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Cascade Boltzmann-Langevin approach to higher-order current correlations
in diffusive metal contacts
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The Boltzmann-Langevin approach is extended to calculations of third and fourth cumulants of current in
diffusive-metal contacts. These cumulants result from indirect correlations between current fluctuations, which
may be considered as ‘‘noise of noise.’’ The calculated third cumulant coincides exactly with its quantum-
mechanical value. The fourth cumulant tends to its quantum-mechanical value2e3I /105 at high voltages and
to a positive value 2e2T/3R at V50 changing its sign ateV;20 T.
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The fluctuation-dissipation theorem relates the spec
density of noise in equilibrium with the corresponding line
response of the system. This is why the second cumulan
current presents new information about the system only
der nonequilibrium conditions. Nonequilibrium noise in m
soscopic systems has been extensively studied in the
decade.1 Unlike the second cumulant of current, its high
cumulants are not related with any average characteristic
the system even in equilibrium. Hence these quantities m
be also of experimental interest.

In recent years, higher-order correlations of currents
mesoscopic systems received considerable attention of t
rists. This work was pioneered by Levitov and Lesovik,2 who
calculated the distribution of charge transmitted throug
single-channel quantum contact. Subsequently, these cal
tions were extended to phase-coherent diffusive contact
the zero-temperature limit.3 Very recently, the third cumulan
of current was calculated for quasi-one-dimensio
diffusive-metal contacts for arbitrary temperatures a
voltages4 using the nonlinears model and Keldysh
formalism.5

Along with the fully quantum-mechanical approac
higher-order correlations have been studied using a semi
sical description, which ignores quantum interference
wave functions yet takes into account the Fermi statistics
electrons. Semiclassical calculations of higher-order cum
lants were performed for double-barrier structures6 using a
master equation and for chaotic cavities7 based on the mini-
mal correlation approach.8

A semiclassical Boltzmann-Langevin approach9 has been
very successful in describing the second cumulant of cur
in diffusive contacts.10 In particular, it gives the same valu
of the shot noiseSI52eI/3 as a fully quantum-mechanica
treatment.11 This is not surprising because the corrections
semiclassical values from quantum-interference effects s
as weak localization and mesoscopic fluctuations of cond
tance in dirty metals contain a small parameter12 1/pFl imp ,
and the absence of this parameter in the noise magni
implies that quantum interference is irrelevant to shot no
As the values of higher cumulants obtained by Leeet al.3

either do not contain the quantum-interference prefacto
compared to the second cumulant, it should be also poss
to obtain them semiclassically. This conclusion is suppor
by recent numerical results,13 which were obtained in a sem
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classical model with exclusion principle.
The present paper extends the semiclassical Boltzma

Langevin approach to calculations of the third and fou
cumulants of current for diffusive-metal contacts. We sh
that the main contribution to these quantities still resu
from second-order correlation functions of the Langev
sources in the Boltzmann-Langevin equation, whereas
effect of higher-order correlations of these sources is ne
gibly small in the diffusive case. As the result involves se
eral hierarchically coupled second-order correlators, this
proach may be termed ‘‘cascade.’’

The Boltzmann-Langevin equation for fluctuations rea
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~1!

wheredI is the linearized collision integral anddJext is the
random extraneous flux. Fluctuations of physical quantit
are expressed in terms of the fluctuations of the distribut
function d f . For example, the fluctuation of current dens
is given by the expression

d j ~r ,t !5e(
p

vd f ~p,r ,t !. ~2!

In principle, thenth-order correlation function of any phys
cal quantity may be calculated provided that the correlat
functions of the extraneous sourcesdJext are known up to
nth order.

Kogan and Shulman9 calculated the second-order correl
tion function of the extraneous sources based on very sim
physical considerations. The collision integral in the Bol
mann equation is of the form

I ~p,r ,t !5(
p8

@J~p→p8!2J~p8→p!#, ~3!

whereJ(p→p8) andJ(p8→p) are the outgoing and incom
ing scattering fluxes from and to statep. It is natural to
assume that all scattering events are local in space and
scattering fluxes between different pairs of states are sta
cally independent. Furthermore, since scattering event
different instants of time are independent, the scattering
tween each pair of states presents a Poissonian pro
©2002 The American Physical Society34-1
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whose second-order correlation function^dJ(t1)dJ(t2)& is
proportional to its average rate

J~p→p8!5W~p,p8! f ~p,r ,t !@12 f ~p8,r ,t !#, ~4!

whereW(p,p8) is the classical scattering probability and t
factor 12 f takes into account the Pauli principle. Hence t
correlation function of extraneous sources related with r
domness of scattering may be written in the form9

^dJext~p1 ,r1 ,t1!dJext~p2 ,r2 ,t2!&

5d~r12r2!d~ t12t2!H dp1p2(
p8

@J~p1→p8!

1J~p8→p1!#2J~p1→p2!2J~p2→p1!J .

~5!

The correlation function is positive ifp15p2 and negative if
p1Þp2. In the latter case the only correlation is possib
through scattering fromp1 to p2 and vice versa, but this
results in fluctuations of the corresponding occupancies
opposite signs.

In the case of a diffusive metal and low frequencies,
Boltzmann-Langevin scheme is greatly simplified. It is co
venient to introduce a fluctuation of electric potentialdf and
random extraneous current14,15

d jext~r ,t !5et(
p

vdJext~p!, ~6!

wheret is the elastic scattering time. The fluctuation of cu
rent density is given by the expression

d j52s¹df1d jext, ~7!

wheres is the metal conductivity. Because pile-up of char
is forbidden in the quasistatic limit, one easily obtains fro
the condition of current conservation that

s¹2df5¹ jext. ~8!

The correlation function of extraneous currents

^d j a
ext~r1 ,t1!d j b

ext~r2 ,t2!&52sdabd~r12r2!d~ t12t2!

3E d« f ~«,r1!@12 f ~«,r1!# ~9!

is easily obtained from Eq.~5!. Expressions~7!–~9! form a
complete set of equations for calculating the second cu
lant of current.

It is natural to use the same notion of independent s
tering events for determining the correlation functions
Langevin sources of higher order. According to the ideas
Kogan and Shulman, the Langevin source is a fluctuation
the difference between the outgoing and incoming scatte
fluxes into a given state (p,r ). Since each scattering flu
between a pair of states is assumed to be a Poissonian
cess, all its cumulants are proportional to the average s
tering rate 1/t. Hence the third- and fourth-order correlatio
07533
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functions of extraneous currents~6! are proportional tot3

~see the Appendix for details!. As will be shown below, the
contribution from these correlations is negligibly small
compared to another mechanism related with second-o
correlations of Langevin sources. These correlations may
called indirect, or ‘‘cascade.’’ The point is that the secon
order correlation function of extraneous sources is a fu
tional of the distribution functionf and hence may also fluc
tuate as the current itself. One may roughly imagine th
fluctuations as fluctuations of Nyquist noise of a resis
caused by fluctuations of its temperature. A fluctuationd f
results in a fluctuation

d^d j a
ext~r1 ,t1!d j b

ext~r2 ,t2!&52sdabd~r12r2!d~ t12t2!

3E d«@122 f ~«,r1!#

3d f ~«,r1 ,t1!.

Note that the time scale for the fluctuationd f is set by a
characteristic relaxation time and hence they are slow
compared to the duration of a scattering event. Asd f is also
correlated with fluctuations of other quantities, this ‘‘noise
noise’’ results in higher-order correlations of currents. Hen
even Gaussian extraneous sources may produce
Gaussian fluctuations.

In a symbolic form, the expression for indirect third-ord
correlations may be written in the form

^dI 1dI 2dI 3&5P123H d^dI 1dI 2&
d f 4

^d f 4dI 3&J , ~10!

whereP123 denotes a summation over all inequivalent p
mutations of indices (123) andd^•••&/d f 4 denotes a func-
tional derivative with respect tof («4 ,r4 ,t4). The products
imply a convolution over the arguments of the distributi
functions with repeating indices. Theirreducible fourth-
order correlation function is presented by three groups
terms

^:dI 1dI 2dI 3dI 4:&5P1234H d2^dI 1dI 2&
d f 5d f 6

^d f 5dI 3&^d f 6dI 4&

1
d^dI 1dI 2&

d f 5

d^d f 5dI 3&
d f 6

^d f 6dI 4&

1
d^dI 1dI 2&

d f 5
^d f 5d f 6&

d^dI 3dI 4&
d f 6

J .

~11!

The corresponding contributions are schematically illustra
by diagrams in Fig. 1.

To evaluate expressions~10! and~11!, one must know the
second-order correlation function of fluctuationsd f . In the
quasistatic limit, the Boltzmann-Langevin equation may
easily transformed into a stochastic diffusion equation for
fluctuationd f («,r ,t)

D¹2d f ~«,r !5¹dFext, ~12!
4-2
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where

dFext~«!5
t

NF
(

p
vdJext~p!d~«p2«!, ~13!

so one obtains from Eq.~5! that

^dFa
ext~«,r !dFb

ext~«8,r 8!&

52
D

NF
d~r2r 8!d~ t2t8!d~«2«8!dab f ~«!@12 f ~«!#,

~14!

^dFa
ext~«,r !d j b

ext~r 8!&52eDd~r2r 8!d~ t2t8!

3dab f ~«!@12 f ~«!#, ~15!

where D is the diffusion coefficient andNF is the Fermi
density of states.

Consider the case of a quasi-one-dimensional diffus
wire of lengthL connecting two massive electrodes with
voltage dropV across it. In this case, all quantities may
considered as depending only on the longitudinal coordin
x along the wire. The solution of Eq.~12! is of the form

d f ~x!5
1

DS0
E

0

L

dx8K~x,x8!E d2r'dFx
ext~«,x,r'!,

K~x,x8!5u~x2x8!2x/L, ~16!

whereS0 is the area of the cross section of the wire andr'

are the transverse coordinates. Because the pile-up of ch
in the contact is forbidden in the quasistatic limit, the flu
tuation of current is independent ofx and is obtained by
averaging the extraneous current over the contact volum10

dI 5E
0

Ldx

L E d2r'd j x
ext. ~17!

FIG. 1. Typical contributions to~a! second,~b! third, and ~c!
fourth cumulants of current in a diffusive metal. The arrows cor
spond to current fluctuations at different instances of time. Bl
circles correspond to the correlators of Langevin sources, em
triangles and squares, to their first and second functional de
tives.
07533
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The low-frequency Fourier transform of the correlation fun
tion of dI (t1) anddI (t2) is given by

^dI ~v1!dI ~v2!&5d~v11v2!

3
4p

RLE0

L

dxE d« f ~«,x!@12 f ~«,x!#,

~18!

whereR is the resistance of the contact. By giving the d
tribution function a varianced f («,x), one easily obtains the
functional derivative of Eq.~18! with respect tof («,x,v3) in
the form

d^dI ~v1!dI ~v2!&
d f ~«,x,v3!

5d~v11v22v3!
4p

RL
@122 f ~«,x!#.

~19!

The second functional derivative of the same quantity is j

d2^dI ~v1!dI ~v2!&
d f ~«3 ,x3 ,v3!d f ~«4 ,x4 ,v4!

52d~v11v22v32v4!

3d~«32«4!d~x32x4!
8p

RL
.

~20!

The right-hand side of Eq.~10! allows three inequivalen
permutations of indices. Hence the low-frequency Four
transform of the third cumulant of current

S3~v1 ,v2!5E d~ t12t3!E d~ t22t3!exp@ iv1~ t12t3!

1 iv2~ t22t3!#^dI ~ t1!dI ~ t2!dI ~ t3!&

is given by an expression

S3~0,0!512
e

RL2E d«E dxE dx8@122 f ~«,x!#K~x,x8!

3 f ~«,x8!@12 f ~«,x8!#. ~21!

The first, second, and third terms in the right-hand side
Eq. ~11! allow 6, 12, and 3 inequivalent permutations
indices, respectively. Hence the low-frequency Fourier tra
form of fourth cumulant of current

S4~v1 ,v2 ,v3!5E d~ t12t4!E d~ t22t4!E d~ t32t4!

3exp@ iv1~ t12t4!1 iv2~ t22t4!

1 iv3~ t32t4!#^:dI ~ t1!dI ~ t2!dI ~ t3!dI ~ t4!:&

may be written in the form

S4~0,0,0!56S421112S42213S423 , ~22!

where

-
k
ty
a-
4-3
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S4215216
e2

RL3E d«E
0

L

dxE
0

L

dx1K~x,x1! f ~«,x1!

3@12 f ~«,x1!#E
0

L

dx2K~x,x2! f ~«,x2!@12 f ~«,x2!#,

~23!

S42258
e2

RL3E d«E
0

L

dx@122 f ~«,x!#E
0

L

dx1K~x,x1!

3@122 f ~«,x1!#E
0

L

dx2K~x,x2! f ~«,x2!

3@12 f ~«,x2!#, ~24!

and

S42358
e2

RL3E d«E
0

L

dx1@122 f ~«,x1!#

3E
0

L

dx2@122 f ~«,x2!#

3E
0

L

dxK~x1 ,x!K~x2 ,x! f ~«,x!@12 f ~«,x!#.

~25!

The distribution function inside the contact is given by t
expression10

f ~«,x!5S 12
x

L D f 0~«1eV/2!1
x

L
f 0~«2eV/2!, ~26!

where f 0(«) is the Fermi distribution function. The integra
tion in Eqs.~21!–~25! is easily performed. One obtains th
the third cumulant is equal

S35
1

15

e

R

eVcosh~eV/T!112T sinh~eV/T!213eV

cosh~eV/T!21
.

~27!

This is essentially the same expression that was obtaine
Gutman and Gefen4 using the nonlinears model. It gives

S35
1

15

e2V

R
~28!

at high voltages in agreement with Leeet al.3 and

S35
1

3

e2V

R
~29!

in the low-voltage or high-temperature limit.4

The fourth cumulant of current is given by the express
07533
by

n

S452
1

420

e2

R

1

sinh3~eV/2T!
FeVcoshS 3eV

2T D
220T sinhS 3eV

2T D2313eVcoshS eV

2TD
1684T sinhS eV

2TD G . ~30!

It gives

S452
1

105

e3V

R
~31!

in the high-voltage limit in agreement with the results of L
et al.3 In equilibrium atV50 only the last term in Eq.~22! is
nonzero and

S45
2

3

e2T

R
. ~32!

This result seems to be new. The positive sign ofS4 in equi-
librium is in a qualitative agreement with the shape of d
tribution function of current numerically obtained by Belz
and Nazarov.16 The behavior ofS4(V) is shown in Fig. 2.
The fourth cumulant changes its sign ateV'20 T, hence
the distribution of current changes from super-Gaussian
sub-Gaussian as the voltage increases.

It has been proposed recently17 that the third cumulant of
noise may be used for determining the effective charge
quasiparticles. In other words, it may give the same inform
tion as the shot noise even at low voltageseV!T. Since the
fourth cumulant is nonzero even at zero voltage, one m
obtain a nontrivial information about the system from me
surements of equilibrium fluctuations. Measurements of fl
tuations of noise power, which are termed ‘‘the second sp
tral density’’ and are closely related with the Fouri
transform of the fourth cumulant,18 were successfully imple-
mented by a number of authors who studied thef
noise.19–21

FIG. 2. Voltage dependence of the fourth cumulant of curr
for a long diffusive contact.
4-4
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In summary, we have shown that higher cumulants of c
rent in diffusive-metal contacts may be described by
semiclassical Boltzmann-Langevin theory. The semiclass
fluctuations appear to be non-Gaussian both in equilibr
and at high voltages.22 The present approach may be al
applied to semiclassical nondiffusive systems. In this ca
one has to take into account also higher-order local corr
tors of extraneous sources.

The author acknowledges a helpful discussion w
Sh. M. Kogan. This work was supported by the Russ
Foundation for Basic Research, Grant No. 01-02-17220
by the INTAS Open Grant No. 2001-1B-14.

APPENDIX

The third central moment ofdJext is easily found from the
same considerations as the second moment. Very simila
the second-order correlator, it is local in space. As the co
sion integral involves only single-particle transitions b
tween pairs of states, the triple correlat
^dJext(p1)dJext(p2)dJext(p3)& is nonzero only if at least two
of these states coincide. We also make use of the fact tha
third-order correlator of a scattering flux from one state
another, which is assumed to be Poissonian, is proporti
to the average scattering rate between these states. The
of the contribution from each scattering process should
determined by multiplying the signs of occupancy change
statesp1 , p2, and p3 when the corresponding scatterin
event takes place. Hence the correlator may be written in
form

^dJext~p1 ,r1 ,t1!dJext~p2 ,r2 ,t2!dJext~p3 ,r3 ,t3!&

5d~r12r2!d~r22r3!d~ t12t2!d~ t22t3!

3H dp1p2
dp2p3(

p8
@J~p8→p1!2J~p1→p8!#

1dp1p2
@J~p1→p3!2J~p3→p1!#

1dp2p3
@J~p2→p1!2J~p1→p2!#

1dp1p3
@J~p1→p2!2J~p2→p1!#J , ~A1!

where the scattering fluxesJ are given by Eq.~4!. It is easily
verified that this correlator conserves the total number
electrons at a given point.

Consider now the fourth-orderirreducible correlator of
extraneous sources. The term ‘‘irreducible’’ means that o
the part of the correlator that cannot be decoupled into pr
ucts of second-order correlators is considered. This correl
is zero for a Gaussian noise but is proportional to the aver
07533
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rate for a Poissonian process. Using the same ideas, the
ducible correlator may be written in the form

^:dJext~p1 ,r1 ,t1!dJext~p2 ,r2 ,t2!

3dJext~p3 ,r3 ,t3!dJext~p4 ,r4 ,t4!:&

5d~r12r2!d~r22r3!d~r32r4!d~ t12t2!d~ t22t3!

3d~ t32t4!H dp1p2
dp2p3

dp3p4

3(
p8

@J~p8→p1!1J~p1→p8!#2dp1p2
dp2p3

3@J~p1→p4!1J~p4→p1!#2dp1p2
dp2p4

3@J~p1→p3!1J~p3→p1!#

2~dp1p3
dp3p4

1dp2p3
dp3p4

!@J~p1→p2!

1J~p2→p1!#1dp1p2
dp3p4

@J~p1→p3!

1J~p3→p1!#1~dp1p3
dp2p4

1dp1p4
dp2p3

!

3@J~p1→p2!1J~p2→p1!#J . ~A2!

In the diffusive limit, it is convenient to pass from extran
ous fluxes in the Boltzmann-Langevin equation to extrane
currents in the drift-diffusion equation by means of Eq.~6!.
The third-order correlator of extraneous currents is of
form

^d j a
ext~r1 ,t1!d j b

ext~r2 ,t2!d j g
ext~r3 ,t3!&

5d~r12r2!d~r22r3!d~ t12t2!d~ t22t3!

3t3e3(
p•p8

~vavbvg2va8vbvg2vavb8vg2vavbvg8 !

3@J~p8→p!2J~p→p8!#. ~A3!

Though the scattering fluxesJ are proportional to 1/t, the
bracketed difference vanishes in equilibrium and is prop
tional to the anisotropic part of the distribution function
the case of applied bias. As this part is proportional tot in
the diffusive approximation, Eq.~A3! is at least of the order
of t3.

The fourth-order irreducible correlator of extraneous c
rents is of the form

^:d j a
ext~r1 ,t1!d j b

ext~r2 ,t2!d j g
ext~r3 ,t3!d j d

ext~r4 ,t4!:&

5
16

15
e2l imp

2 sd~r12r2!d~r22r3!d~r32r4!

3d~ t12t2!d~ t22t3!d~ t32t4!~dabdgd1dagdbd

1daddbg!E d« f ~«,r1!@12 f ~«,r1!#, ~A4!

where s is the conductivity. Hence the fourth-order co
relator is also of the ordert3.
4-5
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