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Quantum interference and the giant Hall effect in percolating systems
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We show that in metallic percolating networks the wave nature of the charge carriers can significantly
modify the classical picture of the Hall effect, especially in the metal concentration rangex'xq , wherex
denotes the metal volume, andxq the quantum-percolation threshold. Calculations based on the model of local
quantum interference effect are shown to give a consistent and quantitative account of the recent experimental
findings on the~ordinary! giant Hall effect.
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Percolation is a geometric concept basic to the study
physical properties of inhomogeneous materials. In me
insulator composites, the assumption that the charge car
are classical point particles leads directly to the prediction
a conductivity transition at the geometric percolation thre
old xc , below which the metallic component can no long
form an infinite network. Consideration of the wave natu
of the physical charge carriers~electrons!, however, leads to
a somewhat different picture at temperatureT50, when in-
elastic scattering is absent. That is, multiple scattering of
electronic waves induced by the random percolating ge
etry of the conducting channels inevitably localizes the el
tronic wave functions at a metal concentrationxq.xc @xq
51 in one-dimensional~1D! and 2D samples#, denoted the
quantum mobility edge. As a result, forxc,x,xq the pre-
dictions of the classical- and the quantum-percolation mod
are at odds with each other: Whereas the metallic netwo
are connected and therefore the classical-percolation m
predicts metallic behavior, the quantum-percolation mo
predicts a nonmetallic behavior.1 Indeed, both types of be
havior have been observed in thin~2D! metallic films.
Whereas the nonmetallic temperature dependence obse
at low temperatures is widely accepted as due to the we
localization effect arising from quantum wav
interferences,2,3 at higher temperatures inelastic scattering
seen to suppress wave effects and restore the metallic be
ior predicted by classical percolation. Beyond the 2
samples and the weak localization at low temperatures, h
ever, consideration of quantum wave interference effects
been lacking for Hall effect in 3D samples in the concent
tion rangex;xq , where wave effects could be potential
significant. In view of recent experimental findings on t
giant Hall effect~GHE!,4–7 a theory of Hall effect that take
into consideration the wave effects would be especia
called for.

As a basic material constant, the Hall coefficient is ge
erally indicative of the density and sign of the charge ca
ers. Thus, in granular metals, as the metal concentration
creases, the lower carrier density is expected to yield
enhanced Hall coefficient that peaks at the percola
threshold with a factor of;30 for ;1 mm thick films.4 Re-
cently, however, it was found that in the magne
(NiFe)SiO2 and FeSiO2 granular films,4–7 the extraordinary
0163-1829/2002/66~7!/075309~5!/$20.00 66 0753
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Hall coefficient was enhanced by a factor of 104 when the
metal volume fraction is close to the classical-percolat
threshold ofx50.53. Even after magnetic saturation, theor-
dinary Hall coefficient was still observed to increase by a
most three orders of magnitude,6 suggesting that a
magnetism-independent mechanism could be operative.
origin of this ordinary GHE was investigated by using no
magnetic CuSiO2 granular films, with the result that not onl
the maximum enhancement magnitude coincided with
ordinary GHE observed in magnetic composites, but m
importantly the mechanism was also found to be correla
with quantum interference.8 In particular, the maximum en
hancement was found at the quantum-percolation thresh
determined experimentally by the Ioffe-Regel criterion
kl;1,3 wherek is the electronic wave vector andl the mean
free path. The enhancement was also found to vanish w
the feature size of the granular film was increased~through
annealing! to being comparable to the electron dephas
length. It is the purpose of this work to present a theoreti
model of GHE based on the mechanism of local quant
interference. We show that in those cases where the mi
structural feature sizej is smaller then the temperature
dependent dephasing lengthLf(T)5Al inel /3,3 wherel ine de-
notes the inelastic scattering length andl the elastic mean
free path, there can be significant quantum interference
fects even beyond the low-temperature regime. In particu
calculations based on the 3D quantum-percolation mo
predict a drastically different physical picture for the Ha
effect in the rangex;xq , even whenLf(T) is only on the
order of a fewj’s. Numerical results based on our picture a
shown to give a good account for the GHE found in nonm
netic CuSiO2 granular composites.8

Consider a 3D sample of disordered metal-insulator co
posite in the percolating regime, characterized by an aver
geometric feature sizej defined by the small insulating~or
metallic! particles and their separations, which form the co
ducting channels. At finite temperatures, the existence o
dephasing lengthLf(T) means that the wave effects are ne
ligible on a scale larger thenLf(T). Hence, the overall trans
port characteristics of the sample may be treated as a cl
cal network problem in which each element of the netwo
has the properties calculated on the scale ofLf(T), within
which the quantum wave interference effects have to be
taken into account. The importance of such quantum effec
©2002 The American Physical Society09-1
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may be judged by comparingj with Lf(T). If Lf(T),j,
wave dephasing occurs within a single feature size, i.e.
either the metal or the insulator. The wave effects should
minimal in that case, and the classical-percolation pict
prevails. The interesting case occurs whenLf(T).j. Being
sensitive to the details of the microstructure, quantum w
interference can lead to diverse effective properties~at dif-
ferent spatial locations in the sample! differing qualitatively
from those of either the metal or the insulator component.
j can be on the order of 1 nm, it follows that the effects
local quantum interference may persist even beyond the l
temperature regime. This sensitivity on the feature size
indeed demonstrated experimentally through sample ann
ing, which showed that as the feature size increases to
level comparable to or larger than the measured depha
length, the GHE disappears.8

Below we focus on the calculation of the Hall effect in 3
percolating networks based on the above picture. In the c
position rangex;xq the local Hall coefficient, calculated o
the basis ofLf(T)'a few j’s, is shown to be dominated b
wave scattering and interference, and can be of either p
tive or negative sign with roughly equal probability. The g
ant Hall effect is a direct result of this local behavior wh
properly averaged over the whole sample. We also show
quantum interference can give rise to a distribution of lo
longitudinal conductances, which can directly affect the c
ductivity behavior asx approachesxc . While the purpose of
this work is not to investigate the detailed behavior of lo
gitudinal conductances in the 3D quantum percolat
model, we nevertheless wish to use longitudinal cond
tances as the variable to monitor Hall coefficient variatio
This is desirable, because the correlation between the
should reflect the intrinsic physics that may be directly co
pared to experiment.

For the calculation of effective properties on the scale
Lf , we use the 3D quantum-percolation model defined o
finite (Lf3Lf3Lf) simple cubic lattice. Here the lattic
constant may be regarded as a measure of the geom
feature size~grain size! j. The Hamiltonian of the model is
defined by1

H52 (
^mn&

tmn@exp~ iAmn /f0!am
† an

1exp~2 iAmn /f0!an
†am#1(

m
wmam

† am , ~1!

wheream
† creates a state at sitem5$ i , j ,k%, where i,j,k are

the indices along the three orthogonal directions, andf0
5hc/e is the unit quantum flux. In the following we assum
tmn5t, and ^mn& means nearest-neighbor pairs. Since
electron is forbidden from entering the insulating particl
we havewm5` if m is an insulating site, andwm50 if m is
metallic. Amn is the gauge field induced by a uniform ma
netic fieldB in the z direction, perpendicular to the applie
electric field, chosen asAm,m1$0,0,1%5Am,m1$0,1,0%50, and
Am,m1$1,0,0%52Bbybzj , where b5bx ,by ,bz is the bond
length in the three directions, reflecting, in general, the g
metrical feature size.

Within the dephasing lengthLf , we need to consider th
complete quantum wave function as a result of the Ham
07530
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tonian given by Eq.~1!. For this purpose, we perform exac
numerical diagonalization of the Hamiltonian~1! on a Lf
3Lf3Lf lattice, with generalized periodic boundar
conditions.9 It is noted, however, that the final result is n
sensitive to the actual boundary condition due to the rand
geometry of the lattice. In accordance with the line
response theory, the Hall conductanceGH for the coherent
region can be calculated by the Kubo formula:10

GH5
i\e2

Lf
2 (

m

^CuVxum&^muVyuC&2~H.c.!

~Em2EC!2 . ~2!

whereC denotes the initial~ground! state, the sum is over al
excited state denoted bym, obtained from numerical diago
nalization, andLf is the system size.Vx andVy are velocity
operators defined as

Vx5
ibt

\ (
m

am1$1,0,0%
† am expS iBbybz

2p j

f0
D

2am
1am1$1,0,0% expS 2 iBbybz

2p j

f0
D , ~3a!

Vy5
ibt

\ (
m

am1$0,1,0%
† am2am

† am1$0,1,0% , ~3b!

where the summations are over all sites within a given reg
of coherence. It should be noted thatGH is sensitive to the
actual geometry of the percolating network within each
gion. While the metal average density is maintained as
overall constant, the actual composition and geometry of
small regions can vary randomly from one to the next. A
result, there is necessarily a distribution ofGH . We have
carried out numerical evaluations ofGH for randomly gen-
erated finite samples with the Fermi energyEf near the band
center. We have found that other than a scaling factor,
function GH is independent of the choice ofEf . Shown in
Fig. 1~a! are the distributions ofsH5GH /Lf , the averaged
Hall conductivity, at two different metal concentrations o
tained from 5000 randomly generated samples withLf equal
to 10 lattice constants. In the calculations we have used
value of Bbybz /f0;0.5. We have also monitored th
magnetic-field dependence ofsH ~see below! from B50 to
Bbybz /f0;0.5. It is interesting to note that forx50.35,
which is belowxq , but abovexc , the distribution is fairly
symmetrical about zero; whereas for the case ofx50.55
.xq , the center of the distribution notably shifts to the neg
tive side, so that the mean corresponds with the sign of
charge carrier. In other words,sH can beeither negative or
positive due to the quantum interference effect. Thus lo
quantum interference can lead to very different local prop
ties in percolating systems.

For the longitudinal conductanceG, it is usually more
convenient to treat the problem with the Landauer-Buttik
approach,11 which is theoretically similar to the Kubo for
mula. We have performed numerical evaluations ofG for the
same 5000 randomly generated samples as that used i
GH calculation. The calculated distributions are shown
Fig. 1~b! for two metal concentrations. It is striking that th
distributions display peaks at small values of the cond
9-2
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QUANTUM INTERFERENCE AND THE GIANT HALL . . . PHYSICAL REVIEW B 66, 075309 ~2002!
tance. Here we propose that local quantum interference
fect can be one mechanism for generatingnearly singular
distributions ofs. Our calculations ofs andsH suggest that
each local region of the macroscopic sample is character
by a conductivity tensors̃, with s5sxx5syy5szz for the
diagonal components,sxy52syx5sH , and sxz5szx50.
To calculate the macroscopic effective conductivity tens
we use the conditions of“3E50 and“• j50, where the
current densityj5s̃E. These two conditions, equivalent t
the Kircchoff equations for discrete electrical networks, c
be combined to yield“•s̃“w50, wherew denotes the elec
trical potential. We have numerically solved the above eq
tion on a discretized 10310310 lattice, where each lattic
site has to be understood as consisting of a region of the
Lf3Lf3Lf . The condition of unit voltage difference alon
the x direction and periodic in the other directions is im
posed, and the values of the conductivity tensor compone
assigned to each node of the classical electrical network
randomly selected from those calculated previously~from
randomly generated configurations!. We denote the Hall con
ductivity and Hall resistivity so calculated bys̄H and r̄H ,
respectively. To examine the finite-size effect associated w
the classical network, we have made comparative calc
tions on a 83838 lattice. It can be seen in Fig. 2 that th
two sizes yield nearly identical results, and both are v
close to the mean valuêsH& of the sH distribution, shown
as the solid line in Fig. 2. This is plausible, since in our ca

FIG. 1. ~a! Calculated distributions of local Hall conductivit
sH5GH /Lf at two metal concentrations. The distribution is not
to be nearly symmetrical forx50.35.~b! Calculated distributions of
local longitudinal conductivitys5G/Lf at two metal concentra
tions. Due to the localizing effect of wave interference, the dis
butions display a preponderance of small conductivities.
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the Hall coefficient is found to vary asRH5 r̄H /B
>s̄H

21B21,12 which is appropriate in the ‘‘high-field’’ limit.
We have determined this by carrying out calculations on
B variation ofs̄H , and found that whenBbybz /f0;0.5, s̄H
varies as 1/B.12 SinceRH is usually in the form of 1/nec,
wheren is the charge carrier density,e the electronic charge
and c the speed of light. Our result shows thats̄H>^sH&
5*sHP(sH)dsH , which translates intos̄H}^n&ec, or R̄H
>1/̂ n&. The fact that thesH distribution is nearly symmetri-
cal around zero~so that^n&;0! thus directly translates into
the giant Hall effect. Also shown in the inset of Fig. 2 is th
log-log plot of the longitudinal resistance as a function
metal concentration, obtained from the networks of the t
sizes. It is again seen that the finite-size effect in this cas
also minimal. In Fig. 3~a! the effective Hall coefficientR̄H is
plotted as a function ofx2xc , with xc>0.31. There is a
clear three-segment behavior, marked by a sudden incr
in the Hall coefficient in the vicinity of thexq , followed by
a plateau. Mathematically, this is due to the steady shift
^sH& towards smaller values as the metal concentration
creases. It should be noted that due to the finite size of
samples involved in the calculations (Lf3Lf3Lf), the
peak position ofRH cannot correspond exactly withxq ,
which is determined atT50 or the limitLf→`. Rather, the
peak occurs at a valuex,xq where the localization length is
comparable toLf . Also, since the present mechanism of t
giant Hall effect is based on the near-complete cancella
of positive and negative Hall conductances@due to the sym-
metry of P(sH)#, a direct implication is that there should b
significant fluctuations in the overall value ofRH near its
peak. This has indeed been observed experimentally nea
highest values of the Hall coefficient, as samples with alm
the identical metal concentration can yield Hall coefficien
that differ by a factor of 2 or more.

In the present model, temperature dependence en
through the variation of the dephasing length. We have c
ried out extensive calculations by usingLf(T)53 ~high

-

FIG. 2. Hall conductance obtained from networks of two diffe
ent sizes: 10310310 ~circles!, 83838 ~diamonds!. The solid line
gives the mean value of the distribution. The inset shows a log
plot of the longitudinal resistance as a function of metal concen
tion for two sizes: 10310310 ~solid line! and 83838 ~dashed
line!.
9-3
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CHUNCHENG WAN AND PING SHENG PHYSICAL REVIEW B66, 075309 ~2002!
temperatures! up to Lf(T)510 ~low temperatures!, and
found that the Hall effect is essentially temperature indep
dent within this range. This is also in good corresponde
with what has been observed experimentally in granu
CuSiO2 .8 A simple explanation is that the overall Hall effe
is sensitive only to the mean ofP(sH). Therefore, while the
distribution itself can vary asLf(T) varies, its mean may
nevertheless remains similar.

In Fig. 3~b! ln r is plotted versus ln(x2xc). The best fit
gives a slope of 4.3, which is larger than the conventio
value of 2. This slope value is noted to be in excellent agr
ment with that observed in the CuSiO2 granular system.8

However, it should also be noted that the segment furt
away fromxc has a slope larger than 4.3, whereas the s
ment closer toxc has a slope smaller than 4.3. Such behav
reflects the variation of the local longitudinal conductan
distribution as a function of metal concentration, shown
Fig. 1~b!. Hence the interpretation of this slope as the criti
exponent is in doubt. We would like to note that expone
values greater than 2 have been widely reported in
literature.13 Our calculations are suggestive of quantum

FIG. 3. ~a! Effective Hall coefficient plotted as a function ofx
2xc . Note the fact that the peak occurs;xq.xc . ~b! ln r plotted
as a function of ln(x2xc). The slope of the dashed line gives a slo
value of 4.3, observed in CuSiO2 granular composites.
t
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terference as a mechanism for such behavior, but also r
some doubts on their interpretation as critical exponent v
ues. Our results are not yet definitive on this point.

In Fig. 4 we cross-plotRH againstr on the log-log scale.
Due to the orders of magnitude variations in bothRH andr,
this offers the best quantitative comparison between the
and experiment. Such a plot also eliminates the need to
terminexc or xq . Experimental results, denoted by cross
are plotted on the same graph by normalizing the point
experimental peak Hall coefficient with the same theo
point. The theoretically predicted characteristics are note
give not only the general overall trend of measured data,
are also in semiquantitative agreement with the magnitud
the enhancement,;1000 times, in the Hall coefficient.8

In summary, we have presented a theory on the lo
quantum interference effect in the electronic transport
granular metal-insulator composites. This quantum effect
curs at finite temperatures with finite dephasing length.
show that the quantum interference effect can considera
alter both the Hall and longitudinal conductivity behavior.
particular, it offers a consistent quantitative explanation
the giant Hall effect in the nonmagnetic granular CuSiO2 .

This work was supported by RGC Grant No. HKUST61
95P. We wish to thank X. X. Zhang for many helpful discu
sions about the experimental data and their implications.

FIG. 4. lnRH plotted versus lnr. Theory points are indicated by
solid circles. Experimental data are shown by crosses. The th
and experimental data are normalized at one point—the peak v
of the Hall coefficient and its associated longitudinal resistivi
Semiquantitative agreement is seen between the theoretical pr
tions and the measured data, taken from Ref. 8.
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