
PHYSICAL REVIEW B 66, 075311 ~2002!
Dynamic response of artificial bipolar molecules

Egidijus Anisimovas* and F. M. Peeters†

Departement Natuurkunde, Universiteit Antwerpen (UIA), B-2610 Antwerpen, Belgium
~Received 27 March 2002; published 5 August 2002!

We calculate the equilibrium properties and the dynamic response of two vertically coupled circular quan-
tum dots populated by particles of different electrical charge sign, i.e., electrons and holes. The equilibrium
density profiles are obtained and used to compute the frequencies and oscillator strengths of magnetoplasma
excitations. We find a strong coupling between the modes derived from the center-of-mass modes of the
individual dots which leads to an anticrossing with a pronounced oscillator strength transfer from the ‘‘acous-
tic’’ to the ‘‘optical’’ branch. Also, due to the breaking of the generalized Kohn theorem a number of other than
center-of-mass modes are excited whose oscillator strengths, however, are rather weak.
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I. INTRODUCTION

The physics of quantum dots—the small man-made st
tures in a semiconductor containing anything from a few
thousands or more electrons—has already enjoyed a
and fruitful decade as a major field of research in conden
matter physics.1–3 A large part of the experimental work o
quantum dots focused on the probing of the electronic st
inside the dots by means of far-infrared~FIR!
spectroscopy.4–7 However, a very common feature of man
quantum structures is their nearly circular shape and a p
bolic confining potential8,9 that has profound consequenc
on the optical response. According to the generalized K
theorem,10 under such conditions the center-of-mass~c.m.!
motion decouples from the relative motion of the electro
and the electric field of the FIR radiation couples only to t
former. Consequently, the absorption spectra of the circ
parabolic quantum dots consist only of two c.m. peaks wh
positions are independent of the electron number and in
sitive to the electron-electron interaction effects.

Actual experiments performed on arrays of quantum d
containing a few4,11 or up to a few hundred electrons5 have
confirmed the basic two-peak structure in the absorp
~transmission! spectra. Small deviations were explained
taking into account the nonparabolicity effects,12 lateral Cou-
lomb coupling between the neighboring dots,13 and spin-
orbit interaction.1 In a separate line of development, expe
mentalists performed a FIR spectroscopy study14 of the
formation of incompressible edge stripes15 in quantum dots
and antidots with a deliberately tailored hard-wall confin
ment, thereby demonstrating that FIR spectroscopy is
pable of giving a detailed insight into many-body system
As a matter of fact, in this work in order to increase t
signal strength and create nonparabolic potential profi
double-layer dots with three doping layers were used. Th
fore, besides the dominant ‘‘optical’’ modes where the el
trons in both layers oscillate in phase, also somewhat we
‘‘acoustic’’ modes were visible.

Recently, the system of two vertically coupled quantu
dots was also studied theoretically in greater detail.16 This
setup is interesting because even in the case when the
fining potentials of the individual dots are parabolic, t
Kohn theorem is broken by the interaction between the n
equivalent dots. Therefore, besides the usual c.m. mod
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rather rich spectrum of collective modes can be excit
however, most of the oscillator strength is still contained
the center-of-mass modes.

In the present paper we study a similar system consis
of two vertically coupled circular parabolic quantum do
containing carriers of opposite charge sign, electrons
holes, respectively. Our results are very different from tho
pertaining to the previously studied16 vertically coupled dot
system and reveal an interesting anticrossing of c.m.-der
modes belonging to separate dots marked by a major o
lator strength transfer between them. The kind of system
have in mind can be structured in bilayer-bipolar heterostr
tures containing parallel electron and hole layersin equilib-
rium. These structures have been realized in the crossed
InAs/GaSb system17 as well as in biased GaAs/AlxGa12xAs
heterostructure18,19 where electron and hole layers form o
the opposite sides of an AlxGa12xAs barrier. Most of the
interest in such systems stems from the possibility~at least,
in principle! of the formation of Bose-Einstein condensate
indirect excitons.20 While the formation of the superfluid
state has not been demonstrated so far, a number of o
interesting effects due to the electron-hole coupling ha
been predicted and/or observed.19,21

Our computational approach is based on the genera
tion to bilayer two-component systems of the formalism d
veloped by Zaremba and his co-worker22 and successfully
applied to a number of electronic systems.23,24This approach
is well suited to describe quantum dots with a large num
of electrons whose dynamic response is dominated by
lective excitations.24 Our paper has the following structure
In Sec. II we discuss the equilibrium charge-density distrib
tion in artificial bipolar molecules. The formalism is given
Sec. III, and the results regarding the dynamic respons
these systems are presented in Sec. IV. We summarize
results in Sec. V. Two Appendixes describe, respectively,
calculation of Coulomb integrals and a simplified model u
ful for obtaining quick estimates of the essential characte
tics of the spectrum.

II. EQUILIBRIUM DENSITIES

We consider two vertically coupled quantum dots, o
populated by electrons and the other by an equal numbe
©2002 The American Physical Society11-1
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holes. Both electrons and holes are strictly two dimensio
and are laterally confined by parabolic potentials.

The equilibrium and dynamical properties of a man
electron system close to the classical regime can be ca
lated from an approximate semiclassical total-ene
functional23,24 of the electron densityne

Ee@ne#5T@ne#1
1

2E d2r E d2r 8
ne~r !ne~r 8!

ur2r 8u

1E d2r we~r !ne~r !1Exc@ne~r !#. ~1!

Besides the largest contributions of the direct Coulomb
teraction energy and the energy in the external confining
tential we , the functional ~1! includes the quantum
mechanical kinetic and exchange-correlation ene
corrections. Following previous authors,23,24 we choose to
represent the kinetic energy by its lowest-order gradient~von
Weizsäcker! expansion and approximateExc by the local
Dirac exchange-only term. We work in the effective atom
units defined by setting\5me* 5e2/e51. Hereme* is the
effectiveelectronmass~the effective hole mass may be di
ferent! and e is the dielectric constant of the medium.
these units, the kinetic energy and exchange functionals
spectively, are given by

T@ne#5
p

2E d2r ne
2~r !1

l

8E d2r
u¹ne~r !u2

ne~r !
,

Ex@ne#52
4

3
A2

pE d2r @ne~r !#3/2, ~2!

wherel50.25 is the von Weizsa¨cker coefficient.24

For a two-component system~electrons and holes! the
total energy consists of the energies of the two subsyst
and a coupling term

E@ne ,nh#5Ee@ne#1Eh@nh#1Ecoup@ne ,nh#.

The energy functional of the holesEh@hh# is identical in
form to that of electrons as given in Eqs.~1! and ~2!, how-
ever, since the holes may have a different effective mass
kinetic-energy term is scaled by the inverse of the ratio
hole-to-electron effective massesk5mh* /me* . In our calcu-
lations we use the characteristic valuek53. ~Using the bulk
GaAs data,25 one obtainsk57.9 and 1.2 for heavy and ligh
holes, respectively.! The interlayer coupling is included a
the mean-field level

Ecoup@ne ,nh#52E d2r eE d2r h

ne~re!nh~rh!

ure2rh2du
, ~3!

with d denoting the vertical separation between the layer
The equilibrium densities are obtained from the two Eu

equations,

d

dne
E@ne ,nh#5me , ~4a!

d

dnh
E@ne ,nh#5mh . ~4b!
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Following the usual procedure23,24 of evaluating the func-
tional derivatives in Eq.~4! and expressing them in terms o
the square root of the particle densitiesce(h)(r )
5@ne(h)(r )#1/2 we arrive at the equations determining th
equilibrium charge density profiles

F2
l

2
¹21ue~r !2meGce~r !50, ~5a!

F2
l

2k
¹21uh~r !2mhGch~r !50, ~5b!

with the following expressions for the effective potentials

ue~r !5we~r !1pce
2~r !2A8

p
ce~r !

1E d2r 8
ce

2~r 8!

ur2r 8u
2E d2r 8

ch
2~r 8!

ur2r 82du
, ~6a!

uh~r !5wh~r !1
1

k
pch

2~r !2A8

p
ch~r !

1E d2r 8
ch

2~r 8!

ur2r 8u
2E d2r 8

ce
2~r 8!

ur2r 82du
. ~6b!

Since the potentials~6! themselves depend on the solutio
of Eq. ~5!, the system of equations~5! and ~6! has to be
solved self-consistently by convergent iterations. The ang
integrations in Coulomb integrals appearing in Eqs.~5! and
~6! can be carried out analytically as described in Appen
A. The remaining radial equations force(h) are solved nu-
merically by discretizing the functions and potentials on
grid and using an imaginary-time evolution technique d
scribed in Ref. 24.

The results obtained using the above formalism are ill
trated in Fig. 1. In our calculations we use GaAs mate
parametersme* 50.067me and e513.4 which define the ef-
fective Bohr radius ~the length unit! aB* 5\2e/me* e2

FIG. 1. Equilibrium particle density distributions in bipola
quantum-dot molecules. Panel~a! depicts the evolution of the par
ticle densities at the center of the dots versus the interdot dista
for equal ~full line! and different~dashed line! confining frequen-
cies. Panel~b! shows the radial dependences of the electron
hole densities for the two situations of~a! at d52.
1-2
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DYNAMIC RESPONSE OF ARTIFICIAL BIPOLAR MOLECULES PHYSICAL REVIEW B66, 075311 ~2002!
'10 nm and the effective Hartree~the energy unit! EH*
5e2/aB* '10 meV. Likewise, we express frequencies in t
units EH* /\'1.531013 s21, and the density unit isaB*

22

51016 m22. In panel ~b! of Fig. 1, we show two typical
examples of the radial distribution of the particle densities
the dots obtained by setting the confining potentials tove
55, vh53 ~dashed line!, andve5vh54 ~full line!, respec-
tively. The interdot separation isd52, and each dot contain
an equal numberNe5Nh5200 of particles. We note tha
near the center the density profiles closely follow the us
semielliptic shape,8 while at the edges the densities a
somewhat smoothed if compared to the abrupt square-
behavior predicted by the classical treatment.8,16 This effect
is due to the included quantum-mechanical corrections
make the density to approach zero asymptotically in the c
sically forbidden region.22 Panel ~a! displays the particle
densities at the central axis of the quantum-dot molec
~i.e., the centers of the two dots! as a function of the interdo
distanced. Here we use the same values ofNe5Nh5200
and two different sets of confining frequencies. The full lin
are obtained by settingve andvh to the same value 4; in thi
case, due to a higher hole effective mass the radius of the
containing holes is smaller and the hole densities at the
ter are considerably larger if compared to the electronic d
The dashed lines illustrate the case of a quantum-dot m
ecule with better balanced radii and densities of its two co
ponents. Here the confining frequencies are set tove55 and
vh53. We observe that in all cases the particle densities t
off rapidly, and hence the dot radii shrink, when the inter-d
distanced becomes comparable to or smaller than the
radii which are typically in the range 2&R&3.5.

III. DYNAMIC RESPONSE—THEORY

When the electron-hole system is perturbed away fr
the equilibrium there develops an internal restoring for
The scalar potentials of its componentsFe(h) acting on elec-
tron and hole subsystems are given by the functional der
tives of the total-energy functional with respect to the co
ponent densities evaluated at the modified density values23,24

Fe(h)
int 52“Fe(h) with Fe(h)5

d

dne(h)
E@ne ,nh#. ~7!

This internal force, along with the external force due to t
electric field of the FIR radiation and the Lorentz force in t
presence of a perpendicular magnetic field, enters the s
four linearized hydrodynamic equations: the continuity a
the force-balance equations for each of the two compone
However, in order to avoid repetition, we will write out ex
plicitly and manipulate only two generic equations,

]

]t
n11“•@n0v#50, ~8a!

k
]

]t
v52“F1heE1hv3vW c . ~8b!
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The equations describing the hole~electron! layer are ob-
tained from Eq.~8! by setting the charge-sign factorh511
~21! and supplying an extra subscripth (e) to the density,
velocity and potential fields. In addition, for electrons o
sets the effective-mass factor tok51. In Eq.~8!, the Lorentz
force is expressed in terms of the vectorvW c directed perpen-
dicular to the layers whose absolute value equals
cyclotron-resonance frequency of theelectrons.

The quantitiesn0 andn1 denote, respectively, the equilib
rium density and the linear-order deviation. We work wi
stationary fields that depend on time ase2 ivt and consider
only dipole excitations of a given circular polarizatio
Therefore, in our square root of density notation we expr
the densities as

n5~c1feiu!2, ~9!

hereu is the angular coordinate. Thus, the two ground-st
densities equalne(h)

0 5ce(h)
2 and the first-order fluctuation

are given byne(h)
1 52ce(h)fe(h)e

iue(h). Observe that the fields
c and f are both circularly symmetric, and the correct a
gular dependence ofn1 is explicitly included in the factors
eiu. The external electric field is also taken to be circula
polarized and derivable from its corresponding scalar pot
tial E52“Fext with Fext52Ereiu andE5const. We note
that it isnot necessary to consider also the opposite polar
tion ;e2 iu since these results can be obtained from the sa
calculation by simply changing the direction ofvW c , i.e., the
sign of its vertical projection. Positive~negative! values of
vc correspond to the direction of the electron~hole! cyclo-
tron resonance. Substituting the equilibrium and oscillat
densities from Eq.~9! into Eqs.~8! we obtain

2 iv2cfeiu1div~c2v!50, ~10a!

2 i ṽkv52“F1heE1hv3vW c , ~10b!

here we also allow for the presence of a small damping fo
thus making a replacementv→ṽ5v2 ig in Eq. ~10b!.

The force-balance equation is readily solved by taking
cross product withvW c and using the result to eliminate th
cross-product term in Eq.~10b!. Straightforward algebra
gives

~vc
22k2ṽ2!v5@ ikṽ“F2h“F3vW c#

1@eE3vW c2 ihkṽeE#.

Substituting this expression into the continuity equation
will need only the divergence and the radial component
the velocity field. We separate out the angular dependenc
F by writing it asF5 f (r )eiu, and carrying out the deriva
tive calculations we obtain the wanted quantities

~vc
22k2ṽ2!v r5eiuS i ṽk f 82hvcf

i

r
2 ihṽkeE1 ivceED ,

and

~vc
22k2ṽ2!div v5 i ṽk¹2F5 i ṽkeiuD r f .
1-3



g

n

d

y
ti
if

ili
t
r
.
e

lin
se

ra-

omi-

ed

he

pro-
pa-

of
the
.m.
e-

odes
ring

nc-
re

of

EGIDIJUS ANISIMOVAS AND F. M. PEETERS PHYSICAL REVIEW B66, 075311 ~2002!
Here the operator

D r5
d2

dr2
1

1

r

d

dr
2

1

r 2

denotes the radial part of the Laplacian.
Putting everything together we end up with the followin

generic equation for the charge density fluctuationf:

2v~vc
22k2ṽ2!f1ṽkS f 8c81

1

2
D r f c D2vch f

1

r
c8

5eEc8~hṽk2vc!, ~11!

which will generate the two equations for the electron a
hole layers. We stress that the quantitiesf ~radial parts of the
potentials F) themselves are linear functionals off ’s.
Therefore, the right-hand side of Eq.~11! can be represente
as a result of an application of a certain linear operator onf.

We write the internal potentialsFe andFh as

Fe5Fee1Feh and Fh5Fhe1Fhh ,

thus separating the internal potentials created by interla
and intralayer interactions. The expressions of the respec
contributions are obtained by straightforward functional d
ferentiation from the definition~7! and read

Fee52pcefe2
l

2
ce

22~ce¹
2fe2fe¹

2ce!

2A8

p
fe12E d2r 8

ce~r 8!fe~r 8!

ur2r 8u
, ~12a!

Fhh5
2p

k
chfh2

l

2k
ch

22~ch¹2fh2fh¹2ch!

2A8

p
fh12E d2r 8

ch~r 8!fh~r 8!

ur2r 8u
, ~12b!

Feh522E d2r 8
ch~r 8!fh~r 8!

ur2r 82du
, ~12c!

Fhe522E d2r 8
ce~r 8!fe~r 8!

ur2r 82du
. ~12d!

The Coulomb integrals entering the expressions in Eqs.~12!
resemble those encountered in the calculation of the equ
rium properties in Eqs.~5! and ~6!. However, in the presen
case we deal withp-wave charge distributions of angula
dependence;eiu creating p-wave electrostatic potentials
The calculation of these integrals is also discussed in App
dix A.

For the sake of notational compactness, we introduce
ear operatorsL corresponding to the different terms in the
expressions, so that Eq.~11! can be written as

2v~vc
22ṽ2!fe1L eefe1L ehfh5Re, ~13a!

2v~vc
22k2ṽ2!fh1L hefe1L hhfh5Rh, ~13b!
07531
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whereRe52eEc8(ṽ1vc) andRh5eEc8(ṽk2vc) stand
for expressions on the right-hand side of Eq.~11!.

We choose to expand the fieldsfee
iue andfheiue in the

set of Darwin-Fock functions of the angular momentumM
51. Thus,

fe5
1

r 0
(
n50

`

angn~r /r 0!, ~14a!

fh5
1

r 0
(
n50

`

bngn~r /r 0! ~14b!

with an andbn being the expansion coefficients and the
dial functions,

gn~r !5A 2

n11
e2r 2/2rL n

1~r 2!

are expressed in terms of the associated Laguerre polyn
als Ln

1(x). The expansions~14! can be optimized by tuning
the scaling radiusr 0, and typically some 20 terms are need
in Eqs.~14! to obtain convergent results.

The remaining task is the numerical calculation of t
matrix elements of the operatorsL in the basis~14! leading
to the coupled set of linear equations

2v~vc
22ṽ2!an1(

n8
~Lnn8

ee an81Lnn8
eh bn8!5Rn

e , ~15a!

2v~vc
22k2ṽ2!bn1(

n8
~Lnn8

he an81Lnn8
hh bn8!5Rn

h , ~15b!

which we solve numerically by lower-upper decomposition26

and obtain the sets of expansion coefficientsan andbn . This
enables us to reconstruct the fluctuating charge-density
files fe(h) in the two layers and evaluate the energy dissi
tion due to the Joule heating,

Pe(h)~v!572peEv ImF E
0

`

dr r 2ce(h)fe(h)G . ~16!

The sumP5Pe1Ph determines the absorption rate.

IV. DYNAMIC RESPONSE—NUMERICAL RESULTS

Turning to the description of the absorption spectra
coupled bipolar quantum dots, we begin by discussing
four most conspicuous modes that evolve from the c
modes of the two individual dots. Later, we proceed to d
scribe the higher resonances and low-frequency edge m
whose oscillator strengths are inherently weak thus rende
them more difficult to observe experimentally.

The basic structure of the c.m.-mode spectrum as a fu
tion of magnetic field is shown in Fig. 2. These results a
obtained for coupled dots containingNe5Nh5200 particles
each with confinement frequencies set tove55 andvh53
~as in the second example of Sec. II!. The vertical separation
between the dots isd53. The encircled symbols ‘‘1’’ and
‘‘ 2’’ designate the directions of the circular polarizations
1-4
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the respective modes. Our convention is to take the direc
of the electroniccyclotron resonance as ‘‘positive’’~1! and
vice versa. The narrow dashed lines indicate the position
the CM modes of decoupled dots~i.e., d5`). In agreement
with the generalized Kohn theorem, at zero magnetic fi
their frequencies coincide with the confinement frequenc
ve and vh , and split into two branches at finite magne
fields. One notes that due to the Coulomb coupling betw
the dots,~i! all the modes are slightly displaced upwards w
respect to their positions atd5`, and ~ii ! the two middle
modes which are polarized in the same ‘‘2’’ direction anti-
cross, while the two modes of ‘‘1’’ polarization reside in
distinct frequency regions and thus interact only ve
weakly. Both points indicatesignificant differencesfrom the
spectra of vertically coupled electronic quantum dots16

where the interdot coupling induces shifts of the modes
wards lower frequencies and no such anticrossing is o
served. In these systems, the interaction only couples pai
c.m. modes that both have positive or negative magne
field dispersion and do not cross in the absence of inte
tion. Thus we see that the charge-sign reversal of particle
one of the dots does indeed induce a substantial qualita
difference. In Appendix B, we show that essential features
the c.m. mode spectrum can be captured within a simpli
coupled harmonic-oscillator model that can be useful in
taining quick estimates.

We take a closer look at the anticrossing modes in Fig
and 4 which show, respectively, the behavior of the frequ
cies of the two anticrossing branches and their oscilla
strengths for three different values ofd. We note from Fig. 3
that as the interdot separation becomes smaller and the
pling between the dots increases, the anticrossing beco
more pronounced while at the same time both branches

FIG. 2. The magnetic-field dependence of the four princi
modes in the spectrum of a bipolar quantum-dot molecule. Sym
‘‘ 1’’ and ‘‘ 2’’ indicate the polarizations. Full lines correspond
the vertical separation ofd53, and dashed lines depict the deco
pled limit d5`. The insets illustrate the relative arrangements
electrical dipoles of the two dots pertinent to the respective a
crossing branches.
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to shift towards higher frequencies. The inset of Fig. 3 sho
the dependence of the size of the anticrossing gapDv on the
interdot separationd. The triangles denote the actual calc
lated values while the full line shows the result obtain
from a simple harmonic-oscillator model discussed in A
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FIG. 3. The magnetic-field dispersion of the anticrossing c
modes of negative polarization plotted for three different values
the vertical interdot separationd. The symbols ‘‘H ’’ and ‘‘ L ’’ label
the higher and the lower anticrossing branches. Note the wide
of the anticrossing gap and its shift towards higher frequencies w
decreasingd. The inset compares the gap widths obtained from
numerical calculation~triangles! and its fit ~dashed line! to those
obtained from the simplified model of Appendix B~full line!.

FIG. 4. The oscillator strengths of the two anticrossing c.
modes of the negative polarization. The upper~lower! family of
curves corresponds to the optical~acoustic! branch. A pronounced
oscillator strength transfer between the modes in the magnetic-
range 2,vc,4 is apparent. As in Fig. 3, the symbols ‘‘H ’’ and
‘‘ L ’’ indicate the higher and the lower anticrossing branches,
spectively. The inset depicts the results obtained from the simpli
model described in Appendix B. The full~dotted! lines correspond
to coupled~uncoupled! dots.
1-5
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pendix B. This model predicts that the gap grows proporti
ally to Dv;d23, however, this law is valid only at relativel
large distancesd.5. We found that for smaller values ofd
the splitting could be reasonably well fitted by the depe
denceDv;(d21d0

2)23/2 indicated by a dashed line in th
inset of Fig. 3.

The evolution of the respective oscillator strengths in F
4 is rather peculiar and requires a more detailed explana
The sum of the oscillator strengths satisfies a sum rule,
we normalize it so that their total sum equals 1. In t
present example the electron and hole numbers are set e
while the holes are taken to bek53 times heavier than the
electrons. Therefore, since the oscillator strengths scal
;N/m, the electronic modes possess three times higher
cillator strengths. Thus, at zero magnetic field the oscilla
strengths of the two anticrossing modes start from the va
close to 0.125 for the lower-energy mode that is essenti
localized in the hole subsystem and 0.375 for the higher o
These numbers are slightly modified due to the interac
between the modes~the role of interaction becomes mo
important at lower values ofd) as well as due to the presenc
of other much weaker modes. The rest 50% of the total
cillator strength atvc50 belongs to the modes of the opp
site ‘‘1’’ polarization not shown here.

In the range of magnetic-field strengths 2,vc,4 the two
modes interact strongly and anticross. In this region,
observes a rather pronounced depression in the oscil
strength of the lower branch reaching nearly zero value.
missing oscillator strength is transferred to the hig
frequency branch. This type of behavior can be underst
by realizing that at the anticrossing point the charge-den
oscillations of the individual dots combine together in eith
‘‘optical’’ ~the two electric dipoles being aligned in paralle!
or ‘‘acoustic’’ ~antiparallel dipoles! manner, as illustrated in
the insets of Fig. 2. Naturally, the parallel alignment of tw
dipoles costs more energy, and therefore this optical m
has a higher oscillation frequency, while at the same tim
possesses a larger net dipole moment, and consequen
higher oscillator strength. As one notes in the inset of Fig
the same type of qualitative behavior is also observed in
coupled harmonic-oscillator model of Appendix B. Howev
as far as oscillator strengths are concerned, its quantita
predictions are not trustworthy, and thus one can only rely
the more-accurate numerical treatment. Our calculations
dict the above described oscillations of the oscilla
strengths to be quite strong. In Fig. 5 we show a set
absorption lines simulating those obtainable in FIR spect
copy measurements1,6,14 which have been calculated for th
case of a vertical separation between the dotsd53. We plot
nine lines corresponding to nine equally spaced values of
magnetic fields betweenvc51 andvc55 ~the anticrossing
region! thus making the ‘‘disappearance’’ of the low
frequency branch apparent. Since the fluctuations of the
cillator strengths of these modes can be rather large~of order
of 10% of the total oscillator strength! we expect that the
above described effect could be readily observed experim
tally. It is worth mentioning that while in the above exampl
we always dealt with equal numbers of electrons and hole
the dots, the ratio of the electron and hole numbers can
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useful to balance the distribution of oscillator strengths
tween the modes. For example, increasing the numbe
holes will brighten the modes that are mostly due to osci
tions in the hole subsystem thereby compensating for t
diminished oscillator strengths because of higher hole ef
tive mass. As we show in Appendix B, the strength of t
interaction between the two dots and the anticrossing
scale as the geometric mean of the electron and hole n
bers.

Besides the above described strong modes the spect
artificial molecules feature a number of other rather we
modes that can be classified into higher resonances and
energy edge modes. Due to a stronger localization of
charge-density oscillations associated with these modes
number of terms in the expansions~14! has to be increased
for an accurate representation. The oscillator strengths
these modes, under the conditions of our calculations, t
cally barely reach 1024 of the total sum of the oscillato
strengths. In Fig. 6, we show the magnetic-field dispersi
of the lowest-lying high-energy modes and several strong
edge modes. These results are obtained for the param
values Ne5Nh5200, ve54, vh53, and d55. The full
~dashed! lines denote branches polarized in the posit
~negative! direction. In general, the locations and dispersio
of these modes resemble analogous modes as predicte
coupled quantum dots populated solely by electrons.16 The
key difference is that in the present case one can classify
modes into those dominated by oscillations in either the e
tron or hole subsystems. Thus, the two lower high-ene
resonances in Fig. 6 are mostly due to holes while the t
most mode is mainly electronic. The difference can be m
easily spotted in the relative arrangement of the positiv
and negatively polarized branches at finite magnetic fields
the electronic mode, the upper branch is polarized in
positive~i.e., electronic cyclotron resonance! direction, while
in the case of the other two high-energy modes the situa

FIG. 5. FIR absorption~in arbitrary units! in a bipolar quantum-
dot molecule close to the anticrossing region. We show nine abs
tion curves corresponding to evenly spaced magnetic-field va
and offset vertically by the same amount for clarity. Note the ‘‘d
appearance’’ of the lower branch. A broadeningg50.05 has been
used.
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is reversed. Moreover, the electronic mode features a con
erably stronger magnetic-field dispersion. This is due to
fact that the higher resonances asymptotically approach
cyclotron-resonance line, which isk53 times steeper for
electrons than for holes.

The lower part of Fig. 6 shows six most conspicuous ed
modes of the bipolar quantum-dot molecule. The freque
range covered by these modes and their dispersion a
resemble the case of electronic coupled dots.16 However,
due to the fact that the polarizations of the edge modes
determined by the charge sign of the carriers, in the pre
case the edge modes can be polarized both in the cyclo
and the anticyclotron directions. Moreover, the direction
polarization of an edge mode also betrays the compon
whose contribution is dominant. Thus, the edge mo
mostly influenced by the electronic subsystem are polari
in the ‘‘2,’’ i.e., anticyclotron direction of the electrons
These modes are depicted by the dashed lines in Fig. 6
the contrary, the full lines in Fig. 6 denote the modes mos
due to the oscillations in the hole subsystem which
polarized in the ‘‘1,’’ i.e., electronic cyclotron-resonanc
direction.

V. SUMMARY

In conclusion, we made a theoretical investigation of
equilibrium density distributions and the far-infrared r
sponse of bipolar quantum-dot molecules within a hydro
namic model including the effects due to exchange and
netic energy in the von Weizsa¨cker approximation. The mos
conspicuous effect we found is the pronounced anticros
between two modified center-of-mass modes, which ta
place when the applied magnetic field aligns the frequen
of two center-of-mass modes. The additional distinguish
feature of this anticrossing is the strongly nonmonoton

FIG. 6. The magnetic-field dispersion of the higher resonan
and edge modes in a bipolar quantum-dot molecule. Note tha
middle part of the spectrum is cut out. The full and dashed li
denote the modes of the positive and negative polarizations, res
tively.
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behavior of the oscillator strengths of the two resulti
branches. The oscillator strength transfer from the low
‘‘acoustic’’ to the higher ‘‘optical’’ branch is certainly strong
enough to be easily observable. On the other hand, the hi
resonances and edge modes which are also excited in
considered setup, are quite weak.
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APPENDIX A: COULOMB INTEGRALS

In this paper we encountered two types of Coulom
integrals

Js~r !5E d2r 8
c0

2~r 8!

ur2r 82du
,

Jp~r !52E d2r 8
c0~r 8!c1~r 8!

ur2r 82du
. ~A1!

Here, c0(r ) depends only on the radial coordinater while
c1(r )5 f 1(r )eiu has ap-wave angular dependence.d is the
vertical separation between the layers that as a special
may equal zero.

The angular integration in Eq.~A1! can be carried out
analytically in terms of the complete elliptic functions of th
first kind K(k), and the second kindE(k). Introducingr2

5(r 1r 8)21d2 we obtain

Js~r !54E
0

`

dr8r 8
c0

2~r 8!

r
KSA4rr 8

r D ,

Jp~r !58eiuE
0

`

dr8r 8
c0~r 8! f 1~r 8!

r
CSA4rr 8

r D ,

with

C~k!5
2

k2
@E~k!2K~k!#2K~k!. ~A2!

APPENDIX B: COUPLED HARMONIC-OSCILLATOR
MODEL

Guided by a similar simple model introduced in Ref. 1
we show that a number of basic features of the c.m. m
spectrum can be derived~at least qualitatively! from a sim-
plified model featuring two coupled harmonic oscillator
The oscillators concentrate the total masses and charge
the two coupled dots and interact via the potential
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2
NeNh

Ad21~re2rh!2
'2

NeNh

d
1

NeNh

2d3
~re2rh!2. ~B1!

Herere andrh are the oscillator coordinates, and we used
fact that in our unitse2/e51. Denoting the base frequencie
of the oscillators byve andvh we write down the coupled
equations of motion (me* 51, mh*5k)

Ner̈e1Neve
2re1

Nee

c
ṙe3B1

NeNh

d3
~re2rh!50,

Nhk r̈h1Nhkvh
2rh2

Nhe

c
ṙh3B2

NeNh

d3
~re2rh!50. ~B2!

Equations~B2! are solved by introducing the complex var
ablesze(h)5xe(h)1 iye(h) and assuming a harmonic tempor
dependenceze(h);exp(ivt). This leads to the following secu
lar equation for the resonance frequencies:

U2v21ve
21vvc1NhV0

2 2NhV0
2

2NeV0
2/k 2v21vh

22vvc /k1NeV0
2/k

U50, ~B3!

here we denotedvc5eB/c andV0
25d23. From Eq.~B3! the

c.m. mode frequencies can be readily obtained as solut
of a quartic equation. However, basing on the smallness
the coupling parameterV0

2, it is possible to extract some
simpler approximate expressions. We begin by noting t
the role of the terms proportional toV0

2 entering the diagona
and off-diagonal matrix elements in Eq.~B3! is different.
The former give first-order corrections to the frequency d
persion, while the latter contribute to the second order
are important only close to coinciding frequencies, thus
fining an anticrossing.

Therefore, we first neglect the off-diagonal perturbatio
and solve two decoupled quadratic equations originat
from the diagonal terms in Eq.~B3!. The solutions read

v1,25
vc

2
6Avc

2

4
1ve

21NhV0
2,

v3,452
vc

2k
6A vc

2

4k2
1vh

21
1

k
NeV0

2. ~B4!

The modes of positive frequenciesv1 andv3 obtained using
the upper signs in Eq.~B4! are of ‘‘1’’ circular polarization
while the lower-sign solutionsv2 and v4 are negative and
correspond to modes polarized in the ‘‘2’’ direction. We
note, that Eq.~B4! predicts that the absolute values of a
four resonance frequenciesincreasedue to the interdot cou-
o
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pling and gives an estimate of the shifts. In the wea
coupling regime they grow asV0

2;d23. This conclusion is
in agreement with our results~see Fig. 2! and underscores
difference of our system from electronic double dots cons
ered in Ref. 16. There, all frequency shifts found were ne
tive.

Assuming that ~as in our numerical calculations! ve
.vh we find that the modes polarized in ‘‘2’’ direction will
cross. The crossing point is readily calculated by equa
v25v4 and equals

vc05
ve

22vh
2

A~111/k!~ve
2/k1vh

2!
. ~B5!

Note that we present the zero-order solution obtained by
ting V0

2→0, which provides an accurate enough estima
Close to this point the off-diagonal perturbations are imp
tant and have to be taken into account to introduce an a
crossing behavior. We use the fact that in the vicinity of t
resonances of ‘‘2’’ polarization ~rootsv2 andv4) the diag-
onal terms of Eq.~B3! can be approximated by

2~v2v1!~v2v2!'2~v22v1!~v2v2!,

2~v2v3!~v2v4!'2~v42v3!~v2v4!,

and obtain a quadratic equation

~v2v2!~v2v4!~v12v2!~v32v4!2
NeNh

k
V0

450

valid in this region and giving an approximate behavior
the anticrossing modes. This equation can be used, in
ticular, to estimate the size of the anticrossing gap. To
end we calculate the difference of its two roots atvc5vc0
andv25v4, and obtain

Dv52V0
2A NeNh

k~v12v2!~v32v4!
, ~B6!

with v1,2,3,4given by Eq.~B4!.
Equations~B4!–~B6! are useful as quick estimates of e

sential features~mode shifts, position and size of anticros
ing gap! in the c.m. mode spectrum of bipolar quantum-d
molecules. These estimates are obtained for weakly cou
dots and can be asked for quantitave predictions only in
limit when interdot separation considerably exceeds the
radii. Thus, the gap size obtained from Eq.~B6! agrees with
the result of accurate numerical calculations within 10%
d55. However, as we can see in the inset of Fig. 3 at clo
distances the gap grows much more slowly than;d23 as
given by Eq.~B6!.
ev.
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