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Theory of resonant states of hydrogenic impurities in quantum wells
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Department of Electronics Engineering, National Chiao Tung University, Hsinchu, Taiwan, Republic of China
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The binding energy and the density-of-states spectrum of resonant impurity states in quantum well structure
have been theoretically studied with variation of the impurity position taken into account, using the multisub-
band model and the resolvent operator technique. Calculations for the 2p0 resonant state in a
GaAs-Al0.2Ga0.8As quantum well have been performed. It has been found that there can be a considerable
resonant coupling in the 2p0 state, causing a;0.1 ps capture or escape time of electrons between the 2p0

localized state and the first subband states. The maximum shift of the impurity energy is in general of the order
of 0.1 meV, much smaller than the maximum binding energy of the 2p0 state.
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I. INTRODUCTION

The study of the electronic states of a hydrogenic im
rity in a semiconductor quantum-well~QW! structure has
been a subject of considerable interest for the last
decades.1–15 There have been numerous reports on calcu
tions of the impurity states in such a system.1–14 However,
most of the studies are restricted to the calculation of
binding energies of the ground state or some low-lying
cited states attached to the first subband.1–10 In general, the
calculation relies on the variational technique accompan
with a proper trial function. For the ground state, a good t
function should keep the calculation not too complicated a
give the expectation energy of the state as low as poss
Typical forms for the trial function are bound and express
as a linear combination of Gaussian orbitals2,11 or as prod-
ucts of the envelope function of the first subband edge an
single or a linear combination of Gaussian~or exponential!
orbitals.1,3–9 Making use of the cylindrical symmetry of th
systems, it is not difficult to obtain proper trial functions f
the excited states below the first subband, such as thep6

states.2,3,6–9,11However, the trial function for the 2p0 state,
which is cylindrically symmetric and has a node along t
growth direction, has to be chosen with caution. When
2p0 donor level lies below the lowest subband for a wi
QW, it is a localized state and a bound trial function is re
sonable. Such a state is orthogonal to other localized im
rity states below the first subband and can therefore be
tained simultaneously with the ground state in a ma
diagonalization.2,11 It has been confirmed that as the Q
width reduces, the on-center 2p0 donor level moves with the
second subband and then overlaps with the continuum o
first-subband states.3,6,8 This indicates that the 2p0 state
should be attached to the second subband rather than the
one. Consequently, a trial function has been proposed in
form of the envelope function of the second-subband e
multiplying a linear combination of Gaussian or exponen
orbitals.8,12 However, such a trial function of the 2p0 state,
which when below the first subband has to stay orthogona
the ground state, becomes inconvenient for an asymm
system~with an impurity in an asymmetric QW or an off
center impurity in a symmetric QW!.

When the 2p0 state lies above the first subband, it may
0163-1829/2002/66~7!/075340~7!/$20.00 66 0753
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resonant with the first subband and no longer localized. T
bound trial function becomes questionable for such a s
which is composed of a bound part and an extending p
Priesteret al., first pointed out the resonance behavior
impurity states attached to higher-order subbands.12 They
proposed a type of trial function for the bound part a
treated the resonant coupling with the technique of resolv
operators. Since then, the 2p0 state has been treated wit
various trail functions.11–14 The investigations were, neve
theless, restricted to symmetric systems where the 2p0 state
has an odd parity, leading to no coupling with the first su
band. In this case the 2p0 state is localized. This allows us t
write down easily a proper trial function for the 2p0 state.
When the impurity is away from the QW center, the par
breaks down and the 2p0 state is in resonance with the firs
subband. It is not trivial to determine a proper trial functio
for the bound part of the state since it is not a stationary s
of the whole system and need not be orthogonal to ot
localized impurity states below the first subband.

The resonance of the 2p0 state has been observed in res
nant Raman scattering experiments.15 The resonant states ca
serve as hot-carrier traps for the mechanism leading t
negative differential conductance.16 They are also expecte
to play an important role in achievement of intraimpuri
population inversion for terahertz stimulated emission.17 It is
therefore of scientific and technical importance to have
theoretical method for the investigation of the resonant
purity states. However, until now there has not existed a
report on a treatment of the resonant impurity states in
asymmetric system.18

In this paper, we will theoretically study resonant states
a shallow donor arbitrarily lying in a two-dimensional QW
structure based on the multisubband model. The density
states~DOS! spectra of the resonant states are obtained u
the resolvent operator technique. For illustration, we cal
late the binding energy, the DOS spectrum width, and
resonance energy shift of the 2p0 state in a QW as a function
of the impurity position. Considerable coupling is found.
causes a capture or escape time as short as;0.1 ps. The
paper is organized as follows. In the following section, w
present a theory of resonant impurity states in a QW. T
calculated results of the 2p0 state in GaAs-Al0.2Ga0.8As QW
©2002 The American Physical Society40-1
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are given in Sec. III. Finally, the conclusion is drawn in Se
IV.

II. THEORY

The effective-mass Hamiltonian for an electron bound
a donor in a QW structure can be written as

H5H01Vc~r !, ~1!

whereH0 is the impurity-free Hamiltonian and can be wri
ten as

H052
]

]z

1

mr~z!

]

]z
2¹ uu

21V0~z!. ~2!

Vc is the Coulomb potential energy of the impurity, havin
the following expression:

Vc~r !52
2

k~z!Ar21~z2zi !
2

. ~3!

The Hamiltonian is written in the dimensionless form
which the energy and the length are in units of the effect
RydbergR* (R* 5m0* e4/2e0

2\2) and effective Bohr radius
a* (a* 5\2e0 /m0* e2) of the well material, respectively
(m0* and e0 are the effective mass and the static dielec
constant, respectively, of the material making up the we!
The z axis is chosen to be along the growth direction of t
layers.mr(z) is the relative effective mass, defined as t
ratio of the effective mass atz to that of the well material,
m0* . Here V0(z) is the potential energy of the two
dimensional QW in the absence of the impurity.k(z) is the
relative dielectric constant atz with respect to that of the wel
material. The impurity is assumed to be atr50 andz5zi .

The impurity-free Schro¨dinger equation

H0cnk5Enkcnk ~4!

can be readily solved with the eigenfunctions expressed

cnk5
1

AA
eik•rf n~z!, ~5!

wheren is the subband index,k is the in-plane wave vector
andA is the area of the QW for normalization of the eige
functions.

The wave functions of resonant states can be divided
two parts: a bound part and an extending part. Consider
energyEI of an impurity state of interest to lie between th
bottoms of the (n21)th and thenth subbands: that is
En21,k50,EI,Enk50. This impurity state is conventionally
called as being attached to thenth subband. It may be in
resonance with the mutually overlapped (n21) lowest sub-
bands~subbands 1,2, . . . ,n21). The wave function of the
resonant state asr→` can be written in a linear combina
tion of solutions of the Schro¨dinger equation, which now ca
be regarded to be impurity free—that is,

c (nm)5cB
(nm)1cX

(nm) , ~6!
07534
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where

cB
(nm)~r→`,f,z!5eimf (

n>n
Cn

(nm)Kn@ Im~kn!r# f n~z!,

~7a!

cX
(nm)~r→`,f,z!5eimf (

n,n
Cn

(nm)Hn
(1)~knr! f n~z!,

~7b!

with kn5AEI2Enk50. HereKn is the modified Bessel func
tion of the second kind of ordern and Hn

(1) is the Hankel
function of the first kind of ordern. Thef-dependent func-
tion eimf, wherem is an integer, arises from the cylindrica
symmetry of the system.Cn

(nm)’s are coefficients of the linea
combination. It is clear thatkn is imaginary forn>n (EI
,Enk50) and real forn,n (EI.Enk50). With the help of
the fact that, asr→`,

Kn@ Im~kn!r#→ e2Im(kn)r

A2pIm~kn!r
~8a!

and

Hn
(1)~knr!→A 2

pknr
e2 i (n/211/4)peiknr, ~8b!

we know thatcB
(nm) in Eq. ~7a! decays withr and should

correspond to the bound part of the resonant state attach
thenth subband, whilecX

(nm) in Eq. ~7b! behaves divergently
as outgoing waves and should be responsible for the ext
ing part. Since the plane waveseik•r can serve as a complet
set of basis functions for expressions of ther-dependent en-
velope functions multiplying byeimf, the bound part
cB

(nm)(r→`) in Eq. ~7a! can be thought of as a linear com
bination of higher-subband statescnk with n>n while the
extending partcX

(nm)(r→`) in Eq. ~7b! is in a linear com-
bination of lower-subband statescnk with n,n. It is there-
fore easy to divide the impurity resonant state into the bou
and extending parts if the wave function over the who
range is assumed to be in the form

c (nm)5eimf (
n51

`

Yn
(nm)~r! f n~z!5cB

(nm)1cX
(nm) , ~9!

where

cB
(nm)5eimf (

n5n

`

Yn
(nm)~r! f n~z! ~10a!

and

cX
(nm)5eimf (

n51

n21

Yn
(nm)~r! f n~z!. ~10b!

Comparing Eq. ~10! with Eq. ~7!, we find that the
r-dependent functionsYn

(vm) should have the asymptotic be
havior that, asr→`,
0-2
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Yn
(nm)→Cn

(nm)Kn@ Im~kn!r# ~11a!

for n>n and

Yn
(nm)→Cn

(nm)Hn
(1)~knr! ~11b!

for n,n. Since the set of plane waveseik•r is complete for
expressions of alleimfYn

(nm)(r), it is concluded that the
bound part of the resonant state is attributed entirely to
subband states withn>n, while the extending part is com
posed only of the subband states withn,n. Due to the or-
thogonality of the subband states, we have

^cnkucB
(nm)&50 ~12a!

for n,n and thus

^cX
(nm)ucB

(nm)&50. ~12b!

That is, the bound part is orthogonal to all lower-subba
states and also to the extending part. Similarly, the extend
part is orthogonal to all higher-subband states. Note tha
the expansion~10a!, the continuous unconfined subban
above the barriers as well as the confined subbands win
>n must be included to give a complete set of basis fu
tions for the localized functioncB

(nm) .
It is convenient in derivation of formulas to decompo

the Hilbert space into two subspacesS B
(n) and S X

(n) , where
S B

(n) is the space with all higher-subband statescnk (n>n)
as basis vectors andS X

(n) is the one with all lower-subban
statescnk (n,n) as basis vectors. A projection operatorPn

is defined to project a state onto the subspaceS B
(n) . Accord-

ingly, the total Hamiltonian in Eq.~1! can be written as

H5HU
(n)1HC

(n)1~12Pn!Vc~12Pn!, ~13!

where

HU
(n)5Pn~H01Vc!Pn1H0~12Pn! ~14a!

and

HC
(n)5~12Pn!VcPn1PnVc~12Pn!. ~14b!

HU
(n) is the Hamiltonian of the uncoupled system in whi

there is no intersubspace coupling—i.e.,

^cBuHU
(n)ucX&50, ~15!

if cBPS B
(n) and cXPS X

(n) . In writing Eq. ~14a!, we have
made use of the fact thatPn commutes withH0 such that
(12Pn)H0(12Pn)5H0(12Pn). HereHC

(n) is the term for
intersubspace coupling. The third term in Eq.~13! is for scat-
tering within subspaceS X

(n) and gives a second-order small
effect if the impurity states and the resonant coupling are
main interest. This term will thus be neglected. From
physical viewpoint, the bound part of the resonant st
cB

(nm) should be stationary if the couplingHC
(n) were

switched off. That is,cB
(nm) is an eigenstate ofHU

(n) . Since
the lower-subband statescnkPS X

(n) are also eigenstates o
HU

(n) , as can be easily seen from Eq.~14a!, the uncoupled
Hamiltonian, which will be regarded to be zeroth order,
07534
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diagonal in the representation for whichcB
(nm) and all the

lower-subband statescnkPS X
(n) serve as basis functions

Note that the localized statescB
(nm) attached to different sub

bandsn are eigenstates of different HamiltoniansHU
(n) . The

orthogonality between those localized states is not gua
teed. In some cases, there is more than one localized
which is attached to a common subband and has the s
symmetry of axial rotation. An additional index—say,j —is
required as well as the indices (nm) to characterize these
states. These statescB

(nm j) must be mutually orthogonal be
cause they are distinct eigenstates of the same Hamilto
HU

(n) .
To find the bound part of a resonant state, we imagine

the resonant coupling is at present switched off. Defin
spaceS B

(nm) in which each element can be expressed in
form of the right of Eq.~10a! with the specific indices (nm).
All the localized statescB

(nm j) , j 51,2, . . . ,characterized by
the same (nm) are therefore inS B

(nm) . We first restrict our
attention to cB

(nm1) which is the lowest of all the state
cB

(nm j) . The statecB
(nm1) is the ground state in the space

S B
(nm) of the uncoupled HamiltonianHU

(n) even if it may not
be the ground state in the spaceS B

(n) and in the whole Hilbert
space. What the problem becomes now is to find a se
Yn

(nm)(r) (n>n) in Eq. ~10a! such that the expectation en
ergy EI

(vm)5^cB
(nm)uHU

(n)ucB
(nm)&, which is also equal to

^cB
(nm)uHucB

(nm)&, has the lowest energy. To this end, we u
the variation method with trial functions forYn

(vm)(r) in the
following form:

Yn
(nm)~r!5r umu(

l
Cnl

(nm)e2a l
(nm)r2

~16!

for n>n. Such an expression has the asymptotic beha
thatYn

(nm)→r umu asr→0 andYn
(nm)→0 asr→`, in consis-

tency with the asymptotic behavior of the solution of t
uncoupled Schro¨dinger equation. The coefficientsCnl

(nm) are
linear variational parameters, anda l

(nm) can serve as nonlin
ear variational parameters. For a given set ofa l

(nm) , a matrix
eigenvalue problem for the coefficientsCnl

(nm) can be ob-
tained by means of variations applied to the expectation
ergy EI

(nm) with respect toCnl
(nm) . The coefficients are then

obtained simply by matrix diagonalization. By varying th
nonlinear parametersa l

(nm) , we have more degrees of free
dom to obtain a lowerEI

(nm) which corresponds to a mor
accurate solution. The set ofa l

(nm) leading to the minimum
energy gives the best solution in the framework of the tr
function in the form of Eqs.~10a! and~16!. The other states
cB

(nm j) , j Þ1, can be obtained simultaneously with the low
est statecB

(nm1) by the matrix diagonalization. The bindin
energy of the localized statecB

(nm j) is defined to beEB
(nm j)

5En02EI
(nm j) , where EI

(nm j) is the energy of the state
cB

(nm j) . Since the total HamiltonianH depends on the QW
structure and the impurity positionzi , the resulting energy
EI

(nm j) and parametersCnl
(nm j) and a l

(nm j) ~and thuscB
(nm j))

are also functions of the QW structure andzi . The Gaussian
orbitals chosen for composition of the trial function ma
0-3
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tractable the integrals encountered in calculations of the
trix elements of the eigenvalue problem. However, the m
tisubband trial function in the form of Eq.~10a! has the
shortcoming that an accurate solution requires a la
amount of higher subbands to be included in the variatio
method for an impurity state in a wide well, regardless of
impurity position. Since we are mainly interested in the re
nant impurity states which appear only in a sufficiently n
row well, we will not encounter the difficulty in the prese
paper.

In the expression~10a!, we have included all the highe
subbands (n>n) for the trial function of the localized state
cB

(nm) . The more subbands the trial function contains,
more accurate the solution is. However, for a QW s
rounded by finite barriers, the subbands with bottoms ab
the barriers merge into a continuum, causing difficulty in t
treatment of the variational technique. In fact, the inclus
of all higher f n(z) with n>n in Eq. ~10a! serves to form a
complete basis set to accurately construct thez-dependent
component of the localized statescB

(nm)(r,f,z) for an arbi-
trary r. To solve this problem, we discretize the continuu
of subbands by putting two infinite potential walls enclosi
the QW structure in thez direction as long as the walls ar
far away from each other such that the impurity states
interest will not be affected by the enclosure. The result
discrete subbands can thus mathematically serve as a
set to accurately construct thez-dependent component of th
localized states but do not influence the physical results
interest. The distance between the infinite walls should
chosen with caution to avoid compression of the impur
wave functions by the walls. On the other hand, it will r
quire inclusion of more subbands in the calculation to obt
an accurate binding energy of an impurity state in a lar
space enclosed by the walls.

Now we switch on the resonant couplingHC
(n) between

the localized statecB
(nm j) and the subspaceS X

(n) . The reso-
nant states can be treated with the technique of resol
operators. LetG(0) andG be the resolvent operators for th
uncoupled systemHC

(n) and the total systemH, respectively.
We have

G(0)5~E2HU
(n)1 i01!21 ~17a!

and

G5~E2H1 i01!21. ~17b!

The DOS spectrum of the single impurity statec (nm j) can be
expressed as

nB
(nm j)~E!52

1

p
Im@GBB#, ~18!

whereGBB5^cB
(nm j)uGucB

(nm j)&. To find the matrix elemen
GBB , the two resolvent operators are related to each o
through the Dyson equation

G5G(0)1G(0)HC
(n)G. ~19!

SinceHU
(n) is diagonal in the representation for whichcB

(nm j)

and allcnkPS X
(n) are basis functions,G(0) is also diagonal
07534
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in the respresentation. Making use of this property and v
ishing intrasubspace coupling ofHC

(n) , we obtain the follow-
ing equalities from Eq.~19!:

GBB5GBB
(0)1GBB

(0) (
n,n,k

VB,nkGnk,B ~20a!

and

Gnk,B5Gnk,nk
(0) Vnk,BGBB , ~20b!

where

GBB
(0)5^cB

(nm j)uG(0)ucB
(nm j)&5~E2EI

(nm j)1 i01!21,
~21a!

Gnk,nk
(0) 5^cnkuG(0)ucnk&5~E2Enk1 i01!21, ~21b!

Gnk,B5^cnkuGucB
(nm j)&, ~21c!

VB,nk5Vnk,B* 5^cB
(nm j)uVcucnk&. ~21d!

SubstitutingGnk,B in Eq. ~20b! into Eq. ~20a!, we can have

GBB5@F~E!1 iG~E!#21, ~22!

with

F~E!5E2EI
(nm j)2 (

n,n,k
P

uVB,nku2

E2Enk

5E2EI
(nm j)2

1

p (
n,n

PE
En0

` Gn~E8!

E2E8
dE8, ~23!

G~E!5p (
n,n,k

uVB,nku2d~E2Enk!5 (
n,n

Gn~E!, ~24!

and

Gn~E!5
A

4
uVB,nku2 with k5AE2En0. ~25!

The areaA in Eq. ~25! will be canceled out with that in
uVB,nku2. Here Px21 means to take the Cauchy princip
value of x21. The resonance energyER

(nm j) of the impurity
state is obtained by finding the peak position of the DO
spectrumnB

(nm j)(E), and the spectrum width is approximate
by G(ER

(nm j)), which reflects the capture time of an electro
into the localized statecB

(nm j) from the subband state
cnkPS X

(n) and also the escape time of an electron from
localized to the subband states. The time is estimated u
the relationt5\/2G(ER

(nm j)). The resonant coupling cause
an energy shift ofDE(nm j)5ER

(nm j)2EI
(nm j) . It is noted that

the DOS spectrumnB
(nm j)(E) is due to a single resonant sta

and has dimension of inverse energy. For a low doping c
centration, impurities are far from each other so that the
teraction between the impurities is negligible. Consequen
the total DOS spectrum due to all the impurities is the sum
all the single-impurity spectra, which is simply the singl
impurity spectrum multiplying the number of impurities.
0-4
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FIG. 1. Waterfall plots of~a! the binding energy,~b! the DOS spectrum width, and~c! the shift of resonance energy of the 2p0 state in
GaAs-Al0.2Ga0.8As QW structures as a function of the impurity position for various well widths. Each of the numbers shown in the
represents the peak value for each well width. In~b!, the corresponding capture or escape times at the peaks are also shown.
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III. NUMERICAL RESULTS AND DISCUSSION

We present numerical results to give an illustration of
resonant states. Calculations are performed for the 2p0 or
c (201) resonant impurity state (n52, m50, j 51) in a QW
structure consisting of a GaAs well sandwiched
Al0.2Ga0.8As barriers. The 2p0 state lies above the first
subband edge and attached to the second subband fo
on-center impurity in the QW well with a width less tha
some critical value (;60 nm).3 In the calculation of the
bound part of the 2p0 state, we use the trial functions~10a!
and~16! consisting of nine lowest subbands in subspaceS B

(2)
07534
e

an

(n52 –10) and five Gaussian orbitals (l 50 –4). Two infi-
nite potential walls 60 nm apart are artificially imposed
surround the QW structures to discretize the continuum
the subbands above the Al0.2Ga0.8As barriers. It has been
made sure that the walls do not significantly compress
2p0 state and the first subband states. The problem beco
a 45345 matrix eigenvalue equation for each set of the
rametersa l

(20) . The accuracy of the numerical results h
been confirmed by observation of the convergence of
data with increasing the number of terms used in the exp
sion of the trial function. The five nonlinear variational p
0-5
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rametersa l
(20) are under the restriction ofa l

(20)5a1b l

wherea is treated as a nonlinear variational parameter bub l
are fixed to beb l50.25l 3 for l 50 –4. In the calculations
the effective mass and the low-temperature band gap for
Al xGa12xAs material system are assumed to be (0.0
10.083x)me and 1.51911.447x20.15x2 eV, respectively,
according to Casey and Panish,19 whereme is the free elec-
tron mass. The barrier height is assumed to be 0.65 of
band gap difference. The static dielectric constant
Al xGa12xAs is adopted by a linear interpolation betwe
those of GaAs~12.58! and AlAs ~10.06!.

Figures 1~a!, 1~b!, and 1~c! are the waterfall plots of the
binding energyEB

(201) , the spectrum widthG(ER
(201)), and the

shift of resonance energyDE(201), respectively, of the 2p0
state as a function of the impurity positionzi for various well
widths. The origin is chosen at the center of the QW. T
binding energy of the 2p0 depends on the electronic distr
bution probability around the impurity position. As a cons
quence, the binding energy exhibits two peaks associ
with the two maxima of the electronic distribution probab
ity of the 2p0 state. Furthermore, the maximum electron
distribution probability can be enhanced by a reduction
the well width. This causes an increase of the binding ene
with the well width decreasing, as can be seen from Fig. 1~a!.
Further reduction of the well width can nevertheless push
the energy level to be close to the barrier height, leading
widespread electronic distribution and thus a reduction of
binding energy. This explains the lower binding energy
the 7-nm well than for the 10-nm well.

The spectrum widthG(ER
(201)) reflects the resonant cou

pling strength, which depends on the impurity position a
the resonance energy relative to the lowest subband bot
i.e., ER

(201)2E10, through the coupling matrix elements
Eq. ~24!. When the impurity is at the well center, the pari
difference of the boundcB

(201) and the first subband state
c1k causes no coupling (G50), shown in Fig. 1~b!. The
spectrum width goes through a maximum and then redu
toward zero as the impurity moves away from the well ce
ter. The maximum spectrum width of a wider well is larg
than that of a narrower well. This is because the energy
ferenceER

(201)2E10 is smaller for a wider well. For a large
value of kR5AER

(201)2E10,c1kR
exhibits a rapid oscillation

along r, resulting in a small overlap integral for the spe
trum width. In Fig. 1~b! we show the value of the maximum
spectrum width for each of the wells. It can be as large
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;3 meV. We also show the value of the capture or esc
time associated with the maximum resonant coupling
each well width. It ranges approximately from 0.1 to 1 ps

The resonance energy shiftDE(201) shown in Fig. 1~c!
exhibits more complicated variations with the impurity po
tion. As can be seen from Eq.~23!, it depends on the reso
nance energy levelER

(201) and the coupling strengthG(E)
over a range of energy. Therefore, a wider well can virtua
have a more significant energy shift than a narrower o
SinceG(E) in principle decays withE, the coupling is ex-
pected to cause a blueshift of the impurity level, i.
DE(201).0. As can be seen, the maximum shift is of t
order of 0.1 meV. For wide wells, such as those of wid
.30 nm, the resonance energyER

(201) is close to the first-
subband bottomE10. This may cause reduction of the blue
shift or even a redshift of the impurity level (DE(201),0),
which does not show in the waterfall plot of Fig. 1~c!. Ac-
cording to the calculated results, the redshift can be as la
as tenths of meV for a wide well. The energy shift is
general much smaller than the binding energy.

IV. CONCLUSION

We have presented the formulas for calculations of
characteristics of resonant impurity states in QW structu
by dividing the total system into an uncoupled system a
the resonant coupling. The division depends on which s
band the impurity state of interest is attached to. The bo
part of the resonant state is a stationary state in the
coupled system and has been obtained by the variati
method with a multisubband trial function. After havin
found out the representation in which the uncoupled Ham
tonian is diagonal, we treat the resonant coupling with
technique of the resolvent operators and obtain the spec
of the resonant impurity state. The numerical results of
binding energy, the DOS spectrum width, and the ene
shift of the 2p0 state have been presented. The spectr
width can be as large as several meV, causing a captur
escape time of;0.1 ps. The energy shift is in general le
than 0.4 meV, much smaller than the binding energy.
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