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First-order semi-infinite electron gas model of the quantized carriers of a semiconductor-insulator
interface at finite temperatures
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In this paper, the first-order semi-infinite electron §8®SEQ model of quantized carriers is presented by
extending previous theories to take into account both the potential gradient and the vanishing boundary
condition. This first-order theory is applicable to the semiconductor-insulator interface at finite temperatures.
With the FOSEG, the quantized carrier density at the interface can be calculated without having to explicitly
solve the Schidinger equation.
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[. INTRODUCTION sion, the MLDA in Refs. 13 and 14, which treats the correc-
tion to the quantized carriers at the semiconductor-insulator
Metal-oxide-semiconductor field-effect transistors interface phenomenologically, is renamed as the semi-infinite
(MOSFET'9 are vastly utilized in modern electronic de- electron-gagSEG model in this work because the vanishing
vices. In a MOSFET, a thin layer of insulating oxide is sand-boundary condition at the unpenetrable interface essentially
wiched between the gate metal and the semiconductor dgplies a semi-infinite semiconductor.
shown in Fig. 1a) for an n-channel MOSFET:? When a In both the HEG model and the SEG model, the potential
positive voltageVg is present across the gate and the subenergy of the electron is independent of the position. Thus,
strate, band bending occurs at the semiconductor-insulat@nly the zeroth-order position derivative of the potential en-
interface, and the electrons are attracted towards the inteergy matters in the model. Therefore, both the HEG and the
face. These electrons are virtually confined by the infiniteSEG can be considered as a zeroth-order theory. In the
barrier of the oxide and the bent conduction band, and arguantum-mechanical treatments of the electron gas in this
guantized as illustrated in the upper subplot of Fidp)1The  zeroth-order theory, the potential-energy operator commutes
quantized carrier density thus formed is illustrated in thewith the kinetic-energy operatét:**Note that both HEG and
lower subplot of Fig. b). The nonvanishing carrier density SEG are finite-temperature models. The temperature is intro-
beyond the classical turning poifiabeled as the tunneling duced into the models by the Fermi-Dirac distribution.

tail) is due to the tunneling of lower quantum lev&fsThese For the quantized carriers at the semiconductor-insulator
guantization effects are important for nanoscaleinterface, the potential energy of the electron is position-
MOSFET’s>~10 dependent due to the band bending caused by the electric

In the literature, the band bending is sometimes approxifield. Under such circumstances, the potential-energy opera-
mated by its tangent line, especially at high electric fiélds. tor and the kinetic-energy operator no longer comniite,
This linear approximation to the conduction band together
with the infinite barrier constitutes the triangular potential
depicted by the dashed line in the upper subplot of Fig).1

However, in most basic textbooks of semiconductor de-
vice physics, not only the quantization effects but also the
infinite barrier were ignored in the carrier density calculation
just for simplicityl? The carriers near the interface were
treated by the homogeneous electron-gd&EG) model of
solid-state physic¥ In the HEG theory, the carriers are
treated as independent particles subject to a constant potel
tial energy in an infinite space. Hence, the HEG model is—L
more appropriate for bulk semiconductors.

For the problems of the semiconductor-insulator interface,
the HEG model were modified to take the unpenetrable
boundary condition into account. This modification of the -
homogeneous electron gas was called the modified local =
density approximatiofMLDA) in Refs. 13 and 14. How-
ever, in more modern literature, the local-density approxima- FIG. 1. The device structure of amchannel MOSFET is plotted
tion usually refers to the approximation used for thein (a). Its band diagram and quantized carrier density are plotted in
exchange and the correlation enettyt’ To avoid confu-  the upper and the lower subplots (@, respectively.
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and, strictly speaking, the zeroth-order theory of the HEG TABLE I. Four approximations to the electron gas.
and the SEG no longer holds either. : :

Moreover, it was reported in the literature that the tunnel- Without With
ing tails of the electron wave functions into the band edge potential gradient potential gradient
introduce a nonvanishing density of states to the conventior'w L

. . ithout vanishing

ally forbidden band gap in the presence of band bentithg. oundarv condition HEG FOHEG
This tunneling effect cannot be modeled by the HEG and thg Y

SEG models because the potential gradient is ignored in botf'!" vanishing

models. boundary condition SEG FOSEG
The homogeneous electron gas in the infinite space had

been modified to explicitly include the electron potential-

energy gradient to first order, leading to the first-order homo

geneous electron-ga$FOHEG approximation>2° This

first-order theory of the electron gas was applicable to th ; . .
y g bp If the insulator is modeled as an unpenetrable barrier lo-

qguantized charges of bulk semiconductors at finite tempera- ) .

tures, and was reported to be capable of modeling the eleé:-""ted at th=0 plane, then the wave functions Va”'?“ atthe

tron tunneling effects previously ignored by the conventionafnterface atz=0, and the teqhmques devgloped n R?fs-

zeroth-order theory. However, since the FOHEG does not3:14 and 19-22, can pe ““"Z?d o obtain the quantized

take the vanishing boundary condition into account, it cannof@mer density using the !ntegral In Eq')'. Fo]lowmg Refs.

be applied to the semiconductor-insulator interface. 1_9_23’ all second- and higher-order derlvatl\_/es of the poten-
In this paper, the SEG model is extended, by using somd@l €nergy are neglected. Because only the first-order deriva-

tive of the potential energy is retained, this approximation to

of the techniques developed in the FOHEG for semiconduc*

tors at finite temperatures, to explicitly include the electront!® dquantized carriers of the semiconductor-insulator inter-

potential-energy gradient to first order for application to thefzcge?t afinite temperature is called the FOSEG model in this

quantized carriers at the semiconductor-insulator interfacd’ . N .
This approximation is called the first-order semi-infinite By the above:mentloned approximation, the approximate
electron gagFOSEQ in this work, and is applicable to the DOS at locatiorr and energy is given by
semiconductor-insulator interface at finite temperatures be-

wheref(g)=1/(1+e#*~#F)) is the Fermi-Dirac distribution
with Fermi energyer and 8=1/kT andT is the temperature
é)f the system.

cause, near the interface, the second- and higher-order de- R 1/ m |9 1
rivatives of the potential energy are significantly less impor- D(r.e)=— i f dw—d,ze""[s W]

tant than the first-order derivative. With this approximation, ! @

the density of the quantized charges of the semiconductor- Xe—ia3w3[1_ei(mlzhz)w(BerZzlw)z]’ 2)

insulator interface at finite temperatures can be calculated by
an analytic expression without having to explicitly solve theyiin a3=12(VV)?/24m and B= (%2/4m)(dV/dz), whered

Schadinger equation. , _m, V, andz are the dimensionality, the carrier mass, the po-
_The four approximations to the electron gas mentioned iential energy, and the normal distance to the interface, re-
this section are the HEG, the SEG, the FOHEG, and th%pectively.

FOSEG. They can be differentiated by the conditions that are’ 1e opservation of the approximate DOS in E2).shows
taken into account. The conditions are whether the vanishinghat the vanishing boundary conditionzt 0 is not fulfilled

boundary condition is included and whether the potential,jjessB=0. Hence. theB term is ignored in the present
gradient is explicitly accounted for. The four approximations,, ;. to ensure that the boundary conditionzat0 is satis-

and their employed conditions are summarized in Table |. o4 \ith this further approximation, the DOS can be ex-
pressed by the following integral:

Il. THEORY i
A. First-order semi-infinite electron-gas model D(F,s)= —5 2) pdi2—1 w,thi(t)
The density of the quantized charges of the r(_ 2mh oF
semiconductor-insulator interface at a finite temperature is 2
usually obtained by first solving the Schinger equation for X (e 4+ )Y 1F (a5 +1]) 3

the wave functions and their eigenenergies, and then sum-
ming over all the probability density functions weighted by with
the Fermi-Dirac distributiod? Alternatively, the quantized
carrier densityn(F) may be calculated by integrating the d
product of the density of statf®OS, D(r,e)] and the Fd(S)Il—F(E)(\/g)ldlsz/z_l(Z\/g), (4)
Fermi-Dirac distribution over the enerdy*

where b3=#2(VV)2/8m, a=z3(m|VV|/A2)?3 ande=(e

- - —=V)/b. T', Ai, and J4,_, are the gamma function, Airy's

n(r)—f deD(r.e)f(e), @ function, and Bessel function of the first kind, respectively.
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Th(_a ca_rrier density_ follows directly from Eq&l) and(3), FOSEG FLAT-BAND SEG
resulting in a double integral. Interchanging the order of the
double integral, the carrier density is expressed by [HIGHFERMIE. o o
(_)) 2 ( m )d/2fDO d A( )f”d BULK LIMIT = FOHEG FLAT-BAND HEG
nry=—- tAI(t s
d 2 —
F(E) 2whep 0 HIGHFERMIE. o -

FIG. 2. The relations of the FOSEG to other theories are sum-

d2—1
S Fa(ys) ) marized in this chart.

><1+exp:s—/5’(bt+sF—V)] '

of the SEG in Ref. 13 as the potential-energy gradient dimin-

wherey=2mZ/(#2B) andF4 is given by Eq.(4). ishes. This reduction will also be confirmed numerically in
the following section.
B. Relation to other theories At the large normal distance limiz(and y— ), the FO-

) _ o SEG carrier density expression in E() can be easily
The relations of the FOSEG carrier density in E§.t0  shown to reduce to

other theories will be demonstrated in this section.

It was illustrated in Ref. 19 that the carrier density calcu-
lated in Ref. 21 is at a zero temperature, whereas, the method(F)H2<
used in Refs. 13, 14, and 19 is a generalization of the zero-
temperature formalism to a finite temperature. Since the for- 8

mulation presented in this section employed methods Sim"%here F)=UT(j+1)[2dtt/(1+e) is the Fermi
AN 0 B

to the latter, the FOSEG carrier density given above is at Dirac integraf* of orderj and argument. Equation(s) is the

fml%'eh;e::naeﬁrearuélreeﬁsit for semiconductor-insulator interface':OHEG carrier density reported in Ref. 19 for bulk semicon-
Y ductors without insulating interfaces. The result for this limit

ata zero temperature can be obt_amed fr_om(E)qby letting is consistent with the physical intuition that the effect of the
T—0 or B—. The carrier density at this low-temperature

m az
zﬂ_hzﬁ) fmthi(t)fd/Z—l[ﬂ(bt"‘SF—V)],

limit is, thus, given by interface on the carrier density decreases as the locatisn
’ ’ farther from the interface. Hence, this limit is also termed the
oK a2 bulk limit.
r d - i di2 The relations of the FOSEG of this work to other finite-
n(r)— 27Tﬁ2) 7;th|(t)(bt A temperature theories it reduces to are summarized in Fig. 2.

3

whereK,=2, 1, and 2/3 fod=1, 2, and 3, respectively, and In contrast to the SEG theory, the FOSEG theory of this
s_z(sF—V)/ b. Because the zero-temperature results re_\évr?élr(g?/xiir)]ltlgliiéiﬁi? the first-order gradient of the potential
ported in Eqs(16) and (17) of Sec. 1.4 of Ref. 21 did not ’ - .
take the interface into account, none of the equations in Ref. dln t(?]rde[; (t)osstuc(ijy t:]he vahdny dOf b.?th approIXIrr?atte dmbeﬂl_h
21 can compare with the zero-temperature carrier density iﬁ OSéE Ge and b;‘rt]he SeEéargﬁL aergsclzgn?;rgg (\:/:IJit?] ethe Zxacet
Eq. (6). . : ' ;

At the flat-band limit ¥V and b—0) or at the high Selution to the triangular potential of
Fermi-level limit (eg>V), Eq. (5) suggests that the inte-

(6) I1l. RESULT AND DISCUSSION

eFz if z>0

grand of the inner integral overbe independent df Hence, V(r)= _ 9)
the carrier density at any of these two limits becomes o if  z<O,
a2 41 where e is the magnitude of the electron charde,is the
n(f)— 2 ( m ) f ds s™° "Fy(ys) electric field, andz is the normal distance to the interface.
d\\ 27428 o l+exdgs—B(eg—V)]’ Note that the zero-potential-energy reference point ig at
F(E) =0. As shown in Fig. 1, the triangular potential had been

7) used as an approximation to the quantization of carriers at
the semiconductor-insulator interface, and the exact DOS

For the dimensionalityd=3, the above carrier density ex- and the exact carrier concentration of the triangular potential
pression can be shown to be identical with E20) of Ref.  are available in Ref. 11.
13.(This is not surprising because, in Ref. 13, the gradient of In all of the calculations of this work, the electron mass is
the potential energy is completely ignored to facilitate thetaken to be the effective mass of the silicon electron,
commutation of the potential-energy and the kinetic-energy=1.18n,, wherem, is the electron rest mass, and the tem-
operators. Therefore, the carrier density obtained by theperature is taken to be at 300 K. Only three-dimensiodal (
FOSEG of this work indeed reduces to the flat-band equatior 3) results are presented in this section.
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FIG. 3. The DOS of a triangular potential with the electric field
of 1 MV/cm is plotted versus energy at locatias=5 nm. The 1 3 Y \ '
DOS’s obtained by the exact solution, the FOSEG, and the SEG are Y y 5
plotted in solid, dashed, and dotted lines, respectively. 0~ '\ \
T
0 2 4 6 8 10

The DOS of the triangular potential obtained by the exact LOCATION (nm)
solution, by the FOSEG in E@5), and by the SEG in Eq7) ) ) ) ) )
are plotted in solid, dashed, and dotted lines, respectively, f°é|e5tlr?c' fiséldﬂ(])? fal\;lr\l/e/rcnd\eir;sg?/ot(t);daf(t)rrlalggfrllai‘rlgfetlesm?l Vl"(;g the
the electric field of 1 MV/cm in Figs. 3 and 4. Similar results Fm
were reported for a much lower electric field of 0.05 MV/cm 160.41 €,), 280.45 €5), 465.60 €,), and 880.11 49 meV. The
in Figs. 2—4 of Ref. 13, using the SEG model. The FOSECarer densities c_Jbtaln_ed by the exact solutlon,_ the FOSEG,_ and the
of this work is a higher-order approximation than the SEG SEG are plotted in solid, dashed, and dotted lines, respectively.
and is expected to perform better than the SEG at high ele(f- o ; —_ :

o . S S trivial and is not shown. The DOS at other electric fields is
tric fields. Therefore, a high electric field of 1 MV/ctnear oo . ; -

) ; . qualitatively similar and is, thus, not shown either.

the edge of material breakdofyris deliberately chosen for In Fig. 3, the DOS is plotted as a function of energy at

Egﬁi@?gatli?n{hgﬂ?:rggvéé ?esdj:é);/v?o I&eHZ)Eéngttlzivtﬁglt ds locationz=5 nm in logarithmic scale. The DOS obtained
91 ‘hiy the conventional SEG vanishes as the energy below

Hence, a comparison between these two models at low fiel e conduction-band edge ¥(z=5 nm)=0.5 eV. How-
ever, the exact solution exhibits nonvanishing DOS below

e e the band edge.
] FELD=1MV/cm | In Fig. 4, the DOS is plotted as a function of location for
73 ENERGY=05eV  E  energye=0.5 eV in linear scale. The DOS predicted by the
g DOS 3 conventional SEG vanishes beyond the classical turning
T> ] \ — Eéggg : pomt {itz=5 nm. But, thg exact r_esults_exh|b|t a nonvanish-
Q5] \ / N P SEG a2 ing tail beyond the classical turning point.
IE ] *\\ [ The nonvanishing DOS below the band edge and beyond
O 41 h o the classical turning point illustrated in Figs. 3 and 4, respec-
S ] - tively, is due to the quantum-mechanical tunneling of wave
<~ 3] N\ - functions, at the presence of the electric field, into the semi-
8 ] ) C conductor beyond the turning point. The tunneling effec-
a 2 A\ - tively lowers the conduction-band edge, and consequently
] \ - reduces the band g&f The conventional SEG theory cannot
17 - model this tunneling effect because of the explicit negligence
] ) - of the potential gradient in its formalism. On the contrary, the
0 G S R SR S FOSEG theory of this work accounts for the potential gradi-

LOCATION (nm)

FIG. 4. The DOS of a triangular potential with the electric field
of 1 MV/cm is plotted versus location at energy=0.5 eV. The

ent to the first order, and is more capable of modeling the
tunneling effects than the SEG theory.

The carrier densities as functions of the location are plot-
ted in Figs. 5, 6, and 7 for the triangular potentials with

DOS’s obtained by the exact solution, the FOSEG, and the SEG arelectric field F=1, 0.5, and 0.1 MV/cm, respectively. In

plotted in solid, dashed, and dotted lines, respectively.

each figure, the carrier densities for Fermi levels at
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FIG. 6. The carrier density of a triangular potential with the  FIG. 7. The carrier density of a triangular potential with the
electric field of 0.5 MV/cm is plotted for Fermi levels-= —100,  electric field of 0.1 MV/cm is plotted for Fermi levels-= —100,
101.05 €,), 176.68 €,), 293.31 €,), and 554.44E ) meV. The  34.56 E,), 60.42 E,), 100.31 E,), and 189.62 £, meV. The
carrier densities obtained by the exact solution, the FOSEG, and thearrier densities obtained by the exact solution, the FOSEG, and the
SEG are plotted in solid, dashed, and dotted lines, respectively. SEG are plotted in solid, dashed, and dotted lines, respectively.

—0.1 eV, the first E;), the second &), the fourth €,), ciently close to the exact solution. At Fermi energy=E,

and the tenthE,y) eigenenergies of the triangular barrier areand ItE}.O’ thg chOSf!EG lines are indistinguishable from the
depicted.(As noted in the text following Eq(9), the zero- exaSCeclonr:adS Irt]he nggEG results with successively higher
potential-energy reference is at the minimum of the triangu- ’ y g

: ; : . . Fermi ener =-0.1 eV,Eq, E,, E4, and E;p show
lar potential. Negative Fermi energies simply mean thos‘?hat systemgsyvfich more quantulm Iezvels4below t%\ot)a Fermi en-
below the potential minimum.The eigenenergies of the

) . . . ergy better approach the exact solution.
above-mentioned eigenlevels are different for the triangular Tni-q at the classical turning point associated with the

barrier under different electric fields, and are tabulated inzg ;i energy[given by the locatiorzy = ¢ /(eF)], the car-
Table II. The carrier densities obtained by th(.a exact solutionyje, density obtained by the conventional SEG s:tarts to devi-
by the FOSEG, and by the SEG are plotted in solid, dashedye e significantly from the exact solution, but the FO-
and dotted lines, respectively, in Figs. 5, 6, and 7. One of thg g el matches the exact results. This is due to the fact
main differences between _the FOSEG of the_ present Workﬁwat the tunneling of the wave functions beyond the classical
and the SEG of Ref. 13 IS that the former is capable o urning point is included in the formalism of the FOSEG as
modeling the tunneling tail of carrier density beyond theillustrated in Figs. 3 and 4.

classical turning point. In order to illustrate the tunneling Figure 6 shows the carrier density at the electric field of
carrier density, the logarithmic scale is used in Figs. 5, 6, ang 5 \jyv/cm. The three features observed in Fig. 5 and stated
7. in the above paragraphs for the field of 1 MV/cm also hold

The quantized carriers at the interface under a strong ele?{ualitatively for this field

tric field of 1 MV/cm is plotted in Fig. 5. Three features are
observed in this carrier density plot.

First, at lower Fermi energy such ag=—0.1 eV and
E,, both FOSEG and SEG greatly deviate from the exact
carrier density(Although the FOSEG agrees better with the
exact carrier density at the tail than the SEG, it is not of

TABLE Il. Eigenenergies of a triangular potential

Field E; E, E, Eio
(MV/cm) (meV) (meV) (meV) (meV)

much significance because the peak concentration is off by F=1.0 160.41 280.45 465.60 880.11
almost an order of magnitudet is found that, at the electric F=05 101.05 176.68 293.31 554.44
field of 1 MV/cm, there must be at least four quantum levels F=qg.1 34.56 60.42 100.31 189.62

below the Fermi level for the FOSEG results to be suffi
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The carrier density at a lower electric field of 0.1 MV/cm density are given by the analytic expressions in Egsand
is shown in Fig. 7. The curves for the exact solution, the(5), respectively. These equations reduce to the SEG results
FOSEG, and the SEG are almost indistinguishable. This is eeported in the literature as the potential gradient gradually
numerical confirmation of SEG being the flat-band limit of diminishes.
the FOSEG as indicated in the text following E@). In contrast to the SEG, the FOSEG explicitly includes the
From Figs. 5, 6, and 7, it found that the system must haveotential-energy gradient in its formalism, and is capable of
enough number of quantum levels below the Fermi level foraccounting for the tunneling of electron wave functions be-
the FOSEG to sulfficiently approach the exact solution, anggond the classical turning point. Hence, the nonvanishing
that the number of quantum levels below the Fermi energylensity of states below the band edge at the presence of the
increases with the electric fieldor example, four and two band bending can be modeled by the FOSEG of this work,
levels forF=1 and 0.1 MV/cm, respectivelyHence, it is  but was completely ignored by the SEG.
claimed in this paper that, under all practical strengths of the It is found that the FOSEG carrier density better matches
electric field, the FOSEG is a good approximation to thethe exact solution for systems with more quantum levels be-
exact solution if there are at least four quantum levels belovow the Fermi level. Moreover, at locations beyond the clas-
the Fermi level. sical turning point associated with the Fermi energy, the car-
rier density obtained by the FOSEG matches the exact
solution better than the SEG because of its explicit inclusion

o ] ) ~of the potential-energy gradient in the formulations of the
The semi-infinite electron gaSEQ in the literature is  FoSEG.

extended to include the first-order derivative of the electron

potential energy, resulting in the first-order semi-infinite

electron gagFOSEQ of this work. The FOSEG is appli-

cable to the quantized carriers of semiconductor-insulator in- T.L.L. acknowledges the support of the National Science

terfaces at finite temperatures. Council of Taiwan through Grants Nos. NSC90-2215-E-415-
With the FOSEG, the density of states and the carrie001 and NSC89-2215-E-415-001.
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