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The electronic charge densities and work functions at sharp metallic facet edges are determinad from
initio calculations, combined with macroscopic averaging techniques. In particular, we examine how two
different work functions coexist at close range near edges between inequivalent facets. The surface ionic
relaxation at facet edges is shown to influence appreciably the local electrostatic potential in the vacuum.
Various edges between AIOO and Al(111) facets are studied, as well as betweer{148) facets. We also
develop a model of electronic surface dipoles, which accounts for the surface charge transfer between in-
equivalent facets, and which allows us to predict the influence of the shape and size of a macroscopic crystal
on its work functions.
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[. INTRODUCTION the problem of different work-function coexistence near a
facet edge. The apparent work function—defined as the dif-
Microscopic details in the electronic density at metal sur-ference between the vacuum potential at an infinite distance
faces are responsible for the dependence of the work fundrom a crystal and the Fermi level—was also shown to de-
tion on the crystal surface orientatidThis dependence, i.e., pend in general on the global crystal morphol8dghe pur-
the work-function anisotropy, is a quantum phenomenon thapose of this paper is to present, in more detail, and by means
has clear macroscopic consequences, since differences af further ab initio calculations, the behavior of the elec-
work function of up to 1 eV can be measured between twdronic charge and the potentials they induce close to a variety
surfaces of a given elemehfThis leads to an interesting of facet edges. We also investigate the effects of surface
problem, namely, the spatial dependence of the work funcionic relaxation and of image potential contributions to the
tion outside a finite crystal, particularly if nonequivalent fac- |ocal work function.
ets are exposed to the vacuum. At large distances from a we concentrate here on atomically sharp edges of high-
finite crystal, the crystalline anisotropy is negligible, and thegensity low-index facets. Previous theoretical investigations
electrostatic potential and work function must be_ isotropigof the electrostatic potential around sharp metallic edges
and constant. Closer to the crystal, the e_zlect_rostatlc potentiqlave been limited to studies of a 90° jellium wedge. An early
must vary instead from faget to fa_cet, mirroring the Chang(?%iescription concentrated on the potential inside the nietal,
of the surface work functions. Since the Fermi energy 'Smodeling the electronic density by a product of two one-

u.n|form within a crystal 'and the electrostatic potential OUt jimensional surface distributions. The 90° wedge has also
side a smooth surface is constant beyond about 1 nm, the

. . . een studied more recently in the Thomas-Fermi approxima-
changes in the vacuum potential must be eminently local : lati ith ed it thi del i
facet edges. Several experimental techniques allow now%'—On In retation with edge energies-iowever, tis modet 1S
days work functions of different crystal facets to be mea- nown to be a poor gpprox[matmn for surfacesz smce't.he
sured simultaneously. For example, using a single-crystafilssoc'awd work functlon_vanlshes for aI_I electronic densities
hemispherical cathode, the work functions of several surfac8f the bulk meta_P. Experimentally, atomic-sharp edges are
orientations have been imaged simultaneously by thermionig@ccessible by buildup of low-index facets due to surface dif-
projection® The local work function near facet edges hasfusion in the presence of an electric field, for example. This
also been mapped by scanning probe_ho|e fie|d-emissio’[f€0hnique has been exploited in microtip fabrication for
microscopy! However, the mechanism allowing for different scanning tunneling microscopy.
surface work functions to exist simultaneously near a crystal As prototype systems, we focus on aluminum, s
edge has remained largely unexplored up to now. Also, thenetal, and on sodium, a simpgeelectron metal, for com-
effects of facet edges on the local work function are not wellparison. The Al work function has been studied theoretically
understood yet. by several authors, notably using discrete-lattice cor-
In a previous papetwe examined, in a particular case, rections to a jellium surfac¥:!* semianalytic variational
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calculations:? density-functional theor}? and a one- atoms to model NA10) facets, with six equivalent vacuum
dimensional  self-consistent model with  Ashcroft layers in each direction, and eight redudedoints.
pseudopotentiaf¥: These calculations all describe infinitely ~ We evaluate the accuracy of our procedure by comparing
extended single surfaces and obtain some anisotropy in thtee nanowire surface potentials with infinitely extended sur-
metal work function. The Al work function increases experi- face calculations. For such surfaces, studied with a standard
mentally from (111) to (110 and to(100).2° This trend is  thin-film supercell approach in conjunction with macro-
different from that observed for most fcc metals, which showscopic averages, the computed work functions are 4.25, 4.38,
increasing work functions with increasing surface atomicand 4.30 eV for the All11), Al(100, and AK110) surfaces
packing, from (110 to (100) and to (111). In a previous respectivel?> compared to 4.24, 4.41, and 4.28 eV
study?® we have shown that the observed trend in Al can beexperimentally® The theoretical values agree to within 0.03
explained by thep-atomiclike character of the density of eV with experiment and successfully reproduce the experi-
states at the Fermi energy. Conversely, sodium, a bcc metahental trend. The uncertainty on the absolute value of the
displays a work-function anisotrof/that follows Smolu-  work function due to the LDA is typically of the order of 0.1
chowski’'s rule of lower work functions for more open eV. However, as usual within the LDA, and consistent with
surfaces’ gradient-correction calculation&SGA), we expect a better
After briefly introducing the theoretical methodology of accuracy for the relative values of the work functions, on the
our calculations in Sec. I, we will determine the charge den-order of the numerical convergence of our results with the
sity, in Sec. I, and the local work function, in Sec. IV, near computational parameters, i.e-,0.03 eV. For comparison,
an edge between two equivalent Al and Na facets, as well ashen using the GGA with the Perdew-Burke-Ernzerhof
between inequivalent Al facets. The importance of ionicfunctional® the work functions of the AL00O) and A(111)
surface-relaxation effects near facet edges will be highsurfaces shift downward by 0.17 eV, compared to the LDA
lighted in Sec. V. The long-range features of the electrostaticesults. The local work functions around nanowires are also
potential outside a finite metal crystal will be understood inreduced by about the same amo(tl5-0.17 eYV.
terms of a simple model of the surface dipole in Sec. VI,
before concluding in Sec. VII. Ill. CHARGE DENSITIES NEAR FACET EDGES

To evaluate the surface dipole near facet edges, we use a
Il. THEORETICAL METHODOLOGY two-dimensional (2D) macroscopic averaging procedure.

We perform ab initio calculations within density- ©Once the three-dimensional charge dengify;,xz,Xs) is

functional theory in the local-density approximatiéirDA ) determinedhb initio, a linear average parallel to the facets is
using the Ceperley-Alder exchange-correlation functidhal. Performed to obtain a 2D average charge density,

We use Troullier-Martins pseudopotentidls in  the 171

KIeinman-E_%yIand_er approximatioff. A set of M_onkhorst- ;(Xl’XZ):I_f st3p(Xl,X2,X3), 0
Pack speciak points are employed for the Brillouin-zone 3Jo

integrations’! together with a Gaussian broadening of 0.01 : )
Ry to determine the position of the Fermi le¥&lThe va- where the coordinates, ;. x; are measured along the su

lence charae density is determined self-consistently b eX;_)ercell edges with the third axis chosen along the nanowire
9 y Y BY €X5yis. I 5 is the thickness of the supercell parallel to the facet

panding _the _elegtronlc wave functions on a set of p.laneedges. The microscopic crystal periodicity is evacuated to
waves with kinetic energies up to 16 Ry. lonic relaxations

near facet edges are optionally included by allowing the Out_magnlfy surface and edge effects on the charge density and

ermost layer of ions to move to their equilibrium positions. potential by evaluating a 2D macroscopic average,
We concentrate in this study on(A0D0 and Al(111) fac- _ 1 (142 1,2
ets and their mutual edges, and on(N&) facets for com- p(Xq,Xp)= Kf xiJ
parison. The surface potentials near facet edges are deter-
mined by considering a supercell describing a nanowire Oflvherell and!, are the dimensions of thes-projected mi-
polygonal section with flat facets of low-index orientations. croscopic lattice unit cell, and is its area.
The crystal retains the bulk periodicity in one dimension, and  Thijs averaging technique is illustrated in Fig. 1 in the case
thus describes infinitely long nanowires and facet edges. Thgf g facet edge between two equivalenti&l0) surfaces. The
lateral periodic boundary conditions on the supercell intro-se|f-consistent valence-electron charge density projected par-
duce parallel replicas of the wire, which are separated byjle| to the facet edge and the macroscopic average of the
vacuum regions. The Superce” is chosen with basis Vector@ta| Charge(va'ence_e|ectron p|us ion_point Cha}gare
parallel to the crystal facets. For the facet edge betweeBhown, thereby highlighting the surface dipole. The elec-
Al(100) and Al010), respectively Al111)-Al(111), we used tronic density smooths the rectangular area of the macro-
a 5x5 array of atoms, with a distance equivalent to fivescopic ionic charge at the facet edge. The influence of the
vacuum planes along each dimension and seven, ten, reducttet edge on the charge density extends essentially up to the
k points. For the AIL00-Al(111) edge, we used a%5 array  atomic columns surrounding the edge, beyond which densi-
of atoms, with four vacuum planes parallel to {141) facet ties characteristic of infinite crystal faces are recovered.
and five vacuum planes parallel to (00 facet, with eight We now turn to the charge density at a facet edge between
k points. For the sodium nanowire, we use & ® array of two inequivalent surfaces. Fig. 2 shows the total macro-

dxsp(X1+X] X+ X5), (2)

—14/2 —1y/2
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10 50 510 asymptotic form of the image potential. The LDA exchange-
correlation potential falls off exponentially, whereas the ac-
tual nonelectrostatic potential contribution to the local work
function should follow the classical image potential beyond a
few atomic units from the surfacé$The latter contribution,
however, known analytically for metallic edges of arbitrary
angles, plays no role in the coexistence of different surface
work functions near facet edges, nor in the apparent work
function at an infinite distance from the crystal. In the Ap-
pendix, we explicitly determine the behavior of the classical
image potential around two prototype metal wed@@®90°
_ _ _ and an acute-angle wedg@®ecause the image potential be-
FIG. 1. Two-dlmensmne_ll average vale_n_ce-electron det®y  comes negligible at sufficient distance {00 nm) from any
pane) and total macroscopic charge dendifight pane] at a facet .y sia)-sample surface, the apparent work function is entirely
edge between two AL00) surfaces with no surface relaxation. ygiermined by the electrostatic potential contribution. The
Da_shed lines correspond to negative valugs. The contour Ilne_s e e applies to the work-function values of the infinitely
uniformly spaced by 0.3 electrons per unit cell. The black disks £ d hence to the coexistence mechanism
indicate the atomic columns. After macroscopic averaging, the ioni extended surfaces, an ’
charge is inside rectangular region enclosed by the thick solid lin
in the right panel.

i\lloreover, as the image potential behaves monotonously
around facet edggsee the Appendixany localvariation in
the work function around facet edges should also derive from

scopic charge around the two different edges betweell€ €electrostatic potential contribution. In what follows, we
Al(100) and Al111) facets, without any surface relaxation. will therefore focus on the electrostatic componéfy of the

Near the obtuse edge, the electronic density closely follow&¢@! work function. , _ _
the angled surface, with slight smoothing within the bulk To calculate the electrostatic potential at large distances

part (within ~2 a.u.). Around the acute angle, the smooth-ffom the nanowire, we must use a technique to remove its
ing is notably stronger. The intrinsic difference betweensSupercell neighbors. The macroscopic electrostatic potential

the two facets is not readily seen in the contour plot ofv(X1,Xz) outside an isolated wire is determined from the
the charge density, but leads, as we will see in the follow£orresponding macroscopic average of the total charge
ing section, to noticeable differences in the electrostatip(x;,x,) by means of a modified 2D multipole scheffidn

potential. this technique, the plane is divided into two regions by a
circle surrounding the total macroscopic charge of a single
IV. LOCAL WORK FUNCTION AROUND FACET EDGES nanowire (within its superce)l. Inside this ring, we deter-

mine the electrostatic potential from the self-consistent
Outside a crystal surface, beyond the extent of the eleccharge density by solving the Poisson equation in reciprocal
tronic charge density, the local work function is governed byspace, using the supercell periodic boundary conditions. The
both the image potential and the difference between the locgjotential is also determined in this way at discrete points
electrostatic potential and the Fermi energy of the crystal. ltiniformly spread around the circle. Considering then that the
is well known that the LDA incorrectly describes the ring is in a vacuum, without any supercell neighbors, the
potential outside the ring can be expanded in terms of this set
_ of values?® The isotropic potential at infinity, which corre-
- Al(100) sponds to the apparent work function, can be computed from
the average of the potential values calculated around the
ring. The local work functionWg(x4,X5) is obtained by sub-
tracting the Fermi leveEg from the macroscopic electro-

static potentiab (X;,Xy):

vacuum

WEe(X, :Xz)zvz(xl X2) —Eg. (3

The Fermi energyEr is found from a separate bulk
calculatiort’ to reduce quantum size effed.

The electrostatic potential created around a wire formed
from AI(100 facets, without any surface relaxation, is shown

FIG. 2. Contour plot of the total macroscopic charge density atn Fig. 3. The bulk Fermi energy has been subtracted, thus
the two inequivalent-facet edges betweel8D and A(111) sur-  obtaining a representation of the local work functidf .
faces, without surface relaxation. The contour lines are uniformiyWVe note that a macroscopically flat potential, indicating a
spaced by 0.3 electrons per unit cell. Dashed lines correspond faulk behavior of the charge density, is obtained within an
negative values. The thick solid line encloses the macroscopic ioniextended section of the wire. Outside the center of each
charge density. facet, we obtain a local work function close to the infinite-
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This difference highlights the importance of self-consistent
field approaches when studying facet edges.

When leaving this nanowire in [d10] direction, along a
diagonal of the square nanowire section, the potential in-
creases all the way to its value at infinity. Perpendicularly to
the Al(100) facets, the potential instead shows a broad maxi-
mum corresponding to the value of the infinite-plane work
function, before decreasing to its value at infinity. The latter
variation indicates that the edge influences the potential
value at infinity. This feature is related to the nanoscopic
lateral size of our wire. Indeed, the characteristic length) (
associated with the electron smoothing at edges is of the
order of a few angstrontsin the nanowired,, is thus a
non-negligible fraction of the wire lateral dimension, which
explains the nonvanishing influence of edges on the apparent
work function. This influence, however, is expected to de-
crease with the size of the sample, and vanish in the macro-
4.384 scopic limit® If we imagine that the nanowire crystal facets
A » " ; o " A are scaled up in size, the symmetry of the resulting electro-

static potential will be retained. Larger spatial regions with

FIG. 3. Contour plot of the macroscopic electrostatic potentialthe infinite-plane work function will develop along the fac-
(in eV) around an Al nanowire bounded K$00 facets, without ets, while the reduced-potential areas near the edges will
surface relaxation. The potential z€thick line) has been set at the remain essentially unchanged. Comparaéibeénitio test cal-
Fermi energy. Continuouslashedllines indicate regions abovee-  cylations performed for a largé7-atom-thick wire support
spectively, beIOWthe potential at Inflnlty The b.laCk dlSkS in.dicate this description_ We also believe that ana'ogous edge_
the atomic columns. The axes are graduated in atomic units.  jndyced reductions in potential should occur near crystal cor-

ners, where three equivalent(ADO) facets meet.
plane work function. Toward the edges, the potential dips The electrostatic potential is not always reduced near
markedly and the contour lines extend further into thefacet edges. Figure(d shows the potential outside edges
vacuum. A similar picture was obtained in the theoreticalformed from A(111) facets, without any ionic relaxation. At
study of stepped jellium surfacéSwhere the potential con- the acute edge between two(ALl) facets, the electrostatic
tour lines were seen to protrude near the top of the ledges, guotential is seen to be locally raised. This behavior can be
account of the reduced electronic charge density in thosenderstood by invoking the same type of mechanism—
regions. Scanning tunneling microscopy images of the localelated to the opep-shell nature of Al—that is responsible
work function of Au/Cy11l) surfaces have also shown a for the anomaly in the Al work-function anisotropy, i.e., an
lowering of the potential around step edd@siowever, the anisotropic occupation of the atomiclike orbitals of the
aspect of the electrostatic potential calculated ladrénitio  surface atoms? The latter mechanism yields for the(AlL1)
at a facet edge is strikingly different from that obtained for asurface a work function which is lower than those of the Al
jellium in the Thomas-Fermi approximatidnyhere only a (100 and (110 surfaces, at variance with Smoluchowski's
near-monotonous smoothing around the edge was observeuile!’ Pursuing our interpretation of work-function anisot-

Al(100)

FIG. 4. Contour plot of the
macroscopic electrostatic potential
(in eV) around a nanowire con-
taining facet edges between
Al(11)) surfaces. The leftright)
panel omits (respectively, in-
cludes surface relaxation. The po-
tential zero(thick line) is set at the
Fermi energy. Continuous
(dashed lines indicate regions
above (respectively, beloy the
potential at infinity. The black and
white disks indicate the atomic
columns. The axes are graduated
in atomic units.
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at the surface of extended (AlL1) facets, a decrease in the
occupation of thep density of states is induced at the edges.
A corresponding increase in the occupation of fhestates
perpendicular to the facet edges is created. At the acute edge,
this redistribution of charge among the inequivalent orbitals
of the edge atoms induces a local increase in poteéftat-
side the edge, which is stronger than the local potential re-
duction produced by the electronic edge-smoothing process.

This interpretation is supported by a comparative study
with sodium facet edges. In Fig. 5, we present a Na hanowire
with 60° and 120° edges between (&0 facets. The work
function of an infinite N&110) surface was previously found
to be 3.00 eV¥® in good agreement with the electrostatic
potential found here near the center of the Na facets. Com-
pared to Al, the general aspect of the potential outside the Na
nanowire is considerably different. The potential shows ex-
tended regions of low work function at both the acute and the
obtuse N&110) edges. We believe this behavior represents
the general case for metalwith the possible exception of
some transition metay which do not possess an open shell
of p-states, and for edges between low-index equivalent fac-
ets.

The local work function around edges between two in-

FIG. 5. Contour plot of the macroscopic electrostatic potential€duivalent facets is shown in Fig(z8. The spatial behavior
(in eV) around an unrelaxed nanowire describing 60° and 120°0f the potential in vacuum is qualitatively different from that
edges between N&L0 facets. The potential zerhick line) is set ~ observed for equivalent facet edges. The potential rises con-
at the Fermi energy. Continuouslashedl lines indicate regions tinuously perpendicularly to the low-work-function AlL1)
above(respectively belowthe potential at infinity. The disks indi- facets, while it goes through a maximum perpendicularly to
cate the atomic columns. The axes are graduated in atomic unitsthe high-work-function A|100) facets. At infinity, the appar-

ent work function is intermediate between the two face-

ropy trends in aluminun the local rise in potential outside dependent work functions. Local edge effects clearly do not
the acute edge between the(Al1) low-work-function facets play a major role in determining the general behavior of the
can be explained in terms of a change in the occupatiomwork-function here, as work function anisotropy effects are
numbers of the atomiclikp-orbitals on the edge atoms rela- stronger. The potential gradients that develop around edges,
tive to the(111)-surface atoms. At a facet edge, the asymmei.e., the macroscopic electric fields that exist outside the neu-
try between the three directionpdorbitals is different from tral metal crystal, indicate that this behavior is dominated by
that of an atom in an extended facet. Only gneorbital on  a different mechanism, namely, charge transfer between fac-
the edge atom is parallel to both facets, whereaspyor-  ets. We will discuss such a charge-transfer mechanism in
bitals are parallel to an extended surface. Compared to aton&ec. VI, where we present a model that explainsaiuinitio

T T T T T T T T T T T T T
-60 -50 -40 -30 20 -10 0 10 20 30 40 50 60

(@) (b)

A1(100)

Al(1 AT |

FIG. 6. Same as Fig. 4 but for
edges between A100 and
Al(111) facets.
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nanowire. When including the relaxation, the work function

Al(100)-A1(010) Al(100)-Al(111) of a bulk Al(111) surface(4.25 e\j is more closely approxi-

N d o b o mated around the nanowire and a larger region of roughly
2% o o o *\ constant potential develops. A similar situation is observed
o o o o o 9 o~ o When_ comparing Figs.(6) and Gb), which respectively omit
. and include the surface ionic relaxation near an edge be-
AP A % o tween inequivalent facets. Once again, the infinite-plane
/ q o p o . . b work functions are recovered better outside both tHa@0)
— ? . é and the A(111) facets when the surface relaxation is in-
AI(111)-Al(111) || o ¢ . cluded. We see that the ionic relaxation allows the infinite-
o o ° 4 plane work functions to be recovered closer to the edge.
0 ° ~, o ° 3 Whereas the ionic surface relaxation does not appreciably

. L0 - influence the work function of infinite metal surfaces, these
* * results show that it has a non-negligible impact on the elec-

o [ ]
% . . % trostatic potential near facet edges and around nanocrystals.
® ¢ o
o b ° o relaxed VI. UNIFORM SURFACE DIPOLE MODEL FOR
o ° d e unrelaxed MACROSCOPIC CRYSTALS
© \0 <«— relaxation direction

The first-principles studies of nanowires presented above
] suggest that facet edges are characterized by a highly local-
FIG. 7. Relaxation of surface atoms near edges betwed®Bl ;o4 (4 of the order of a few angstromshange in dipole
and Al(111) facets. The black circles indicate the unrelaxed atom'cdensity compared with infinite surfaces. In addition, in the

columns, and the white circles the relaxed positions. The armows. <o of inequivalent facet edges, the corresponding local
indicate the direction of the relaxation, and are proportional to the - . - -
relaxation distance, multiplied by a factor 15 for the(10)- edge effects play a relatively minor role in determining the

AI(010 and AKLLD-AI(11T) edges(ieft panels and by a factor 5 general behavior of the electrostatic potential outside the
) wire. In macr ic crystals, the localiz hange in dipol
for the Al(100)-Al(111) edges(right panel. © acroscopic crystals, the localized change in dipole

density near facet edges is a microscopic feature that can be
) neglected and the crystal facets can be viewed as carrying
results and allows us to predict the dependence of the workniform densities of dipoles. In the following, we study the
function on the wire geometry in the macroscopic limit.  electrostatic potential and surface charges created by such a
model system, as a method of understanding afurinitio
results for the inequivalent-facet wire and of predicting the
influence of the size and shape of large crystals—

We have examined the influence of the outermost ionidnaccessible tab initio computations—on the apparent work
layer relaxation on the electrostatic potential around our Afunction. We note that in such macroscopic systems, as ex-
wires. The relaxed ionic positions for the three nanowires arglained in Sec. IV, image contributions can be neglected and
displayed in Fig. 7. The corner ions are seen to relax stronglyhe local work function equated with the electrostatic poten-
inward: at the edge between(ADO) facets, the corner ion is tial component.
displaced by 4.1% of a lattice unit along[&10] direction, We associate each crystal fagewith a uniform dipole
while at the acutéobtuse edge between AlL1l) facets, the density corresponding to a given potential st¥p. In keep-
corner ion is displaced by 2.7%espectively, 2.2%of a  ing with the results of ouab initio simulations, we focus
lattice unit. The nearest neighbors of the corner ion compenessentially on metallic wires that preserve the bulk periodic-
sate this inward movement by relaxing slightly outward. Atity along the third dimension. For infinitely long wires of
the acute angle between(ADO) and Al(111) facets, the cor- arbitrary polygonal section, if we reference the electrostatic
ner ion moves by 10.3% of a lattice unit toward the metalpotential to zero at an infinite distance from the crystal, the
interior. For comparison, the top-layer atoms at infinitely ex-potentialV¥ induced by the planes of surface dipoles is ana-
tended A{100 and Al111) surfaces relax very little lytically given at any poini in the 2D plane perpendicular
(~1%), in theoutward directiort® The trend of inward re- to the wire by a weighted average over the crystal facets
laxation at facet edges is consistent with the electrostatic
model proposed by Finnis and Heiffebased on Smolu- 1
chowski smoothing. The observed stronger relaxation of VIa(x)==— > s Qi(X)W,. (4)
edge atoms is understood to result from an enhanced elec- 2m T
tronic smoothing around the facet edge.

The small surface relaxation at (ADO) facets does not ;(X) is the 2D angle subtending fadetas seen fronx. s;
significantly influence the electrostatic potential outside thes a sign coefficient equal to -(+1) if the surface dipole
metal. However, as shown in Figga#and 4b), the surface points away from(respectively, towardsx. This result can
relaxation around edges between(J4ll) facets has an im- be generalized to three dimensions by considering solid
portant effect on the electrostatic potential outside the metangles(); and normalizing the sum in E¢4) to 1/4z 33

V. EFFECT OF IONIC RELAXATION AT EDGES
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If all the crystal facets possess the same potentia\8p  tion in the vacuum. In generallV is an intermediate value
Eqg. (4) shows that the electrostatic potential outside thepetween all the face-dependent work functiis.
metal is constant and equal to zero. Inside the crystal, the Geometrical considerations of E@) show that the elec-
dipole potentialV’(x) is also uniform, as required in a me- trostatic potential follows a number of scaling laws that we
tallic system(viewed on a macroscopic scal@nd is equal can conveniently exploit. We note thef'(x) depends only
to V9(x) = — W,. We can identifyW, with the work function  on a set of angle€);(x). If the crystal dimensions, collec-
of the facets, since the Fermi energy only contributes a fixegvely written as{L;!, are homogeneously expanded by a
potential shift inside the metal. From E@) we thus recover factor \, keeping all angles fixed, we note that the potential
the intuitive result that the apparent work functigv of a  is globally unchanged, in the sense that
finite macroscopic crystal with equivalent facets is given by
the work functionW, obtained for an infinite surface. This V?ALi}(KX)IV?Li}(X)- ()
result is independent of the angles between the facets and is
valid for crystals of macroscopic dimensions. For sufficiently The potentialVi ,(x) must follow the same scaling law,
large samples showing equivalent facets, the apparent wotlhich leads to a surface charge density that is inversely pro-
function is thus independent of its global morphology. If theportional to the size of the cryst#in two or three dimen-
facets are reduced to a few atomic planes, however, and isions,
the standard case of a reduction in dipole density at the facet

edge, the apparent work functioh’ will be slightly lower
than the work functioW, of an infinitely extended facet.

If a finite metallic crystal is bounded by facets with dif- This observation is independent of the crystal geometry and
ferent dipole distributiongdifferent potential stepgV,), the b Y 9 y

surface dipoles create a potenti#l(x) that is not constant leads to minute charge densities in macroscopic crystals. We
inside the metal. Surface charges have therefore to develdfVe thus demonstrated that the apparent work fundion
spontaneously on the crystal facets to allow a macroscopdoes not depend on the size of the crystal but only on its
cally constant potential in the metal to coexist with the face-global shape. . o
dependent surface dipoles. We include thus a second ingre- VW& now consider the special case of metallic wires that
dient in the model, i.e., a surface charge distributiegx). ~ "@ve & parallelogram section with facets of lengiandB,

This surface charge density induces a supplementary electr§d WOrk functionsi, and Wg, respectively(see Fig. 8
static potentiaM?(x) that compensates the variation of the From Ed.(4), we see that the electrostatic potential, outside
dipole potentialV(x) inside the metal, and recovers the the crystal, is a linear function of the difference in the two

physical requirement of a constant potential in the metal inWOrK functions only. It is convenient, in the following dis-
terior. Therefore, we impose’(x) equal, inside the metal, C€ussion, to take the potential inside the metal as the reference

—\yd o
to the opposite of the dipole potential, within a constant ~ €Nergy forV(x) =V*(x) +V?(x) and to decompose the elec-
trostatic potentiaV(x) into

1
Ty (AX) =0y (X). (8)

VI(x)=—-V4x)—W for x inside the metal.  (5) 0 if x is inside the metal

V(X)= .
In this way, the sum of the potentials induced by the dipoles ) (WA—Wg)vag,oX)+Wg otherwise

and the charges is constant inside the crystal. The value of C)
the constantW is fixed by the requirement that the total
surface charge vanishes, since the crystal is nominally u
charged and globally neutral. 8is the crystal surface, we
impose

vaB.«(X) is a reduced potential that depends on the facet
r]'engthsA andB as well as on the angle between the facets
but is independent of the work functiokg, andWg. Using
this definition, the reduced potentia), g ,(x) varies from 0
(just outside faceB) to 1 (outside facefd) in the vacuum.
fo(x)ds=0. (6) The potential scaling is NOWY A x5,o(AX)=va B (X), SO
s that we only need consider reduced potentigls,(x) that
depend on the angle and the aspect ratim=A/B. The
We determine the surface charge numerically using an iteraspparent work functio is written [using Eq.(9)] as
tive technique similar to the charge simulation metftd®
We first produce a potentiat Vd(x)—W. inside the metal, W= (Wa—Wg)Wpn o+ W, (10)
with an assumed constali¥, by arranging a dense set of
discrete chargefor lines of charge in the case of wilesn  wherew,, , is the value ofv,, ,(x) at an infinite distance
the surfaceS The total charge necessary is examined, thgrom the crystal.
constantW is adjusted to reduce it, and the process is re- |n Fig. 8 we show a contour plot of the total reduced
peated. When the total charge vanishes, the surface charggtentialv ,, ,(x)=v%(x)+v?(x) outside a crystal with an
density has been determined and the corresponding potentigépect ratiom=A/B=1. The angle between the facets is
constaniW gives the apparent work functio. The surface equal to that between @11 and a(100 fcc surface. We
charge density depends on the entire crystal geometry armbserved that the model reproduces well the general behav-
produce a potential” that adds to the dipole potential varia- ior of the ab initio potential outside the Al wire with in-
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 m=AB=1/3
o=54.7°

\ ‘ m=AB=1
o =54.7°

LW
Potent. w .
. 77 | g
’ O e
Charge || g
W density -
Potent. \ Wa i - A B
0 <
Charge | = FIG. 9. Same as Fig. 8, but for an aspect raki®=1/3. The
density - reduced apparent work function éis=0.344.
A B
P, P, P, surface charge density is shown in the lower panel of Fig. 9.

We note that it is lower on the larger facet, and the apparent
FIG. 8. Upper panel: Reduced electrostatic potentigl(x)  work function (v=0.344) is biased towards the larger facet.
(defined in the tejtoutside a model crystal with nonequivalent With the model one can thus predict in general the depen-
facets of lengthA and B. The aspect ratio is chosen such that  jance of the local work function and also of the apparent
=B. The angle between the facets ig=54.7°. Continuous o function on the wire geometry. In Ref. 5, we have
(dashedindicate regions aboveespectively belowthe potential at examined in detail the dependence of the apparent work

infinity. Lower panel: Potential just outside the crystal surface [ . .
(dashed lines—equal to W, and Wy for facets A and B,  functionwp , on the wire aspect ratim and anglea. The
respectively—and surface charge density on each facéitl ling. ~ Model predictions show that the aspect ratio is the crucial
The reduced apparent work functionds= 0.5. factor determining the apparent work fgnctpn, while the
angle between the facets has only a limited influence. Also
] ) . ) the predicted dependence of the apparent work function on
equivalent facetqFig. 6). For wires with facets of equal the aspect ratio differs significantly from the result of the
length the apparent work function is equal to the average ofommonly used surface-weighted average rule. The latter is
the face-dependent valued/=(W,—Wg)/2 (i.e., w=0.5),  expected thus to apply only to selected cases of simple sur-
independently of the angle between the facets. The surface face geometries (i.e., infinite planes, cylinders, and
charge density obtained from the model is shown in thespheres®
lower panel of Fig. 8 and is seen to be highly inhomoge-
neous. For the wires §tudied here, th_e facets of higher work VII. CONCLUSIONS
function carry a negative charge. In view of the two different
work functions coexisting at each facet edge, the potential is In this study, we have performeib initio calculations for
discontinuous along the outside perimeter of the parallelometal nanowires with facets of different crystallographic ori-
gram. This leads to a surface charge density that diverges antations to investigated the work-function profile near facet
each vertex of the parallelograth® However, at real facet edges. We have then modeled thle initio surface charge
edges, the smooth variation of surface dipole density near theistribution to derive the dependence of the work function on
facet edge is expected to induce a finite charge transfer behe crystal geometry in the macroscopic limit. Galr initio
tween the various crystal facets. results for the electrostatic potential around sharp equivalent
In Fig. 9 we show a contour plot of the total reducedfacet edges show a much more complex behavior than in
potential v, o(X) =v9(X)+v7(x) outside a crystal with a previous theoretical studies. Comparing aluminum and so-
facet ratiom=A/B=1/3. The angle between the facets is dium facet edges, we find a variety of different behaviors of
again equal to that between(#11) and a(100 surface. The the local work function near the edges, which can be under-
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stood by considering the particular filling of atomiclike or- [ 4, i
bitals of the edge atoms. The relaxation of the surface ions |/ /)
near facet edges influences the electrostatic potential in the /l
vacuum more strongly than in the case of infinite planar
surfaces. Our results on inequivalent-facet edges show how
different work functions can coexist on either side of a facet
edge, provided a nonvanishing surface charge distribution
develops on the crystal faces. The surface charge is most
intense near sharp edges and contributes to creating a mac-
roscopically flat electrostatic potential inside the metal. By | :
extrapolating from ouab initio results for nanocrystals, we  -100 -0 0 50
can predict the work-function behavior around larger, mac- FIG. 10. Classical image potentidin eV) near a metallic
roscopic crystals with nonequivalent facets, and derive th‘\?vedge: Lef't panel: 90° wedge. Right panel: 54.7° wedge, corre-
dependence of the apparent work function on the crystal 98&ponding to an edge between(ill) and a (100 surface. The

ometry. contour lines are equally spaced. The axes are graduated in atomic
units.

50 100
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recently established analytically in terms of a collection of
APPENDIX image source$! The locations and values of the virtual im-

ages depend on the position of the source charge and the

In order to describe the local work function outside aangle of the wedge. Using the formalism developed in Ref.
metallic surface, the exchange-correlation contribution mus#l1, we have calculated the image potential felt by a classical
be included in the total potential felt by an electron. Theelectron outside a metallic facet edge, by integrating the
LDA fails to reproduce the long-range image potential,work performed against the image force on taking the source
which the correct exchange-correlation potential is known teelectron to infinity. In Fig. 10 we have plotted the classical
follow. Classical electrostatics shows that outside an infinitdmage potential around both a 90° and an acute-angle wedge,
metal surface the image potential felt by an electron is givercorresponding to #00-(010 facet edge and 6.00)-(111)
by —e?/4r, wherer is the distance to the metal surface, andfacet edge, respectively. In both cases, the image potential
e the electron charg@tomic units are assumed herévhile ~ behaves monotonously around the facet edge, recovering
the classical image potential diverges at the metal surface, Wwithin a few tens of atomic units a form characteristic of an
describes correctly the exchange-correlation potential felt bynfinite crystal surface. These results show that the image
an electron in the vacuum beyond the range of the surfaceontribution near a facet edge is smoothly behaved and is
electronic density, provided thatis taken as the distance to negligible beyond~100 nm. The local work-function varia-
the effective image-plane surfat®On the contrary, the tion from facet to facet is thus accounted for by the electro-
LDA potential decays exponentially in the vacuum with the static contribution only.
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