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Optical absorption of the Fano model: General case of many resonances and many continua
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Friedrich-Schiller-Universita¨t Jena, Institut fu¨r Festkörpertheorie und Theoretische Optik, Max-Wien-Platz 1, 07743 Jena, German
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In this Brief Report we give a brief derivation of the optical absorption of the Fano model in the general case
of many resonances coupled to many continua. The calculation is straightforward and is entirely based upon
simple matrix algebra. We also show the equivalence of our solution to previous results by Fano and Starace
@Phys. Rev.124, 1866~1961!# @Phys. Rev. B5, 1773~1972!#.
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I. INTRODUCTION

Fano interference is known as the quantum-mechan
interaction between discrete and continuous states.1 This uni-
versal phenomenon is observed in many different area
physics. The original paper by Fano1 gaves explicit results
for the case of one resonance interacting with one c
tinuum, one resonance interacting with many continua,
many resonances interacting with one continuum. Later
Mies,2 Starace,3 and Connerade and Lane4 extended Fano’s
result to include the case of many resonances interac
with many continua. The paper by Starace expressed the
scattering cross section as a sum of partial cross sect
where each term has the form of Fano’s result for ma
resonances and one continuum.

In nuclear and atomic physics, Fano interference is of
described in terms of interaction of open and closed ch
nels. A theoretical framework was developed in a series
papers by Feshbach.5 Bhatia and Temkin6 unified the Fano
and Feshbach approaches and gave a derivation of Fa
result using the projection-operator formalism. They also
cluded the interaction between discrete resonances, lea
to energy-dependent line-shape parameters.

The Fano model1,3 is exactly solvable, but the calculation
which is based upon an eigenvalue problem, is intricate.
ternative derivations of Fano’s result, which are found in
literature, either are no less complicated or do not go as
as the original paper. The use of specific methods of sca
ing theory, which are less known to the general reader
contrary to the universality of the subject. In fact, there
cases of Fano interference which cannot be explained in
channel picture with asymptotically free motion. An examp
is the Coulomb interaction between excitons and continu
states of different minibands in superlattices. In this ca
Fano resonances in the optical spectrum were predicted t
retically in 1997,7 and observed experimentally this year.8

In solid-state physics, it is common to derive Fano’s res
using the method of Green’s functions, either by solving
Dyson equation9,10 or by directly calculating the inverse of
sparse matrix.11,12However, in these papers only the simple
case of one resonance interacting with one continuum
considered.

In the present paper we derive a compact formula for
absorption coefficient in the case of many resonances
many continua. The calculation is entirely based upon
simple matrix algebra, uses only a minimum of assumptio
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does not invoke scattering theory, and does not require in
mation about the asymptotics of the continuous eigenfu
tions. Then we rederive the explicit expressions of Fano
Starace for one resonance interacting with one or more c
tinua, for many resonances interacting with one continuu
and for many resonances interacting with many continua

II. FANO MODEL

We consider the following model Hamiltonian and tran
tion matrix elements

H5S H0 V1 V2 V3 •••

V1
T E1 0 0 •••

V2
T 0 E2 0 •••

V3
T 0 0 E3 •••

A A A A �

D , uM &5S M0

M1

M2

M3

A

D .

~1!

The discrete states are represented by a real symmetrm
3m matrix H0, and the continuous transitions are model
by the real energiesEj ( j .0). The continuum states ar
discretized for methodical reasons; later we will let the sp
ing of theEj ( j .0) go to zero. The coupling between di
crete states and continua is given by the realm-dimensional
column vectorsVj ( j .0) and their transposesVj

T . The
other elements ofH are zero, which means that no intera
tion between different continuum states is considered. F
mally, this situation can be achieved by a unitary transform
tion of the continuum states. In the general case, this
possible only by numerical calculations. The optical tran
tion amplitudes are given by the elements ofuM &, whereM0
is an m-dimensional real column vector andM1 , M2 , . . .
are real numbers.

In dimensionless units, ignoring prefactors, the opti
susceptibility is given by

x~v!5(
j

u^M uF j&u2

Ej2~v1 i e!
, ~2!

whereEj anduF j& are the eigenvalues and normalized eige
vectors of H, and e510 is a positive infinitesimal.@We
shall use the term ‘‘optical susceptibility’’ throughout. Th
result is valid for any spectroscopic quantity, which can
©2002 The American Physical Society10-1
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represented in the form of Eq.~2!.# The limit e→10 is
carried out after the continuum limit. A representation ofx,
equivalent to Eq.~2!, is

x~v!5^M uR~v!uM &, R~v!5@H2~v1 i e!#21. ~3!

HereR(v) is called the resolvent operator, and its diago
matrix elementx(v) is called a Green’s function.9 The ab-
sorption coefficienta is determined by the imaginary part o
the optical susceptibility:

a~v!5Im x~v!. ~4!

The elements of the matrixR(v) can be found by using
the block version of lemma 1~see the Appendix!, and it
holds that

R00~v!5FH02~v1 i e!2( 8
j

VjVj
T

Ej2~v1 i e!
G21

,

Rj 0~v!52
Vj

TR00~v!

Ej2~v1 i e!
,

R0k~v!52
R00~v!Vk

Ek2~v1 i e!
, j ,k.0 ~5!

Rjk~v!5
d jk

Ej2~v1 i e!

1
Vj

TR00~v!Vk

@Ej2~v1 i e!#@Ek2~v1 i e!#
, j ,k.0,

where the prime at the sum means thatj 50 is excluded from
the summation. The optical susceptibility@Eq. ~3!#, which
follows from the elements ofR(v), is

x~v!5FM0
T2( 8

j

M jVj
T

Ej2~v1 i e!
GR00~v!

3FM02( 8
k

VkMk

Ek2~v1 i e!
G1( 8

j

M j
2

Ej2~v1 i e!
.

~6!

Result ~6! for one resonance was derived by seve
authors.9–12

Now we perform the transition to the continuous lim
Suppose the indicesj 51, . . . ,s belong to the first con-
tinuum, the indicesj 5s11, . . . ,2s to the second con
tinuum, etc. Then we replace the quantitiesVj andM j by

Vj5
n (b)~Ej !

AD~Ej !
, M j5

m (b)~Ej !

AD~Ej !
,

~b21!s, j <bs, b51, . . . ,n, ~7!

whereD(Ej ) is the energetic density of states, i.e., the
verse spacing of subsequent energies, and them-dimensional
real vectorsn (b) andm (b) are continuous functions ofE. In
the limit D(Ej )→`, s→`, the sums overj go over into
integrals according to
07531
l
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j

f @AD~Ej !Vj ,AD~Ej !M j #

D~Ej !

5 (
b51

n

E dE f@n (b)~E!,m (b)~E!#. ~8!

In the evaluation of expression~6! we encounter the fol-
lowing integrals

(
b51

n E dE
n (b)~E!n (b)T~E!

E2~v1 i e!
5F1

1

2
iG,

(
b51

n E dE
n (b)~E!m (b)~E!

E2~v1 i e!
5G1

1

2
iD, ~9!

(
b51

n E dE
m (b)2~E!

E2~v1 i e!
5K1

1

2
iL.

The quantitiesF andG are real symmetricm3m matrices,G
andD are realm-dimensional column vectors, andK andL
are real numbers. We shall neglect their weak frequency
pendence near the resonance and treat them as constan
virtue of Dirac’s identity

1

E2~v1 i e!
5

P

E2v
1 ipd~E2v!, ~10!

F, G, andK are given by principal-value integrals and forG,
D, andL we have

G5 (
b51

n

G (b), D5 (
b51

n

D (b), L5 (
b51

n

L (b),

G (b)52pn (b)n (b)T, D (b)52pn (b)m (b),

L (b)52pm (b)2. ~11!

With the above definitions, the optical susceptibility@Eq.
~6!# becomes

x~v!5S M02G2
1

2
iD D TFH02F2~v1 i e!2

1

2
iGG21

3S M02G2
1

2
iD D1K1

1

2
iL. ~12!

In the limit v→6` the absorption approaches the abso
tion of the continuum states

a~`!5Im x~`!5
1

2
L. ~13!

With formula ~12! we have a compact formulation for th
optical susceptibility for the general case of many resonan
interacting with many continua. The dimension of the vec
space is equal to the number of discrete resonances, inde
dent of the number of continua. Although formulation~12!
can easily be used for a numerical calculation of the sp
trum, it does not allow one to draw qualitative conclusio
0-2
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about the behavior of the absorption profile. In the followi
we shall demonstrate how Eq.~12! simplifies in the cases o
a single resonance interacting with one or more contin
and of many resonances interacting with one continuum.
also show the equivalence to Starace’s result for many r
nances and many continua.

III. SINGLE RESONANCE

In the case of a single resonance, the discrete subs
HamiltonianH0 is a scalarE0, and all quantities in Eq.~12!

are scalars. In the trivial casenW 5(n (1), . . . ,n (n))T50, the
absorption spectrum consists of a discrete line and, ifLÞ0,
a constant background. IfGÞ0 andD50, which means tha
mW is perpendicular tonW , the absorption profile is a Lorentzia
with a broadening1

2 G. In this case, a constant backgroun
i.e., LÞ0, is possible only forn.1.

Now we consider the case thatDÞ0. From the Cauchy-
Schwarz inequality

D2<GL, ~14!

it follows that GÞ0 andLÞ0. Introducing the parameters

«5
v2E02F

1
2 G

, q5
M02G

1
2 D

, ~15!

the absorption coefficient, normalized toa(`), becomes

a~v!

a~`!
5

D2

GL

~q1«!2

11«2
112

D2

GL
. ~16!

This function is positive and has no zeros forD2,GL.
If mW andnW are parallel, then it holds thatD25GL. In this

case, Eq.~16! simplifies to

a~v!

a~`!
5

~q1«!2

11«2
. ~17!

This is the famous result by Fano@Eq. ~21! in Ref. 1#. The
function~17! is semipositive and has one zero at«52q. For
interaction with one continuum (n51), the absorption al-
ways drops to zero for one frequency, while for many co
tinua (n.1) this happens only by accident.

IV. MANY RESONANCES AND ONE CONTINUUM

Next we study expression~12! for many resonances an
one continuum. To simplify the notation, we replaceM0
2G by M0 andH02F by H0. Furthermore, we ignore th
real constantK, which does not contribute to the absorptio
coefficient. First we considerLÞ0. Later, we take the limit
L→0 in the final expression.

Taking into account thatG5DDT/L, the optical suscep
tibility, normalized toa(`), is
07531
a,
e
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x~v!

a~`!
5S M02

1

2
iD D TH 1

2
L@H02~v1 i e!#

2
1

4
iDDTJ 21S M02

1

2
iD D1 i . ~18!

The real symmetric matrixH0 can be diagonalized so tha
H̃05diag(Ẽ0,1, . . . ,Ẽ0,m). We assume the irreducible cas
where Ẽ0,1,Ẽ0,2,•••,Ẽ0,m and the transformed vectorD̃
5(D̃1 , . . . ,D̃m)T has all nonzero components. Otherwis
some discrete states are not coupled to the continuum,
the dimension of the problem can be reduced.

To perform the limite→0, we have to investigate th
analyticity of the functionx(z) for complexz near the real
axis. From lemma 2~see the Appendix! it follows that, in the
eigensystem ofH0,

detF1

2
L~H02z!2

1

4
iDDTG

5S L

2 D m

)
j 51

m

~Ẽ0,j2z!F12
1

2
i (
k51

m
D̃k

2/L

Ẽ0,k2z
G .

~19!

This function is analytic and, as allD̃k are assumed nonzero
has no zeros on the real axis. Hencex(z) is analytic on a
stripe around the real axis, and in Eq.~18! we may replace
v1 i e with v.

Then, in order to calculate the imaginary part of expre
sion ~18!, we apply lemma 3~see the Appendix! and obtain

a~v!

a~`!
5U det~H02v2M0DT/L!

det~H02v2 1
2 iDDT/L!

U2

. ~20!

The above expression is a non-trivial generalization of
formula for one resonance and one continuum@Eq. ~17!#.

We have already seen that the denominator of Eq.~20! has
no zeros. For the numerator, by virtue of lemma 2, we fin

detS H02v2
M0DT

L D5)
j 51

m

~Ẽ0,j2v!F12 (
k51

m
M̃0,kD̃k /L

Ẽ0,k2v
G .

~21!

A sufficient condition form zeros is that eitherM̃0,kD̃k.0
for all k or M̃0,kD̃k,0 for all k, in other words, that the
individual q-parameters are nonzero and have the same s

Inserting the expressions for determinants~19! and ~21!
into Eq. ~20!, we obtain

a~v!

a~`!
5

F12 (
k51

m
M̃0,kD̃k /L

Ẽ0,k2v
G 2

11
1

4 F (
k51

m
D̃k

2/L

Ẽ0,k2v
G 2 5cos2wF12 (

k51

m

qktanwkG2

,

~22!

where
0-3
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tanwk5
1

2

D̃k
2/L

Ẽ0,k2v
5

pñk
2

Ẽ0,k2v
, tanw5 (

k50

m

tanwk ,

qk5
2M̃0,k

D̃k

5
M̃0,k

pmñk

. ~23!

The latter expression is identical to the results by Fan1

Mies,2 and Connerade and Lane.4

Now we consider the case that the transition probabi
of the continuum is zero, which means thatm50, L50, and
D50. Here, the irreducible case is characterized byñkÞ0
for all k. Furthermore, we assumeM0Þ0, otherwise the ab-
sorption coefficient vanishes identically. From Eq.~22!, in
the limit L→0, we obtain

a~v!5

F (
k51

m
M̃0,kApñk

Ẽ0,k2v
G 2

11F (
k51

m pñk
2

Ẽ0,k2v
G 2 . ~24!

The function a(v) approaches zero forv→6`. If all
M̃0,kñk are nonzero and have the same sign, then the abs
tion coefficient hasm21 zeros at finite values ofv. Writing
the latter expression in general coordinates and using lem
2, we find that

a~v!5Udet~H02v!2det~H02v2M0
TApnT!

det~H02v2 iApnApnT!
U2

. ~25!

As Eq. ~20!, the last expression is free of terms of the for
`/`.

V. MANY RESONANCES AND MANY CONTINUA

For many resonances and many continua, the optical
sorption can be written as a sum over all continua. From
definitions~11!, expression~12!, and the proof of lemma 3 i
follows that

a~v!5Im x~v!5
1

2 (
b51

n

L (b)U12S M02
1

2
iD D T

3S H02v2
1

2
iG D 21 D (b)

L (b)U2

. ~26!

Again, for notational convenience, we droppedG, F, andK.
As each term under the sum depends on all continua vD

andG, it cannot be brought into form~22!. To overcome this
problem, we introduce the orthogonal transformation

n̄ (b)5 (
b51

n

Ub8bn (b8), m̄ (b)5 (
b51

n

Ub8bm (b8). ~27!

Then we defineḠ (b), D̄ (b), andL̄ (b) in analogy to Eq.~11!.
BecauseḠ5G, D̄5D andL̄5L, the optical susceptibility is
07531
,
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a
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e

invariant under transformation~27!, which means that in Eq
~26! we can replaceD (b) by D̄ (b) andL (b) by L̄ (b).

We now determine then3n orthogonal matrixU(v)
such that

n̄ (b)T~v!~H02v!21n̄ (b8)~v!5 z̄(b)~v!dbb8. ~28!

While some of thez̄(b)(v)’s have single poles whenv
crosses an eigenvalue ofH0, the quantitiesḠ (b), D̄ (b), and
L̄ (b) can be chosen to be continuous functions ofv.

From the series expansion

S H02v2
1

2
iG D 21

5~H02v!211~H02v!21
1

2
iG~H02v!211•••

~29!

and the relationḠ (b)5D̄ (b)D̄ (b)T/L̄ (b), it follows that

D̄ (b)TS H02v2
1

2
iG D 21

D̄ (b8)

5dbb8D̄ (b)S H02v2
1

2
i Ḡ (b)D 21

D̄b. ~30!

Going over to the transformed quantities and using relat
~30!, Eq. ~26! goes over into

a~v!5
1

2 (
b51

n

L̄ (b)U12S M02
1

2
i D̄ (b)D T

3S H02v2
1

2
iG (b)D 21 D̄ (b)

L̄ (b)U2

5
1

2 (
b51

n

L̄ (b)U det~H02v2M0D̄ (b)T/L̄ (b)!

detS H02v2
1

2
i D̄ (b)D̄ (b)T/L̄ (b)DU

2

.

~31!

In this expression each of the terms under the sum is of
form of Eq. ~22!. The latter equation is identical to the fo
mula of Starace, which expressed the total cross section
a sum of partial cross sections.3

VI. SUMMARY

In summary, we have given a straightforward derivati
for the optical absorption of the Fano model, for the gene
case ofm discrete resonances interacting withn continua.
The equivalence to previous results by Fano and Starac
demonstrated.
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APPENDIX

Lemma 1: Let A be ann3n matrix with the following
structure:

A5S a11 a12 a13 a14 ••• a1n

a21 a22 0 0 ••• 0

a31 0 a33 0 ••• 0

a41 0 0 a44 ••• 0

A A A A � A

an1 0 0 0 ••• ann

D . ~A1!

If A is regular, then the elements of the inverse matrixB
5A21 are given by

b115Fa112(
j 52

n
a1 jaj 1

aj j
G21

,

b1k52
b11a1k

akk
, bj 152

aj 1b11

aj j
, ~A2!

bjk5
d jk

aj j
1

aj 1b11a1k

aj j akk
, j ,k52, . . . ,n.

Proof: The inversion of the matrix can be done explicit
by means of the exchange method13 with pivot elementsann ,
an21,n21, . . . , a11, or by partitioning ofA.14 Alternatively,
one can directly verify thatAB5BA51.

A block version of lemma 1 is obtained whena11 is re-
placed by an m3m matrix, the a1k for k.1 by
m-dimensional row vectors, and theaj 1 for j .1 by
m-dimensional column vectors. Then the formula for the
verse matrix remains valid if the elementsb11, b1k , and
bj 1 ( j ,k.1) are interpreted as matrices and vectors.

Lemma 2: For any complex regularn3n matrix B and
complexn-dimensional column vectorsu andv it holds that

det~B2uvT!5~12uTB21v !detB. ~A3!

Proof: The left-hand side of the above equation takes
form

det~B2uvT!5det~b12uv1 , . . . ,bn2uvn!

5det~b1 , . . . ,bn!

2 (
k51

n

det~b1 , . . . ,bk21 ,uvk ,bk11 , . . . ,bn!.

~A4!
07531
-

e

Hereb1 , . . . ,bn are the columns of the matrixB. All other
2n2n21 contributions vanish, for example
det(uv1 ,uv2 ,b3 , . . . ,bn)50. Expanding each term unde
the sum into cofactors, we obtain

(
k51

n

det~b1 , . . . ,bk21 ,uvk ,bk11 , . . . ,bn!

5(
j 51

n

(
k51

n

uj B̄jkvk , ~A5!

where B̄jk are the minor determinants ofB, including the
factor (21) j 2k. As B is regular, B̄ is given by B̄
5B21detB, which proves the proposition.

Lemma 3: Let A be a real symmetricn3n matrix andx
andy real column vectors. Furthermore, we suppose thaA
2 iyyT is regular. Then it holds that

Im@~x2 iy !T~A2 iyyT!~x2 iy !#115U det~A2xyT!

det~A2 iyyT!
U2

.

~A6!

Proof: From lemma 2 it follows that

det~A2xyT!

det~A2 iyyT!
5

det@A2 iyyT2~x2 iy !yT#

det~A2 iyyT!

512~x2 iy !T~A2 iyyT!21y. ~A7!

Multiplication with its complex conjugate gives

U det~A2xyT!

det~A2 iyyT!
U2

5@12~x2 iy !T~A2 iyyT!21y#

3@12yT~A1 iyyT!21~x1 iy !#

511~x2 iy !T~A2 iyyT!21yyT

3~A1 iyyT!21~x1 iy !2~x2 iy !T~A2 iyyT!21

3y2yT~A1 iyyT!21~x1 iy !

511Im@~x2 iy !T~A2 iyyT!21~A1 iyyT!

3~A1 iyyT!21~x1 iy !#2Im@~x2 iy !T

3~A2 iyyT!212iy #

511Im@~x2 iy !T~A2 iyyT!21~x2 iy !#. ~A8!
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