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Cascade Boltzmann-Langevin approach to higher-order current correlations
in diffusive metal contacts
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The Boltzmann-Langevin approach is extended to calculations of third and fourth cumulants of current in
diffusive-metal contacts. These cumulants result from indirect correlations between current fluctuations, which
may be considered as “noise of noise.” The calculated third cumulant coincides exactly with its quantum-
mechanical value. The fourth cumulant tends to its quantum-mechanical va&tlé¢105 at high voltages and
to a positive value 8T/3R at V=0 changing its sign a&V~20 T.
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The fluctuation-dissipation theorem relates the spectratlassical model with exclusion principle.
density of noise in equilibrium with the corresponding linear The present paper extends the semiclassical Boltzmann-
response of the system. This is why the second cumulant dfangevin approach to calculations of the third and fourth
current presents new information about the system only uneumulants of current for diffusive-metal contacts. We show
der nonequilibrium conditions. Nonequilibrium noise in me-that the main contribution to these quantities still results
soscopic systems has been extensively studied in the pasbm second-order correlation functions of the Langevin
decadé. Unlike the second cumulant of current, its higher sources in the Boltzmann-Langevin equation, whereas the
cumulants are not related with any average characteristics @ffect of higher-order correlations of these sources is negli-
the system even in equilibrium. Hence these quantities magibly small in the diffusive case. As the result involves sev-
be also of experimental interest. eral hierarchically coupled second-order correlators, this ap-
In recent years, higher-order correlations of currents irproach may be termed “cascade.”
mesoscopic systems received considerable attention of theo- The Boltzmann-Langevin equation for fluctuations reads
rists. This work was pioneered by Levitov and Leso¥ikho .
calculated the distribution of charge transmitted through a|d | J J . 4 oxt
single-channel quantum contact. Subsequently, these calcula- gt +V(9r * eE'Vag of(p.r,0)+461= e5E.va8 + oI
tions were extended to phase-coherent diffusive contacts in D
the zero-temperature limitvery recently, th? third gumula_mt where 8l is the linearized collision integral andl®" is the
of current was calculated for quasi-one-dimensional . . .
e . andom extraneous flux. Fluctuations of physical quantities
diffusive-metal contacts for arbitrary temperatures and ; . o
. . are expressed in terms of the fluctuations of the distribution
voltage$ using the nonlinearc model and Keldysh : X .
formalism?® function 6f. For example, the fluctuation of current density

Along with the fully quantum-mechanical approach, Is given by the expression
higher-order correlations have been studied using a semiclas-
sical description, which ignores quantum interference of 5j(r,t)=e2 véf(p,r,t). (2
wave functions yet takes into account the Fermi statistics of P
electrons. Semiclassical calculations of higher-order CUMUm princip|e, thenth-order correlation function of any phys|_
lants were performed for double-barrier structfiresing a  cal quantity may be calculated provided that the correlation
master equation and for chaotic cavifiémsed on the mini- fynctions of the extraneous sourcéd®™ are known up to
mal correlation approach. nth order.

A semiclassical Boltzmann-Langevin approatias been Kogan and Shulmarcalculated the second-order correla-
very successful in describing the second cumulant of currenfon function of the extraneous sources based on very simple

in diffusive contacts” In particular, it gives the same value physical considerations. The collision integral in the Boltz-
of the shot noise5, = 2el/3 as a fully quantum-mechanical mann equation is of the form

treatment! This is not surprising because the corrections to

semiclassical values from quantume-interference effects such

as weak localization and mesoscopic fluctuations of conduc- I(p,r,t)=2 [J(p—p")—JI(p'—p)], ©)
tance in dirty metals contain a small paramb’téﬂpplimp, P

and the absence of this parameter in the noise magnitudghereJ(p—p’) andJ(p’—p) are the outgoing and incom-
implies that quantum interference is irrelevant to shot noiseing scattering fluxes from and to stape It is natural to

As the values of higher cumulants obtained by letal®  assume that all scattering events are local in space and the
either do not contain the quantum-interference prefactor ascattering fluxes between different pairs of states are statisti-
compared to the second cumulant, it should be also possiblally independent. Furthermore, since scattering events at
to obtain them semiclassically. This conclusion is supportediifferent instants of time are independent, the scattering be-
by recent numerical result§ which were obtained in a semi- tween each pair of states presents a Poissonian process

0163-1829/2002/66)/0753346)/$20.00 66 075334-1 ©2002 The American Physical Society



K. E. NAGAEV PHYSICAL REVIEW B 66, 075334 (2002

whose second-order correlation functiodd(t,)8J(t,)) is  functions of extraneous currenté) are proportional tor®
proportional to its average rate (see the Appendix for detajlsAs will be shown below, the
contribution from these correlations is negligibly small as
J(p—p")=W(p,p")f(p,r,[1-f(p",r,)], (4  compared to another mechanism related with second-order

whereW(p,p’) is the classical scattering probability and the correla_tior)s of Langevin sources. Thgse_correlations may be
factor 1—f takes into account the Pauli principle. Hence thecacljled |nd|rt|ac§, orf cas_cade.f The point is that the_ sec?nd—
correlation function of extraneous sources related with ran®'9€" corre at!on_ unpﬂon 0 'extraneous sources 1S a func-
domness of scattering may be written in the form tional of the distribution functiori and hence may also fluc-
tuate as the current itself. One may roughly imagine these
(83%Y(py,r1,t1) 83%(P,,r5,1)) fluctuations as fluctuations of Nyquist noise of a resistor
caused by fluctuations of its temperature. A fluctuati&fn
=5(r1—r2)5(t1—t2)[ 5plp22 [3(pi—p’) results in a fluctuation
p’ . .
8(8jS(ry,t1) 6 th(rz 12))=2038,56(r1—15) 8(t1—t3)

+J(p'_>p1)]—J(p1—>p2)—J(p2—>p1)]- xf de[1—2f(e,ry)]

(5) ><5f(8,r1,tl).

The correlation function is positive ff; = p, and negative if . L
p.#p,. In the latter case the only correlation is possibleNOt€ that the time scale for the fluctuatidii is set by a
through scattering fronp, to p, and vice versa, but this characteristic relaxation time and hence they are slow as
results in fluctuations of the corresponding occupancies ofompared to the duration of a scattering eventhss also
opposite signs. correlated with fluctuations of other quantities, this “noise of

In the case of a diffusive metal and low frequencies thghoise” results in higher-order correlations of currents. Hence
Boltzmann-Langevin scheme is greatly simplified. It is con-€VENn Gaussian exiraneous sources may produce non-
venient to introduce a fluctuation of electric potendial and ~ Gaussian fluctuations.

random extraneous curréhi® In a symbolic form, the expression for indirect third-order

correlations may be written in the form
§®r.t)=er>, val™(p), (6) 8(81151,)
p <5|15|25|3>:P123 T<5f45|3> y (10)
4

wherer is the elastic scattering time. The fluctuation of cur-

rent density is given by the expression where P,,; denotes a summation over all inequivalent per-
mutations of indices (123) an& - - - )/ 5f, denotes a func-

8j=—aVép+ 5, (7)  tional derivative with respect t6(e,,r4,t,). The products

imply a convolution over the arguments of the distribution
functions with repeating indices. Thereducible fourth-
order correlation function is presented by three groups of

whereo is the metal conductivity. Because pile-up of charge
is forbidden in the quasistatic limit, one easily obtains from
the condition of current conservation that

terms
V254=Vj* 8
TVeo$=V] ®) 5(51,51,)
The correlation function of extraneous currents (:61161,61361 4:) =P34 m@fsﬂ 3)(6f6614)
(015%r1,t1) 81 3 (ra,t2)) =208,58(r1 = 15) 8t —t,) 8(81,51,) &(5F5015)
+ (5f614)
f 5f5 5f6
X | def(e,r)[1—"f(e,r 9
(e,r)[1—"f(e,ry)] (9 +5<6|15|2> 581361
is easily obtained from Ed5). Expressiong7)—(9) form a of5 (9f5f6) o6fg

complete set of equations for calculating the second cumu-
lant of current.

It is natural to use the same notion of independent scatThe corresponding contributions are schematically illustrated
tering events for determining the correlation functions ofby diagrams in Fig. 1.
Langevin sources of higher order. According to the ideas of To evaluate expressiori$0) and(11), one must know the
Kogan and Shulman, the Langevin source is a fluctuation ofecond-order correlation function of fluctuatiods. In the
the difference between the outgoing and incoming scatterinquasistatic limit, the Boltzmann-Langevin equation may be
fluxes into a given statep(r). Since each scattering flux easily transformed into a stochastic diffusion equation for the
between a pair of states is assumed to be a Poissonian pritdctuation 5f(e,r,t)
cess, all its cumulants are proportional to the average scat-
tering rate 14. Hence the third- and fourth-order correlation DV26f(e,r)=V6F (12

11)
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The low-frequency Fourier transform of the correlation func-
«——> tion of 61(t;) and 8l(t,) is given by
(0l(w1) Sl (wp)) = 8w+ wp)
a b

4 (L
Xﬁ 0dXJ def(e,x)[1—f(e,X)],

(18

whereR is the resistance of the contact. By giving the dis-

tribution function a variancéf(e,x), one easily obtains the
functional derivative of Eq(18) with respect td (&,X,w3) in
the form

C 88l (w1) 8l (wy)) A7
- =8(wi1t+wry—w3)=[1-2f(e,X)].
FIG. 1. Typical contributions tda) second,(b) third, and(c) of(&,x, w3) RL
fourth cumulants of current in a diffusive metal. The arrows corre- (19

spond to current fluctuations at different instances of time. BIackT
circles correspond to the correlators of Langevin sources, empty
triangles and squares, to their first and second functional deriva-
tives.

he second functional derivative of the same quantity is just

58l (wq) 8l (w5)) B
5f(e3,X3,w3) 8 (4,%X4,04)

- 5((1)1"‘ wz—w3—w4)

where 8

- X5(83_84)§(X3_X4)ﬁ.
aFexf(s)zN—F % v8I™(p)&(e,—e), (13) 20

so one obtains from Ed5) that The right-hand side of Eq(10) allows three inequivalent
<5F3Xt(s,r)5F2Xt(s’,r’)) permutations of indices. Hence the low-frequency Fourier

transform of the third cumulant of current

D
=2——0(r—r")o(t—t")o(e—&") d,pf(e)[1—T(e)],
Ne or e ° S3(w1,w2)=fd(tl—t3)fd(tz—tg)expciwl(tl—tg

+iwy(ty—t3) (8l (ty) 8l (t,) 8l (t3))

is given by an expression

(14
(8F(e,r) 85 r"))y=2eDs(r—r")5(t—t")
X 8a5f(e)[1-1f(e)], (19

where D is the diffusion coefficient andNg is the Fermi .. € J’ f f — ,

density Qf states. | | | o 53(0,0)—12—RLZ de | dx | dx'[1—2f(e,x)]K(X,X")
Consider the case of a quasi-one-dimensional diffusive

wire of lengthL connecting two massive electrodes with a Xf(e,x")[1—-1(e,x")]. (21

voltage dropV across it. In this case, all quantities may be ' . . . .
considered as depending only on the longitudinal coordinatd "€ first, second, and third terms in the right-hand side of

x along the wire. The solution of E412) is of the form Eq. (11) allow 6, 12, and 3 inequivalent permutations of
indices, respectively. Hence the low-frequency Fourier trans-

1oL, , ) oxt form of fourth cumulant of current
5f(x)=ﬁfo dx'K(x,x )f der, oF,"(e,x,r,),

Su(@1,0.,05) = f d(ty—t) f d(t,—t,) f d(ts—t,)

K(x,x")=6(x—x")—xIL, (16
where$S, is the area of the cross section of the wire and Xexfiog(t;—ty) +iwy(ta—t,)
are the transverse coordinates. Because the pile-up of charge . _ . .
in the contact is forbidden in the quasistatic limit, the fluc- Fiwg(t—ta) [(:81(t1) 81 (1) 61 (t5) 61 (10):)

tuation of current is independent af and is obtained by may pe written in the form
averaging the extraneous current over the contact vdiime
Ldx S4(0,0,0=6S,_,+12S, ,+3S,_3, (22
5|:f —f d?r 85, (17
oL where
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0.7 T T T T T T

e? L L
Sy 1= —16—f dsf dxf dx;K(x,x1)f(e,Xq)
RL3 o Jo

L
KL= (o)1 || K00 (o2 1 e 30)),

(23

e? L L
54,2=8—f dsf dx[1—2f(s,x)]j dx; K(X,Xq)
RL® 0 0

><[1—2f(s,x1)]fOdezK(x,xz)f(s,xz)

25 30 35 40

X[1—-"f(e,X)], (24 “o 5 10 15 20
ev/
and FIG. 2. Voltage dependence of the fourth cumulant of current
for a long diffusive contact.
e? L
S4_3=8_3f dSJ' Xm[l—Zf(s,Xl)] 1 e2 1 3eV
w) s S T oo 2
. 420 R sink*(eV/2T) 2T
X fo dXZ[l_Zf(S,Xz)] ) 3eV eV
L —20T sml-<?) —313chosr{E)
xf dxK(x1,X)K(X5,x)f(e,x)[1—f(e,X)]. eV
0 +684T sinh — | |. (30)
2T
(25)
It gives
The distribution function inside the contact is given by the 3
expressiot? S —_ 1lev (31)
“° 105 R

in the high-voltage limit in agreement with the results of Lee
et al® In equilibrium atV=0 only the last term in Eq22) is
nonzero and

f(e,x)= ( 1- E) fo(s+eV/2)+Ef0(a—eV/2), (26)

wherefy(e) is the Fermi distribution function. The integra-

tion in Egs.(21)—(25) is easily performed. One obtains that :E ez_T (32)
the third cumulant is equal 3 R
) This result seems to be new. The positive sigrspfn equi-
ngi e eVcostieVIT) +12T sinh(eV/T) —13eV librium is in a qualitative agreement with the shape of dis-
15R cosieVIT)—1 ' tribution function of current numerically obtained by Belzig

(270 and Nazarov® The behavior 0fS,(V) is shown in Fig. 2.
o _ _ . The fourth cumulant changes its signeW¥~20 T, hence
This is essentially the same expression that was obtained Qe distribution of current changes from super-Gaussian to

Gutman and Gefé‘rusing the nonlineas- model. It giVES sub-Gaussian as the V0|tage increases.
It has been proposed recertlyhat the third cumulant of
1 e2v noise may be used for determining the effective charge of
SS=1E R (28 quasiparticles. In other words, it may give the same informa-

tion as the shot noise even at low voltagds<T. Since the
fourth cumulant is nonzero even at zero voltage, one may
obtain a nontrivial information about the system from mea-
5 surements of equilibrium fluctuations. Measurements of fluc-
_lev tuations of noise power, which are termed “the second spec-
S3= (29 ) ' . .
tral density” and are closely related with the Fourier
transform of the fourth cumulanwere successfully imple-
in the low-voltage or high-temperature linfit. mented by a number of authors who studied thé 1/

The fourth cumulant of current is given by the expressionnoise!®=2

at high voltages in agreement with Leeal® and
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In summary, we have shown that higher cumulants of curfate for a Poissonian process. Using the same ideas, the irre-
rent in diffusive-metal contacts may be described by theducible correlator may be written in the form
semiclassical Boltzmann-Langevin theory. The semiclassical
fluctuations appear to be non-Gaussian both in equilibrium  {:83%(P1,r1,t1) 83%(p,.r2,t5)

and at high voltage¥ The present approach may be also X 58X Fa ta) S8 Foty):
applied to semiclassical nondiffusive systems. In this case, (P2.7,t2) 374(pa.ra ta)?)
one has to take into account also higher-order local correla- =08(r—ry)8(ro—r3)8(rz—rys) 8(ty—ty) 8(t,—t3)

tors of extraneous sources.
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p!
APPENDIX X[I(P1—Pa) +I(Pa—P1) ]~ 6p p,%p.p,
The third central moment afJ®*is easily found from the X[I(p1—Ps) +I(Pz—p1)]
same considerations as the second moment. Very similar to
the second-order correlator, it is local in space. As the colli- ~(6p,pyOpsp, T Op,psOpap, ) [I(P1—P2)
sion integral involves only single-particle transitions be-
tween pairs of states, the triple correlator +3(P2—P1) 1+ 8p,p,0p,p,[ I(P1—P3)
(83%Y(py) 63°Y(p,) 53%(p3)) is nonzero only if at least two
of these states coincide. We also make use of the fact that the +J(Pa—p)] +(9p,py%pp, + 5!)1945!32133)
third-order correlator of a scattering flux from one state to
another, which is assumed to be Poissonian, is proportional X[I(p1—P2) +I(Po—p1)]}. (A2)

to the average scattering rate between these states. The sign

of the contribution from each scattering process should t.)?n the diffusive limit, it is convenient to pass from extrane-

determined by multiplying the signs of occupancy changt_as "bus fluxes in the Boltzmann-Langevin equation to extraneous
statespy, pp, and p; when the corresponding scattering o, ents'in the drift-diffusion equation by means of Eg).

event takes place. Hence the correlator may be written in th‘Ia'he third-order correlator of extraneous currents is of the

form form

(81 24r1,t1) 8 5 (r2,t2) 6153, ta))

ex ex ex
(83%(py,r1,t1) 83%(py.ro.t2) 833, r3,ta)) = 8(r =) 8(r—13) 8t —ty) 8ty —ts)

=08(ry—rz)8(ra—r3)é(ty—ty) ot —t3) x %3S (Vo g0y =040 g0 3= 0 40 50—V 0 0
p-p’
X4 810,80y, [P —P1) = I(pr—p")] X[I(p’—=p)=I(p—p")]. (A3)
P Though the scattering fluxek are proportional to I, the
bracketed difference vanishes in equilibrium and is propor-
+ 8p,p,[I(P1—P3) —I(P3—P1) ] tional to the anisotropic part of the distribution function in
the case of applied bias. As this part is proportionat tm
the diffusive approximation, EqA3) is at least of the order
of 7°.
The fourth-order irreducible correlator of extraneous cur-
rents is of the form

+ 8p,p [ I(P2—=P1) = I(P1—P2) ]

+ 6p,p [ I(P1—=P2) —I(P2—PD) ] 1 (A1)
(1811, t) 81 3(r2,t2) 815 (r3,t3) 8] 5(r g, ta):)
16 ,,

where the scattering fluxekare given by Eq(4). It is easily =158 impo8(r1=r2) 8(ry—rs) 6(rs—ry)
verified that this correlator conserves the total number of
electrons at a given point. X (1 —13) (t,—1t3) S(t3—14) (8apdyst 04y s

Consider now the fourth-orderreducible correlator of
extraneous sources. The term “irreducible” means that only + 5“5557)f def(e,r)[1—f(e,ry)], (A4)

the part of the correlator that cannot be decoupled into prod-
ucts of second-order correlators is considered. This correlatavhere o is the conductivity. Hence the fourth-order cor-
is zero for a Gaussian noise but is proportional to the averageslator is also of the order®.
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