can be written in closed form in §
terms of the Bessel functiol,

Ngep=Ns/20

ns/5

Ve(r)= e VK (r2/8w?). (25)
2\ 7w? sl
In Fig. 7 we compare the estimatgsee Eq.(15)] of the 10 e @ 56" > s 10
subband energy for the three variational WFE(zG), ns [10"/cm?)

E(Gauss), and E(FH). For higher densities n§
2]_011/(;rr|2)7 E(Gauss) gives the lowest variational esti- FIG. 7. Comparison of the variational estimates for the subband
mate, while for lower densitieE(zG) gives the lowest esti- energiedsee Eq(15)] and of the standard deviation of the charge
mate. For all densities in the range we have studied, we findistribution (width) for the three variational WF's. The results for
that the Fang-Howard WF is worse as a variational WF tharthe width from direct numerical solution of the equation by Ortal-
the zG and significantly worse at higher densities than the2noet al- (Ref. 22 are also included. The top panel shows the ratio
Gaussian. This is because the FH WF has too high a kineti@f the variational estimate&(FH)/E(zG) and the second panel
energy which it can only reduce by spreading the density"©WSE(Gauss)E(zG). The depletion layer densitysep,is quoted
wider. Although the variational estimate of the energy for the?s @ fraction of the electron density in the subband.
FH WEF differs by a factor which only varies between 5 and
20 %, the width of its distribution, as measured by the staniandau levels for heterostructures with densities appropriate
dard deviation, is significantly larger<(50%) than for the to samples studied experimentally. Here, we determine the
other two WF's. width of the trial interfacial WF’'s by requiring that the
Given that the integrals involved in using the Gaussian oHaldane pseudopotenti&l; from Ref. 22 is exactly repro-
zG WF’s can be performed analytically and are more accuduced. We note here, that results for the pseudopotentials in
rate as trial WF’s, it is perhaps surprising that these WF'SRef. 22 were for a value of the magnetic lendgthwhich
have not been more widely used in the study of heterostruceoincides with the Bohr radiual~10 nm of electrons in
tures and quantum wells. Of the two, the Gaussian is easiebaAs. The results for the second Landau level were for the
to use, although it will be less well adapted to MOS devicesdensityn,=6x 10'° cm™? used in Ref. 22. The study of the
with large band gap discontinuities. For the heterostructuresecond Landau level in Ref. 22 was motivated by the results
considered below we use(aonduction band gap disconti- reported in Ref. 42 at filling fraction=5/2. However, the
nuity of 200 mV—the value appropriate for a interfacial wave function is determined by thetal number
GaAs/GaAg gs Al 33 heterostructure. On the other hand, theof electrons, which for the sample studied in Ref. 42 was
“zG,” should become more favorable as a variational WF,ni~3x 10" cm™2, and not by the fraction occupying the
when the band gap discontinuity is large and the effect of thgecond LL hgl)=6><1010 cm ?) incorrectly used in Ref.
boundary is well approximated by a hard wall. 22. For this reason, the conclusions regarding #¥e5/2
Figure 8 shows the Haldane pseudopotentials for the instate of Ref. 22 are incorrect.

teractionV(|F1—F2|) projected onto the lowest and second It is clear that the use of the Gaussian trial WF yields
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T T T T T T TIT T T T T T 1.0 q T T T T T T T
[© I ] r . 1
07 =081\ (a) Fang-Howard wave function .
b b LDA results + - LDA for second Landau level 2 06 r 3 1
P . T . : ] 5 | A - 1
0.6 o »_:: O Gaussian wavefunction— © Gaussian wavefunction i oal * ~\ + n=3 x1011 cm 2_, WFH=31/2/b 417 nm ]
T Y
o5 1 ] Zo2F S\ 0 n=1x10™em® — Wey=3"%b =9.79 nm i
— . n=3 x10"" cm? — w=4.06 nm e - r A b
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et y
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FIG. 8. The Haldane pseudopotentials for the interaction [ ' 7 e ' ]
VG(|F1—F2|) (25) projected onto the lowest and second Landau & ozl (c) Gaussian wave function h
levels as a function of angular momentunfor particles in hetero- g By 0 e 1
structures with densities. The results of direct numerical solution & 1~ * n=3x107cm” — Wq=w=4.06 nm ]
of Eq. (15) taken from Ref. 22 are shown as crosses and resultss’ 0.0 .:,.\-"w:;”:'g """"""" A S (; 5
based on the Gaussian trial WF fofz) as circles. The width pa-  ~ o[ . o oo ]
rametew of Eq. (20) for the trial wavefunction is chosen so that the 51 ozl & 0 n=1 x10"" om? = Wg=w=9.31 nm
Haldane pseudopotentidl; matches that obtained by numerical e
integration. The differences between the results based on the Gaus 03— ] 5 3 . : o 7
ian interface wave function and the numerically computed local order L

density approximation is at the fraction of a percent level. ) ) )
FIG. 9. Errors in the Haldane pseudopotentials computed using

results which are essentially indistinguishable from the rethe Fang-Howardzx Gaussian £G) and Gaussian interface trial
sults of the exact numerical solution f¢(z). We find very ~ WF's for two different densities. The comparison is with the values
similar results for thezG. In Fig. 9 we show the difference reported in Ref. 22. The variational parameters are determined such
between the pseudopotentials computed exactly by solvinghat V; is correctly reproduced. TheG leads to errors for
numerically for the interface WE(z) (taken from Ref. 22 Vi, m#1 which are roughly half as big as those with the Fang-
and those obtained using the Gaussian and FH WF’s. Thdoward WF. The Gaussian WF is even better in reproducing the
errors obtained using the FH WF are at the 1% level while-DA results with a maximum error of less then 0.2%r Vo). The
those obtained for the Gaussian are at the 0.1% level. Thod¥dth parameters for the three variational wave functiégisen
obtained using the Gaussian trial WF are smaller than othedbove each curyere approximately equal for both densities for all

uncertainties in the model such as those related to the val8ree wave functions, implying that fixing the pseudopotentials
chosen for the depletion densit)ﬁem. Finite-width effects effectively equivalent to fixing the standard deviation of the charge

on the Haldane pseudopotentials are clearly accurately caglsmbunon'
tured by the Gaussiatand zG) trial WF’s. Given the fact rametrized by its widttw we compute the Haldane pseudo-
that the pseudopotentialé, only depend on the width pa- potentials as a function af. By exact diagonalization just as
rameter (v for the Gaussian WH for the Fang-Howard WF, in the pure Coulomb case of Sec. Ill, we compute width
andc for the zG), it is clear that the use of these trial WF's dependent excitation energies for all possible system sizes
massively simplifies the study of finite-width effects whenand perform for each value of the width parameteran
compared to the numerical integration of Efj5) and tabu- extrapolation to the thermodynamic linfit—. As an ex-
lation of pseudopotentials used in Ref. 22. For the case of themple we show in Fig. 10 the size- and width-dependent
Gaussian, we also have an analytic expression for the effequasiparticlee;J(N) and quasihole energies;),;(N) at v
tive interactionV(|Fl—F2|), see Eq(25). = 1./3. For each widthv we use linear extrapolatiop ir!I\l{to
Tables 1-1V of Ref. 22 can be summarized by listing the€stimate the gap energy in the thermodynamic limit as a
effective width of the Gaussian interface WF for which thefunction of width. The size dependence at finite width is
Haldane pseudopotential of ordem=1 is exactly repro- gualitatively the same as at=0. This same procedure was

duced. In Table | we list the width parameters for all tabu-also. employed for the calcul_ation of width dependent quasi-
particle and quasihole energiesiat 1/3 andv=2/5, and the

lated cases. ! . .
corresponding energy gaps in the thermodynamic limit. The
VI. EINITE WIDTH EEFECTS ON ENERGY GAPS result of these calculation are shown in Fig. 11. The full lines
in Fig. 11 correspond to interpolation functions of the form
A. Filling fractions v=p/(2p+1)
With these modified potentials we have repeated the cal- E —g© cos ¢ sin’¢ 26
; g ; ; s(X)=Eg’X + 5| (26)
culations described in Sec. Il. Using the Gaussian WF pa- Vi+ax?  1+bx
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35,3(N) and the best linear fits to these points computed as a fun
tion of the widthw of the density distribution computed using

Gaussian trial WF's. The sum of the two linear functions can be

taken as a measure of the gap eneré%eiN).

C_

PHYSICAL REVIEW B66, 075408 (2002

0-12 [ T T T T T T ]

e
=

energy gaps

0.08 |
I v=1/3

0.06 | ]

excitation energy [ez/éo]

v=2/5
0.04
0-0-|11|I|||||||||||11|I|||1||||||-
0.0 0.5 1.0 1.5 2.0 2.5 3.0

width of interface wave function w [£;]

FIG. 11. Estimates of the energy gaps in the thermodynamic
limit as a function of the width of the subband Wfaken as the
standard deviation of the charge distribujiohhe solid lines show
the fits to the interpolation formulsee Eq(26) and Table Il.

which as mentioned in Sec. IV, give larger gaps than our
results for the bare Coulomb interaction evenatl/3. This
discrepancy exists throughout the rangendf, in the figure
with our estimates being between5% smaller (for v
=1/3) and~25% smaller(for v=3/7 and 4/9. (It is not
surprising that the difference does not depend strongly on
w/ly: While the energies are affected by the widttthrough

the variation of the effective interaction, the wave functions
are not expected to change significafllyThe gaps as a
function of width have also been estimated using a field
theoretic approacf?*** which constructs explicit CF wave
functions out of Chern-Simons gauge-transformed fermions.
Energies of ground and excited states can be computed
within this theory at the Hartree-Fock level. The theory

awherex=w/lo. The functional form(26) is suggested by needs to cut off the interaction at large wave vectors and
the following observations: The Haldane pseudopotentialghould therefore be reliable for large widths where the in-

Vp, for m>0 behave fow—0 asV,,~V{+0(w?) while
for very largew they behave a®/,,~[In(w)/\m+ ay]/w.

verse width provides a natural large wave vector cutoff. For
widths w/l =2, the results are consistent with those of the

Indeed, as will be seen below, the energy gaps decrease REC simulations using composite fermion trial WE%For

1/w for very large values of the widtlv, implying that the

0.5<w/l3<2, the results are still comparable to those of the

logarithmic term cancels out in this limit. The values of the MC simulations, although they imply gaps which are rapidly

fitting parametersEg)), ¢, a, andb are listed in Table Il increasing asv/l,—O0, in contrast to the results in Fig. 11.

for the filling fractionsv=3%, %, 2. Evidence, also based on CF trial wave functions, was pre-
The results presented in Fig. 11 are similar to those resented in Ref. 23 which suggested a phase transition as a

ported in Ref. 25. The results of Ref. 25 were based orfunction of increasing width from incompressible states to

Monte Carlo simulation§MC) of CF trial wave functions,

TABLE Il. Interpolation function for the gap energy as a func-

compressible states at filling fractions=p/(2p+1). We
have tested this theoretical prediction by computing the
width-dependent energy of the lowest energy excitation,

tion of width (26): parameters for filing fractions » which corresponds to the roton minimum. We have not ana-
=1/3, 2/5, 3/7. lyzed the extrapolation to the infinite-system size limit for
the roton minimum and present, instead, the variation with
v s ¢ [degree$ a b width of the roton minimum energy for a system with fixed
EQ)LT} particle number. We show the results for 1/3, 2/5, and 3/7
° in Fig. 12. We find that even for very large and unphysical
1/3 0.1012 34.18 0.1468 1.542  widths up to hundreds of nanometécsrresponding to up to
2/5 0.0500 36.07 0.1935 1.866 50), there is no evidence of the gap vanishing at any of
3/7 0.0350 34.98 0.2078 1.851 these filling fractions. Instead we find that for such large

width parameters the roton minimum scales simply as 1/
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T T T R TABLE Ill. Total flux in the ground (&,) and excited (&,
[ e ] +1) states for systems atM=1/2 as a function of number of
° ﬁ\\ ] particlesN. Where these states are aliased to conventional quantum
i 1 Hall state ground states, we also show the corresponding filling
5| = i fractionsv, . We note that the only sizes for which no aliases occur
areN= 10,14, and 18. Unaliased ground states occur in addition at
0% F 1/3 roton energy ;e
v= 1
g-o 5 E’“’*\w\\ N 25, (G Vg 25,+1 va 251 Va
‘o, 6 9 213 10 8
> 2f 8 13 14 12 2/3
s \ 10 17 18 16
&10°F  u=2/5 energy/10 1 21 s 22 20
c C 1 14 25 26 24
2 S —— 1 16 29 30 415 28
% e ] 18 33 34 32
3 2f
100 g7 energy/100 . E the »=5/2 state, or equivalently ar<1?=;/2, there is the
r 1 problem that elementary charged excitations are predicted to
=) ] occur only in pairs.
i ] The polarized ground state afY)=1/2 occurs on the
5L | sphere when the number of flux units is
10—5 = | L ......IO | L AIIIIII1 L -
10 2 5 10 2 5 10 2 5 25,=2N-3, (27

width w/ £,

FIG. 12. The energy of the roton minimum as a function of and is thought to be descrlbgd by a gféged state, which may
width for systems with 11 particles at=1/3, 14 particles at 2/5, be Of_ the Moore-Read pfaff'?‘” tyﬁé‘ " Howeve_r, gfeat
and 15 particles at 3/7. For clarity, the energies of the roton ar&é@r€ 1S needed when analyz_lng _eXC|t_at|0n energies in these
scaled by a factor 1/10 at=2/5 and 1/100 at=23/7. I there were ~ Stat€S on the sphere to avoid mistaking systems at conven-
to be phase transition to a compressible state the gap would have ##9onal filling fractionsv,=p/(2p+1) or 1—wv, for systems
vanish at some finite width. Instead we find clear evidence that, fodt filling v=1/2. As we have discussed previou¥lysys-
large widths, the energy of the roton minimufthe lowest-lying  t€ms on the surface of a sphere exhibit degeneracies where,
excitation at fixed total fluxtends to zero as W/ with no sugges- for a certain sizeN, states with different filling factor coin-
tion of a phase transition. cide. This turns out to be a particularly severe problem in the
sequencé27). Indeed, of the possible systems with up to 18
electrons, only five are not aliased with conventional frac-
tional states, namely, those with=8,10,14,16, and 18 par-

Here, we present the results of calculations of the finiteicles. Of these, the ones Bt=8 and 16 have the problem
width effect on the energy gap of the mysterious5/2  that charged excitations of these states are aliased with
state. If the effects of Landau level mixing are neglected, it iground states of conventional FQH states. Using these
sufficient to solve for the ground state of the electrons occualiased states for a calculation of the energy gap/(at
pying the second—half filled—Landau level and take the=1/2 would be misleading and would give rise to systematic
filled lowest Landau levels of spin-up and spin-down elec-errors. In Table Ill, we list the relevant states and their
trons as inert, i.e., unpolarizable. This problem is characteraliases. We first show the energy of neutral excitati@s
ized by a filling factorv?) of the first excited Landau level citon) with maximal angular momenturb,,,, correspond-
of ¥™M=1/2. It is customary to represent the system of elecing to the largest possible separation of the quasiparticle and
trons filling half the second Landau level by lowest Landauquasihole on the sphere. The angular momentum of this ex-
level wave functions but to take into account the interactionciton is given byL ,.,=N/2 if N/2 is even, otherwisé& .4
of electrons in the second Landau level by using the appro=N/2—1. In Fig. 13 the exciton energy for zero width, cor-
priate Haldane pseudopotentials of the second Landau leveiected for the Coulomb attraction between quasiparticle and
Again, as for the computation of energy gapsvatp/(2p quasihole A4,4(1/2), equation(6), is plotted as a function of
+1), there are essentially two ways to compute the energysystem size N together with a linear fit in N to the data at
Either one may calculate neutral excitati@xciton) energies N=8,10,14,16 and 18, cf. Table Ill. Like at=2/5, the ex-
corresponding to a widely separated quasiparticle and quasiiton energy shows very large, and fluctuating finite size ef-
hole pair, or one may calculate the energy of ground statefects. Extrapolation to the bulk limit using a linear fit inNL/
containing a(fractionally) charged excitation. In the case of yields the result

B. v=3 state
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FIG. 13. The exciton energy at=5/2 for zero width, corrected L
for the Coulomb attraction between quasiparticle and quasihole (b) width dependence
[A14(1/2), Eqg.(6)] is plotted as a function of system sizeN1/ I
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Alternatively, the energy gap can also be computed by
calculating individually the energy of quasiparticle and
guasihole excitations. The two quasiparticle state occurs a
2S,—1 while the two quasihole state occurs foSy2-1.
Since in both cases the two excitations have the same charg . . . . .
(q=e/4 for the quasiparticle and=—e/4 for the quasi- 00, o2 o024 06 08 10 1z
hole), one expects that the lowest energy state occurs whel width of interface wave function w [£]
the two charges are maximally far apart, which demands .
maximum relative angular momentum, and consequently. F'C- 14. Energy gap at=5/2. The upper panel illustrates the

size dependence of the energy gap for different values of the width

minimum total angular momentum on the sphere. AIthoughloarameter ew/l,<1.17. The width parameters arevil,

one might have expected that this would imply: 0 for the 0, 0.098, 0.195, 0.391, 0586, 0.781, 1.17, with the topmost
ground state, as a result of symmetry, the angmar momentume referring to the cas&@=0, and the rest in sequence down to the
of the lowest energy states is=N/2mod 2, "_e"L,: 1 for lowermost line withw/l;=1.17. The extrapolations to thg— o
N=10,14,18. The energy of these two-quasiparticle or tWO1imit assume that the slopes for the cases with0 are the same as
quasihole states contains, in addition to the t&m(»™)  for thew=0 case. In the lower panel the gap values, extrapolated to
[Eq. (6)], the Coulomb interactioAAq of two quasiparticles the N— o, are plotted as a function o/l

separated by twice the radils(the maximal separation on

excitation energy [e
o}

the spherg 1/N for different values of the widthv. For zero width, re-
a sults forN=10,14, and 18 are plotted, the sizes at which no
Aquqz M— (29 aliasing effects occur. They lie almost exactly on a straight
2N line in 1N. Extrapolation to the bulk limit yields
Combining the two contributionf,,(»™*)) and AA, gives ,
for the finite size correction ter@,(N) e
A5,2~0.025€|—0, (32)
, [ 3 1
Co(N)==30"\ o~ " VN (30 slightly lower, but consistent with the resul28) based on

the exciton energies. Based on our previous experience with

The gap calculation then proceeds by taking account explicgap calculations av=1/3 and 2/5, we believe that also at
itly of the finite size correctiorCy(N) [Eqg. (30)], as de- »=5/2 the extrapolation based on individual quasiparticle
scribed for the cases at=p/(2p+1) in the previous sec- and quasihole energies is more reliable. However, the exciton
tion. energy calculation certainly supports our conclusion that the

In Fig. 14(a), we show our results for the gap@at5/2. In  quasiparticle and quasihole states &t 5/2 contain two
the top figure, half the sum of quasiparticle and quasiholeharged defects. Otherwise, there would be a factor of 2
excitation energies are plotted as a function of system sizdifference between our extrapolated valuegs [Eq. (28)]
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TABLE IV. Comparison of the measured ga' in samples Anominal density 1.12 10** cm™~2) and
B (nominal density 2.8 10'* cm™2) reported in Ref. 12 with the gaps computed for a Coulomb interaction
but taking account of the finite-width effecméf . We have added a constant field-independent Bhiftr each
sample which we estimate by comparing the functional dependence of the gap energies as a function of filling
fraction v predicted by CF theory with that found in experiment. The range quoteld fves the maximum
and minimum found when the constadt in Eq. (10) varies between 4.1(our estimate ofC’ for the pure
Coulomb interactionand 9.

Sample A (=1.28+0.13 K) Sample B[(=2.1+0.17 K)
AS AS
1/3 13.9 9.03 15.2 0.59 28.5 13.2 18.9 0.70
2/5 11.6 4.48 6.9 0.65 23.8 6.5 8.6 0.75
3/7 10.8 3.23 4.8 0.67 23.2 4.5 5.7 0.79
4/9 10.4 2.23 3.6 0.61 214 3.3 4.9 0.68

and Ag, [Eq. (31)]. Finally, in Fig. 14b), the gap in the (0.07 in GaA$ and theg factor is close to 20.44 in GaA$.
thermodynamic limit is plotted as a function of widilYl,. ~ The larger band mass and the smaller dielectric constant
These results indicate that the width effects reduce the gap atean that, for samples with the same density, the ratio of
v=>5/2 slightly. interaction energies to the Landau-level splitting is much
Very recently, Eisensteiet al*® have investigated the  larger in the tetracene structures than in GaAs and hence that
=5/2 and 7/2 states in a sample of ultrahigh mobility ( Landau-level mixing effects are expected to be larger. The
~3.1x10" cm?/Vs). They determined an activation gap |arger g factor gives a larger Zeeman energy, and hence
Ag,~0.31 K atr=>5/2 andA7),~0.07 K aty=7/2. Their  makes spin-reversed excitations less likely than in GaAs het-
sample had an electron density=3x10"Ycn?, which  erostructures.
leads to a widthw~4 nm. At v="5/2, the fieldB=4.96 T We have estimated the gapsiat 1/3, 2/5, and 3/7 for the
corresponds to a value/l,~0.35, while atv=7/2 we get  yyo samples A and B of Ref. 12. We take the quoted density
w/l3~0.30. According to the results shown in Fig. 14, The o the samples and assume a depletion density=ng/5
calculated gap valuesee Fig. 13 for w/lo~0.35 and 0.30  (¢his is typical of these sampléalthough the results are not
are around 0.0220 and 0.028%el, resn?ect|vely. These rlnead sensitive to the exact value ofi;,) . From the results in Fig.
to theoretical values for the gap df5,~2.5 K andA7, 7 e estimate the standard deviation of the density distribu-
~2.1 K. A disorder broadening of the ordef K would 5 and this leads directly to an estimate of the gégee
explain the measured gaps of 0.31 and 0.07 K. Itis |mportan|t;ig_ 11). We compare our results with those of the two
to note that previous experimental valsues of the exci'tatiorgamples A and B of Ref. 12 in Table IV. The effects of
gap 512 have bn ch smal ot samples Wi UL i, T b ak o accoun il
In thischse. the width isv=~4.5 nm, and at thé fielcé _by assuming that th_e Ievel_s are brogdened by a field-
=3.65 T, wé obtain/v/l0~0.34,. and a’ theoretical gap value mdependent.brqa'\denmﬁ. This assumption has not beeq
of 2.1 K. The factor of~3 difference between the recently theoretically justified, However, for the purpose of comparn-
son we have reanalyzed the results of Ref. 12 under this

reported activation g&p and the earlier estimdf® in ion by fitting. h he funciional § Sicted
samples with similar densities suggests that the activatiofSSUmption by fitting them to the functional form predicte
i.e. including the logarithmic correctidrsee

gap is affected strongly by sample quality, and is likely to bePy CF theory, _ .
dominated by the effects of disorder. By comparing the gag=d- (10)] to extract the broadeninf. We find that the gaps
at 5/2 to those at 7/3 and 8/3, and alsoatp/(2p+1), Pan  Measured are consistently between 60 and 70 % of what we
et al. also concluded that a disorder broadening of the ordePredict after taking account of finite thickness effects. This is
2 K was to be expected. consistent with the results of Refs. 24,25, correcting the error
of Ref. 23.

The results reported in Ref. 11 relate to filling fractions
p/3, wherep=1, 2, 4, and 5 and were interpreted on the

Estimates of the gaps for fractional quantum Hall systems&ssumption that the ground states and gaps were all maxi-
have been reported for GaAs heterojunctidiéand more  mally spin-polarized states within the lowest Landau level
recently for MIS structures using orgarigentacene and tet- for a sample with densitp,=1.65< 10'* cm™2? and mobil-
raceng semiconductor layer®. The recent measurements on ity 5x10° cn?/V sec (to be compared with 6.8 and 12
organic MIS structures are particularly interesting given thex 10° cm?/V sec in samples A and B in Ref. 12The au-
different separation of energy scales to that found in GaAsthors of Ref. 11 solved Eq15) numerically for the subband
The dielectric constant in tetracene is in the raege3 to 4 ~ WF, {(z), choosing the depletion density to reproduce
(compared toe~12.7 in GaAg, the band mass is-1.3m,  the experimentally observed subband splitting. As as a result

VII. EXPERIMENTAL GAPS
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TABLE V. The activation energies as deduced from the tem-  We should also consider the role of excitations involving
perature dependence of the longitudinal resistivity at filling fI'aC-Spin reversals. The gap at=1/3, corresponding to the cre-
tions »=1/3, 2/3, 5/3,A]", reported in Ref. 11 are compared to ation of a quasihole with no spin reversal and a quasiparticle
our values for the gapa$ . For reference, we also show the calcu- \ith one spin reversal, was estimated in Refs. 9,51 using
lated values of Willettet al. (Ref. 11 in the last column. These aytensive Monte Carlo simulations of trial WF'’s. Gap esti-
authors fixed the depletion densitye, and hence the width param-  mates for various combinations of quasihole and quasiparti-

eterw by requiring that the solution of Eq15) correctly repro-  jaq combined with spin reversals based on exact diagonal-
duced the experimentally measured subband splitting. They estj-, .- . .
mated the finite width corrections on the basis of the modellzatlons of small systemup to six particleswere reported

. . W in Ref. 29. For the case of the pure Coulomb interaction and
interaction(Al) to give Ay . : : :
ignoring the Zeeman energy the gap to create spin-reversed

m ¢ w excitations was around 60% smaller than the spin-polarized
Y BLTI A/ 1K A K] A, K gaps for systems at=1/3. When the Zeeman energin
1/3 21.0 10.5 16.6 1350.5 GaAs is taken into account this suggests that, for a pure
213 10.8 6.5 13.1 1070.5 Coulomb interaction, the spin-reversed excitation would
5/3 45 1.0 9.3 7.90.3 have a lower energy for systems &t 1/3 if the magnetic

field were smaller tham~7 T. This is above the fields at
which the 4/3 and 5/3 states were observed in Ref(sék

we have a more precise estimate of width of the WF in theraple \), and may account for the larger discrepancy seen at
lowest subband than we have been able to make for thgese filling fractions than at=1/3 or 2/3.

samples of Ref. 12. We have converted their estimate of the The estimate of 7 T, as the field below which the spin-

width to a standard deviation and estimated the gaps at the reyersed excitation drops below the spin polarized excitation,
relevant filling fractions. The results are presented in Tablgs well below the fields in Table IV making it unlikely that
V. We note that the measured valua$' of the gap atv  spin-reversed excitations are involved at these filling frac-
=1/3 and 2/3 are both larger than our theoretical values byions. Although the explicit estimate of the spin-reversed ex-
about the same amourit~6 K. This might serve as an citation was made for a system at1/3 it is unlikely that
estimate of the broadening. The authors of Ref. 11 also estihe discrepancy at other filling fractions will be larger. This is
mated the gap reduction on account of finite thickness effectgecause the difference between the spin-polarized and spin-
based on the exact diagonalizations of six particle systemgyersed quasiparticle energies should be largest=at/3,
reported in Eq(Al) and we include these estimatdy' in  where it is possible to construct a spin-reversed quasiparticle
the table. The reduction of the gaps found in the earliestate which is a zero-energy eigenstate of the hard-core po-
finite-size studies was significantly larger than what we ob+ential (with only the pseudopotentialé, and V; nonzero.
tain (Sec. I1). It may have resulted from estimating the gap For the case of the Coulomb interaction, its energy is con-
reduction using systems which were too small, or inaccurat@olled by the size of the pseudopotentia), while the en-
extrapolation to the thermodynamic limit. ergy of the spin-polarized quasiparticle is determined by the
It is clear from both Tables IV and V that the discrepancy|arger\/l_ However, asV, is reduced less by finite width
between measured gaps and computed gaps is significarifects tharV, (see Fig. 9, the spin-polarized quasiparticle
This discrepancy may be due to Landau-level mixing, spinwjl| be stabilized with respect to the spin-reversed excitation
reversed excitations and to impurity effects not accounted fopy finite-width effects’
by the use of the field-independent broadenlngised in The results for the activation gaps at1/3 and 2/5 in
Table IV. Estimates in Ref. 21 based on diagonalizations Ofayers of tetracene reported in Ref. 49 can also be compared
up to only five particles in a torus geometry suggested reducith our numerical results. By simultaneously varying the
tions of the gapfidentified with the zone boundary exciton gate voltage and magnetic field the gaps could be tracked as
as a I’esu|t Of Landau-level miXing Of betWeen 12 and 17 0/(a function of the ratiQN/'O for a range Of flelds gB[T]
were possible at=1/3 in a magnetic field at 10 T for a pure <9 One intriguing feature of these organic layers is that the
Coulomb interaction. These should scale @/£lo)/iw.  ratio of the Coulomb interaction to Landau level spacing
~1/,/B. On this basis the reduction at a field of 28.5 T for (e?lely)/hwe, is approximately 30—40 times larger than in
sample B atv=1/3 would be at most 10%. However, as the the GaAs samples for systems at the same magnetic fields.
matrix elements between Landau levels of the effective in- We have computed the widttv of the subband wave
teractionV(r,—r,|), which diverges only logarithmically as functions in the tetracene samples of Ref. 49 excluding the
r—0, will be significantly smaller than those of the bare effects of image charges using th® trial wave function and
Coulomb interaction, the reduction of the gap due to Landaufound thatw varies between 17 A at a density,=0.1
level mixing in these samples should, in fact, be significantlyx 10! cm™2 and 7 A forng=5x10'* cm™2. The effects of
smaller than this figure of 10% and is probably negligible.the image potential will be to reduce the width still further.
Clearly, a new study along the lines of Ref. &thich actu- At all the densities, at which the gaps were measwrélg
ally looked at the harder problem of Landau-level mixing at<<0.1 and so the effects of the finite width of the wave func-
v=>5/2 for systems with a partially filled second Landaution on the gaps in these samples are sitse Fig. 11and
level), taking account of the finite width of the subband WF, significantly smaller than were reported in Refs. 49,53. How-
would make for significantly more accurate estimates ofever, our calculations summarized in Fig. 11 are a more ac-
Landau-level mixing effects. curate reflection of finite width effects than the old formula
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show calculated gaps as a function of magnetic field ignoring
the finite width of the charge distribution.

The difference between the computed and measured val-
ues of the gaps in Fig. 15 at=1/3 and 2/5 are remarkably
small. Although there is some uncertainty associated with the
computed gaps arising from the simple treatment of the large
difference in dielectric constant of tetracene and alumina,
there is surprisingly little evidence of large Landau level
mixing (LLM) or disorder-related effects at these filling frac-
tions. The ratio of the Coulomb energy scaféel, to the
cyclotron energy in tetracene is93/\/B or ~42 at B
=5 T and LLM should be significant and might even be
expected to be dramatic. When the ratio of these two energy
scales is this large a perturbative treatment of LLM effects
may not even be possibléWe have assumed the same ef-

S
»

fective dielectric constant as used in Fig.).1Bven though
] 1 the mobilities are not as high in the tetracene MIS structures
u ] as in the GaAs-GaAlAs heterostructurés?! the agreement
between calculated and measured gaps suggest that there are
not any strong effects of disorder scattering either.

For the systems at=2/3 (filled symbols in upper panel
of Fig. 19, it was suggested in Ref. 49 that the change in
slope at around 6.5 T was related to a transition from a po-
larized state at high fields to a state which was not fully

FIG. 15. Gap energies at=1/3 (upper panel, unfilled symbgls ~ Polarized at lower fields. This seems unlikely. At a transition
and 2/3(upper panel, filled symbojisand 2/5(lower panel in tet-  With a discontinuity in polarizatior(first order transition
racene samples from Ref. 49 compared with numerical estimateshere would normally be a discontinuity in the gap rather
Triangles and squares denote experimental results for differerfian a discontinuity in its gradient with magnetic field, see,
samples. The solid line in each panel shows the gap given by thEr example Ref. 54. There has been one report of a transi-
quoted formula which is valid in the zero thickness lirtds dis-  tion from a polarized to partially polarized stateiat 2/3 in
cussed in the text the effects of the nonzero width are negligible ifGaAs heterostructures without any discontinuity of the Jap.
these samplesThe effective dielectric constant is taken as the av-However, the corresponding transition would be expected to
eragee=6.65 of reported values for tetraceae 3.5 and the value  occur in the tetracene samples at around 1.7 T well below the
€=9.8 for the alumina insulating layer. The dashed line in the uppefange of fields of Fig. 15. Even if there were far only a
panel is an estimate for the energy of the gap for spin reversedmall) discontinuity in the gap, the change in slope would
excitations(see text normally be in the opposite sense to the one repoftee

Fig. 15. The lowest-lying excitations from a partially polar-
ized (or unpolarizegl state would be expected to involve spin

of Ref. 20 used in Ref. 49. We also note that the widths weaeversals which increased the total aligned Spather than
obtain are about half the order of magnitude~35 A) reduced it and thereby gained a reduction in Zeeman energy.
quoted in Ref. 49. On the other hand, excitations from the fully polarized state,

In order to compare the results of our calculations witheither decrease the total spin or leave it constant. As a result
the results of the experiments on the tetracene MIS struchere would either be a contribution to the energy of the
tures, we need to take account of the large difference beexcitation from the Zeeman energy, which was positive and
tween the dielectric constant of the alumina insulating layeincreasing as a function of field, or no contribution. In either
(e~9.8) and the value for tetracene~ 3.5). Nearly all the case, the gap would be expected to grow faster with field in
charge density is within & of the interface. This is signifi- the high field(fully polarized state than in the low field state
cantly less than the average interparticle spacing or ion diskut not not more slowly as reported in Ref. 49. This is what
radius @= \2/vl,), which for these samples varies from 150 was observed for the transition seenwat 8/5>*
to 360 A depending on density. We have used the simplest An alternative explanation of the results at2/3, as-
approximation which treats the 2D electron gas as if it weresumes a fully polarized ground state and identifies the
trapped at the interface of the alumina and the semicondushange in slope @8~6.5 T with a change in the nature of
tor. The effective dielectric constant is then just the averag¢he lowest lying excitations. FoB=6.5 T, the lowest en-
for the two materials(Corrections to this, taking account of ergy excitations would be within the fully spin-polarized sec-
the actual displacement of the charge away from the intertor, while forB=6.5 T they would involve a spin reversal.
face, would involve image charge effects and give rise to Ve can make a rough estimate of the energy of the spin-
change in the functional form of the effective interactionreversed excitation gap ignoring Landau level mix{bgM )
between particle®) In Fig. 15, we compare the results we as follows. Previous estimates of the Coulomb energy of a
obtain with the measured values reported in Ref. 49. Wespin-reversed quasiparticle energy put it at around 55% of

energy gap [K]

S N Rk &N ®

1 2 3 4 5 6 7 8 9
magnetic field B [T]

<
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the energy of the spin-polarized quasipartitiehe Coulomb  effective mass are taken into account and are not well de-
energy of a spin-reversed quasihole is unlikely to be muchscribed by assuming a filling-factor-independent effective
lower than that of the spin-polarized hole, while the addi-mass(see Fig. 5.
tional Zeeman energy will make this excitation unfavorable. We have shown that Gaussian and #h¢Gaussian £G)
We therefore take for the value of the quasihole energy thatariational functions accurately describe subband wave func-
of the spin-polarized hole. The results for this “spin- tions and yield subband energies and lowest Landau level
reversed” energy gap are shown as a dashed line in(E®y.  pseudopotentials, which are essentially indistinguishable
and are seen to be quite close to the observed data poinfspm those obtained by solving for the subband wave func-
although the difference between our results for the “polar-tions exactly by direct numerical integration. These trial
ized” gap and the “spin reversed” gap is small. Our estimatewave functions offer a significant improvement over the
of the spin-reversed excitation applies bothwat1/3 andv  standard Fang-HowarH) form, which overestimates the
=2/3 as we have neglected LLM, which allows electrons tostandard deviation of the charge distributieiy as much as
make virtual transitions to other Landau levels and therebyp0% depending on electron density (see Fig. J. The low-
screen the interaction in the lowest Landau level. These efest Landau level pseudopotentials, which are the starting
fects would be larger for systemsat2/3 than atv=1/3 in  point for the study of the fractional quantum Hall gaps, turn
the same magnetic field and could explain why the the spineut to be accurately determined using any of the three trial
reversed excitation lies below the fully polarized excitationforms (GaussianzG, or FH oncew is known (see Fig. 9.
up to higher magnetic fields at=2/3 than atv=1/3. Atilted = This offers a huge simplification over the previaais initio
field experimem® would be one method to determine approaches which used numerical integration to find the sub-
whether our identification of the change of slope in the gagband wavefunction and tables of pseudopotential
with field with a change in polarization of the lowest-lying parameteré? We have also computed the variation of the
excitation is correct. gaps at fractionally quantized Hall states as a function of
The apparent absence of a significant reduction of the gawidth of the subband charge distribution. The results are pa-
in the tetracene MIS structureg.€2.5<10° cn?/Vs) on  rametrized in Eq(26) and Table II.
account of disorder, given its importance in the ultra-high We have compared our computed gaps with measured ac-
mobility (12.8x10° cn?/Vs) GaAs heterostructures, is tivated gaps. We have found that, even after taking account
puzzling. It suggests that the activated gap measured iaf disorder broadening of states, the measured activation
transport measurements is affected by disorder in differengaps in GaAs heterostructures are only around 60% of the
ways in heterostructures and MIS structures. In the hetercsomputed gaps for the filling fractions=1/3, 2/5, 3/7, and
structures, the disorder scattering is that of the ionized sili4/9 (see Table IV. This is to be contrasted with the activated
con donors which were in a layer about 800 A from thegaps atv=1/3 and 2/5 reported in tetracene MIS structures,
electronst? In the MIS structures, on the other hand, thewhich turn out to be reasonable agreement with computed
doping is controlled by a capacitance 130 nFcm? (Ref.  gaps(see Fig. 15 We have suggested that the relationship
49)] with the backgate of order microns from the carriers.between the computed gap and the measured activated gap
Here the disorder scattering is likely to be that of neutralmay be different depending on the type of disorder in the
defects. It is possible that, in the heterostructures, the activssamples. In the GaAs heterostructures the charged donor
tion studies do not measure directly the energy to create @ns, which are the main scattering centers, are only around
quasiparticle quasihole pair from the ground state, but ratheB00 A from the quantum Hall layer, and this could lead to
the energy to excite quasiparticl®r quasiholes out of  local variations in the energy required to excite quasiparticle-
bound states in the potential of theharged impurity distri-  quasihole pairs with the lowest excitation energies control-
bution. ling the activated transport. On the other hand, the backgate
in the MIS structures is of order microns from the quantum
Hall layer, and the main scattering centers are likely to be
neutral. These are less likely to affect the energy to excite

We have used diagonalizations of the Hamiltonians forduasiparticle-quasihole pairs and the gap controlling acti-
finite size systems on a sphere to obtain estimates of the gapated transport should then be close to the true thermody-
at filling fractions in the Jain sequenee= 1/3, 2/5, 3/7,and Namic gap as we have found. For filling fractions 2/3 and
4/9 and atv=5/2. We have emphasized how taking accountd/2, the reported activated transport gaps in GaAs hetero-
properly of the systematic contributions to the excitation enstructures are only around 10 and 5%, respectively, of the
ergy from the charge redistribution on the sphere in excite¢y@lues we compute, although we have not attempted to ac-
states is essential if one is to obtain accurate estimates of ti§@unt for disorder broadening in these cases. However, the
gaps in the thermodynamic limit. Our results for the gaps ar€Xperimental evidence suggests a disorder broadening which
smaller than earlier estimates based on finite-size stifies S comparable av=>5/2 with the computed g4pso a large
v=2/5 and 3/7(Ref. 10] and those based on the study of discrepancy is to be expected.
trial wave functions[for »=2/5, 3/7, and 4/9Ref. 19].

This _difference i_s important, as estimates of the_: gap as a ACKNOWLEDGMENTS
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FIG. 16. Errors in the Haldane pseudopotentidjscomputed  gistribution(z)2. For the two curves labele=1, the normaliza-

using the Zhang-DasSarma model interactiah). The comparison jon js held equal to 1 and the parameteis chosen so that the

is with the values reported in Ref. 22. The variational parametergys|gane pseudopotentisll, (lower curve andV; (upper curvé for

are determined such that, is correctly reproduced. Note in par- the interaction in EqiA2) are equal to the values obtained from Eq.

ticular the large errors fov, and the slow decay of the error with (14 ysing the Gaussian variational WF’s. The dashed-dotted curves

increasingL for the low-density sample. show the values of and N required to reproduce botk; and

V3/Vq correctly.
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APPENDIX: ZdS INTERACTION 2
One previous attempt to model finite width effects used deS(r):N? Jr2xe?’ (A2)

the “model interaction®°

) with N=1 giving the original interactiofAl). The gap en-
_e 1 ergies and relative stability of fractional quantum Hall states
Voadr)= , (Al T i : o
e Jr2s¢2 in the principal Jain sequence are determined principally by
the first two Haldane pseudopotentials for odd angular mo-
which introduces a width parameterWe have found that mentumV; and V5. In Fig. 17 we show the values df
this model interaction cannot reproduce accurately the variarequired in Eq(A2) to match the values df, and ofV; to
tion with L of the Haldane pseudopotential parameters for ahose obtained using the variational Gaussian WF as a func-
sample with finite width with the errors significantly increas- tion of the width parameter assumihg=1. It is clear that it
ing as the width increases, Fig. 16. is not possible to find a value efwhich gives bothv,; and
The reason for this is probably the unphysical nature ol/; correctly. If we allowN andt to vary then both/; andV;
this interaction as a model for electrons in a heterostructurean be correctly reproduced by the effective interaction in
or quantum well interacting via the Coulomb interaction. (A2). The results are also shown in Fig. 17. Changhg
Taking the Fourier transform of Eq14) and using the con- means that the asymptotic behavior of the pseudopotentials
volution theorem, one can show that it is not possible taat large angular momentum is not reproduced correctly.
construct a density distributioff(z)|® for which the effec- However, as the gaps and stability of the incompressible
tive interaction[see Eq.(14)] is Vz44(r). This is essentially states in the Jain sequence are determined principally by the
becauseV4(r) is the Coulomb interaction of twédistin-  pseudopotential¥/;and V4 this should not be a problem. If
guishablg particles confined to separate planes a distdnce phase transitions between spin-singlet and polarized states
apart and, as such, misses the found for smallr and large  (e.g., aty=2/5) are of interest, it is obviously possible to
widths for all realistic density distributiong(z)|2. However,  correctly represent the in this case most important pseudopo-
many of the results obtained on the basis of the effectivaentialsVV; and V, for angular momentd.=1 and 2, by

interaction are still valid if interpreted carefully. appropriate choice dN andt.
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