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Quantum interference and the giant Hall effect in percolating systems
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We show that in metallic percolating networks the wave nature of the charge carriers can significantly
modify the classical picture of the Hall effect, especially in the metal concentration sangg, wherex
denotes the metal volume, arglthe quantum-percolation threshold. Calculations based on the model of local
guantum interference effect are shown to give a consistent and quantitative account of the recent experimental
findings on the(ordinary) giant Hall effect.
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Percolation is a geometric concept basic to the study oHall coefficient was enhanced by a factor of* Mhen the
physical properties of inhomogeneous materials. In metalmetal volume fraction is close to the classical-percolation
insulator composites, the assumption that the charge carriefgreshold ofx=0.53. Even after magnetic saturation, tire
are classical point particles leads directly to the prediction offinary Hall coefficient was still observed to increase by al-

a conductivity transition at the geometric percolation threshmost three orders  of magnltpae,suggestmg that a

old x., below which the metallic component can no longerMagnetism-independent mechanism could be operative. The
form an infinite network. Consideration of the wave nature®9in of this ordinary GHE was investigated by using non-
of the physical charge carriefslectrons, however, leads to magnetic CuSi@granular films, with the result that not only

a somewhat different picture at temperatiire 0, when in- the maximum enhancement magnitude coincided with the

elastic scattering is absent. That is, multiple scattering of th@rdiNary GHE observed in magnetic composites, but more
. importantly the mechanism was also found to be correlated

. Do : Mith quantum interferenc®In particular, the maximum en-
etry_of the conduc_tlng channels inevitably 'OC?‘"ZeS the elechancement was found at the quantum-percolation threshold,
tronic wave functions at a metal concentratiog™X. [Xq  getermined experimentally by the loffe-Regel criterion of
=1 in one-dimensional1D) and 2D samplgs denoted the |1 3 yherek is the electronic wave vector amdhe mean
quantum mobility edge. As a result, fag<x<x the pre-  free path. The enhancement was also found to vanish when
dictions of the classical- and the quantum-percolation modelghe feature size of the granular film was increagbdough
are at odds with each other: Whereas the metallic networkgnnealing to being comparable to the electron dephasing
are connected and therefore the classical-percolation modgingth. It is the purpose of this work to present a theoretical
predicts metallic behavior, the quantum-percolation modemodel of GHE based on the mechanism of local quantum
predicts a nonmetallic behavibindeed, both types of be- interference. We show that in those cases where the micro-
havior have been observed in thi{2D) metallic films. structural feature siz& is smaller then the temperature-
Whereas the nonmetallic temperature dependence observeddpendent dephasing lendth(T) = vl 13, wherel ;. de-
at low temperatures is widely accepted as due to the wealaotes the inelastic scattering length anthe elastic mean
localization  effect arising from quantum wave free path, there can be significant quantum interference ef-
interference$;® at higher temperatures inelastic scattering isfects even beyond the low-temperature regime. In particular,
seen to suppress wave effects and restore the metallic behasalculations based on the 3D quantum-percolation model
ior predicted by classical percolation. Beyond the 2Dpredict a drastically different physical picture for the Hall
samples and the weak localization at low temperatures, hoveffect in the rangex~x,, even wherL 4(T) is only on the
ever, consideration of quantum wave interference effects hasrder of a fewé¢'s. Numerical results based on our picture are
been lacking for Hall effect in 3D samples in the concentra-shown to give a good account for the GHE found in nonmag-
tion rangex~x4, Where wave effects could be potentially netic CuSiQ granular composites.
significant. In view of recent experimental findings on the Consider a 3D sample of disordered metal-insulator com-
giant Hall effect(GHE),*~" a theory of Hall effect that takes posite in the percolating regime, characterized by an average
into consideration the wave effects would be especiallygeometric feature sizé defined by the small insulatin@r
called for. metallic particles and their separations, which form the con-
As a basic material constant, the Hall coefficient is gen-ducting channels. At finite temperatures, the existence of a
erally indicative of the density and sign of the charge carri-dephasing length 4(T) means that the wave effects are neg-
ers. Thus, in granular metals, as the metal concentration déigible on a scale larger then,(T). Hence, the overall trans-
creases, the lower carrier density is expected to yield aport characteristics of the sample may be treated as a classi-
enhanced Hall coefficient that peaks at the percolatiorral network problem in which each element of the network
threshold with a factor of-30 for ~1 um thick films? Re-  has the properties calculated on the scalé ofT), within
cently, however, it was found that in the magnetic which the quantum wave interference effects have to be fully
(NiFe)SiO, and FeSiQ granular films!~7 the extraordinary taken into accountThe importance of such quantum effects
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may be judged by comparing with L ,(T). If L,(T)<¢, tonian given by Eq(1). For this purpose, we perform exact-
wave dephasing occurs within a single feature size, i.e., imumerical diagonalization of the Hamiltonidga) on alL,
either the metal or the insulator. The wave effects should bexL , XL, lattice, with generalized periodic boundary
minimal in that case, and the classical-percolation pictureonditions’ It is noted, however, that the final result is not
prevails. The interesting case occurs wheyfT)>¢. Being  sensitive to the actual boundary condition due to the random
sensitive to the details of the microstructure, quantum wavgeometry of the lattice. In accordance with the linear-
interference can lead to diverse effective propertasdif-  response theory, the Hall conductar@g for the coherent
ferent spatial locations in the samphgiffering qualitatively ~ region can be calculated by the Kubo formtfa:

from those of either the metal or the insulator component. As o,

& can be on the order of 1 nm, it follows that the effects of G _ine D (PVy ) {u|Vy| W)= (H.c.)
local quantum interference may persist even beyond the low- H™ Lfb m (E.— Ey)? '

temperature regime. This sensitivity on the feature size was

indeed demonstrated experimentally through sample annealthére¥ denotes the initialground state, the sum is over all
ing, which showed that as the feature size increases to tHeXCited state denoted ky, obtained from numerical diago-

level comparable to or larger than the measured dephasifiization, and., is the system size/, andV, are velocity

@

length, the GHE disappeafs. operators defined as
Below we focus on the calculation of the Hall effect in 3D V.o ibt S af Bbub 27
percolating networks based on the above picture. In the com- X7 & Am+{1,0,08m EXP| 1BDy 07 do
position rangex~ X, the local Hall coefficient, calculated on
the basis oL 4(T)~a few &s, is shown to be dominated by . , 2mj
wave scattering and interference, and can be of either posi- ~AmAm+{1,0,0 €X _'BbbeE , (33
tive or negative sign with roughly equal probability. The gi-
ant Hall effect is a direct result of this local behavior when ibt . :
properly averaged over the whole sample. We also show that fo% 8m110,1,08m ™ @mm+{0,1,0 » (3b)

guantum interference can give rise to a distribution of local
longitudinal conductances, which can directly affect the conwhere the summations are over all sites within a given region
ductivity behavior ax approaches, . While the purpose of of coherence. It should be noted th@y, is sensitive to the
this work is not to investigate the detailed behavior of lon-actual geometry of the percolating network within each re-
gitudinal conductances in the 3D quantum percolationgion. While the metal average density is maintained as an
model, we nevertheless wish to use longitudinal conduceverall constant, the actual composition and geometry of the
tances as the variable to monitor Hall coefficient variation.small regions can vary randomly from one to the next. As a
This is desirable, because the correlation between the twesult, there is necessarily a distribution &f,. We have
should reflect the intrinsic physics that may be directly com-carried out numerical evaluations &, for randomly gen-
pared to experiment. erated finite samples with the Fermi enefgynear the band
For the calculation of effective properties on the scale ofcenter. We have found that other than a scaling factor, the
L,, we use the 3D quantum-percolation model defined on #unction Gy, is independent of the choice &;. Shown in
finite (L,XLgxL,) simple cubic lattice. Here the lattice Fig. 1(a) are the distributions ofy=Gy/L,, the averaged
constant may be regarded as a measure of the geometiifall conductivity, at two different metal concentrations ob-
feature size(grain size & The Hamiltonian of the model is  tained from 5000 randomly generated samples wigtequal

defined by to 10 lattice constants. In the calculations we have used the
H=— t TexdiA- /data value of Bbyb,/¢$,~0.5. We have also monitored the
<%1> el €XP(1Amn/ o) aman magnetic-field dependence of, (see belowfrom B=0 to

Bbyb,/¢$o~0.5. It is interesting to note that for=0.35,
+exp(—iAmn/ po)alan]+ > Wratan, (1) which is belowxy, but abovex,, the distribution is fairly
m symmetrical about zero; whereas for the casexef0.55
wherea! creates a state at sita={i,j,k}, wherei,jk are >Xq, the center of the distribution notably shifts to the nega-
the indices along the three orthogonal directions, @jd tive side, so that the mean corresponds with the sign of the
=hcl/e is the unit quantum flux. In the following we assume charge carrier. In other words;y can beeither negative or
tmn=t, and (mn means nearest-neighbor pairs. Since thepositive due to the quantum interference effect. Thus local
electron is forbidden from entering the insulating particles,quantum interference can lead to very different local proper-
we havew,,= if mis an insulating site, ane/,,=0 if mis  ties in percolating systems.
metallic. A, is the gauge field induced by a uniform mag- For the longitudinal conductand®, it is usually more
netic field B in the z direction, perpendicular to the applied convenient to treat the problem with the Landauer-Buttiker
electric field, chosen a#y, mi001=Amm+{010=0, and approach;" which is theoretically similar to the Kubo for-
Ammi{100=—Bbyb,j, where b=b,,b,,b, is the bond mula. We have performed numerical evaluation&dbr the
length in the three directions, reflecting, in general, the geosame 5000 randomly generated samples as that used in the
metrical feature size. Gy calculation. The calculated distributions are shown in
Within the dephasing length,,, we need to consider the Fig. 1(b) for two metal concentrations. It is striking that the
complete quantum wave function as a result of the Hamil-distributions display peaks at small values of the conduc-

075309-2



QUANTUM INTERFERENCE AND THE GIANT HALL . .. PHYSICAL REVIEW B 66, 075309 (2002

8
6 T 1 1
800 _ af ]
6 % |
L2 20 . i[%
o ]
400 : 4r ) SN S .
o 20 15 -10 -05
F log(x-x )
2 .
i &
-10
0 2 1 N 1
0.45 0.50 0.55 0.60
140 X
120 [ FIG. 2. Hall conductance obtained from networks of two differ-
100 ent sizes: 18 10x 10 (circles, 8X8x 8 (diamond$. The solid line
- gives the mean value of the distribution. The inset shows a log-log
o 80 i plot of the longitudinal resistance as a function of metal concentra-
60 tion for two sizes: 1& 10X 10 (solid line) and 8x8x 8 (dashed
F line).
40
20 the Hall coefficient is found to vary aRy=py/B
0.000 0.001 0.002 0.003 0.004 0.005 0.006 =0y, "B~ 1,2 which is appropriate in the “high-field” limit.
s We have determined this by carrying out calculations on the

_ __ Bvariation ofay, and found that wheBb,b,/$;~0.5, oy
FIG. 1. (& Calculated distributions of local Hall conductivity \5ries as B.12 Since Ry is usually in the form of Mec,

oy=Gy /L, at two metal concentrations. The distribution is noted wheren is the charge carrier densitgthe electronic charge,
to be nearly symmetrical for=0.35.(b) Calculated distributions of and ¢ the speed of light. Our result shows thag= (o)

local longitudinal conductivityg=G/L , at two metal concentra- ) -
tions. Due to the localizing effect of wave interference, the distri- = J onP(oy)doy, which translates inte,<(njec, or Ry

butions display a preponderance of small conductivities. =1/n). The fact that thery, distribution is nearly symmetri-

cal around zerdso that(n)~0) thus directly translates into
tance. Here we propose that local quantum interference ethe giant Hall effect. Also shown in the inset of Fig. 2 is the
fect can be one mechanism for generat'"'@ﬂy Singu|ar |Og'|Og plOt of the IOngitudinaI resistance as a function of
distributions ofc. Our calculations ofr and oy, suggest that metal concentration, obtained from the networks of the two
each local region of the macroscopic sample is characterizetizes. It is again seen that the finite-size effect in this case is
by a conductivity tenso®, with o= o=oy,,=0,, for the  also minimal. In Fig. 8a) the effective Hall coefficienRy, is
diagonal componentsy,,=—oy,=o0y, and o,,=0,,=0. plotted as a function ok—x., with x,;=0.31. There is a
To calculate the macroscopic effective conductivity tensorgclear three-segment behavior, marked by a sudden increase
we use the conditions oV XE=0 andV-j=0, where the in the Hall coefficient in the vicinity of the, followed by
current densityj=oE. These two conditions, equivalent to a plateau. Mathematically, this is due to the steady shift of
the Kircchoff equations for discrete electrical networks, car{ o) towards smaller values as the metal concentration de-
be combined to yiel®& -5V ¢ =0, wherep denotes the elec- creases. It should be noted that due to the finite size of the
trical potential. We have numerically solved the above equasamples involved in the calculationd. (XL ,XL,), the
tion on a discretized 12010X 10 lattice, where each lattice peak position ofR, cannot correspond exactly witk,
site has to be understood as consisting of a region of the siaghich is determined af=0 or the limitL ,— . Rather, the
L4XL4XL,. The condition of unit voltage difference along peak occurs at a value<x, where the localization length is
the x direction and periodic in the other directions is im- comparable td. ,. Also, since the present mechanism of the
posed, and the values of the conductivity tensor componentgjant Hall effect is based on the near-complete cancellation
assigned to each node of the classical electrical network, am positive and negative Hall conductandésie to the sym-
randomly selected from those calculated previoustpm  metry of P(oy)], a direct implication is that there should be
randomly generated configurationgve denote the Hall con- significant fluctuations in the overall value &, near its
ductivity and Hall resistivity so calculated by, andpy, peak. This has indeed been observed experimentally near the
respectively. To examine the finite-size effect associated witlighest values of the Hall coefficient, as samples with almost
the classical network, we have made comparative calculathe identical metal concentration can yield Hall coefficients
tions on a & 8X 8 lattice. It can be seen in Fig. 2 that the that differ by a factor of 2 or more.
two sizes yield nearly identical results, and both are very In the present model, temperature dependence enters
close to the mean valugry) of the oy distribution, shown  through the variation of the dephasing length. We have car-
as the solid line in Fig. 2. This is plausible, since in our casaied out extensive calculations by usirg,(T)=3 (high
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FIG. 3. (a) Effective Hall coefficient plotted as a function 8f o terence as a mechanism for such behavior, but also raise
~X.. Note the fact that the peak occurs(g>X... (b) Inp plotted o0 qouhts on their interpretation as critical exponent val-
as a function of m(fx‘:)'.The Slc.’pe of the dashed !'ne gives a slope ues. Our results are not yet definitive on this point.
value of 4.3, observed in CuSj@ranular composites. In Fig. 4 we cross-ploR,; againstp on the log-log scale.

Due to the orders of magnitude variations in b&h andp,
temperaturgs up to L,(T)=10 (low temperaturés and g offers the best quantitative comparison between theory
found that the Hall effect is essentially temperature indepengp,q experiment. Such a plot also eliminates the need to de-
dent within this range. This is also in good correspondencegminex or Xq. Experimental results, denoted by crosses,
W|th_whéat has been observed experimentally in granulagq plotted on the same graph by normalizing the point of
CuSiC,.” A simple explanation is that the overall Hall effect gy nerimental peak Hall coefficient with the same theory
is sensitive only to the mean &f(ay). Therefore, while the  qint The theoretically predicted characteristics are noted to
distribution itself can vary a& 4(T) varies, its mean may give not only the general overall trend of measured data, but
nevertheless remains similar. ~are also in semiquantitative agreement with the magnitude of

~In Fig. 3(b) Inp is plotted versus In(-x;). The best fit  ha anhancement; 1000 times, in the Hall coefficiefit.

gives a slope of 4.3, which is larger than the conventional |, summary, we have presented a theory on the local
value of 2. This slope value is noted to be in excellent agreeguantum interference effect in the electronic transport in
ment with that observed in the CuSi@ranular systerfi granular metal-insulator composites. This quantum effect oc-
However, it should also be noted that the segment furtheg, s at finite temperatures with finite dephasing length. We
away fromx; has a slope larger than 4.3, whereas the segshow that the quantum interference effect can considerably
ment closer tox, has a slope smaller than 4.3. Such behaviogjter hoth the Hall and longitudinal conductivity behavior. In

reflects the variation of the local longitudinal conductan(_:eparticmar, it offers a consistent quantitative explanation of

distribution as a function of metal concentration, shown inyne giant Hall effect in the nonmagnetic granular CuSiO
Fig. 1(b). Hence the interpretation of this slope as the critical

exponent is in doubt. We would like to note that exponent This work was supported by RGC Grant No. HKUST612/
values greater than 2 have been widely reported in th®5P. We wish to thank X. X. Zhang for many helpful discus-
literature'® Our calculations are suggestive of quantum in-sions about the experimental data and their implications.
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