
PHYSICAL REVIEW B 66, 075405 ~2002!
Work functions and surface charges at metallic facet edges
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École Polytechnique Fe´dérale de Lausanne, CH-1015 Lausanne, Switzerland
and INFM-Dipartimento di Fisica Teorica, Universita´ di Trieste, I-34014 Trieste, Italy

~Received 9 April 2002; published 6 August 2002!

The electronic charge densities and work functions at sharp metallic facet edges are determined fromab
initio calculations, combined with macroscopic averaging techniques. In particular, we examine how two
different work functions coexist at close range near edges between inequivalent facets. The surface ionic
relaxation at facet edges is shown to influence appreciably the local electrostatic potential in the vacuum.
Various edges between Al~100! and Al~111! facets are studied, as well as between Na~110! facets. We also
develop a model of electronic surface dipoles, which accounts for the surface charge transfer between in-
equivalent facets, and which allows us to predict the influence of the shape and size of a macroscopic crystal
on its work functions.
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I. INTRODUCTION

Microscopic details in the electronic density at metal s
faces are responsible for the dependence of the work fu
tion on the crystal surface orientation.1 This dependence, i.e
the work-function anisotropy, is a quantum phenomenon
has clear macroscopic consequences, since difference
work function of up to 1 eV can be measured between t
surfaces of a given element.2 This leads to an interestin
problem, namely, the spatial dependence of the work fu
tion outside a finite crystal, particularly if nonequivalent fa
ets are exposed to the vacuum. At large distances fro
finite crystal, the crystalline anisotropy is negligible, and t
electrostatic potential and work function must be isotro
and constant. Closer to the crystal, the electrostatic pote
must vary instead from facet to facet, mirroring the chan
of the surface work functions. Since the Fermi energy
uniform within a crystal and the electrostatic potential o
side a smooth surface is constant beyond about 1 nm,
changes in the vacuum potential must be eminently loca
facet edges. Several experimental techniques allow no
days work functions of different crystal facets to be me
sured simultaneously. For example, using a single-cry
hemispherical cathode, the work functions of several surf
orientations have been imaged simultaneously by thermio
projection.3 The local work function near facet edges h
also been mapped by scanning probe-hole field-emis
microscopy.4 However, the mechanism allowing for differen
surface work functions to exist simultaneously near a cry
edge has remained largely unexplored up to now. Also,
effects of facet edges on the local work function are not w
understood yet.

In a previous paper,5 we examined, in a particular cas
0163-1829/2002/66~7!/075405~10!/$20.00 66 0754
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the problem of different work-function coexistence near
facet edge. The apparent work function—defined as the
ference between the vacuum potential at an infinite dista
from a crystal and the Fermi level—was also shown to
pend in general on the global crystal morphology.5 The pur-
pose of this paper is to present, in more detail, and by me
of further ab initio calculations, the behavior of the elec
tronic charge and the potentials they induce close to a var
of facet edges. We also investigate the effects of surf
ionic relaxation and of image potential contributions to t
local work function.

We concentrate here on atomically sharp edges of h
density low-index facets. Previous theoretical investigatio
of the electrostatic potential around sharp metallic ed
have been limited to studies of a 90° jellium wedge. An ea
description concentrated on the potential inside the me6

modeling the electronic density by a product of two on
dimensional surface distributions. The 90° wedge has a
been studied more recently in the Thomas-Fermi approxi
tion in relation with edge energies.7 However, this model is
known to be a poor approximation for surfaces, since
associated work function vanishes for all electronic densi
of the bulk metal.8 Experimentally, atomic-sharp edges a
accessible by buildup of low-index facets due to surface
fusion in the presence of an electric field, for example. T
technique has been exploited in microtip fabrication
scanning tunneling microscopy.9

As prototype systems, we focus on aluminum, ansp
metal, and on sodium, a simples-electron metal, for com-
parison. The Al work function has been studied theoretica
by several authors, notably using discrete-lattice c
rections to a jellium surface,10,11 semianalytic variational
©2002 The American Physical Society05-1
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calculations,12 density-functional theory,13 and a one-
dimensional self-consistent model with Ashcro
pseudopotentials.14 These calculations all describe infinite
extended single surfaces and obtain some anisotropy in
metal work function. The Al work function increases expe
mentally from ~111! to ~110! and to ~100!.15 This trend is
different from that observed for most fcc metals, which sh
increasing work functions with increasing surface atom
packing, from ~110! to ~100! and to ~111!. In a previous
study,16 we have shown that the observed trend in Al can
explained by thep-atomiclike character of the density o
states at the Fermi energy. Conversely, sodium, a bcc m
displays a work-function anisotropy16 that follows Smolu-
chowski’s rule of lower work functions for more ope
surfaces.17

After briefly introducing the theoretical methodology
our calculations in Sec. II, we will determine the charge d
sity, in Sec. III, and the local work function, in Sec. IV, ne
an edge between two equivalent Al and Na facets, as we
between inequivalent Al facets. The importance of ion
surface-relaxation effects near facet edges will be hi
lighted in Sec. V. The long-range features of the electrost
potential outside a finite metal crystal will be understood
terms of a simple model of the surface dipole in Sec.
before concluding in Sec. VII.

II. THEORETICAL METHODOLOGY

We perform ab initio calculations within density-
functional theory in the local-density approximation~LDA !
using the Ceperley-Alder exchange-correlation functiona18

We use Troullier-Martins pseudopotentials19 in the
Kleinman-Bylander approximation.20 A set of Monkhorst-
Pack specialk points are employed for the Brillouin-zon
integrations,21 together with a Gaussian broadening of 0.
Ry to determine the position of the Fermi level.22 The va-
lence charge density is determined self-consistently by
panding the electronic wave functions on a set of pla
waves with kinetic energies up to 16 Ry. Ionic relaxatio
near facet edges are optionally included by allowing the o
ermost layer of ions to move to their equilibrium position

We concentrate in this study on Al~100! and Al~111! fac-
ets and their mutual edges, and on Na~110! facets for com-
parison. The surface potentials near facet edges are d
mined by considering a supercell describing a nanowire
polygonal section with flat facets of low-index orientation
The crystal retains the bulk periodicity in one dimension, a
thus describes infinitely long nanowires and facet edges.
lateral periodic boundary conditions on the supercell int
duce parallel replicas of the wire, which are separated
vacuum regions. The supercell is chosen with basis vec
parallel to the crystal facets. For the facet edge betw
Al ~100! and Al~010!, respectively Al~111!-Al(111̄), we used
a 535 array of atoms, with a distance equivalent to fi
vacuum planes along each dimension and seven, ten, red
k points. For the Al~100!-Al ~111! edge, we used a 535 array
of atoms, with four vacuum planes parallel to the~111! facet
and five vacuum planes parallel to the~100! facet, with eight
k points. For the sodium nanowire, we use a 636 array of
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atoms to model Na~110! facets, with six equivalent vacuum
layers in each direction, and eight reducedk points.

We evaluate the accuracy of our procedure by compa
the nanowire surface potentials with infinitely extended s
face calculations. For such surfaces, studied with a stan
thin-film supercell approach in conjunction with macr
scopic averages, the computed work functions are 4.25, 4
and 4.30 eV for the Al~111!, Al~100!, and Al~110! surfaces
respectively,23 compared to 4.24, 4.41, and 4.28 e
experimentally.15 The theoretical values agree to within 0.0
eV with experiment and successfully reproduce the exp
mental trend. The uncertainty on the absolute value of
work function due to the LDA is typically of the order of 0.
eV. However, as usual within the LDA, and consistent w
gradient-correction calculations~GGA!, we expect a better
accuracy for the relative values of the work functions, on
order of the numerical convergence of our results with
computational parameters, i.e.,;0.03 eV. For comparison
when using the GGA with the Perdew-Burke-Ernzerh
functional,24 the work functions of the Al~100! and Al~111!
surfaces shift downward by 0.17 eV, compared to the LD
results. The local work functions around nanowires are a
reduced by about the same amount~0.15–0.17 eV!.

III. CHARGE DENSITIES NEAR FACET EDGES

To evaluate the surface dipole near facet edges, we u
two-dimensional ~2D! macroscopic averaging procedur
Once the three-dimensional charge densityr(x1 ,x2 ,x3) is
determinedab initio, a linear average parallel to the facets
performed to obtain a 2D average charge density,

r̄~x1 ,x2!5
1

l 3
E

0

l 3
dx3r~x1 ,x2 ,x3!, ~1!

where the coordinatesx1 ,x2 ,x3 are measured along the su
percell edges with the third axis chosen along the nanow
axis. l 3 is the thickness of the supercell parallel to the fa
edges. The microscopic crystal periodicity is evacuated
magnify surface and edge effects on the charge density
potential by evaluating a 2D macroscopic average,

r̄̄~x1 ,x2!5
1

AE2 l 1/2

l 1/2

dx18E
2 l 2/2

l 2/2

dx28r̄~x11x18 ,x21x28!, ~2!

where l 1 and l 2 are the dimensions of thex3-projected mi-
croscopic lattice unit cell, andA is its area.

This averaging technique is illustrated in Fig. 1 in the ca
of a facet edge between two equivalent Al~100! surfaces. The
self-consistent valence-electron charge density projected
allel to the facet edge and the macroscopic average of
total charge ~valence-electron plus ion-point charge! are
shown, thereby highlighting the surface dipole. The el
tronic density smooths the rectangular area of the ma
scopic ionic charge at the facet edge. The influence of
facet edge on the charge density extends essentially up to
atomic columns surrounding the edge, beyond which de
ties characteristic of infinite crystal faces are recovered.

We now turn to the charge density at a facet edge betw
two inequivalent surfaces. Fig. 2 shows the total mac
5-2
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WORK FUNCTIONS AND SURFACE CHARGES AT . . . PHYSICAL REVIEW B 66, 075405 ~2002!
scopic charge around the two different edges betw
Al ~100! and Al~111! facets, without any surface relaxatio
Near the obtuse edge, the electronic density closely follo
the angled surface, with slight smoothing within the bu
part ~within ;2 a.u.). Around the acute angle, the smoo
ing is notably stronger. The intrinsic difference betwe
the two facets is not readily seen in the contour plot
the charge density, but leads, as we will see in the follo
ing section, to noticeable differences in the electrosta
potential.

IV. LOCAL WORK FUNCTION AROUND FACET EDGES

Outside a crystal surface, beyond the extent of the e
tronic charge density, the local work function is governed
both the image potential and the difference between the l
electrostatic potential and the Fermi energy of the crysta
is well known that the LDA incorrectly describes th

FIG. 1. Two-dimensional average valence-electron density~left
panel! and total macroscopic charge density~right panel! at a facet
edge between two Al~100! surfaces with no surface relaxation
Dashed lines correspond to negative values. The contour lines
uniformly spaced by 0.3 electrons per unit cell. The black di
indicate the atomic columns. After macroscopic averaging, the io
charge is inside rectangular region enclosed by the thick solid
in the right panel.

FIG. 2. Contour plot of the total macroscopic charge density
the two inequivalent-facet edges between Al~100! and Al~111! sur-
faces, without surface relaxation. The contour lines are unifor
spaced by 0.3 electrons per unit cell. Dashed lines correspon
negative values. The thick solid line encloses the macroscopic i
charge density.
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asymptotic form of the image potential. The LDA exchang
correlation potential falls off exponentially, whereas the a
tual nonelectrostatic potential contribution to the local wo
function should follow the classical image potential beyon
few atomic units from the surfaces.25 The latter contribution,
however, known analytically for metallic edges of arbitra
angles, plays no role in the coexistence of different surf
work functions near facet edges, nor in the apparent w
function at an infinite distance from the crystal. In the A
pendix, we explicitly determine the behavior of the classi
image potential around two prototype metal wedges~a 90°
and an acute-angle wedge!. Because the image potential b
comes negligible at sufficient distance (;100 nm) from any
crystal-sample surface, the apparent work function is entir
determined by the electrostatic potential contribution. T
same applies to the work-function values of the infinite
extended surfaces, and hence to the coexistence mecha
Moreover, as the image potential behaves monotonou
around facet edges~see the Appendix! any localvariation in
the work function around facet edges should also derive fr
the electrostatic potential contribution. In what follows, w
will therefore focus on the electrostatic componentWE of the
local work function.

To calculate the electrostatic potential at large distan
from the nanowire, we must use a technique to remove
supercell neighbors. The macroscopic electrostatic poten
v̄̄(x1 ,x2) outside an isolated wire is determined from t
corresponding macroscopic average of the total cha
r̄̄(x1 ,x2) by means of a modified 2D multipole scheme.26 In
this technique, the plane is divided into two regions by
circle surrounding the total macroscopic charge of a sin
nanowire ~within its supercell!. Inside this ring, we deter-
mine the electrostatic potential from the self-consist
charge density by solving the Poisson equation in recipro
space, using the supercell periodic boundary conditions.
potential is also determined in this way at discrete poi
uniformly spread around the circle. Considering then that
ring is in a vacuum, without any supercell neighbors, t
potential outside the ring can be expanded in terms of this
of values.26 The isotropic potential at infinity, which corre
sponds to the apparent work function, can be computed f
the average of the potential values calculated around
ring. The local work functionWE(x1 ,x2) is obtained by sub-
tracting the Fermi levelEF from the macroscopic electro

static potentialv̄̄(x1 ,x2):

WE~x1 ,x2!5 v̄̄~x1 ,x2!2EF . ~3!

The Fermi energyEF is found from a separate bul
calculation27 to reduce quantum size effects.28

The electrostatic potential created around a wire form
from Al~100! facets, without any surface relaxation, is show
in Fig. 3. The bulk Fermi energy has been subtracted, t
obtaining a representation of the local work functionWE .
We note that a macroscopically flat potential, indicating
bulk behavior of the charge density, is obtained within
extended section of the wire. Outside the center of e
facet, we obtain a local work function close to the infinit
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s
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e
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C. J. FALL, N. BINGGELI, AND A. BALDERESCHI PHYSICAL REVIEW B66, 075405 ~2002!
plane work function. Toward the edges, the potential d
markedly and the contour lines extend further into t
vacuum. A similar picture was obtained in the theoreti
study of stepped jellium surfaces,29 where the potential con
tour lines were seen to protrude near the top of the ledges
account of the reduced electronic charge density in th
regions. Scanning tunneling microscopy images of the lo
work function of Au/Cu~111! surfaces have also shown
lowering of the potential around step edges.30 However, the
aspect of the electrostatic potential calculated hereab initio
at a facet edge is strikingly different from that obtained fo
jellium in the Thomas-Fermi approximation,7 where only a
near-monotonous smoothing around the edge was obse

FIG. 3. Contour plot of the macroscopic electrostatic poten
~in eV! around an Al nanowire bounded by~100! facets, without
surface relaxation. The potential zero~thick line! has been set at th
Fermi energy. Continuous~dashed! lines indicate regions above~re-
spectively, below! the potential at infinity. The black disks indicat
the atomic columns. The axes are graduated in atomic units.
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This difference highlights the importance of self-consiste
field approaches when studying facet edges.

When leaving this nanowire in a@110# direction, along a
diagonal of the square nanowire section, the potential
creases all the way to its value at infinity. Perpendicularly
the Al~100! facets, the potential instead shows a broad ma
mum corresponding to the value of the infinite-plane wo
function, before decreasing to its value at infinity. The lat
variation indicates that the edge influences the poten
value at infinity. This feature is related to the nanosco
lateral size of our wire. Indeed, the characteristic length (dm)
associated with the electron smoothing at edges is of
order of a few angstroms.5 In the nanowire,dm is thus a
non-negligible fraction of the wire lateral dimension, whic
explains the nonvanishing influence of edges on the appa
work function. This influence, however, is expected to d
crease with the size of the sample, and vanish in the ma
scopic limit.5 If we imagine that the nanowire crystal face
are scaled up in size, the symmetry of the resulting elec
static potential will be retained. Larger spatial regions w
the infinite-plane work function will develop along the fa
ets, while the reduced-potential areas near the edges
remain essentially unchanged. Comparativeab initio test cal-
culations performed for a larger~7-atom-thick! wire support
this description. We also believe that analogous ed
induced reductions in potential should occur near crystal c
ners, where three equivalent Al~100! facets meet.

The electrostatic potential is not always reduced n
facet edges. Figure 4~a! shows the potential outside edge
formed from Al~111! facets, without any ionic relaxation. A
the acute edge between two Al~111! facets, the electrostatic
potential is seen to be locally raised. This behavior can
understood by invoking the same type of mechanism
related to the openp-shell nature of Al—that is responsibl
for the anomaly in the Al work-function anisotropy, i.e., a
anisotropic occupation of the atomiclikep orbitals of the
surface atoms.16 The latter mechanism yields for the Al~111!
surface a work function which is lower than those of the
~100! and ~110! surfaces, at variance with Smoluchowsk
rule.17 Pursuing our interpretation of work-function aniso

l

l
-
n

-

d

FIG. 4. Contour plot of the
macroscopic electrostatic potentia
~in eV! around a nanowire con
taining facet edges betwee
Al ~111! surfaces. The left~right!
panel omits ~respectively, in-
cludes! surface relaxation. The po
tential zero~thick line! is set at the
Fermi energy. Continuous
~dashed! lines indicate regions
above ~respectively, below! the
potential at infinity. The black and
white disks indicate the atomic
columns. The axes are graduate
in atomic units.
5-4
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WORK FUNCTIONS AND SURFACE CHARGES AT . . . PHYSICAL REVIEW B 66, 075405 ~2002!
ropy trends in aluminum,16 the local rise in potential outsid
the acute edge between the Al~111! low-work-function facets
can be explained in terms of a change in the occupa
numbers of the atomiclikep-orbitals on the edge atoms rela
tive to the~111!-surface atoms. At a facet edge, the asymm
try between the three directionalp-orbitals is different from
that of an atom in an extended facet. Only onepi orbital on
the edge atom is parallel to both facets, whereas twopi or-
bitals are parallel to an extended surface. Compared to at

FIG. 5. Contour plot of the macroscopic electrostatic poten
~in eV! around an unrelaxed nanowire describing 60° and 1
edges between Na~110! facets. The potential zero~thick line! is set
at the Fermi energy. Continuous~dashed! lines indicate regions
above~respectively below! the potential at infinity. The disks indi
cate the atomic columns. The axes are graduated in atomic un
07540
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at the surface of extended Al~111! facets, a decrease in th
occupation of thepi density of states is induced at the edge
A corresponding increase in the occupation of thep' states
perpendicular to the facet edges is created. At the acute e
this redistribution of charge among the inequivalent orbit
of the edge atoms induces a local increase in potential16 out-
side the edge, which is stronger than the local potential
duction produced by the electronic edge-smoothing proc

This interpretation is supported by a comparative stu
with sodium facet edges. In Fig. 5, we present a Na nanow
with 60° and 120° edges between Na~110! facets. The work
function of an infinite Na~110! surface was previously found
to be 3.00 eV,16 in good agreement with the electrostat
potential found here near the center of the Na facets. C
pared to Al, the general aspect of the potential outside the
nanowire is considerably different. The potential shows
tended regions of low work function at both the acute and
obtuse Na~110! edges. We believe this behavior represe
the general case for metals~with the possible exception o
some transition metals31! which do not possess an open sh
of p-states, and for edges between low-index equivalent
ets.

The local work function around edges between two
equivalent facets is shown in Fig. 6~a!. The spatial behavior
of the potential in vacuum is qualitatively different from th
observed for equivalent facet edges. The potential rises c
tinuously perpendicularly to the low-work-function Al~111!
facets, while it goes through a maximum perpendicularly
the high-work-function Al~100! facets. At infinity, the appar-
ent work function is intermediate between the two fac
dependent work functions. Local edge effects clearly do
play a major role in determining the general behavior of
work-function here, as work function anisotropy effects a
stronger. The potential gradients that develop around ed
i.e., the macroscopic electric fields that exist outside the n
tral metal crystal, indicate that this behavior is dominated
a different mechanism, namely, charge transfer between
ets. We will discuss such a charge-transfer mechanism
Sec. VI, where we present a model that explains ourab initio

l
°

.

r
FIG. 6. Same as Fig. 4 but fo
edges between Al~100! and
Al ~111! facets.
5-5
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C. J. FALL, N. BINGGELI, AND A. BALDERESCHI PHYSICAL REVIEW B66, 075405 ~2002!
results and allows us to predict the dependence of the w
function on the wire geometry in the macroscopic limit.

V. EFFECT OF IONIC RELAXATION AT EDGES

We have examined the influence of the outermost io
layer relaxation on the electrostatic potential around our
wires. The relaxed ionic positions for the three nanowires
displayed in Fig. 7. The corner ions are seen to relax stron
inward: at the edge between Al~100! facets, the corner ion is
displaced by 4.1% of a lattice unit along a@110# direction,
while at the acute~obtuse! edge between Al~111! facets, the
corner ion is displaced by 2.7%~respectively, 2.2%! of a
lattice unit. The nearest neighbors of the corner ion comp
sate this inward movement by relaxing slightly outward.
the acute angle between Al~100! and Al~111! facets, the cor-
ner ion moves by 10.3% of a lattice unit toward the me
interior. For comparison, the top-layer atoms at infinitely e
tended Al~100! and Al~111! surfaces relax very little
(;1%), in theoutward direction.16 The trend of inward re-
laxation at facet edges is consistent with the electrost
model proposed by Finnis and Heine,32 based on Smolu-
chowski smoothing. The observed stronger relaxation
edge atoms is understood to result from an enhanced e
tronic smoothing around the facet edge.

The small surface relaxation at Al~100! facets does no
significantly influence the electrostatic potential outside
metal. However, as shown in Figs. 4~a! and 4~b!, the surface
relaxation around edges between Al~111! facets has an im-
portant effect on the electrostatic potential outside the m

FIG. 7. Relaxation of surface atoms near edges between Al~100!
and Al~111! facets. The black circles indicate the unrelaxed atom
columns, and the white circles the relaxed positions. The arr
indicate the direction of the relaxation, and are proportional to
relaxation distance, multiplied by a factor 15 for the Al~100!-

Al ~010! and Al~111!-Al ~111̄) edges~left panels! and by a factor 5
for the Al~100!-Al ~111! edges~right panel!.
07540
rk

c
l

re
ly

n-
t

l
-

ic

f
c-

e

al

nanowire. When including the relaxation, the work functi
of a bulk Al~111! surface~4.25 eV! is more closely approxi-
mated around the nanowire and a larger region of roug
constant potential develops. A similar situation is observ
when comparing Figs. 6~a! and 6~b!, which respectively omit
and include the surface ionic relaxation near an edge
tween inequivalent facets. Once again, the infinite-pla
work functions are recovered better outside both the Al~100!
and the Al~111! facets when the surface relaxation is i
cluded. We see that the ionic relaxation allows the infini
plane work functions to be recovered closer to the ed
Whereas the ionic surface relaxation does not apprecia
influence the work function of infinite metal surfaces, the
results show that it has a non-negligible impact on the e
trostatic potential near facet edges and around nanocrys

VI. UNIFORM SURFACE DIPOLE MODEL FOR
MACROSCOPIC CRYSTALS

The first-principles studies of nanowires presented ab
suggest that facet edges are characterized by a highly lo
ized (dm of the order of a few angstroms! change in dipole
density compared with infinite surfaces. In addition, in t
case of inequivalent facet edges, the corresponding lo
edge effects play a relatively minor role in determining t
general behavior of the electrostatic potential outside
wire. In macroscopic crystals, the localized change in dip
density near facet edges is a microscopic feature that ca
neglected and the crystal facets can be viewed as carr
uniform densities of dipoles. In the following, we study th
electrostatic potential and surface charges created by su
model system, as a method of understanding ourab initio
results for the inequivalent-facet wire and of predicting t
influence of the size and shape of large crystals
inaccessible toab initio computations—on the apparent wo
function. We note that in such macroscopic systems, as
plained in Sec. IV, image contributions can be neglected
the local work function equated with the electrostatic pote
tial component.

We associate each crystal faceti with a uniform dipole
density corresponding to a given potential stepWi . In keep-
ing with the results of ourab initio simulations, we focus
essentially on metallic wires that preserve the bulk period
ity along the third dimension. For infinitely long wires o
arbitrary polygonal section, if we reference the electrosta
potential to zero at an infinite distance from the crystal,
potentialVd induced by the planes of surface dipoles is an
lytically given at any pointx in the 2D plane perpendicula
to the wire by a weighted average over the crystal facets33

Vd~x!5
1

2p (
i

siV i~x!Wi . ~4!

V i(x) is the 2D angle subtending faceti, as seen fromx. si
is a sign coefficient equal to -1~11! if the surface dipole
points away from~respectively, towards! x. This result can
be generalized to three dimensions by considering s
anglesV i and normalizing the sum in Eq.~4! to 1/4p.33
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If all the crystal facets possess the same potential stepW0,
Eq. ~4! shows that the electrostatic potential outside
metal is constant and equal to zero. Inside the crystal,
dipole potentialVd(x) is also uniform, as required in a me
tallic system~viewed on a macroscopic scale!, and is equal
to Vd(x)52W0. We can identifyW0 with the work function
of the facets, since the Fermi energy only contributes a fi
potential shift inside the metal. From Eq.~4! we thus recover
the intuitive result that the apparent work functionW̄ of a
finite macroscopic crystal with equivalent facets is given
the work functionW0 obtained for an infinite surface. Thi
result is independent of the angles between the facets a
valid for crystals of macroscopic dimensions. For sufficien
large samples showing equivalent facets, the apparent w
function is thus independent of its global morphology. If t
facets are reduced to a few atomic planes, however, an
the standard case of a reduction in dipole density at the f
edge, the apparent work functionW̄ will be slightly lower
than the work functionW0 of an infinitely extended facet.

If a finite metallic crystal is bounded by facets with di
ferent dipole distributions~different potential stepsWi), the
surface dipoles create a potentialVd(x) that is not constan
inside the metal. Surface charges have therefore to dev
spontaneously on the crystal facets to allow a macrosc
cally constant potential in the metal to coexist with the fa
dependent surface dipoles. We include thus a second in
dient in the model, i.e., a surface charge distributions(x).
This surface charge density induces a supplementary ele
static potentialVs(x) that compensates the variation of th
dipole potentialVd(x) inside the metal, and recovers th
physical requirement of a constant potential in the metal
terior. Therefore, we imposeVs(x) equal, inside the metal
to the opposite of the dipole potential, within a constantW,

Vs~x!52Vd~x!2W for x inside the metal. ~5!

In this way, the sum of the potentials induced by the dipo
and the charges is constant inside the crystal. The valu
the constantW is fixed by the requirement that the tot
surface charge vanishes, since the crystal is nominally
charged and globally neutral. IfS is the crystal surface, we
impose

E
S
s~x!ds50. ~6!

We determine the surface charge numerically using an it
tive technique similar to the charge simulation method.34–36

We first produce a potential2Vd(x)2W inside the metal,
with an assumed constantW, by arranging a dense set o
discrete charges~or lines of charge in the case of wires! on
the surfaceS. The total charge necessary is examined,
constantW is adjusted to reduce it, and the process is
peated. When the total charge vanishes, the surface ch
density has been determined and the corresponding pote
constantW gives the apparent work functionW̄. The surface
charge density depends on the entire crystal geometry
produce a potentialVs that adds to the dipole potential varia
07540
e
e

d

y

is

rk

in
et

op
i-
-
re-

ro-

-

s
of

n-

a-

e
-
rge
tial

nd

tion in the vacuum. In general,W̄ is an intermediate value
between all the face-dependent work functionsWi .

Geometrical considerations of Eq.~4! show that the elec-
trostatic potential follows a number of scaling laws that w
can conveniently exploit. We note thatVd(x) depends only
on a set of anglesV i(x). If the crystal dimensions, collec
tively written as $Li%, are homogeneously expanded by
factor l, keeping all angles fixed, we note that the poten
is globally unchanged, in the sense that

V$lLi %
d ~lx!5V$Li %

d ~x!. ~7!

The potentialV$Li %
s (x) must follow the same scaling law

which leads to a surface charge density that is inversely p
portional to the size of the crystal~in two or three dimen-
sions!,

s$lLi %
~lx!5

1

l
s$Li %

~x!. ~8!

This observation is independent of the crystal geometry
leads to minute charge densities in macroscopic crystals.
have thus demonstrated that the apparent work functionW̄
does not depend on the size of the crystal but only on
global shape.

We now consider the special case of metallic wires t
have a parallelogram section with facets of lengthsA andB,
and work functionsWA and WB , respectively~see Fig. 8!.
From Eq.~4!, we see that the electrostatic potential, outs
the crystal, is a linear function of the difference in the tw
work functions only. It is convenient, in the following dis
cussion, to take the potential inside the metal as the refere
energy forV(x)5Vd(x)1Vs(x) and to decompose the elec
trostatic potentialV(x) into

V~x!5H 0 if x is inside the metal

~WA2WB!vA,B,a~x!1WB otherwise
~9!

vA,B,a(x) is a reduced potential that depends on the fa
lengthsA andB as well as on the angle between the facetsa,
but is independent of the work functionsWA andWB . Using
this definition, the reduced potentialvA,B,a(x) varies from 0
~just outside facetB) to 1 ~outside facetA) in the vacuum.
The potential scaling is now:vlA,lB,a(lx)5vA,B,a(x), so
that we only need consider reduced potentialsvm,a(x) that
depend on the anglea and the aspect ratiom5A/B. The
apparent work functionW̄ is written @using Eq.~9!# as

W̄5~WA2WB!w̄m,a1WB , ~10!

where w̄m,a is the value ofvm,a(x) at an infinite distance
from the crystal.

In Fig. 8 we show a contour plot of the total reduce
potential vm,a(x)5vd(x)1vs(x) outside a crystal with an
aspect ratiom5A/B51. The angle between the facets
equal to that between a~111! and a~100! fcc surface. We
observed that the model reproduces well the general be
ior of the ab initio potential outside the Al wire with in-
5-7
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equivalent facets~Fig. 6!. For wires with facets of equa
length the apparent work function is equal to the average
the face-dependent values:W̄5(WA2WB)/2 ~i.e., w̄50.5),
independently of the anglea between the facets. The surfac
charge density obtained from the model is shown in
lower panel of Fig. 8 and is seen to be highly inhomog
neous. For the wires studied here, the facets of higher w
function carry a negative charge. In view of the two differe
work functions coexisting at each facet edge, the potentia
discontinuous along the outside perimeter of the paralle
gram. This leads to a surface charge density that diverge
each vertex of the parallelogram.37,38 However, at real face
edges, the smooth variation of surface dipole density nea
facet edge is expected to induce a finite charge transfer
tween the various crystal facets.

In Fig. 9 we show a contour plot of the total reduc
potential vm,a(x)5vd(x)1vs(x) outside a crystal with a
facet ratiom5A/B51/3. The angle between the facets
again equal to that between a~111! and a~100! surface. The

FIG. 8. Upper panel: Reduced electrostatic potentialvm,a(x)
~defined in the text! outside a model crystal with nonequivale
facets of lengthA and B. The aspect ratio is chosen such thatA
5B. The angle between the facets isa554.7°. Continuous
~dashed! indicate regions above~respectively below! the potential at
infinity. Lower panel: Potential just outside the crystal surfa
~dashed lines!—equal to WA and WB for facets A and B,
respectively—and surface charge density on each facet~solid line!.

The reduced apparent work function isv̄50.5.
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surface charge density is shown in the lower panel of Fig
We note that it is lower on the larger facet, and the appar
work function (w̄50.344) is biased towards the larger fac

With the model one can thus predict in general the dep
dence of the local work function and also of the appar
work function on the wire geometry. In Ref. 5, we hav
examined in detail the dependence of the apparent w
function w̄m,a on the wire aspect ratiom and anglea. The
model predictions show that the aspect ratio is the cru
factor determining the apparent work function, while t
angle between the facets has only a limited influence. A
the predicted dependence of the apparent work function
the aspect ratio differs significantly from the result of t
commonly used surface-weighted average rule. The latte
expected thus to apply only to selected cases of simple
face geometries ~i.e., infinite planes, cylinders, an
spheres!.39

VII. CONCLUSIONS

In this study, we have performedab initio calculations for
metal nanowires with facets of different crystallographic o
entations to investigated the work-function profile near fa
edges. We have then modeled theab initio surface charge
distribution to derive the dependence of the work function
the crystal geometry in the macroscopic limit. Ourab initio
results for the electrostatic potential around sharp equiva
facet edges show a much more complex behavior than
previous theoretical studies. Comparing aluminum and
dium facet edges, we find a variety of different behaviors
the local work function near the edges, which can be und

FIG. 9. Same as Fig. 8, but for an aspect ratioA/B51/3. The

reduced apparent work function isv̄50.344.
5-8
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stood by considering the particular filling of atomiclike o
bitals of the edge atoms. The relaxation of the surface i
near facet edges influences the electrostatic potential in
vacuum more strongly than in the case of infinite plan
surfaces. Our results on inequivalent-facet edges show
different work functions can coexist on either side of a fa
edge, provided a nonvanishing surface charge distribu
develops on the crystal faces. The surface charge is m
intense near sharp edges and contributes to creating a
roscopically flat electrostatic potential inside the metal.
extrapolating from ourab initio results for nanocrystals, w
can predict the work-function behavior around larger, m
roscopic crystals with nonequivalent facets, and derive
dependence of the apparent work function on the crystal
ometry.
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APPENDIX

In order to describe the local work function outside
metallic surface, the exchange-correlation contribution m
be included in the total potential felt by an electron. T
LDA fails to reproduce the long-range image potenti
which the correct exchange-correlation potential is known
follow. Classical electrostatics shows that outside an infin
metal surface the image potential felt by an electron is gi
by 2e2/4r , wherer is the distance to the metal surface, a
e the electron charge~atomic units are assumed here!. While
the classical image potential diverges at the metal surfac
describes correctly the exchange-correlation potential fel
an electron in the vacuum beyond the range of the sur
electronic density, provided thatr is taken as the distance t
the effective image-plane surface.40 On the contrary, the
LDA potential decays exponentially in the vacuum with t
rn

d

B

07540
s
he
r
w
t
n
st

ac-
y

-
e
e-

8.
he

st

,
o
e
n

it
y

ce

charge density, and is therefore qualitatively incorrect
from the surface.

For a classical point charge in the vicinity of a conducti
wedge, the electrostatic potential scattered by the wedge
recently established analytically in terms of a collection
image sources.41 The locations and values of the virtual im
ages depend on the position of the source charge and
angle of the wedge. Using the formalism developed in R
41, we have calculated the image potential felt by a class
electron outside a metallic facet edge, by integrating
work performed against the image force on taking the sou
electron to infinity. In Fig. 10 we have plotted the classic
image potential around both a 90° and an acute-angle we
corresponding to a~100!-~010! facet edge and a~100!-~111!
facet edge, respectively. In both cases, the image pote
behaves monotonously around the facet edge, recove
within a few tens of atomic units a form characteristic of
infinite crystal surface. These results show that the im
contribution near a facet edge is smoothly behaved an
negligible beyond;100 nm. The local work-function varia
tion from facet to facet is thus accounted for by the elect
static contribution only.

FIG. 10. Classical image potential~in eV! near a metallic
wedge. Left panel: 90° wedge. Right panel: 54.7° wedge, co
sponding to an edge between a~111! and a ~100! surface. The
contour lines are equally spaced. The axes are graduated in at
units.
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