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Dynamic response of artificial bipolar molecules
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We calculate the equilibrium properties and the dynamic response of two vertically coupled circular quan-
tum dots populated by particles of different electrical charge sign, i.e., electrons and holes. The equilibrium
density profiles are obtained and used to compute the frequencies and oscillator strengths of magnetoplasma
excitations. We find a strong coupling between the modes derived from the center-of-mass modes of the
individual dots which leads to an anticrossing with a pronounced oscillator strength transfer from the “acous-
tic” to the “optical” branch. Also, due to the breaking of the generalized Kohn theorem a number of other than
center-of-mass modes are excited whose oscillator strengths, however, are rather weak.
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[. INTRODUCTION rather rich spectrum of collective modes can be excited,

The physics of quantum dots—the small man-made struchowever, most of the oscillator strength is still contained in
tures in a semiconductor containing anything from a few tothe center-of-mass modes.
thousands or more electrons—has already enjoyed a busy In the present paper we study a similar system consisting
and fruitful decade as a major field of research in condense@f two vertically coupled circular parabolic quantum dots
matter physic$=3 A large part of the experimental work on containing carriers of opposite charge sign, electrons and
quantum dots focused on the probing of the electronic statddoles, respectively. Our results are very different from those
inside the dots by means of far-infraredFIR) pertaining to the previously studitdvertically coupled dot
spectroscop§’ However, a very common feature of many System and reveal an interesting anticrossing of c.m.-derived
quantum structures is their nearly circular shape and a parddodes belonging to separate dots marked by a major oscil-
bolic confining potentidl® that has profound consequences lator strength transfer between them. The kind of system we
on the optical response. According to the generalized Kohiave in mind can be structured in bilayer-bipolar heterostruc-
theorem'® under such conditions the center-of-mdssn) tures containing parallel electron and hole layergquilib-
motion decouples from the relative motion of the electrons!ium. These structures have been realized in the crossed gap
and the electric field of the FIR radiation couples only to thelNAs/GaSb systeM as well as in biased GaAs/Aba, ,As
former. Consequently, the absorption spectra of the circulaheterostructuré® where electron and hole layers form on
parabolic quantum dots consist only of two c¢.m. peaks whosé€ opposite sides of an Aba_,As barrier. Most of the
positions are independent of the electron number and insefdterest in such systems stems from the possibiltyleast,
sitive to the electron-electron interaction effects. in principle) of the formation of Bose-Einstein condensate of

Actual experiments performed on arrays of quantum dotg’;ndirect exciton§.0 While the formation of the superfluid
containing a fe®!* or up to a few hundred electrohsave  State has not been demonstrated so far, a number of other
confirmed the basic two-peak structure in the absorptiornteresting effects due to the electron-hole coupling have
(transmissioh spectra. Small deviations were explained bybeen predicted and/or observed!
taking into account the nonparabolicity effettdateral Cou- Our computational approach is based on the generaliza-
lomb coupling between the neighboring dbtsand spin-  tion to bilayer two-component systems of the formalism de-
orbit interaction® In a separate line of development, experi- veloped by Zaremba and his co-workeand successfully
mentalists performed a FIR spectroscopy stidgf the applied to a number of electronic systefi$” This approach
formation of incompressible edge stripein quantum dots is well suited to describe quantum dots with a large number
and antidots with a deliberately tailored hard-wall confine-0f electrons whose dynamic response is dominated by col-
ment, thereby demonstrating that FIR spectroscopy is cdective excitation$? Our paper has the following structure.
pab|e of giving a detailed insight into many-body Systemslm Sec. Il we discuss the equilibrium charge-density distribu-
As a matter of fact, in this work in order to increase thetion in artificial bipolar molecules. The formalism is given in
signal strength and create nonparabolic potential profilesSec. lll, and the results regarding the dynamic response of
double-layer dots with three doping layers were used. Therehese systems are presented in Sec. IV. We summarize our
fore, besides the dominant “optical” modes where the electfesults in Sec. V. Two Appendixes describe, respectively, the
trons in both layers oscillate in phase, also somewhat weaké@lculation of Coulomb integrals and a simplified model use-
“acoustic” modes were visible. ful for obtaining quick estimates of the essential characteris-

Recently, the system of two vertically coupled quantumtics of the spectrum.
dots was also studied theoretically in greater défaithis
setup is interesting because even in the case when the con-
fining potentials of the individual dots are parabolic, the
Kohn theorem is broken by the interaction between the non- We consider two vertically coupled quantum dots, one
equivalent dots. Therefore, besides the usual c.m. modespopulated by electrons and the other by an equal number of

II. EQUILIBRIUM DENSITIES
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holes. Both electrons and holes are strictly two dimensionafFollowing the usual procedu&®* of evaluating the func-
and are laterally confined by parabolic potentials. tional derivatives in Eq(4) and expressing them in terms of

The equilibrium and dynamical properties of a many-the square root of the particle densitiegp(r)
electron system close to the classical regime can be calcu=[ng,)(r)] Y2 we arrive at the equations determining the
lated from an approximate semiclassical total-energyequilibrium charge density profiles

functionaf®?* of the electron density, N
[n ] T[n ]+ jd2 f dZ ' e(r)ne(r ) [_EVZ‘FUe(r)_Me l//e(r)=oy (Sa)
el e ] r_r |
A 2 _
= [ drwonan+Edndnl. @ T2 " D k(D=0 (5D

Besides the largest contributions of the direct Coulomb nWIth the following expressions for the effective potentials:

teraction energy and the energy in the external confining po- )
tential w,, the functional (1) includes the quantum- (N =we(r)+me(r \/ipe(r

mechanical kinetic and exchange-correlation energy

corrections. Following previous authd&2* we choose to GA(r") GA(r")
represent the kinetic energy by its lowest-order gradieoi de 178 _f er/h—, (6a)
Weizszken expansion and approximaté,. by the local lr—r'| [r—r’—d|

Dirac exchange-only term. We work in the effective atomic

units defined by setting =mZ =€’/ e=1. Herem} is the B 1, \F
effective electronmass(the effective hole mass may be dif- Un(r) =Wn(F)+ —agip(r) =\ —¥n(r)
feren) and € is the dielectric constant of the medium. In
these units, the kinetic energy and exchange functionals, re- ) ,z//h( ") 5, ng(r’)
spectively, are given by fd Ir—r'| f Ir—r'—d|’ (6b)
r 2
Tne]= —f d?rni(r)+4 f d’r e((r))| , Since the potential§6) themselves depend on the solutions
Ne of Eq. (5), the system of equation&) and (6) has to be
4 \F ) 32 solved self-consistently by convergent iterations. The angular
Exlnel=—3 _f dr[ne(r)] () integrations in Coulomb integrals appearing in E@.and

(6) can be carried out analytically as described in Appendix

wherex =0.25 is the von Weizsker coefficient? A. The remaining radial equations faf,, are solved nu-
For a two-component systertelectrons and holgsthe  merically by discretizing the functions and potentials on a
total energy consists of the energies of the two subsystemgrid and using an imaginary-time evolution technique de-

and a coupling term scribed in Ref. 24.
The results obtained using the above formalism are illus-
E[Ne,Nn]=E Ne]+ En[Np]+ Ecoud Ne Nl trated in Fig. 1. In our calculations we use GaAs material

parametersn} = 0.067n, and e=13.4 which define the ef-

The energy functional of the holds,[h,] is identical in
gy hnct L] 1S identical | fective Bohr radius (the length unit a}=#2%e/m}e?

form to that of electrons as given in Eq4) and(2), how-
ever, since the holes may have a different effective mass the e .

kinetic-energy term is scaled by the inverse of the ratio of o (@ | (b)
-———0,=50 =3 - Lh -120

hole-to-electron effective masses=mj;/m} . In our calcu- 35 o o4 o4 .
— o, =40 = I

lations we use the characteristic valde 3. (Using the bulk
GaAs dat&> one obtainsc=7.9 and 1.2 for heavy and light 20

holes, respectively.The interlayer coupling is included at ?25

the mean-field level =

c
20

e(re)nh rh)

Ecou[{neanh]:_f dzref d?r h| Fo—Tp— dl ©) 15:

with d denoting the vertical separation between the layers. 100
The equilibrium densities are obtained from the two Euler
equations,

FIG. 1. Equilibrium particle density distributions in bipolar
E[Ne,Nh]= e, (49) guantum-dot molecules. Pan@) depicts the evolution of the par-
ticle densities at the center of the dots versus the interdot distance
S for equal(full line) and different(dashed ling confining frequen-
—E[Nng,np]=up - (4b) cies. Panelb) shows the radial dependences of the electron and
on hole densities for the two situations @) atd=2.

ne
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~10 nm and the effective Hartre¢ghe energy unjt E}, The equations describing the hoﬂelectror)_ layer are ob-
=e?/a%~10 meV. Likewise, we express frequencies in thetained from Eq(8) by setting the charge-sign facte=+1
units EX/f~1.5x 103571, and the density unit mé—z (-1 _and supplylng_an _extra subscrl_b_t(e) to the density,
=10 m~2. In panel (b) of Fig. 1, we show two typical velocity and p_otentlal fields. In addition, for electrons one
examples of the radial distribution of the particle densities inS€tS the effective-mass factor ¢e=1. In Eq.(8), the Lorentz

the dots obtained by setting the confining potentialsuto  force is expressed in terms of the vectar directed perpen-
=5, w,=3 (dashed ling andw,= w,=4 (full line), respec-  dicular to the layers whose absolute value equals the
tively. The interdot separation &= 2, and each dot contains Cyclotron-resonance frequency of takectrons

an equal numbeN,=N;=200 of particles. We note that  The quantities’ andn* denote, respectively, the equilib-
near the center the density profiles closely follow the usuafium density and the linear-order deviation. We work with
semielliptic shap&, while at the edges the densities are Stationary fields that depend on time @s'* and consider
somewhat smoothed if compared to the abrupt square-ro@nly dipole excitations of a given circular polarization.
behavior predicted by the classical treatnfef§tThis effect ~ Therefore, in our square root of density notation we express
is due to the included quantum-mechanical corrections thdhe densities as

make the density to approach zero asymptotically in the clas- .

sically forbidden regio? Panel (a) displays the particle n=(y+pe'’)?, ©
densities at the central axis of the quantum-dot moleculgere g is the angular coordinate. Thus, the two ground-state
(i.e., the centers of the two dotas a function of the interdot  gensities equahg(h): lﬂi(h) and the first-order fluctuations
distanced. Here we use the same values f=N,=200 5o given b}ﬂé(h):&/fe(h)%(h)ei % Observe that the fields
and two different sets of confining frequencies. The full Ilneslp and ¢ are both circularly symmetric, and the correct an-

are obtained by setting, andwy, to the same value 4; in this o131 gependence of! is explicitly included in the factors

case, due to a higher hole effective mass the radius of the d@lo g external electric field is also taken to be circularly
containing h_odles Es:naller .?nd the ho(lje derr:smelzs at the ge olarized and derivable from its corresponding scalar poten-
ter are considerably larger if compared to the electronic dot; | =_ —Vd,, with = —Ere’ andE=const. We note

Thel da;tr;]eg Itltnest,) |I|Iustra(tje ﬂ(‘ﬁ cagz of E?lt.qua?t.l:nl'dOt MOthat it is not necessary to consider also the opposite polariza-
ecule with better balanced radil and densilies oT1tS two COMy;qy _ o=i4 since these results can be obtained from the same

ponents. Here the confining frequencies are sette 5 and lculation by simplv chanaing the direction &f . i.e.. th
wnp,= 3. We observe that in all cases the particle densities takgaiculation by simply changing the direction @, i.e. the
off rapidly, and hence the dot radii shrink, when the inter-dot>9n Of its vertical projection. Positivenegative values of

distanced becomes comparable to or smaller than the dof’c correspond to the Qire.ction of the”ele.ctrdmle) cyclp- .
radii which are typically in the range=2R=<3.5. tron resonance. Substituting the equilibrium and oscillating

densities from Eq(9) into Egs.(8) we obtain

l1l. DYNAMIC RESPONSE—THEORY —iw2ype '+ div(y?v)=0, (109

Wher_l'th'e electron-hole system !s perturbed away from — i @KV=— VD + neE+ pvx (Bc, (100
the equilibrium there develops an internal restoring force.
The scalar potentials of its componedtg ) acting on elec- here we also allow for the presence of a small damping force,
tron and hole subsystems are given by the functional derivahus making a replacement— w=w—iy in Eq. (10b).
tives of the total-energy functional with respect to the com-  The force-balance equation is readily solved by taking its
ponent densities evaluated at the modified density v&ldés s product withs, and using the result to eliminate the

cross-product term in Eq(10b). Straightforward algebra
int - o gives
Fe(h): _Vq)e(h) with @e(h):mE[ne ,nh]. (7)
(02— K*0?)\V=[Ii ko VD — 7V X w]
This internal force, along with the external force due to the -~
electric field of the FIR radiation and the Lorentz force in the t[eEX w.~inkweE].
presence of a perpendicular magnetic field, enters the set @fypgtituting this expression into the continuity equation we
four linearized hydrodynamic equations: the continuity andj need only the divergence and the radial component of

the force-balance equations for each of the two componentg,e velocity field. We separate out the angular dependence of
However, in order to avoid repetition, we will write out ex- g, by writing it as® = f(r)e'?, and carrying out the deriva-

plicitly and manipulate only two generic equations, tive calculations we obtain the wanted quantities
J o 2_ 272 il g1 P~ ;
N +V-[n°v]=0, (8a) (wg— k“w)v,=¢€'"" iwkf —nwcfr—lnwKeEﬂwceE ,
and
1% -
KggV=— VO T neE+ pvXoc. (8D) (02— K2@?)div v=ioxV2d=iwxel’A,f.
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Here the operator whereR®= —eEy/ (w+ w.) andR"=eEy’ (wk— w) stand
5 for expressions on the right-hand side of Effl).
A L9 1d 1 We choose to expand the fieldge'% and ¢e'’ in the
Todr2 rdr g2 set of Darwin-Fock functions of the angular momentin
=1. Thus,

denotes the radial part of the Laplacian.
Putting everything together we end up with the following 1
generic equation for the charge density fluctuatifin ¢e=a 20 angn(r/ro), (143

f'y' + = Af¢) wcnf%d/’

—w(w - kK20?) p+ wk 1<
=— 2 byGn(r/ro) (14b)
~ 0 n=0
=eBy (nor—ao), (11) with a,, andb,, being the expansion coefficients and the ra-
which will generate the two equations for the electron anddial functions,
hole layers. We stress that the quantifiésadial parts of the
i . . : 2 )
potentials ) themselves are linear functionals af’s. gn(F)= 1 / e T2 L(r2)
Therefore, the right-hand side of Ed.1) can be represented n n+1 n
as a result of an application of a certain linear operatopon

We write the internal potential®, and®;, as are expressed in terms of the associated Laguerre polynomi-
e

als L1(x). The expansion$l4) can be optimized by tuning
Po=Dgot Pop and Op=DPpot+ Dy, the scaling radius,, and typically some 20 terms are needed
in Egs.(14) to obtain convergent results.
thus separating the internal potentials created by interlayer The remaining task is the numerical calculation of the
and intralayer interactions. The expressions of the respectivigatrix elements of the operatofsin the basig14) leading
contributions are obtained by straightforward functional dif-to the coupled set of linear equations
ferentiation from the definitiort7) and read

N ~
(Dee=27¢e¢e_E‘//;Z('r/fevzd’e_d’evzl//e) _w(wg_wZ)an—i_%’: (Eﬁﬁlanl+£nn,b )= Rﬁ, (159

\/7¢e+2f dr ,%(I )¢e|(r ), (129  —ow(w?—K*0?)b, +2 (L8, + LM b, )=R", (15b)

_2m N, 2, . o2 which we solve numerically by lower-upper decompositfon
Prn= = Unbn = U “(UnV b= EnV74n) and obtain the sets of expansion coefficiemt@ndb,,. This
enables us to reconstruct the fluctuating charge-density pro-
Pn(r") pp(r’) files ¢¢(y in the two layers and evaluate the energy dissipa-
2, AV TR S e(h)
\[¢h+2J d’r Ir—r'| ' (12b tion due to the Joule heating,

r r _ *

q)eh:_zf dzrr%’ (120 Peny(w)=+2meEw Im jo dr rzzpe(h)qbe(h)}. (16

r—r'—

r’ r’ The sumP=P.+ P}, determines the absorption rate.

Ppe= —zf d? ’—wfr(_:,(ﬁ_e(m : (120 )

IV. DYNAMIC RESPONSE—NUMERICAL RESULTS
The Coulomb integrals entering the expressions in Et.
resemble those encountered in the calculation of the equmb
rium properties in Eqs(5) and (6). However, in the present
case we deal wittp-wave charge distributions of angular

Turning to the description of the absorption spectra of
coupled bipolar quantum dots, we begin by discussing the
four most conspicuous modes that evolve from the c.m.

dependence~e? creating p-wave electrostatic potentials. modes of the two individual dots. Later, we proceed to de-

The calculation of these integrals is also discussed in Appe scribe the _hlgher resonances r?md low-frequency edge mo_des
dix A. whose oscillator strengths are inherently weak thus rendering

them more difficult to observe experimentally.

The basic structure of the c.m.-mode spectrum as a func-
tion of magnetic field is shown in Fig. 2. These results are
obtained for coupled dots containimd,=N,=200 particles
(139 each with confinement frequencies setutg=5 andw,=3

(as in the second example of Seg. Mhe vertical separation
5 ~, he oh N between the dots id=3. The encircled symbols+" and
o(wg—Kk?0?) pnt LM+ LM, =R", (13D  « _» designate the directions of the circular polarizations of

For the sake of notational compactness, we introduce lin=
ear operator€ corresponding to the different terms in these
expressions, so that E¢L1) can be written as

— (¢ 0?) bt Lot L"P=R",
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FIG. 2. The magnetic-field dependence of the four principal FIG. 3. The magnetic-field dispersion of the anticrossing c.m.
modes in the spectrum of a bipolar quantum-dot molecule. Symbo|§10des of negative polarization plotted for three different values of
“+”and “ —" indicate the polarizations. Full lines correspond to the vertical interdot separatiah The symbols H" and “L" label
the vertical separation af=3, and dashed lines depict the decou- the higher and the lower anticrossing branches. Note the widening
pled limit d=cc. The insets illustrate the relative arrangements ofof the anticrossing gap and its shift towards higher frequencies with

electrical dipoles of the two dots pertinent to the respective antidecreasingl. The inset compares the gap widths obtained from a
crossing branches. numerical calculatior(triangles and its fit (dashed ling to those

obtained from the simplified model of Appendix ®ill line).

the respective modes. Our convention is to take the direction ) . ) )
of the electroniccyclotron resonance as “positive*) and to shift towards higher frequencies. The inset of Fig. 3 shows

vice versa. The narrow dashed lines indicate the positions dh€¢ dependence of the size of the anticrossingapn the
the CM modes of decoupled ddfise., d=). In agreement interdot separatlplui. The trlangles denote the actual ca!cu—
with the generalized Kohn theorem, at zero magnetic fieldated val_ues while the_ full I|_ne shows the_result ob_talned
their frequencies coincide with the confinement frequencief©m & simple harmonic-oscillator model discussed in Ap-
we and wy, and split into two branches at finite magnetic

fields. One notes that due to the Coulomb coupling between 0S5S———T————7T 7 71 71—
the dots(i) all the modes are slightly displaced upwards with
respect to their positions at=oc, and (ii) the two middle
modes which are polarized in the same ™direction anti-
cross, while the two modes of+” polarization reside in
distinct frequency regions and thus interact only very
weakly. Both points indicatsignificant differencefrom the
spectra of vertically coupled electronic quantum d6ts,
where the interdot coupling induces shifts of the modes to-
wards lower frequencies and no such anticrossing is ob-
served. In these systems, the interaction only couples pairs of
c.m. modes that both have positive or negative magnetic-
field dispersion and do not cross in the absence of interac-
tion. Thus we see that the charge-sign reversal of particles in
one of the dots does indeed induce a substantial qualitative
difference. In Appendix B, we show that essential features of
the c.m. mode spectrum can be captured within a simplified
coupled harmonic-oscillator model that can be useful in ob- FIG. 4. The oscillator strengths of the two anticrossing c.m.

taining quick estimates. _ _ . modes of the negative polarization. The upgiewer family of

We take a closer look at the anticrossing modes in Figs. 3,rves corresponds to the optidakousti¢ branch. A pronounced
and 4 which show, respectively, the behavior of the frequengsciliator strength transfer between the modes in the magnetic-field
cies of the two anticrossing branches and their oscillatofange 2 w.<4 is apparent. As in Fig. 3, the symbol$i" and
strengths for three different values @fWe note from Fig. 3 « | indicate the higher and the lower anticrossing branches, re-
that as the interdot separation becomes smaller and the cospectively. The inset depicts the results obtained from the simplified
pling between the dots increases, the anticrossing becomesdel described in Appendix B. The fultiotted lines correspond
more pronounced while at the same time both branches tend coupled(uncoupled dots.
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pendix B. This model predicts that the gap grows proportion-
ally to Aw~d ™3, however, this law is valid only at relatively
large distancesl>5. We found that for smaller values df
the splitting could be reasonably well fitted by the depen- o,=50
denceA w~ (d?+d3) %2 indicated by a dashed line in the
inset of Fig. 3.
The evolution of the respective oscillator strengths in Fig.
4 is rather peculiar and requires a more detailed explanation.
The sum of the oscillator strengths satisfies a sum rule, and o, =3.0
we normalize it so that their total sum equals 1. In the

i

present example the electron and hole numbers are set equal JAN

while the holes are taken to be=3 times heavier than the

electrons. Therefore, since the oscillator strengths scale as

~N/m, the electronic modes possess three times higher os- ~ ©,=1.0 P,
cillator strengths. Thus, at zero magnetic field the oscillator 8 35 : 45 5

strengths of the two anticrossing modes start from the values
close to 0.125 for the lower-energy mode that is essentially FIG. 5. FIR absorptiotin arbitrary unitg in a bipolar quantum-
localized in the hole subsystem and 0.375 for the higher onelot molecule close to the anticrossing region. We show nine absorp-
These numbers are slightly modified due to the interactiofion curves corresponding to evenly spaced magnetic-field values
between the mode&he role of interaction becomes more and offset vertically by the same amount for clarity. Note the “dis-
important at lower values af) as well as due to the presence appearance” of the lower branch. A broadenifpg0.05 has been
of other much weaker modes. The rest 50% of the total os¥Sed-
cillator strength atw.=0 belongs to the modes of the oppo-
site “+” polarization not shown here. useful to balance the distribution of oscillator strengths be-
In the range of magnetic-field strengths:a.<4 the two  tween the modes. For example, increasing the number of
modes interact strongly and anticross. In this region, ondioles will brighten the modes that are mostly due to oscilla-
observes a rather pronounced depression in the oscillatdions in the hole subsystem thereby compensating for their
strength of the lower branch reaching nearly zero value. Thédiminished oscillator strengths because of higher hole effec-
missing oscillator strength is transferred to the high-tive mass. As we show in Appendix B, the strength of the
frequency branch. This type of behavior can be understooihteraction between the two dots and the anticrossing gap
by realizing that at the anticrossing point the charge-densitgcale as the geometric mean of the electron and hole num-
oscillations of the individual dots combine together in eitherbers.
“optical” (the two electric dipoles being aligned in parallel Besides the above described strong modes the spectra of
or “acoustic” (antiparallel dipolesmanner, as illustrated in artificial molecules feature a number of other rather weak
the insets of Fig. 2. Naturally, the parallel alignment of two modes that can be classified into higher resonances and low-
dipoles costs more energy, and therefore this optical modenergy edge modes. Due to a stronger localization of the
has a higher oscillation frequency, while at the same time itharge-density oscillations associated with these modes, the
possesses a larger net dipole moment, and consequentlynamber of terms in the expansiofis4) has to be increased
higher oscillator strength. As one notes in the inset of Fig. 4for an accurate representation. The oscillator strengths of
the same type of qualitative behavior is also observed in théhese modes, under the conditions of our calculations, typi-
coupled harmonic-oscillator model of Appendix B. However, cally barely reach 10* of the total sum of the oscillator
as far as oscillator strengths are concerned, its quantitativ&rengths. In Fig. 6, we show the magnetic-field dispersions
predictions are not trustworthy, and thus one can only rely of the lowest-lying high-energy modes and several strongest
the more-accurate numerical treatment. Our calculations preedge modes. These results are obtained for the parameter
dict the above described oscillations of the oscillatorvalues No=N,=200, w.=4, wy=3, andd=5. The full
strengths to be quite strong. In Fig. 5 we show a set ofdashed lines denote branches polarized in the positive
absorption lines simulating those obtainable in FIR spectrostnegative direction. In general, the locations and dispersions
copy measuremerit&!*which have been calculated for the of these modes resemble analogous modes as predicted for
case of a vertical separation between the detsS3. We plot  coupled quantum dots populated solely by electfSriEhe
nine lines corresponding to nine equally spaced values of thkey difference is that in the present case one can classify the
magnetic fields betweea.=1 andw.=5 (the anticrossing modes into those dominated by oscillations in either the elec-
region thus making the “disappearance” of the low- tron or hole subsystems. Thus, the two lower high-energy
frequency branch apparent. Since the fluctuations of the ogesonances in Fig. 6 are mostly due to holes while the top-
cillator strengths of these modes can be rather laferder  most mode is mainly electronic. The difference can be most
of 10% of the total oscillator strengtlwe expect that the easily spotted in the relative arrangement of the positively
above described effect could be readily observed experimerand negatively polarized branches at finite magnetic fields. In
tally. It is worth mentioning that while in the above examplesthe electronic mode, the upper branch is polarized in the
we always dealt with equal numbers of electrons and holes ipositive(i.e., electronic cyclotron resonanadrection, while
the dots, the ratio of the electron and hole numbers can bia the case of the other two high-energy modes the situation
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behavior of the oscillator strengths of the two resulting
branches. The oscillator strength transfer from the lower
“acoustic” to the higher “optical” branch is certainly strong
enough to be easily observable. On the other hand, the higher
resonances and edge modes which are also excited in the
——== considered setup, are quite weak.
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APPENDIX A: COULOMB INTEGRALS

FIG. 6. The magnetic-field dispersion of the higher resonances In this paper we encountered two types of Coulomb

and edge modes in a bipolar quantum-dot molecule. Note that th't‘!zﬂegrals

middle part of the spectrum is cut out. The full and dashed lines )
denote the modes of the positive and negative polarizations, respec- 2, do(r’)
tively. S(r):J d m'

is reversed. Moreover, the electronic mode features a consid- , )
erably stronger magnetic-field dispersion. This is due to the ] (r)=2J dzr,wo(r )ipa(r')
fact that the higher resonances asymptotically approach the P Ir—r'—d| '
cyclotron-resonance line, which is=3 times steeper for
electrons than for holes. Here, (r) depends only on the radial coordinatevhile

The lower part of Fig. 6 shows six most conspicuous edgey, (r)=f,(r)e'’ has ap-wave angular dependencagis the
modes of the bipolar quantum-dot molecule. The frequencyertical separation between the layers that as a special case
range covered by these modes and their dispersion againay equal zero.
resemble the case of electronic coupled dbtslowever, The angular integration in EqAl) can be carried out
due to the fact that the polarizations of the edge modes aranalytically in terms of the complete elliptic functions of the
determined by the charge sign of the carriers, in the preseffirst kind K(k), and the second kin&(k). Introducing p?
case the edge modes can be polarized both in the cyclotroa (r +r’)2+d? we obtain
and the anticyclotron directions. Moreover, the direction of
polarization of an edge mode also betrays the component % ¢,O Arr !
whose contribution is dominant. Thus, the edge modes (1) 4f dr'r'—— ( )
mostly influenced by the electronic subsystem are polarized
in the “—,” i.e., anticyclotron direction of the electrons.
These modes are depicted by the dashed lines in Fig. 6. On Y o
the contrary, the full lines in Fig. 6 denote the modes mostly Jp(r)=8e fo d
due to the oscillations in the hole subsystem which are
polarized in the “+,” i.e., electronic cyclotron-resonance wjith
direction.

(A1)

Po(r')f4(r") (\/4rr )
p

2
V. SUMMARY C(k)IE[E(k)—K(k)]—K(k)- (A2)

In conclusion, we made a theoretical investigation of the
equilibrium _denS|ty distributions and the f_ar?lnfrared re-  APPENDIX B: COUPLED HARMONIC-OSCILLATOR
sponse of bipolar quantum-dot molecules within a hydrody- MODEL
namic model including the effects due to exchange and ki-
netic energy in the von Weizeker approximation. The most Guided by a similar simple model introduced in Ref. 16,
conspicuous effect we found is the pronounced anticrossingze show that a number of basic features of the c.m. mode
between two modified center-of-mass modes, which takespectrum can be derive@t least qualitativelyfrom a sim-
place when the applied magnetic field aligns the frequencieplified model featuring two coupled harmonic oscillators.
of two center-of-mass modes. The additional distinguishingrhe oscillators concentrate the total masses and charges of
feature of this anticrossing is the strongly nonmonotonoushe two coupled dots and interact via the potential
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NGNj, NN, NNj, pling and gives an estimate of the shifts. In the weak-
o ~—— "+ T(re—ry2 (Bl)  coupling regime they grow a@2~d~3. This conclusion is
V(-2 4 2d®

in agreement with our resultsee Fig. 2 and underscores a
Herer andr, are the oscillator coordinates, and we used thedifference of our system from electronic double dots consid-
fact that in our unite?/e= 1. Denoting the base frequencies €red in Ref. 16. There, all frequency shifts found were nega-
of the oscillators byw, and w, we write down the coupled Ve

equations of motionra? =1, ny: = x) Assum_ing that(as in our numericz_al caI_cuIa_tio)ws:;_)e
> wp, we find that the modes polarized in— direction will
) Nee. NeNj, cross. The crossing point is readily calculated by equating
Nel o+ New?r+ — TeXB+ e (re—rp)=0, w,=w, and equals
@e— (B5)
. Nye. NN Weo= .
N &+ Nhkwﬁrh—Thrhx B— %h(re— r)=0. (B2) 1+ k) (02 k+ w?)

Note that we present the zero-order solution obtained by set-
Equations(B2) are solved by introducing the complex vari- ting (02—,0, which provides an accurate enough estimate.
ablesze )= Xe(n) 1Y ¢(n) @Nd assuming a harmonic temporal cjose to this point the off-diagonal perturbations are impor-
dependence, )~ exp(wt). This leads to the following secu- tant and have to be taken into account to introduce an anti-
lar equation for the resonance frequencies: crossing behavior. We use the fact that in the vicinity of the

2 2 2 resonances of =" polarization (roots w, andw,) the diag-
—oftogtooct Ny —Nilg _ onal terms of Eq(B3) can be approximated by

2 2 2 2 _0’ (B3)
—NeQo/k  — 0+ wp—wo/k+ NG«

. s — (0= w1)(0—wy)~— (0~ w1)(0—wy),
here we denotea.=eB/c andQg=d™°. From Eq.(B3) the
c.m. mode frequencies can be readily obtained as solutions —(w—w3)(w—wy)~— (w1~ w3)(®— wy),
of a quartic equation. However, basing on the smallness of . . .

. I . and obtain a quadratic equation

the coupling parametef), it is possible to extract some
simpler approximate expressions. We begin by noting that
the role of the terms proportional 83 entering the diagonal (0= w2)(w—wg) (w1~ w2) (W3~ wy) —
and off-diagonal matrix elements in E3) is different.
The former give first-order corrections to the frequency dis-valid in this region and giving an approximate behavior of
persion, while the latter contribute to the second order antghe anticrossing modes. This equation can be used, in par-
are important only close to coinciding frequencies, thus deticular, to estimate the size of the anticrossing gap. To this
fining an anticrossing. end we calculate the difference of its two rootseat= w.q

Therefore, we first neglect the off-diagonal perturbationsand w,= w4, and obtain
and solve two decoupled quadratic equations originating
from the diagonal terms in E¢B3). The solutions read szzgg\/ NeNp

k(wg—

W) (w3~ w,)’
w . .
w12m 2+ \J S W NGO, with w1 5 4given by Eq.(B4).

Equations(B4)—(B6) are useful as quick estimates of es-
sential featuresmode shifts, position and size of anticross-
w¢ w? , 1 ) ing gap in the c.m. mode spectrum of bipolar quantum-dot
W34= T 5 F a2 +opt —Nello. (B4 molecules. These estimates are obtained for weakly coupled
dots and can be asked for quantitave predictions only in the
The modes of positive frequencies andws obtained using limit when interdot separation considerably exceeds the dot
the upper signs in EqB4) are of “+” circular polarization  radii. Thus, the gap size obtained from EB6) agrees with
while the lower-sign solutions, and w, are negative and the result of accurate numerical calculations within 10% at
correspond to modes polarized in the-* direction. We  d=5. However, as we can see in the inset of Fig. 3 at closer
note, that Eq.(B4) predicts that the absolute values of all distances the gap grows much more slowly thad 2 as
four resonance frequenci@xreasedue to the interdot cou- given by Eq.(B6).

NN
cl0i=0
K

(B6)
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