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Temperature dependence of polaronic transport through single molecules and quantum dots

Urban Lundin* and Ross H. McKenzie
Department of Physics, University of Queensland, Brisbane Qld 4072, Australia

~Received 27 March 2002; published 1 August 2002!

Motivated by recent experiments on electric transport through single molecules and quantum dots, we
investigate a model for transport that allows for significant coupling between the electrons and a boson mode
isolated on the molecule or dot. We focus our attention on the temperature-dependent properties of the trans-
port. In the Holstein picture for polaronic transport in molecular crystals the temperature dependence of the
conductivity exhibits a crossover from coherent~band! to incoherent~hopping! transport. Here, the temperature
dependence of the differential conductance on resonance does not show such a crossover, but is mostly
determined by the lifetime of the resonant level on the molecule or dot.
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I. INTRODUCTION

In recent years there has been a growing interest in e
trical transport through single molecules1–4 and single elec-
tronic levels in quantum dots.5–7 Some molecular device
exhibit switching behavior with large on-off ratios1 increas-
ing the motivation to construct molecular electronic device4

In some cases it has been found that the transport is q
temperature dependent1 and it has been suggested8 that this
is due to the presence of low energy boson modes, suc
internal rotations, which couple strongly to the molecu
electronic states, and can easily be excited by sm
temperatures.9,10 In a similar vein, in double quantum dots
has been found that there are acoustic phonons which co
strongly to the electrons.6,7

Some experimental values for the phonon energy h
been estimated in various papers. In Table I we give so
numbers for reference. We see that the boson~usually pho-
non! frequency in these systems is quite small, correspo
ing to temperatures in the range 0.5–50 K. In addition th
was a recent proposal10 to consider transport through a qua
tum dot to a carbon nanotube cantilever with a resonant
quency of the order of 100 MHz, corresponding to a phon
energy of 0.4meV. If the electron-phonon coupling is su
ficiently large polaronic transport might be important f
these systems. When the electron tunnels through it can
sorb or emit bosons, thus altering its energy and the curr
If the temperature is much larger than the boson energy, t
are many bosons available for absorption and this m
heavily influence the current.

In 1959 Holstein11 predicted that for a periodic one
dimensional molecular crystal with strong electron-phon
coupling there should be a crossover from coherent~band! to
incoherent~hopping! transport with increasing temperatur
When increasing the temperature the effective bandwidth
comes narrower, this gives rise to a decrease in cohe
transport. In contrast, increasing temperature means
more and more phonons are activated and we are in a re
where phonon assisted intersite tunneling starts to contri
to the conductivity. This coherent-incoherent crossover is
lieved to have been observed for the first time quite rece
in single crystals of pentacene.12 One aim of this paper is to
see whether a similar crossover should be seen in polar
0163-1829/2002/66~7!/075303~8!/$20.00 66 0753
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transport through molecules and quantum dots. This m
be expected because of the mathematical similarity betw
the models for periodic systems and the resonant tunne
case. We might expect the tunneling amplitude between
leads and dot to be reduced by polaronic effects, ther
reducing the coherent part of the conductivity. When incre
ing the temperature the electrons can tunnel with boson
sisted transport that enhances the tunneling, possibly lea
to a crossover behavior. There have been many theore
investigations of the effect of phonons on the transp
through molecules8,13–16and quantum dots,17–22 but none of
them focuses on the temperature dependence of the cur
The purpose of this paper is to clarify this aspect of t
transport. Liet al.21 included a Hubbard term, but did no
consider multiphonon contributions. In a recent paper E
berly and Kirczenow16 made a thorough analysis of condu
tance through a molecular wire. A set of self-consistent eq
tions where set up and solved to give the distributi
functions in the leads and molecule, and then transmiss
probabilities were calculated. However, the temperature
pendence is not addressed in that paper.

In this paper we perform the analysis for the simple
possible case, where the electrons interact with a single
tical boson localized on the dot or molecule. We anticip
that this is sufficient to illustrate the main physics in t
more complicated case of many bosons, such as aco
phonons. In order to obtain analytical results we have
assume that the coupling to the leads is small and the en
level in the dot or molecule is not too close to the Fer
energy in the leads.23,24By assuming that the coupling to th
leads is small we can calculate the effects from the bos

TABLE I. Typical values for parameters taken from experime
\v0 is the boson energy andG is the line width due to coupling to
the leads~defined below! of the resonant level on the molecule o
dot. I max is the maximal current driven through the system.

System \v0 G I max

2 quantum dots~Ref. 7! 40 meV 0.2 meV 3 pA
2 quantum dots~Refs. 6,30! 30 meV 1 meV 5 pA
molecule~Refs. 1,8! 3 meV 1 nA
C60 molecule~Ref. 2! 5 meV 0.1 nA
©2002 The American Physical Society03-1
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locally on the molecule/dot and then assume that the ef
on the leads from the bosons is negligible. This enables u
use well-known results from mesoscopic transport theo
The bosons are possibly most often phonons, but since
theory will look identical~assuming linear couping! for dif-
ferent types of bosons~phonons, magnons, charge oscill
tions! we will simply refer to ‘‘bosons.’’ Even in photon
assisted tunneling through quantum dots side bands h
been observed when tuning the photon energy.25 In Sec. II
we will define the model we use and in Sec. III, we discu
the approximations we have to make. Different limits for t
current are derived in Sec. IV, and in Sec. V we discuss
differential conductivity.

II. CURRENT THROUGH A LEVEL COUPLED
TO A LOCAL BOSON MODE

We consider the simplest possible model Hamiltonian a
neglect the spin degree of freedom and any effects
electron-electron interactions. The system we study cons
of the individual entities~left lead, molecule or quantum do
and right lead! coupled via tunneling. We assume that we a
dealing with a resonant tunneling situation, but the state
the dot~or molecule or any single level system! couples to
some boson mode with characteristic frequencyv0, as
shown in Fig. 1. The Hamiltonian is given by

H5H11H21H31H1221H223 , ~1!

where

H11H35(
k1

ek1
ck1

† ck1
1(

k3

ek3
ck3

† ck3
,

H25e0c2
†c21\v0a†a1Mc2

†c2~a1a†!,

H1225(
k1

t~ck1

† c21H.c.!,

H2235(
k3

t~ck3

† c21H.c.!.

FIG. 1. Tunneling through a system with one level. The das
lines indicate the bosonic satellites~see text!. The Fermi energy in
the leads is chosen to be zero. The electrons has to tunnel thr
the barriers, and can absorb or emit bosons in the process, c
sponding to the lines below and above the central resonance
spectively. The Hamiltonian given in Eq.~1! contains terms describ
ing the different parts of the system.
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Heree0 is the energy of the level in the dot/molecule andt is
the energy associated with hopping onto/off the dot. T
electronic dispersion in the leads are given byek1

andek3
. M

is the coupling to the local boson mode with energy\v0. We
disregard the spin dependence for simplicity.

First we make a unitary transformation to diagonalize
HamiltonianH2. The price we pay for this is that extra op
erators attach to the tunneling term in the Hamiltonian. T
transformation isH2̄5eSH 2e2S, where S5c†c(M /\v0)
3(a†2a). This gives us

H̄25\v0a†a2Dc2
†c2 , ~2!

where

D5
M2

\v0
2e0 . ~3!

When the central system is a quantum dote0 ~and thusD)
can be adjusted by applying a gate voltage. After the tra
formation the tunneling part of the Hamiltonian becomes

H̄1225(
k1

t~ck1

† c2X1H.c.!,

H̄2235(
k3

t~ck3

† c2X1H.c.!, ~4!

where

X5expF M

\v0
~a2a†!G . ~5!

The X factors can be absorbed into a renormalized elect
creation/annihilation operator in region 2, so that we are
with the usual resonant tunneling Hamiltonian except t
the Greens function for the electrons on the molecule/dot
an additional complication.̂Ttc(t)c†(0)&→^Ttc̄(t) c̄†(0)&
5^Ttc(t)c†(0)&^TtX(t)X†(0)&. A formula for the current
can be derived using a Landauer-Bu¨ttiker approach.26,27First
we calculate the current from the left lead onto the dot fro
the rate of change of particles in the left lead. A simil
expression for the current from the dot to the right lead
derived and the total current through the system is obtai
by combining these two formulas. The derivation is pr
sented in detail in Refs. 26 and 27. The result is that
current is given by

I ~V!52
2e

h E de@ f 1~e!2 f 3~e!#Im$tr@GG2~e!#%. ~6!

The applied voltage across the system isV and it enters the
two Fermi functions~the equilibrium Fermi level of the lead
is chosen to be zero! f 1(e)5 f (e2eV/2) and f 3(e)5 f (e
1eV/2). Further,G2(e) is the Green function for the quan
tum dot including all effects from the boson systemand the
tunneling to the leads. The parameterG is

G[
G1G3

G11G3
, ~7!

d

gh
re-
re-
3-2



l

am

al

ca
ox

n
e
tic
d
is
a
u
o

d
th

.

l
-

y
-
ts

s,
an

is
on

to

st
s
om
in
ur
s

son
last
on
ond
far
r-
the

of
ase
ot/
f
d

-
tics

, no
we
e

he
tes.

tion

an

ex-

TEMPERATURE DEPENDENCE OF POLARONIC . . . PHYSICAL REVIEW B 66, 075303 ~2002!
where G1(3)52pt2D1(3)(e), D1(3) is the density of states
~DOS! in the left~right! lead.G1(3) is the width of the centra
resonance due to the tunneling to the left (G1) and right (G3)
lead. The total width of the local resonance,G2, is the sum of
the two,G25G11G3

For convenience we introduce the dimensionless par
eters

g1[S M

\v0
D 2

,

g2[S G

\v0
D 2

.

We emphasize that there are many different energy sc
associated with the system:kBT, eV, \v0 , G, M, and e0.
The relative sizes of these energy scales have a signifi
effect on the current through the system and what appr
mations can be made in evaluating it.

The electrons will deposit/absorb energy from the boso
system that has to be carried away/supplied. Therefor
question arises about how to define the temperature, par
larly of the molecule or dot. We assume that the molecule/
is in equilibrium with a bath and that the tunneling rate
small so that the system relaxes to the initial state after e
tunneling event. In a quantum dot the bath can be the s
strate that the quantum dot is manufactured on. For a m
ecule a surrounding cooling liquid1 can play the role of the
bath. Otherwise, we have to assume that the deposite
absorbed energy is transferred to/from the molecule via
leads. As far as we are aware, this assumption is also~im-
plicitly ! made in all other theoretical work on this subject

III. APPROXIMATE EVALUATION OF THE GREENS
FUNCTION G2„e…

To be able to use Eq.~6! we have to calculate the loca
Green functionG2(e). Due to the coupling to the leads find
ing G2(e) is a highly nontrivial problem in many-bod
theory.22–24 It is comparable in difficulty to the Kondo prob
lem because of the possibility of nonperturbative effec
This is true even in equilibrium~i.e., in the absence of a bia
V50). A recent study was made of a similar Hamiltoni
~with spin! using the numerical renormalization group.24 We
are interested in the nonequilibrium case where there
bias. In order to simplify the analysis we have to rely
approximations, and the result will depend on how theX
operators from Eq.~5! are decoupled. One alternative is
assume that the coupling to the leads is small,G11G3!D,
this is the approach taken here. This approximation is ju
fied for small currents, as is the case in the systems con
ered here. If we were to include the effect on the leads fr
the bosons on the molecule/dot there would be a narrow
effect onG. Hewson and Newns used variational and pert
bation methods23 to show that this narrowing only take
place if the following conditions apply:
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\v0
.G, g1.1, \v0.Ge2g1,

\v0.uDu.

The conditions on the first line means that the electron-bo
coupling has to be large enough to form a polaron. The
requirement on the first line means that individual bos
satellites can be distinguished from each other. The sec
line tells us that if the level and boson satellites are too
from the Fermi level it is energetically unlikely to have vi
tual boson excitations, thus the leads are unaffected by
bosons. The narrowing is approximately given by

t→te2g1(1/21nB), ~8!

wherenB is the Bose function

nB5
1

eb\v021
~9!

andb51/kBT.
The above considerations apply to equilibrium (V50)

whereas we are interested in the nonequilibrium situation
a finite bias, and particularly the resonant tunneling c
where one of the leads’ Fermi level is close to the d
molecule level (eV56D/2). In that case the narrowing o
the level width due to that lead~but not due to the secon
lead! may occur, e.g.,

G25G11G3→G11G3e2g1(112nB). ~10!

If G1;G3 this will lead to some quantitative but no signifi
cant qualitative changes in the current-voltage characteris
and so we will not consider them further.

We treat the leads as unaffected by the bosons, i.e.
narrowing of the bands in the leads. This means that
ignore the averages of theX operators that appear in th
tunneling part of the Hamiltonian, Eq.~4!, the justification
for this is given above. Below we will also assume that t
leads give rise to a flat, energy independent, density of sta
This is sometimes called the wide band limit.19 OtherwiseG
would be energy dependent. The quantum dot Green func
calculated using these approximations is

G2~ t !52 iQ~ t !e( iD2G2/2)t/\e2F(t). ~11!

The factore2F(t) is due to the coupling to the boson and c
be written28

e2F(t)5e2g1(112nB) (
l 52`

`

I l@2g1AnB~11nB!#eil v0(t1 ib/2),

~12!

whereI l denotes a modified Bessel function.
We Fourier transform the Green function and get an

pression for the total current
3-3
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URBAN LUNDIN AND ROSS H. McKENZIE PHYSICAL REVIEW B66, 075303 ~2002!
I ~V!52
eG

h E
2`

`

de@ f 1~e!2 f 3~e!#e2g1(112nB)

3 (
l 52`

`

I l@2g1AnB~11nB!#e2 l\v0b/2

3
G11G3

~e1D1 l\v0!21
~G11G3!2

4

. ~13!

We can interpret Im@ tr(GG2)#, in Eq. ~6!, as the transmis-
sion coefficient for the tunneling. We plot this in Fig. 2 for
certain choice of parameters. The resonances to the le
(e1D)/\v0 corresponds to absorption of bosons, and
ones to the right to emission of bosons. The middle line
be identified as the so called zero-boson transition. The w
of each satellite depends onG2 directly. When increasing the
temperature the satellites increase in amplitude, indica
that it is easier to emit/absorb bosons. The asymmetry
tween negative and positive energies is due to the fa
e2 l\v0b/2. This is a due to the fact that at low temperatur
there are no available bosons to absorb.

In Fig. 3 we plot the current as a function of voltage usi
Eq. ~13! for a set of parameters. It show steps indicating t
more and more satellites participate in conducting electro
Note that the steps in Fig. 3 occur every second\v0. This is
simply because the satellites are positioned equidistan
each side of the central resonance, we have to increas
voltage by 2\v0 in order to cover the satellite. The firs
satellite starts to contribute to the current wheneV52D. A
decrease ofG2 (g2 decrease! results in sharper steps, and
decrease in the amplitude of the current. WhenG@\v0
~largeg2) the step structure disappears. Increasing the t
perature results in the step structure being washed out
smooth curve.

When increasingM, the amplitude of the current drop
due a decrease of the factore2(M /\v0)2(112nB) in Eq. ~13!.
Increasing the temperature has the same effect. Without

FIG. 2. Transmission coefficient Im@ tr(GG2)#, as a function of
the energy, for three different temperatures. The satellites are d
the boson modes.g15(M /\v0)250.5 andg25(G/\v0)250.09.
The vertical axis is normalized to the highest peak in the plot.
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coupling to the boson (M ,g150) we get a single resonan
level without any satellites. This can be seen in Fig. 4 wh
we plot the current as a function ofe0, the location of the
energy level in the dot or molecule. The application of a g
voltage in a quantum dot would be equivalent to chang
the levele0 ~or D).6,7 We see a shoulder developing corr
sponding to the first boson satellite. A similar effect has be
seen in a double quantum dot system.6 The absence of a
boson absorption peak in Fig. 4 is due to the low tempe
ture, this comes from the factorel\v0b/2. If we increased the
temperature, or the electron-boson coupling, enough th
would be more side bands visible.

IV. LIMITING BEHAVIOR FOR THE CURRENT

In order to better understand the influence from t
bosons on the current. Let us now have a look at the cur
in some limits.

to
FIG. 3. Current as a function of the applied voltage for differe

choice of coupling strengths. We setkBT50.1\v0 andD5\v0/2.

FIG. 4. Current as a function of the location of the energy le
in a quantum dot when bosons are present (g150.1) and absent
(g150). kBT50.03\v0 and we putg250.5. eV is set to 0.2\v0

so that we only scan a small region arounde0. Parameters are take
from Ref. 7. We only see the boson emission satellite due to the
temperature and the small electron-boson coupling.
3-4
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TEMPERATURE DEPENDENCE OF POLARONIC . . . PHYSICAL REVIEW B 66, 075303 ~2002!
A. MÄ0

If we put the coupling between the boson and the el
trons to zero, we get

I ~V!52
e

hE2`

`

de@ f 1~e!2 f 3~e!#
G1G3

~e2e0!21
~G11G3!2

4

.

~14!

This would correspond to resonant tunneling without a
bosons.

1. kBTšG,eV

In this limit Eq. ~14! reduces to the linear response e
pression

I

V
5

4e2

h

pG

kBT cosh2S e0

kBTD . ~15!

A similar form was used by Qinet al.7 to fit their experimen-
tal data.

2. TÄ0

If the temperature goes to zero we can approximate
Fermi functions with step functions. Then, the integral ovee
can be performed and the result is

lim
T→0

I ~V!5
2eG

h F tan21S eV22e0

G11G3
D1tan21S eV12e0

G11G3
D G .
~16!

Further, ifeV and 2e0 is small compared toG11G3 we can
use the property that tan21(x);x, and we get

lim

(eV,2e0)/(G11G3)!1
T→0

I 5 4e2G
h~G11G3!

V, ~17!

i.e., alinear regime at low voltages. If, on the other hand, w
takeV→` in Eq. ~16! we get

lim

V→`
T→0

I 5
eG

\
. ~18!

This means that the whole resonant level contributes m
mal to the current.

B. MÅ0

1. eVškBT,\v0

In this case we get the same limit as in Eq.~18! even if
MÞ0 from Eq. ~13!. This can be seen in Fig. 3 where a
curves tend to the same value at largeV. If we have that
eV@D,kBT we can replacef 1(e)2 f 3(e) by a factor 1, and
the integral would extend between2eV/2 and eV/2. But
since eV is greater than all other energies we extend
07530
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e
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integral from2` to `. The integral gives a contributionp.
All parts coming from the boson gives 1 and we again ha
the limit

I ~eV@D,kBT!.
eG

\
. ~19!

This limit can be seen in Fig. 3 where all curves tend to
same limit at high applied voltage.

2. kBT™\v0

Let us now investigate the limitkBT!\v0. In this limit
~corresponding to low temperatures! we can approximate the
Bose function asnB.e2\v0 /kBT!1. All terms correspond-
ing to positivel vanishes. This is a result of the physical fa
that positivel corresponds to boson absorption but atT50
there are no bosons. The Bessel function can be appr

mated asI l(z);
1
l !

(z/2)l when z→0. Then we get that the

current becomes

I kBT!\v0
52

2eG

h
e2g1E

2`

`

de@ f 1~e!2 f 3~e!#

3 (
l 52`

0 g1
u l u

u l u!

G11G3

2

~e1D1 l\v0!21
~G11G3!2

4

.

~20!

3. kBTš\v0

For high temperatures we approximate the Bose func
as nB.kBT/\v0. The argument in the Bessel function
large and we can use the property

I l~z!.
ez

A2pz
, z@1. ~21!

Using this, the current becomes

I kBT@\v0
52

2eG

h

e2g1

\v0

4kBT

A4pg1kBT/\v0
E

2`

`

de@ f 1~e!2 f 3~e!#

3 (
l 52`

`

G11G3

2

~e1D1 l\v0!21
~G11G3!2

4

. ~22!

C. Saddle point approximation

If g2@1 ~i.e., G@\v0) we can evaluate the current usin
a saddle-point approximation similar to that used previou
in Refs. 29 and 10. The exponential factor,e2F(t)

[^X(t)X†(0)&, in Eq. ~12! can be written as

e2g1[(nB11)(12e2 iv0t)1nB(12eiv0t)] . ~23!
3-5
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URBAN LUNDIN AND ROSS H. McKENZIE PHYSICAL REVIEW B66, 075303 ~2002!
We approximate the exponential function in the expone
ez;11z1z2/2, and we get

G2~ t !.2 iei (D1g1\v0)t/\2G2t/2\2g1/2(112nB)(v0t)2
. ~24!

Let us assume that we can neglect the term linear int in the
exponent compared to the quadratic one, i.e.,g1@g2. We
Fourier transform the resulting Green function and get t
the relevant factor entering Eq.~6! becomes

Im@G2~e!#.

expF2
~g1\v01D1e!2

2g1~\v0!2~112nB!
G

v0Ag1~112nB!
. ~25!

This approximation gives a broad Gaussian line shape c
ering all the boson satellites. This is in contrast to the in
vidual boson satellites shown in Fig. 2. Using the sad
point approximation would give a Gaussian line shape
I (e0), whereas a Lorentzian line shape occurs in the regi
kBT!G!\v0, illustrated in Fig. 4.

The current using Eq.~25! is plotted in Fig. 5, and com
pared to the full expression~13!. In this figure we can clearly
see that the saddle point approximation cannot reproduce
actual current. Only for a small range of bias voltages,
low temperature and large coupling is there an agreeme

V. DIFFERENTIAL CONDUCTANCE

The differential conductance, defined by

C5
dI

dV
, ~26!

more clearly reveals the effect of the bosons. In general
is given by

FIG. 5. Failure of the saddle point approximation. Current c
culated in two different ways: the full lines were obtained using
exact result@Eq. ~13!# and the dashed lines using the saddle po
approximation@Eq. ~25!# in the expression for the current. We se
that the saddle approximation does not reproduce the full exp
sion for the current. Here we setkBT50.1\v0 andD5\v0/2.
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C5
e2Gb

h E
2`

`

de$ f 1~e!@12 f 1~e!#1 f 3~e!@12 f 3~e!#%

3e2g1(112nB) (
l 52`

`

I l@2g1AnB~11nB!#

3e2 l\v0b/2

G11G3

2

~e1D1 l\v0!21
~G11G3!2

4

. ~27!

Later we will seteV52D, which corresponds to resonan
transport through the zero phonon feature. If we let the te
perature go to zero in this expression we can approximate
Fermi functions together with the temperature as a d
function,bnf(e)@12nf(e)#;d(e), and again only negative
l contributes, corresponding to emission of bosons, and
get

@C~V!#T→05
e2G1G3

2h
e2g1 (

l 52`

0 g1
u l u

u l u!

3F 1

~D1 l\v01eV/2!21
~G11G3!2

4

1
1

~D1 l\v02eV/2!21
~G11G3!2

4
G .

~28!

We define

~Cres!
0[@C~eV52D!#T→0 . ~29!

For the particular caseD@\v0 ,g1\v0, this simplifies to
(Cres)

0.(2e2/h)@G/(G11G3)#e2g1, showing how polaronic
effects reduce the differential conductance.

In Fig. 6 we plot the differential conductance as a functi
of the applied voltage for different values of temperature a
coupling parameters. The peak ateV52D correspond to the
zero-boson peak, and in the consecutive peaks one,
three, . . . , and so on,bosons are emitted or absorbed. A
seen in this figure increasing the temperature, or the le
widths, drastically affects the shape of the differential co
ductance.

In Fig. 7 we plot the differential conductance on res
nance with the zero phonon line as a function of tempera
for a range of parameters. In this figure we see that the
ferential conductance generally decreases with increa
temperature, in contrast to the nonmonotonic depende
found by Holstein11 for periodic molecular crystals. The co
responding crossover behaviordoes not occurfor transport
through molecules/quantum dots, since this would be in
cated by an upturn in Fig. 7 when increasing the temperat
The absence of a crossover can also be seen by lookin
Fig. 3 from that the slope ateV52D ~i.e., the differential
conductance! is almost constant when changingg1 from 0 to

-
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0.5. If we were to calculate the differential conductance
the limit when kBT@\v0 from Eq. ~22! we see that the
temperature dependence of the differential conductanc
governed by the pre-factore2g1(\v0/4kBT)/A4pg1kBT/\v0
and this is a strictlydecreasingfunction of the temperature
for reasonably values ofg1. Thus, there will never be an
upturn in the differential conductance when increasing
temperature. This general behavior is not changed wheng1 is
changed. Even an increased applied voltage, meaning
more boson satellites contributes, was not able to induc
crossover. However, changingG does alter the amplitude o
the differential conductance, as seen in Fig. 7.

As mentioned above the temperature behavior is do
nated byG. If we put M50 in Eq. ~27! we can write the
differential conductance as

@Cres#M→05
e2G

h

G̃

kBTE2`

`

dyF f 8~y!1 f 8S y1
2e0

kBTD G
3

1

y21~ G̃/kBT!2
, ~30!

whereG̃[(G11G3)/2. If we now takee050 or kBT!e0 we
will have that the differential conductance is auniversal

function of G̃/kBT, i.e,

@Cres#M→05F~ G̃/kBT!. ~31!

This can be seen in the lower graph in Fig. 7, where the
graphs forg150 ~but g250.02 and 2.0, respectively! col-
lapse on the same line when the temperature axis is resc

FIG. 6. Differential conductance as a function of applied volta
when changing the temperature~upper left!, electron-boson cou-
pling g1 ~upper right and lower right!, and the level widthg2 ~lower
left!. D5\v0/2. At eV52D it has a maxima for moderate cou
plings g1&1. To obtain a maximal signal it would be desirable
perform the experiments at this value.
P.

07530
is
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at
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i-
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ed.

VI. CONCLUSION

In conclusion we see that the polaronic transport throu
a single molecule or quantum dot does not clearly exhibit
crossover from coherent to incoherent transport expected
the case of a periodic molecular crystal considered
Holstein.11 The general behavior of the temperature dep
dence of the differential conductance is in largeunaffected
by the presence of the bosons. The temperature depend
is mostly determined by the linewidth~due to coupling to the
leads! of the resonant energy level. The bosons produce
bands corresponding to absorption and emission of bos
We also stressed that because of the interaction of the
laron on the dot or molecule with the leads there are po
tially some very interesting problems in many-bo
physics23,24 to be explored in the model system we ha
considered.
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FIG. 7. Differential conductance at the resonance as a func
of temperature for different parameters. The upper graph sh
that, for moderate couplingsg1&1, the differential conductance i
almost unaltered by the presence of the bosons. The lower g
shows that the differential conductance, for moderate couplingg1

&1, is determined by the parameterkBT/G. The plots were made
assuming a constant DOS in the leads,D50 andeV50.
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