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Theory of resonant states of hydrogenic impurities in quantum wells
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The binding energy and the density-of-states spectrum of resonant impurity states in quantum well structure
have been theoretically studied with variation of the impurity position taken into account, using the multisub-
band model and the resolvent operator technique. Calculations for fhe r@sonant state in a
GaAs-Al ,Ga gAs quantum well have been performed. It has been found that there can be a considerable
resonant coupling in thef state, causing a-0.1 ps capture or escape time of electrons between phe 2
localized state and the first subband states. The maximum shift of the impurity energy is in general of the order
of 0.1 meV, much smaller than the maximum binding energy of thg Rate.
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I. INTRODUCTION resonant with the first subband and no longer localized. The
bound trial function becomes questionable for such a state
The study of the electronic states of a hydrogenic impu-which is composed of a bound part and an extending part.
rity in a semiconductor quantum-welQW) structure has Priesteret al, first pointed out the resonance behavior of
been a subject of considerable interest for the last twdmpurity states attached to higher-order subbaAdBhey
decades*® There have been numerous reports on calculaproposed a type of trial function for the bound part and
tions of the impurity states in such a systém? However,  treated the resonant coupling with the technique of resolvent
most of the studies are restricted to the calculation of theyperators. Since then, thepg state has been treated with
binding energies of the ground state or some low-lying eXvarious trail functions!* The investigations were, never-
cited states attached to the first subbanid.In general, the theless, restricted to symmetric systems where fes2ate

calculation relies on the variational technique accompanieﬂas an odd parity, leading to no coupling with the first sub-
with a proper trial function. For the ground state, a good trial ’

function should keep the calculation not too complicated anotl)and' In this case thepd state is localized. This allows us to
P P write down easily a proper trial function for thepg state.

give the expectation energy of the state as low as possibl ) 2o .
Typical forms for the trial function are bound and expresse(%v hen the impurity is away frqm_ the QW Ce”tef' the pgrlty
reaks down and thepf state is in resonance with the first

as a linear combination of Gaussian orbitafsor as prod- _ N . . .
ucts of the envelope function of the first subband edge and subband. It is not trivial to determine a proper trial function

single or a linear combination of Gaussir exponential for the bound part of the state since it is not a stationary state
orbitals!3~9 Making use of the cylindrical symmetry of the Of the whole system and need not be orthogonal to other
systems, it is not difficult to obtain proper trial functions for localized impurity states below the first subband.
the excited states below the first subband, such as phe 2  The resonance of thepg state has been observed in reso-
states*6-91 However, the trial function for the (2, state, nant Raman scattering experimehtdhe resonant states can
which is cylindrically symmetric and has a node along theserve as hot-carrier traps for the mechanism leading to a
growth direction, has to be chosen with caution. When thenegative differential conductanc®They are also expected
2p, donor level lies below the lowest subband for a wideto play an important role in achievement of intraimpurity
QW, it is a localized state and a bound trial function is rea-population inversion for terahertz stimulated emissibh.is
sonable. Such a state is orthogonal to other localized impuherefore of scientific and technical importance to have a
rity states below the first subband and can therefore be oltheoretical method for the investigation of the resonant im-
tained simultaneously with the ground state in a matrixpurity states. However, until now there has not existed any
diagonalizatior:™ It has been confirmed that as the QW report on a treatment of the resonant impurity states in an
width reduces, the on-centepg donor level moves with the asymmetric systertf
second subband and then overlaps with the continuum of the In this paper, we will theoretically study resonant states of
first-subband state®>® This indicates that the [2 state a shallow donor arbitrarily lying in a two-dimensional QW
should be attached to the second subband rather than the fisgtucture based on the multisubband model. The density-of-
one. Consequently, a trial function has been proposed in thetategDOYS) spectra of the resonant states are obtained using
form of the envelope function of the second-subband edgéhe resolvent operator technique. For illustration, we calcu-
multiplying a linear combination of Gaussian or exponentiallate the binding energy, the DOS spectrum width, and the
orbitals®? However, such a trial function of thepg state, resonance energy shift of th@gstate in a QW as a function
which when below the first subband has to stay orthogonal tof the impurity position. Considerable coupling is found. It
the ground state, becomes inconvenient for an asymmetricauses a capture or escape time as short-@dl ps. The
system(with an impurity in an asymmetric QW or an off- paper is organized as follows. In the following section, we
center impurity in a symmetric QW present a theory of resonant impurity states in a QW. The
When the D, state lies above the first subband, it may becalculated results of the® state in GaAs-A] ,Ga, jAs QW
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are given in Sec. lll. Finally, the conclusion is drawn in Sec.where

IV.
(ym) z)=em > CU™K [Im(ky)p]fa(z
I THEORY g™ (p—e,,2)=e™ 3 CLK [Im(ky)p]fa(2),
. I 7
The effective-mass Hamiltonian for an electron bound to (73
a donor in a QW structure can be written as _
Y™ (p—,,2) =M X CIMHP (ko) Fo(2),
H=Hg+V(r), (1) n<v -
7
whereH, is the impurity-free Hamiltonian and can be writ-
ten as with k,=+VE,— Ek=o. HereK, is the modified Bessel func-
tion of the second kind of ordem and H{" is the Hankel
a1 9 B function of the first kind of orden. The ¢-dependent func-
Ho=~— 9z m,(2) E_VH”LVO(Z)' @ tion e'M? wherem is an integer, arises from the cylindrical

) ] ) ] .~ symmetry of the systencg"m)’s are coefficients of the linear
V. is the Coulomb potential energy of the impurity, having combination. It is clear thak,, is imaginary forn=v (E,

the following expression: <Enk=o) and real forn<v (E,>E_o). With the help of
the fact that, ap— o,

Ve(r)=—

2
. 3
K(Z)\/p +(Z_Zi) ( ) N [|m(k ) ] e_lm(kn)P

n n p — T
The Hamiltonian is written in the dimensionless form in V2mim(kn)p
which the energy and the length are in units of the effectiveand

RydbergR* (R* =mge*/2e542) and effective Bohr radius

a* (a*=h2e,/m§e?) of the well material, respectively. > .
(m# and ¢, are the effective mass and the static dielectric H{M(knp)— \/ K g (W2t Uhmeiknp, (8b)
constant, respectively, of the material making up the yvell. TP
The z axis is chosen to be along the growth direction of thewe know thaw(B”m) in Eq. (7a) decays withp and should
layers.m,(z) is the relative effective mass, defined as thecorrespond to the bound part of the resonant state attached to
ratio of the effective mass atto that of the well material,  the vth subband, while/¢™ in Eq. (7b) behaves divergently
mg . Here Vo(2) is the potential energy of the two- as outgoing waves and should be responsible for the extend-
dimensional QW in the absence of the impuritfz) is the  ing part. Since the plane wave& ? can serve as a complete
relative dielectric constant atwith respect to that of the well  set of basis functions for expressions of heependent en-
material. The impurity is assumed to begat 0 andz=z;.  velope functions multiplying bye'™?, the bound part
The impurity-free Schrdinger equation U™ (p—) in Eq. (78 can be thought of as a linear com-
bination of higher-subband statég, with n=» while the
Hotni= Enkibnk ) extending part){™ (p—) in Eq. (7b) is in a linear com-
can be readily solved with the eigenfunctions expressed asbination of lower-subband states,, with n<wv. It is there-
fore easy to divide the impurity resonant state into the bound

(8a)

1 and extending parts if the wave function over the whole
Po=—=€""Pfy(2), (5  range is assumed to be in the form
VA
wheren is the subband indeX is the in-plane wave vector, (vm) _ Aimé . (vm) o (vm) . (vm)
andA is the area of the QW for normalization of the eigen- pri=e 21 Yo (o) ta(@) =g ™, (9)

functions.

The wave functions of resonant states can be divided intéhere
two parts: a bound part and an extending part. Consider the B
energyE, of an impurity state of interest to lie between the ) . )
bottoms of the ¢—1)th and thewth subbands: that is, vEm=em 2 Yi™(p)fn(2) (10a
E,—1x-0<E|<E k-o. This impurity state is conventionally
called as being attached to th¢h subband. It may be in and
resonance with the mutually overlapped—1) lowest sub-
bands(subbands 1,2 ..,»—1). The wave function of the (om)_ ima (vm)
resonant state gs—o can be written in a linear combina- by T =e nzﬁ Yy (p)fn(2). (10b
tion of solutions of the Schabinger equation, which now can
be regarded to be impurity free—that is, Comparing Eg.(10) with Eq. (7), we find that the

(o) (o) o () p-dependent function¥’™ should have the asymptotic be-
PV = g P (6)  havior that, ap— o,

v—1
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YOm_ cOmK [im(k,)p] (113 diagonal in the representation for whigky™ and all the
lower-subband stateafnkesg(") serve as basis functions.
Note that the localized states,™ attached to differ;ant sub-
(vm) (vm) (1) bandsy are eigenstates of different HamiltoniaHg’ . The
Yo G (knp? (11 orthogonality between those localized states is%not guaran-
for n<v. Since the set of plane wavet ? is complete for  teed. In some cases, there is more than one localized state
expressions of alle‘m“sYg”m)(p), it is concluded that the which is attached to a common subband and has the same
bound part of the resonant state is attributed entirely to theymmetry of axial rotation. An additional index—sgy—is
subband states with=v, while the extending part is com- required as well as the indices'f1) to characterize these
posed only of the subband states witkt v. Due to the or- states. These stateazgm” must be mutually orthogonal be-

for n=v and

thogonality of the subband states, we have ca;u)se they are distinct eigenstates of the same Hamiltonian
Hy”.
(Wil ‘pgm)):O (123 UTo find the bound part of a resonant state, we imagine that
for n<v and thus the resonant coupling is at present switched off. Define a
spaceSY™ in which each element can be expressed in the
(™| &™) =0, (12 form of the right of Eq.(10a with the specific indicesym).
Il the localized stategsd'™, j=1,2, ... characterized by

That is, the bound part is orthogonal to all lower-subban o (vm) ) :
states and also to the extending part. Similarly, the extendin € same ('m)(v"’,}]rg the_refore InSg™" . We first restrict our
part is orthogonal to all higher-subband states. Note that i t(tfmr'.}'on to g E’I‘I’Hic):h is the lowest of all the states
the expansion(108, the continuous unconfined subbands%s - The stateyy™ is the ground state in the space
above the barriers as well as the confined subbands mwith S§™ of the uncoupled Hamiltoniahi{}? even if it may not
> must be included to give a complete set of basis funcbe the ground state in the spag§” and in the whole Hilbert
tions for the localized functiord/g”m). space. What the problem becomes now is to find a set of
It is convenient in derivation of formulas to decomposeY{™(p) (n=v) in Eq. (108 such that the expectation en-
the Hilbert space into two subspac&§’ andS{’, where ergy EC™=(yI™HG)| &™), which is also equal to
S is the space with all higher-subband staieg (n=v) (Y™ IH| &™), has the lowest energy. To this end, we use
as basis vectors anﬁ§<V) is the one with all lower-subband the variation method with trial functions fdfg”m)(p) in the
statesy,, (N<v) as basis vectors. A projection operaiy  following form:
is defined to project a state onto the subspsi§é. Accord-
ingly, the total Hamiltonian in Eq(l) can be written as

YE™(p)=pIMS) climeel ™’ (16)
H=H{+HE +(1-P,)V(1-P,), (13 |
where for n=v. Such an expression has the asymptotic behavior
that Y™ — pIM asp—0 andY{"™—0 asp—o, in consis-
H)=P,(Ho+Ve)P,+Ho(1-P,) (148 tency with the asymptotic behavior of the solution of the

uncoupled Schidinger equation. The coefficien&'™ are
linear variational parameters, and’™ can serve as nonlin-
Hg): (1-P,)V.P,+P,V(1-P,). (14  ear variational parameters. For a given setBf” , a matrix
() N ~_ eigenvalue problem for the coefficien&!|™ can be ob-
Hy” is the Hamiltonian of the uncoupled system in which tained by means of variations applied to the expectation en-
there is no intersubspace coupling—i.e., ergy E("™ with respect toC{}™ . The coefficients are then
) _ obtained simply by matrix diagonalization. By varying the
(#elHY? |40 =0, 19 nonlinear parameters{"™ , we have more degrees of free-
if ygeSY) and yyeSY) . In writing Eq. (148, we have dom to obtain a IoweEf”m) which corresponds to a more
made use of the fact th&, commutes withH, such that accurate solution. The set of"™ leading to the minimum
(1—P,)Ho(1—P,)=Ho(1-P,). HereH{ is the term for  energy gives the best solution in the framework of the trial
intersubspace coupling. The third term in Et@) is for scat-  function in the form of Eqs(10a and(16). The other states
tering within subspac& () and gives a second-order smaller &™) | j#1, can be obtained simultaneously with the low-
effect if the impurity states and the resonant coupling are oest statey’™ by the matrix diagonalization. The binding
main interest. This term will thus be neglected. From theenergy of the localized stat¢y™) is defined to bee{'™)
physical viewpoint, the bound part of the resonant state=g ,—E{*™) where E"™ is the energy of the states
yg™ should be stationary if the couplingi!’ were  y{'™)  Since the total Hamiltoniakl depends on the QW
switched off. That isyy™ is an eigenstate dfl{;’. Since  structure and the impurity position), the resulting energy
the lower-subband state, e S¥’ are also eigenstates of E("™) and parameter€{'™ and "™ (and thusy{™?)
H{”, as can be easily seen from E4a, the uncoupled are also functions of the QW structure and The Gaussian
Hamiltonian, which will be regarded to be zeroth order, isorbitals chosen for composition of the trial function make

and
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tractable the integrals encountered in calculations of the man the respresentation. Making use of this property and van-
trix elements of the eigenvalue problem. However, the mulishing intrasubspace coupling B, we obtain the follow-
tisubband trial function in the form of Eq10a has the ing equalities from Eq(19):
shortcoming that an accurate solution requires a large
amount of higher subbands to be included in the variational 0 0
method for an impurity state in a wide well, regardless of the Gea=GCha+ G(Bén;%k Ve.nkGri,g (209
impurity position. Since we are mainly interested in the reso-
nant impurity states which appear only in a sufficiently nar-and
row well, we will not encounter the difficulty in the present
paper.

In the expressiori10g, we have included all the higher
subbandsi{= v) for the trial function of the localized states
y™ . The more subbands the trial function contains, the — GQ=(y{™)| G| ™)y =(E—E™)+j0*) 1,

Grks= G\ riVik.5Css (20b)

here

more accurate the solution is. However, for a QW sur- (219
rounded by finite barriers, the subbands with bottoms above

the barriers merge into a continuum, causing difficulty in the GO = (¥l GO gy = (E—E+i0%) "1, (21D
treatment of the variational technique. In fact, the inclusion

of all higher f,(z) with n=» in Eq. (108 serves to form a Gz = ¥nklGlyg™), (219
complete basis set to accurately construct frependent

component of the localized state§’™ (p, #,2z) for an arbi- Vo = Vi 5= (0™ V| ). (210

trary p. To solve this problem, we discretize the continuum o ) ]
of subbands by putting two infinite potential walls enclosingSubstitutingG,y g in Eq. (20b) into Eq. (20a), we can have
the QW structure in the direction as long as the walls are

far away from each other such that the impurity states of Gga=[F(E)+iT(E)] ", (22)
interest will not be affected by the enclosure. The resultingyith

discrete subbands can thus mathematically serve as a basis

set to accurately construct tzelependent component of the [V il

localized states but do not influence the physical results of F(E)=E—E{"™~ > P E_E
interest. The distance between the infinite walls should be ek nk
chosen with caution to avoid compression of the impurity - /
; L . T'y(E")

wave functions by the walls. On the other hand, it will re- =E-E) - = > f
quire inclusion of more subbands in the calculation to obtain T n<wp
an accurate binding energy of an impurity state in a larger
space enclosed by the walls. _ 2o _

Now we switch on the resonant couplingf’ between I 7Tn<21/,k [V il “0(E = En) HZV Fa(E). (24
the localized state/y™” and the subspacg{?’. The reso- q
nant states can be treated with the technique of resolveft”
operators. LeG(®) andG be the resolvent operators for the

dE’, (23
Eno E-E’

uncoupled systeril) and the total systerhi, respectively. [,(E)= %|VB,nk|2 with k=\VE—Eq. (25)
We have
O e () 1 ins -1 The areaA in Eqg. (25 will be canceled out with that in
GH=(E-Hy"+i0") (173 |Vg k|2 Here Px™! means to take the Cauchy principal
and value ofx~ . The resonance energ?;/R”mj) of the impurity
state is obtained by finding the peak position of the DOS
G=(E-H+i0")"% (179 spectrum{™)(E), and the spectrum width is approximated
The DOS spectrum of the single impurity state™ can be by T(ER™), which reflects the capture time of an electron
expressed as into the localized stateyQ™) from the subband states

z,bnke8§<v) and also the escape time of an electron from the
localized to the subband states. The time is estimated using
the relationr=7%/2I'(EY™)). The resonant coupling causes
an energy shift oRE™) =EY™) —E(™) |t is noted that
eT]he DOS spectrum(B”m')(E) is due to a single resonant state
and has dimension of inverse energy. For a low doping con-
centration, impurities are far from each other so that the in-

G=GO+GOHWVG. (19)  teraction between the impurities is negligible. Consequently,

, the total DOS spectrum due to all the impurities is the sum of

SinceH{} is diagonal in the representation for whig™  all the single-impurity spectra, which is simply the single-
and all z//nke8§<”) are basis functionsz(?) is also diagonal impurity spectrum multiplying the number of impurities.

. 1
ng™(E)=— —Im[Ggg], (18)
where Ggg=(4™|G| &™), To find the matrix element

Ggg, the two resolvent operators are related to each oth
through the Dyson equation
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Energy (meV)
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FIG. 1. Waterfall plots ofa) the binding energy(b) the DOS spectrum width, an@) the shift of resonance energy of thp2state in
GaAs-Al ,Ga gAs QW structures as a function of the impurity position for various well widths. Each of the numbers shown in the figures
represents the peak value for each well width(dj the corresponding capture or escape times at the peaks are also shown.

IIl. NUMERICAL RESULTS AND DISCUSSION (n=2-10) and five Gaussian orbitals<(0—4). Two infi-

We present numerical results to give an illustration of theNit® potential walls 60 nm apart are artificially imposed to
resonant states. Calculations are performed for thg & surround the QW structures to dlscret|z_e the continuum of
(2% resonant impurity stater=2, m=0, j=1) ina Qw the subbands above the AGagAs barriers. It has been
structure consisting of a GaAs well sandwiched bymade sure that the walls do not significantly compress the
Aly,Gay gAs barriers. The B, state lies above the first- 2Po state and the first subband states. The problem becomes
subband edge and attached to the second subband for a#5xX45 matrix eigenvalue equation for each set of the pa-
on-center impurity in the QW well with a width less than rametersa(*®. The accuracy of the numerical results has
some critical value £60 nm)2 In the calculation of the been confirmed by observation of the convergence of the
bound part of the B, state, we use the trial functiori$0a  data with increasing the number of terms used in the expres-
and(16) consisting of nine lowest subbands in subspsi§8  sion of the trial function. The five nonlinear variational pa-
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rameters«{?” are under the restriction of(*”=a+8 ~ ~3 meV. We also show the value of the capture or escape
whereq is treated as a nonlinear variational parameterdut time associated with the maximum resonant coupling for
are fixed to beB;=0.29 3 for I=0—4. In the calculations, each well width. It ranges approximately from 0.1 to 1 ps.
the effective mass and the low-temperature band gap for the The resonance energy shiftE(?°) shown in Fig. 1c)
AlL,Ga _,As material system are assumed to be (0.067%xhibits more complicated variations with the impurity posi-
+0.08%)m, and 1.5191.44%—0.15¢ eV, respectively, tion. As can be seen from E¢3), it depends on the reso-
according to Casey and PaniShwherem, is the free elec- nance energy leveEZ°Y and the coupling strength (E)
tron mass. The barrier height is assumed to be 0.65 of thever a range of energy. Therefore, a wider well can virtually
band gap difference. The static dielectric constant ofhave a more significant energy shift than a narrower one.
Al,Ga,_,As is adopted by a linear interpolation between SinceI'(E) in principle decays withE, the coupling is ex-
those of GaAg412.58 and AlAs (10.06. pected to cause a blueshift of the impurity level, i.e.,
Figures 1a), 1(b), and 1c) are the waterfall plots of the AE(Y)>(Q. As can be seen, the maximum shift is of the
binding energyEZY, the spectrum width' (EZY), and the  order of 0.1 meV. For wide wells, such as those of width
shift of resonance energdEY, respectively, of the @  >30 nm, the resonance ener@%° is close to the first-
state as a function of the impurity positiapfor various well  subband bottont,,. This may cause reduction of the blue-
widths. The origin is chosen at the center of the QW. Theshift or even a redshift of the impurity levehAE2°D<0),
binding energy of the @, depends on the electronic distri- which does not show in the waterfall plot of Fig(cL Ac-
bution probability around the impurity position. As a conse-cording to the calculated results, the redshift can be as large
guence, the binding energy exhibits two peaks associateals tenths of meV for a wide well. The energy shift is in
with the two maxima of the electronic distribution probabil- general much smaller than the binding energy.
ity of the 2p, state. Furthermore, the maximum electronic
distribution probability can be enhanced by a reduction of
the well width. This causes an increase of the binding energy

with the well width decreasing, as can be seen from Fg. 1 We have presented the formulas for calculations of the

Further reduction of the well width can nevertheless push Upparacteristics of resonant impurity states in QW structures
the energy level to be close to the barrier height, leading to By dividing the total system into an uncoupled system and
wjde;pread electronic distri_bution and thus_ a r_eduction of thene resonant coupling. The division depends on which sub-
binding energy. This explains the lower binding energy forpang the impurity state of interest is attached to. The bound
the 7-nm well than for the %g)l—nm well. part of the resonant state is a stationary state in the un-

The spectrum widtt(E°") reflects the resonant cou- coupled system and has been obtained by the variational
pling strength, which depends on the impurity position andmethod with a multisubband trial function. After having
the resonance energy relative to the lowest subband bottorfynd out the representation in which the uncoupled Hamil-
ie., EE°Y—E,, through the coupling matrix elements in tonian is diagonal, we treat the resonant coupling with the
Eq. (24). When the impurity is at the well center, the parity technique of the resolvent operators and obtain the spectrum
difference of the bound)¥®™ and the first subband states of the resonant impurity state. The numerical results of the
Yy causes no couplingl(=0), shown in Fig. ). The binding energy, the DOS spectrum width, and the energy
spectrum width goes through a maximum and then reduceshift of the 2, state have been presented. The spectrum
toward zero as the impurity moves away from the well cenwidth can be as large as several meV, causing a capture or
ter. The maximum spectrum width of a wider well is larger escape time of~0.1 ps. The energy shift is in general less
than that of a narrower well. This is because the energy difthan 0.4 meV, much smaller than the binding energy.
ferenceE2°Y—E,, is smaller for a wider well. For a large

value ofkg= \/ER(ZUD— Eio Y1k exhibits a rapid oscillation
along p, resulting in a small overlap integral for the spec-
trum width. In Fig. 1b) we show the value of the maximum This work is supported by the National Science Council
spectrum width for each of the wells. It can be as large a®f ROC under Contract No. NSC 90-2112-M-009-054.

IV. CONCLUSION
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