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Optical absorption of the Fano model: General case of many resonances and many continua
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In this Brief Report we give a brief derivation of the optical absorption of the Fano model in the general case
of many resonances coupled to many continua. The calculation is straightforward and is entirely based upon
simple matrix algebra. We also show the equivalence of our solution to previous results by Fano and Starace
[Phys. Rev124 1866(1961)] [Phys. Rev. B5, 1773(1972].
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[. INTRODUCTION does not invoke scattering theory, and does not require infor-
mation about the asymptotics of the continuous eigenfunc-
Fano interference is known as the quantum-mechanicdlons. Then we rederive the explicit expressions of Fano and
interaction between discrete and continuous stafdss uni-  Starace for one resonance interacting with one or more con-
versal phenomenon is observed in many different areas dfnua, for many resonances interacting with one continuum,
physics. The original paper by Fangaves explicit results and for many resonances interacting with many continua.
for the case of one resonance interacting with one con-

tinuum, one resonance interacting with many continua, and Il. FANO MODEL
many resonances interacting with one continuum. Later on, ) _ o )
Mies? Staracé and Connerade and Lahextended Fano's We consider the following model Hamiltonian and transi-

result to include the case of many resonances interactingon matrix elements
with many continua. The paper by Starace expressed the total

scattering cross section as a sum of partial cross sections, Ho Vi V, Vg - Mo
where each term has the form of Fano’s result for many vVi E. 0 O ...
. 1 Ea My
resonances and one continuum. .
In nuclear and atomic physics, Fano interference is often H=| V> 0 E; 0 --- | [M)=[ M;
described in terms of interaction of open and closed chan- V; 0 0 E; - M,

nels. A theoretical framework was developed in a series of

papers by FeshbachBhatia and Temkifunified the Fano

and Feshbach approaches and gave a derivation of Fano’s 1)
result using the projection-operator formalism. They also in-.l_he discrete states are represented by a real symmmetric
cluded the interaction between discrete resonances, Ieadin>gm matrix H~ and the continuous transitions are modeled
to energy-dependent line-shape parameters. o

The Fano modéf®is exactly solvable, but the calculation, b_y the_ real energleEJ_ (1=0) Th_e contmuum states are
discretized for methodical reasons; later we will let the spac-

WhICh.IS basgd upon an elge,nvalue probllem, is intricate. AI—ing of theE; (j>0) go to zero. The coupling between dis-
ternative derivations of Fano’s result, which are found in the J g S . .
crete states and continua is given by the realimensional

literature, either are no less complicated or do not go as far . ) T
as the original paper. The use of specific methods of scatteF—ommn vectorsV; (j>0) and their transposey; . The

ing theory, which are less known to the general reader, igther elements_of-l are zero, which means that no Interac-
fion between different continuum states is considered. For-

contrary to the universality of the subject. In fact, there are D . )
cases of Fano interference which cannot be explained in th@a"y’ this situation can be achieved by a unitary transforma-

channel picture with asymptotically free motion. An examplet©" Of the continuum states. In the general case, this is

is the Coulomb interaction between excitons and <:ontinuunr|)OSSible only by numerical calculations. The optical transi-

states of different minibands in superlattices. In this casellON @mplitudes are given by the elements df), whereMy
> an m-dimensional real column vector arid,, M,, ...

Fano resonances in the optical spectrum were predicted thel? | b
retically in 19977 and observed experimentally this y8ar., ¢ real numoers. L .

In solid-state physics, it is common to derive Fano’s result In d'm?_“s'.o”'?‘ss units, ignoring prefactors, the optical
using the method of Green’s functions, either by solving asusceptlblllty is given by
Dyson equation'® or by directly calculating the inverse of a

R . . 2
sparse matrixl"'2However, in these papers only the simplest (0)=3 [(M[®))] @
case of one resonance interacting with one continuum is X T & (wtie)’
considered.

In the present paper we derive a compact formula for thevhere&; and|®;) are the eigenvalues and normalized eigen-
absorption coefficient in the case of many resonances aneectors ofH, and e=+0 is a positive infinitesimal[We
many continua. The calculation is entirely based upon a&hall use the term “optical susceptibility” throughout. The
simple matrix algebra, uses only a minimum of assumptionstesult is valid for any spectroscopic quantity, which can be
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represented in the form of Ed2).] The limit e—~+0 is W/ NV
carried out after the continuum limit. A representationyof al \/D(E')VJ ’\/D(E')MJ]
equivalent to Eq(2), is ] D(E;)

x(0)=(M|R(w)|M), R(w)=[H—(w+ie)] 1 (3

HereR(w) is called the resolvent operator, and its diagonal
matrix elementy(w) is called a Green’s functiohThe ab-
sorption coefficientr is determined by the imaginary part of In the evaluation of expressiq®) we encounter the fol-

=2 | dEfvP(E),uP(E)]. (8)
B=1

the optical susceptibility: lowing integrals
a(w)=1m x(w). (4) n f vB)(E) v AT(E) 1T
E - =F+Zil,
The elements of the matriR(w) can be found by using p=1 E-(otie) 2
the block version of lemma Isee the Appendjx and it N
holds that s f WWERDE) L ©
VVT -1 G=1 E—-(w+ie) 2 77
Roo(w)=|Ho—(w+ie) Z E - (w+|e) ) f LOE) )
2 dE =K+ ZiA.
5 V{Rog(@) E—(otie) 2
jol@)=- —(w+ie)’ The quantities- andI” are real symmetrionxX m matricesG
andA are realm-dimensional column vectors, atdand A
Ro(@)=— ROO(“’)V_k i k>0 (5) are real numbers. We shall neglect their weak frequency de-
0 Ex—(o+ie)’ 7' pendence near the resonance and treat them as constants. By
virtue of Dirac’s identity
ik
Rik(0)= =———— 1 P
Ei—(w+ie) _ . B
j ] E (wtio) E_w+|775(E w), (10
Vi Roo( @) Vi . . o .
+ — E—(otio]’ j,k>0, F, G, andK are given by principal-value integrals and 1oy
[Ej—(w+ie)][Ex—(wtie)] A, andA we have
where the prime at the sum means tha is excluded from n N N
the summation. The optical susceptibilifg. (3)], which _ 8) _ ) _ )
follows from the elements dR(w), is r 521 e 521 AYL A [,Zl AT,
VAVA TB) =278 BT AB) =2.,(B),(B)
' I Ty ) Ay VA
X(@)=|Mg—2" ————|Rof(®)
T Ej—(o+ie) AB=27,B2, (11)
Mo_S VilMy > M? With the above definitions, the optical susceptibiligg.
X - + _
"% E—(atia] T E—(otie  (©)becomes
() 1 NN
x(w)= MO—G—EIA HO—F—(w-l-IE)—EIF
Result (6) for one resonance was derived by several
authors’? 1 1
Now we perform the transition to the continuous limit. X|{Mo=G—SiA +K+7iA. (12)
Suppose the indice$=1, ... s belong to the first con-
tinuum, the indicesj=s+1,...,2 to the second con- In the limit w— *% the absorption approaches the absorp-
tinuum, etc. Then we replace the quantitigsandM; by tion of the continuum states
(B)(E.) (B)(E.) 1
v M j
Vi=—Lr, M=, a(®)=Im y(®»)= = A. (13)
" D(E) " \D(g) X 2

(B—1)s<j<pBs, B=1,...n, @) Wit_h formula (1_2) we have a compact formulation for the
optical susceptibility for the general case of many resonances

where D(E;) is the energetic density of states, i.e., the in-interacting with many continua. The dimension of the vector

verse spacing of subsequent energies, andrtd@nensional  space is equal to the number of discrete resonances, indepen-

real vectorsy(®) and u# are continuous functions @&. In  dent of the number of continua. Although formulati¢i?)

the limit D(E;)—, s—, the sums ovej go over into can easily be used for a numerical calculation of the spec-

integrals according to trum, it does not allow one to draw qualitative conclusions
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about the behavior of the absorption profile. In the following
we shall demonstrate how E(L.2) simplifies in the cases of

a single resonance interacting with one or more continua,
and of many resonances interacting with one continuum. We
also show the equivalence to Starace’s result for many reso-

X(w)

a(*)

|

Mo— ;iA)T[%A[HO—(wHe)]

(18

nances and many continua.

Ill. SINGLE RESONANCE

In the case of a single resonance, the discrete subspace(A
1

HamiltonianH,, is a scalaiEy, and all quantities in Eq.12)

are scalars. In the trivial case= (v, ... »M)T=0, the
absorption spectrum consists of a discrete line and,#f0,
a constant background If#0 andA =0, which means that
,u is perpendicular to, the absorption profile is a Lorentzian
with a broadeningsT". In this case, a constant background,
i.e., A#0, is possible only fon>1.

Now we consider the case that=0. From the Cauchy-
Schwarz inequality

(14)

it follows thatI'#0 andA #0. Introducing the parameters

: (19
;A

the absorption coefficient, normalized &¢«), becomes

2

“TAT

a(w)  AZ (qte)?
“TA 1+¢?

o) (10
This function is positive and has no zeros foft<T'A.

If u andv are parallel, then it holds that?=T"A.. In this
case, Eq(16) simplifies to

a(w)

a(®)

(q+e)?
> a7
1+e¢
This is the famous result by Farn&q. (21) in Ref. 1. The
function(17) is semipositive and has one zerceat — q. For
interaction with one continuumnE&1), the absorption al-

1'AAT - M 1'A
_ZI O—EI +

The real symmetric matri¥l, can be diagonalized so that
Ho=diagEo 1, - - - Eom). We assume the irreducible case,
where Eo 1< Eo <~ <~E0,m and the transformed vectdr

A)T has all nonzero components. Otherwise,
some discrete states are not coupled to the continuum, and
the dimension of the problem can be reduced.

To perform the limite—0, we have to investigate the
analyticity of the functiony(z) for complexz near the real
axis. From lemma 2see the Appendixt follows that, in the
eigensystem oH,

1 1
de EA(HO_Z)_ ZIAA
m

1 AZIA
1——|2
=1 EOk

AT
(2] T s
(19

This function is analytic and, as all, are assumed nonzero,
has no zeros on the real axis. Hengg) is analytic on a
stripe around the real axis, and in E48) we may replace
w+ie with w.

Then, in order to calculate the imaginary part of expres-
sion (18), we apply lemma 3see the Appendixand obtain

de(Ho—w—MoAT/A) |*
detHo—w—3iAAT/A)|

a(w) B
a(®)

The above expression is a non-trivial generalization of the
formula for one resonance and one continyilg. (17)].

We have already seen that the denominator of(E@). has
no zeros. For the numerator, by virtue of lemma 2, we find

o3,

(20

MoAT Mo Al

EOk

S

de( HO_ w—
(21)

A sufficient condition form zeros is that eithelT/IOka>O

ways drops to zero for one frequency, while for many con-for all k or Mg A,<0 for all k, in other words, that the

tinua (h>1) this happens only by accident.

IV. MANY RESONANCES AND ONE CONTINUUM

Next we study expressiofl2) for many resonances and
one continuum. To simplify the notation, we replabk,
—G by My andHy—F by Hg. Furthermore, we ignore the
real constank, which does not contribute to the absorption
coefficient. First we considek # 0. Later, we take the limit
A—0 in the final expression.

Taking into account thaf =AAT/A, the optical suscep-
tibility, normalized toa(=), is

individual g-parameters are nonzero and have the same sign.
Inserting the expressions for determinafit8) and (21)
into Eq. (20), we obtain

" Moghy/A]?
- Irvaaa——— 2
a(w) [ 1 Egp-o i
=coSep|1— tan ,
a(oo) Ai/ 2 ¢ kzl Ak Pk

Sz

1+—

(22)

where
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1 ZE/A 77715 m invariant under transformatiof27), which means that in Eq.
tane =7 = == , tane= Z tangy, (26) we can replacé(®) by A® and AP by AP,
Eox—w  Eox—o k=0 We now determine thexxn orthogonal matrixU(w)
o/ 1 such that
0k 0k
qQi=—=—="=". (23) _ — _ ,
Ay Ty VAT (w)(Hp— @) 2B )N (w)=2P(w)s"F . (28

The latter expression is identical to the results by Fano,while some of the?ﬁ)(w)'s have single poles whem
Mies? and Connerade and Lafie.

Now we consider the case that the transition probabilit
of the continuum is zero, which means that 0, A =0, and

A=0. Here, the irreducible case is characterizedvpy 0
for all k. Furthermore, we assuni,+ 0, otherwise the ab- ( 1 )l

crosses an eigenvalue bf,, the quantitied®, A® and

YA can be chosen to be continuous functionswof
From the series expansion

sorption coefficient vanishes identically. From Eg2), in Ho—w— Eil‘
the limit A— 0, we obtain

1 -
§ Mo | =(H0—w)’1+(H0—w)’1§|F(H0—w) R
1 Egp—o
a(w)= - 0k — T2 (29 S (29)
14> T and the relatiod (¥)= A ABT/AB) it follows that
k=1 Eox— L
— 1\
The function a(w) approaches zero fow— *co. If all A('B)T<Ho—w—zlr) AB)
IT/IO,k"f/k are nonzero and have the same sign, then the absorp- .
tion coefficient hasn—1 zeros at finite values ab. Writing Y NG| TR Eiﬁﬁ) AP (30
the latter expression in general coordinates and using lemma 0" @73 '

2, we find that ) . . .
Going over to the transformed quantities and using relation

det Ho— ) — detHo— w—MJ /7o )| (30), Eq.(26) goes over into

e detHo—w—iNaim) | 1 1T
a(w)=7 2, AP 1—(|v|0— —iA(B))
As Eq.(20), the last expression is free of terms of the form 2 =1 2
wofoo, 1 —1K(ﬁ) 2
V. MANY RESONANCES AND MANY CONTINUA 2 AB)

For many resonances and many continua, the optical ab- 138 — de(Ho— w—MoAPTAB) |2
sorption can be written as a sum over all continua. From the ) le AP 1
definitions(11), expressior{12), and the proof of lemma 3 it de( Ho— w—EiA(B)A(ﬁ)T/A(ﬁ))
follows that

(31
10 1 T ) . .
a(w)=Imy(w)== > A® 1—(M0— —iA) In this expression each of the terms under the sum is of the
2 g=1 2 form of Eq. (22). The latter equation is identical to the for-

mula of Starace, which expressed the total cross section into

2 . B
a sum of partial cross sectiofs.

X

1 “1AB
) (26)

HO—O)—EIF m

. , , VI. SUMMARY
Again, for notational convenience, we dropp8dF, andK.

As each term under the sum depends on all continuavia  In summary, we have given a straightforward derivation
andT, it cannot be brought into forrt22). To overcome this  for the optical absorption of the Fano model, for the general

problem, we introduce the orthogonal transformation case ofm discrete resonances interacting withcontinua.
The equivalence to previous results by Fano and Starace is
n n demonstrated.
PB= BB L B= UkBLE). (27)
Pt Pt ACKNOWLEDGMENT
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APPENDIX

Lemma 1 Let A be annXn matrix with the following
structure:

a1 a1 a1z Ay ain
a,; ay» 0 o --- 0
a 0 a 0
Az 31 33 (AD)
a1 O 0 ay -+ O
a,; O 0 0 ann

If A is regular, then the elements of the inverse maBix
=A"1 are given by

-1

n
aljajl
b1,= an—z A |
j=2 i
bia1k ab
j1P11
bi=-— , =———, (A2)
Ak ajj
O ajibiagg
bjk——J ! s k=2, . n
Qj  8jjakk

Proof: The inversion of the matrix can be done explicitly

by means of the exchange methddith pivot elements,,,,
&, 11, --- ,a11, OF by partitioning ofA.** Alternatively,
one can directly verify thaAB=BA=1.

A block version of lemma 1 is obtained when, is re-
placed by an mXm matrix, the a; for k>1 by
m-dimensional row vectors, and the;; for j>1 by

m-dimensional column vectors. Then the formula for the in-

verse matrix remains valid if the elements;, by, and

bj; (j,k>1) are interpreted as matrices and vectors.
Lemma 2 For any complex regulanxn matrix B and

complexn-dimensional column vectorsandv it holds that

de(B—uv")=(1-u'B 'v)detB. (A3)

PHYSICAL REVIEW B 66, 075310 (2002

Hereb,, ... b, are the columns of the matr. All other
2"—-n-1 contributions vanish, for example,
det(uv,,uv,,bs, ... b,)=0. Expanding each term under
the sum into cofactors, we obtain

n
kZ]_ de(bl, P ,bkfl,ul)k,bk+1, P ,bn)

n n
:21 kgl uijkvk,

(A5)

wheregjk are the minor determinants d&, including the
factor (—1)/"kK. As B is regular, B is given by B
=B~ 1detB, which proves the proposition.

Lemma 3 Let A be a real symmetrio X n matrix andx
andy real column vectors. Furthermore, we suppose #at
—iyy" is regular. Then it holds that
de(A—xy") |
detA—iyy")|

(A6)

Im[(x—iy)T(A—iyy")(x—iy)]+1=

Proof: From lemma 2 it follows that
detA—xy’) defA—iyy'—(x—iy)y']
de(A—iyy") de(A—iyy")

=1—(x—iy)"(A—-iyy")ty.

Multiplication with its complex conjugate gives

(A7)

de( A—xy") |

detA—iyy")
=[1-(x=iy)(A—iyy")~ty]

X[1=yT(A+iyy") ~H(x+iy)]
=1+(x—iy)[(A=iyy") ~tyy’

Proof: The left-hand side of the above equation takes the

form
de{B—uv")=detb;—uv,, ...
=detby, ... by

abn_ uv n)

n
_kzl de(bl, P ,bk,l,uvk,b“l, P ,bn).

(Ad)

X(A+iyy") " Hx+iy)—(x—iy)T(A—iyy"H)~*

Xy=—yT(A+iyy") " (x+iy)
=1+Im[(x—iy)"(A—iyy") Y A+iyy")

X (A+iyy") " H(x+iy) = Im[(x—iy)T

X (A—iyy")~12iy]

=1+Im[(x—iy)"(A—iyy") " H(x—iy)]. (A8)
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