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First-order semi-infinite electron gas model of the quantized carriers of a semiconductor-insulator
interface at finite temperatures
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In this paper, the first-order semi-infinite electron gas~FOSEG! model of quantized carriers is presented by
extending previous theories to take into account both the potential gradient and the vanishing boundary
condition. This first-order theory is applicable to the semiconductor-insulator interface at finite temperatures.
With the FOSEG, the quantized carrier density at the interface can be calculated without having to explicitly
solve the Schro¨dinger equation.
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I. INTRODUCTION

Metal-oxide-semiconductor field-effect transisto
~MOSFET’s! are vastly utilized in modern electronic de
vices. In a MOSFET, a thin layer of insulating oxide is san
wiched between the gate metal and the semiconducto
shown in Fig. 1~a! for an n-channel MOSFET.1,2 When a
positive voltageVG is present across the gate and the s
strate, band bending occurs at the semiconductor-insu
interface, and the electrons are attracted towards the in
face. These electrons are virtually confined by the infin
barrier of the oxide and the bent conduction band, and
quantized as illustrated in the upper subplot of Fig. 1~b!. The
quantized carrier density thus formed is illustrated in
lower subplot of Fig. 1~b!. The nonvanishing carrier densit
beyond the classical turning point~labeled as the tunneling
tail! is due to the tunneling of lower quantum levels.3,4 These
quantization effects are important for nanosc
MOSFET’s.5–10

In the literature, the band bending is sometimes appro
mated by its tangent line, especially at high electric field11

This linear approximation to the conduction band toget
with the infinite barrier constitutes the triangular potent
depicted by the dashed line in the upper subplot of Fig. 1~b!.

However, in most basic textbooks of semiconductor
vice physics, not only the quantization effects but also
infinite barrier were ignored in the carrier density calculati
just for simplicity.1,2 The carriers near the interface we
treated by the homogeneous electron-gas~HEG! model of
solid-state physics.12 In the HEG theory, the carriers ar
treated as independent particles subject to a constant p
tial energy in an infinite space. Hence, the HEG mode
more appropriate for bulk semiconductors.

For the problems of the semiconductor-insulator interfa
the HEG model were modified to take the unpenetra
boundary condition into account. This modification of t
homogeneous electron gas was called the modified lo
density approximation~MLDA ! in Refs. 13 and 14. How-
ever, in more modern literature, the local-density approxim
tion usually refers to the approximation used for t
exchange and the correlation energy.15–17 To avoid confu-
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sion, the MLDA in Refs. 13 and 14, which treats the corre
tion to the quantized carriers at the semiconductor-insula
interface phenomenologically, is renamed as the semi-infi
electron-gas~SEG! model in this work because the vanishin
boundary condition at the unpenetrable interface essent
implies a semi-infinite semiconductor.

In both the HEG model and the SEG model, the poten
energy of the electron is independent of the position. Th
only the zeroth-order position derivative of the potential e
ergy matters in the model. Therefore, both the HEG and
SEG can be considered as a zeroth-order theory. In
quantum-mechanical treatments of the electron gas in
zeroth-order theory, the potential-energy operator commu
with the kinetic-energy operator.13,14Note that both HEG and
SEG are finite-temperature models. The temperature is in
duced into the models by the Fermi-Dirac distribution.

For the quantized carriers at the semiconductor-insula
interface, the potential energy of the electron is positio
dependent due to the band bending caused by the ele
field. Under such circumstances, the potential-energy op
tor and the kinetic-energy operator no longer commute18

FIG. 1. The device structure of ann-channel MOSFET is plotted
in ~a!. Its band diagram and quantized carrier density are plotte
the upper and the lower subplots of~b!, respectively.
©2002 The American Physical Society37-1
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and, strictly speaking, the zeroth-order theory of the H
and the SEG no longer holds either.

Moreover, it was reported in the literature that the tunn
ing tails of the electron wave functions into the band ed
introduce a nonvanishing density of states to the convent
ally forbidden band gap in the presence of band bendin3,4

This tunneling effect cannot be modeled by the HEG and
SEG models because the potential gradient is ignored in
models.

The homogeneous electron gas in the infinite space
been modified to explicitly include the electron potenti
energy gradient to first order, leading to the first-order hom
geneous electron-gas~FOHEG! approximation.19,20 This
first-order theory of the electron gas was applicable to
quantized charges of bulk semiconductors at finite temp
tures, and was reported to be capable of modeling the e
tron tunneling effects previously ignored by the conventio
zeroth-order theory. However, since the FOHEG does
take the vanishing boundary condition into account, it can
be applied to the semiconductor-insulator interface.

In this paper, the SEG model is extended, by using so
of the techniques developed in the FOHEG for semicond
tors at finite temperatures, to explicitly include the electr
potential-energy gradient to first order for application to t
quantized carriers at the semiconductor-insulator interfa
This approximation is called the first-order semi-infin
electron gas~FOSEG! in this work, and is applicable to th
semiconductor-insulator interface at finite temperatures
cause, near the interface, the second- and higher-orde
rivatives of the potential energy are significantly less imp
tant than the first-order derivative. With this approximatio
the density of the quantized charges of the semiconduc
insulator interface at finite temperatures can be calculate
an analytic expression without having to explicitly solve t
Schödinger equation.

The four approximations to the electron gas mentioned
this section are the HEG, the SEG, the FOHEG, and
FOSEG. They can be differentiated by the conditions that
taken into account. The conditions are whether the vanish
boundary condition is included and whether the poten
gradient is explicitly accounted for. The four approximatio
and their employed conditions are summarized in Table

II. THEORY

A. First-order semi-infinite electron-gas model

The density of the quantized charges of t
semiconductor-insulator interface at a finite temperature
usually obtained by first solving the Schro¨dinger equation for
the wave functions and their eigenenergies, and then s
ming over all the probability density functions weighted
the Fermi-Dirac distribution.12 Alternatively, the quantized
carrier densityn(rW) may be calculated by integrating th
product of the density of states@DOS, D(rW,«)# and the
Fermi-Dirac distribution over the energy,13,14

n~rW !5E d«D~rW,«! f ~«!, ~1!
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wheref («)51/(11eb(«2«F)) is the Fermi-Dirac distribution
with Fermi energy«F andb51/kT andT is the temperature
of the system.

If the insulator is modeled as an unpenetrable barrier
cated at thez50 plane, then the wave functions vanish at t
interface atz50, and the techniques developed in Re
13,14 and 19–22, can be utilized to obtain the quanti
carrier density using the integral in Eq.~1!. Following Refs.
19–23, all second- and higher-order derivatives of the pot
tial energy are neglected. Because only the first-order der
tive of the potential energy is retained, this approximation
the quantized carriers of the semiconductor-insulator in
face at a finite temperature is called the FOSEG model in
paper.

By the above-mentioned approximation, the approxim
DOS at locationrW and energy« is given by

D~rW,«!5
1

p S m

2p i\2D d/2E dv
1

vd/2
eiv[«2V(rW)]

3e2 ia3v3
@12ei (m/2\2)v(Bv12z/v)2

#, ~2!

with a35\2(“V)2/24m andB5(\2/4m)(]V/]z), whered,
m, V, andz are the dimensionality, the carrier mass, the p
tential energy, and the normal distance to the interface,
spectively.

The observation of the approximate DOS in Eq.~2! shows
that the vanishing boundary condition atz50 is not fulfilled
unlessB50. Hence, theB term is ignored in the presen
work to ensure that the boundary condition atz50 is satis-
fied. With this further approximation, the DOS can be e
pressed by the following integral:

D~rW,«!5
2

GS d

2D S m

2p\2D d/2

bd/221E
2 «̄

`

dt Ai ~ t !

3~ «̄1t !d/221Fd~a@«̄1t# ! ~3!

with

Fd~s!512GS d

2D ~As!12d/2Jd/221~2As!, ~4!

where b35\2(“V)2/8m, a5z2(mu“Vu/\2)2/3, and «̄5(«
2V)/b. G, Ai, and Jd/221 are the gamma function, Airy’s
function, and Bessel function of the first kind, respectivel

TABLE I. Four approximations to the electron gas.

Without With
potential gradient potential gradien

Without vanishing
boundary condition HEG FOHEG
With vanishing
boundary condition SEG FOSEG
7-2
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The carrier density follows directly from Eqs.~1! and~3!,
resulting in a double integral. Interchanging the order of
double integral, the carrier density is expressed by

n~rW !5
2

GS d

2D S m

2p\2b
D d/2E

2`

`

dt Ai ~ t !E
0

`

ds

3
sd/221Fd~gs!

11exp@s2b~bt1«F2V!#
, ~5!

whereg52mz2/(\2b) andFd is given by Eq.~4!.

B. Relation to other theories

The relations of the FOSEG carrier density in Eq.~5! to
other theories will be demonstrated in this section.

It was illustrated in Ref. 19 that the carrier density calc
lated in Ref. 21 is at a zero temperature, whereas, the me
used in Refs. 13, 14, and 19 is a generalization of the z
temperature formalism to a finite temperature. Since the
mulation presented in this section employed methods sim
to the latter, the FOSEG carrier density given above is a
finite temperature.

The carrier density for semiconductor-insulator interfa
at a zero temperature can be obtained from Eq.~5! by letting
T→0 or b→`. The carrier density at this low-temperatu
limit is, thus, given by

n~rW !→ 2Kd

GS d

2D S m

2p\2D d/2E
2 «̄

`

dt Ai ~ t !~bt1«F2V!d/2,

~6!

whereKd52, 1, and 2/3 ford51, 2, and 3, respectively, an
«̄5(«F2V)/b. Because the zero-temperature results
ported in Eqs.~16! and ~17! of Sec. 1.4 of Ref. 21 did no
take the interface into account, none of the equations in R
21 can compare with the zero-temperature carrier densit
Eq. ~6!.

At the flat-band limit (“V and b→0) or at the high
Fermi-level limit («F@V), Eq. ~5! suggests that the inte
grand of the inner integral overs be independent oft. Hence,
the carrier density at any of these two limits becomes

n~rW !→ 2

GS d

2D S m

2p\2b
D d/2E

0

`

ds
sd/221Fd~gs!

11exp@s2b~«F2V!#
.

~7!

For the dimensionalityd53, the above carrier density ex
pression can be shown to be identical with Eq.~20! of Ref.
13. ~This is not surprising because, in Ref. 13, the gradien
the potential energy is completely ignored to facilitate t
commutation of the potential-energy and the kinetic-ene
operators.! Therefore, the carrier density obtained by t
FOSEG of this work indeed reduces to the flat-band equa
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of the SEG in Ref. 13 as the potential-energy gradient dim
ishes. This reduction will also be confirmed numerically
the following section.

At the large normal distance limit (z andg→`), the FO-
SEG carrier density expression in Eq.~5! can be easily
shown to reduce to

n~rW !→2S m

2p\2b
D d/2E

2`

`

dt Ai ~ t !Fd/221@b~bt1«F2V!#,

~8!

where Fj (x)51/G( j 11)*0
`dt tj /(11et2x) is the Fermi-

Dirac integral24 of orderj and argumentx. Equation~8! is the
FOHEG carrier density reported in Ref. 19 for bulk semico
ductors without insulating interfaces. The result for this lim
is consistent with the physical intuition that the effect of t
interface on the carrier density decreases as the locationrW is
farther from the interface. Hence, this limit is also termed
bulk limit.

The relations of the FOSEG of this work to other finit
temperature theories it reduces to are summarized in Fig

III. RESULT AND DISCUSSION

In contrast to the SEG theory, the FOSEG theory of t
work explicitly takes the first-order gradient of the potent
energy into account.

In order to study the validity of both approximate met
ods, the DOS and the carrier density are calculated by
FOSEG and by the SEG, and are compared with the e
solution to the triangular potential of

V~rW !5H eFz if z.0

` if z,0,
~9!

where e is the magnitude of the electron charge,F is the
electric field, andz is the normal distance to the interfac
Note that the zero-potential-energy reference point is az
50. As shown in Fig. 1, the triangular potential had be
used as an approximation to the quantization of carriers
the semiconductor-insulator interface, and the exact D
and the exact carrier concentration of the triangular poten
are available in Ref. 11.

In all of the calculations of this work, the electron mass
taken to be the effective mass of the silicon electron,m
51.18m0, wherem0 is the electron rest mass, and the te
perature is taken to be at 300 K. Only three-dimensionald
53) results are presented in this section.

FIG. 2. The relations of the FOSEG to other theories are su
marized in this chart.
7-3
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The DOS of the triangular potential obtained by the ex
solution, by the FOSEG in Eq.~5!, and by the SEG in Eq.~7!
are plotted in solid, dashed, and dotted lines, respectively
the electric field of 1 MV/cm in Figs. 3 and 4. Similar resu
were reported for a much lower electric field of 0.05 MV/c
in Figs. 2–4 of Ref. 13, using the SEG model. The FOS
of this work is a higher-order approximation than the SE
and is expected to perform better than the SEG at high e
tric fields. Therefore, a high electric field of 1 MV/cm~near
the edge of material breakdown2! is deliberately chosen fo
presentation. Moreover, as shown in Eq.~7! and the text
following it, the FOSEG reduces to the SEG at low field
Hence, a comparison between these two models at low

FIG. 3. The DOS of a triangular potential with the electric fie
of 1 MV/cm is plotted versus energy at locationz55 nm. The
DOS’s obtained by the exact solution, the FOSEG, and the SEG
plotted in solid, dashed, and dotted lines, respectively.

FIG. 4. The DOS of a triangular potential with the electric fie
of 1 MV/cm is plotted versus location at energy«50.5 eV. The
DOS’s obtained by the exact solution, the FOSEG, and the SEG
plotted in solid, dashed, and dotted lines, respectively.
07533
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is trivial and is not shown. The DOS at other electric fields
qualitatively similar and is, thus, not shown either.

In Fig. 3, the DOS is plotted as a function of energy
location z55 nm in logarithmic scale. The DOS obtaine
by the conventional SEG vanishes as the energy« is below
the conduction-band edge atV(z55 nm)50.5 eV. How-
ever, the exact solution exhibits nonvanishing DOS bel
the band edge.

In Fig. 4, the DOS is plotted as a function of location f
energy«50.5 eV in linear scale. The DOS predicted by t
conventional SEG vanishes beyond the classical turn
point atz55 nm. But, the exact results exhibit a nonvanis
ing tail beyond the classical turning point.

The nonvanishing DOS below the band edge and bey
the classical turning point illustrated in Figs. 3 and 4, resp
tively, is due to the quantum-mechanical tunneling of wa
functions, at the presence of the electric field, into the se
conductor beyond the turning point. The tunneling effe
tively lowers the conduction-band edge, and conseque
reduces the band gap.3,4 The conventional SEG theory cann
model this tunneling effect because of the explicit negligen
of the potential gradient in its formalism. On the contrary, t
FOSEG theory of this work accounts for the potential gra
ent to the first order, and is more capable of modeling
tunneling effects than the SEG theory.

The carrier densities as functions of the location are p
ted in Figs. 5, 6, and 7 for the triangular potentials w
electric field F51, 0.5, and 0.1 MV/cm, respectively. I
each figure, the carrier densities for Fermi levels a

re

re

FIG. 5. The carrier density of a triangular potential with th
electric field of 1 MV/cm is plotted for Fermi levels«F52100,
160.41 (E1), 280.45 (E2), 465.60 (E4), and 880.11 (E10) meV. The
carrier densities obtained by the exact solution, the FOSEG, and
SEG are plotted in solid, dashed, and dotted lines, respectively
7-4
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20.1 eV, the first (E1), the second (E2), the fourth (E4),
and the tenth (E10) eigenenergies of the triangular barrier a
depicted.~As noted in the text following Eq.~9!, the zero-
potential-energy reference is at the minimum of the trian
lar potential. Negative Fermi energies simply mean th
below the potential minimum.! The eigenenergies of th
above-mentioned eigenlevels are different for the triangu
barrier under different electric fields, and are tabulated
Table II. The carrier densities obtained by the exact solut
by the FOSEG, and by the SEG are plotted in solid, dash
and dotted lines, respectively, in Figs. 5, 6, and 7. One of
main differences between the FOSEG of the present w
and the SEG of Ref. 13 is that the former is capable
modeling the tunneling tail of carrier density beyond t
classical turning point. In order to illustrate the tunneli
carrier density, the logarithmic scale is used in Figs. 5, 6,
7.

The quantized carriers at the interface under a strong e
tric field of 1 MV/cm is plotted in Fig. 5. Three features a
observed in this carrier density plot.

First, at lower Fermi energy such as«F520.1 eV and
E1, both FOSEG and SEG greatly deviate from the ex
carrier density.~Although the FOSEG agrees better with t
exact carrier density at the tail than the SEG, it is not
much significance because the peak concentration is of
almost an order of magnitude.! It is found that, at the electric
field of 1 MV/cm, there must be at least four quantum lev
below the Fermi level for the FOSEG results to be su

FIG. 6. The carrier density of a triangular potential with t
electric field of 0.5 MV/cm is plotted for Fermi levels«F5 2100,
101.05 (E1), 176.68 (E2), 293.31 (E4), and 554.44 (E10) meV. The
carrier densities obtained by the exact solution, the FOSEG, and
SEG are plotted in solid, dashed, and dotted lines, respectively
07533
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ciently close to the exact solution. At Fermi energy«F5E4
and E10, the FOSEG lines are indistinguishable from t
exact lines in the figure.

Second, the FOSEG results with successively hig
Fermi energy («F520.1 eV, E1 , E2 , E4, and E10! show
that systems with more quantum levels below the Fermi
ergy better approach the exact solution.

Third, at the classical turning point associated with t
Fermi energy@given by the locationzF5«F /(eF)#, the car-
rier density obtained by the conventional SEG starts to de
ate more significantly from the exact solution, but the F
SEG well matches the exact results. This is due to the
that the tunneling of the wave functions beyond the class
turning point is included in the formalism of the FOSEG
illustrated in Figs. 3 and 4.

Figure 6 shows the carrier density at the electric field
0.5 MV/cm. The three features observed in Fig. 5 and sta
in the above paragraphs for the field of 1 MV/cm also ho
qualitatively for this field.

he

FIG. 7. The carrier density of a triangular potential with th
electric field of 0.1 MV/cm is plotted for Fermi levels«F5 2100,
34.56 (E1), 60.42 (E2), 100.31 (E4), and 189.62 (E10) meV. The
carrier densities obtained by the exact solution, the FOSEG, and
SEG are plotted in solid, dashed, and dotted lines, respectively

TABLE II. Eigenenergies of a triangular potential

Field E1 E2 E4 E10

~MV/cm! ~meV! ~meV! ~meV! ~meV!

F51.0 160.41 280.45 465.60 880.11
F50.5 101.05 176.68 293.31 554.44
F50.1 34.56 60.42 100.31 189.62
7-5
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The carrier density at a lower electric field of 0.1 MV/c
is shown in Fig. 7. The curves for the exact solution, t
FOSEG, and the SEG are almost indistinguishable. This
numerical confirmation of SEG being the flat-band limit
the FOSEG as indicated in the text following Eq.~7!.

From Figs. 5, 6, and 7, it found that the system must h
enough number of quantum levels below the Fermi level
the FOSEG to sufficiently approach the exact solution, a
that the number of quantum levels below the Fermi ene
increases with the electric field~for example, four and two
levels for F51 and 0.1 MV/cm, respectively!. Hence, it is
claimed in this paper that, under all practical strengths of
electric field, the FOSEG is a good approximation to t
exact solution if there are at least four quantum levels be
the Fermi level.

IV. CONCLUSIONS

The semi-infinite electron gas~SEG! in the literature is
extended to include the first-order derivative of the elect
potential energy, resulting in the first-order semi-infin
electron gas~FOSEG! of this work. The FOSEG is appli-
cable to the quantized carriers of semiconductor-insulator
terfaces at finite temperatures.

With the FOSEG, the density of states and the car
o

.

J
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density are given by the analytic expressions in Eqs.~3! and
~5!, respectively. These equations reduce to the SEG re
reported in the literature as the potential gradient gradu
diminishes.

In contrast to the SEG, the FOSEG explicitly includes t
potential-energy gradient in its formalism, and is capable
accounting for the tunneling of electron wave functions b
yond the classical turning point. Hence, the nonvanish
density of states below the band edge at the presence o
band bending can be modeled by the FOSEG of this wo
but was completely ignored by the SEG.

It is found that the FOSEG carrier density better matc
the exact solution for systems with more quantum levels
low the Fermi level. Moreover, at locations beyond the cl
sical turning point associated with the Fermi energy, the c
rier density obtained by the FOSEG matches the ex
solution better than the SEG because of its explicit inclus
of the potential-energy gradient in the formulations of t
FOSEG.
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