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We work out a semiclassical theory of shot noise in ballistici-n™ semiconductor structures aiming at
studying two fundamental physical correlations coming from Pauli exclusion principle and long-range Cou-
lomb interaction. The theory provides a unifying scheme which, in addition to the current-voltage character-
istics, describes the suppression of shot noise due to Pauli and Coulomb correlations in the whole range of
system parameters and applied bias. The whole scenario is summarized by a phase diagram in the plane of two
dimensionless variables related to the sample length and contact chemical potential. Here different regions of
physical interest can be identified where only Coulomb or only Pauli correlations are active, or where both are
present with different relevance. The predictions of the theory are proven to be fully corroborated by Monte
Carlo simulations.
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[. INTRODUCTION interactions, namely the long-range Coulomb interaction and
the Pauli exclusion principle, can be investigated. On the one
Ballistic conductors are characterized by an active regiormand, Pauli correlations have an influence on the carrier in-
where carriers, once injected by contacts, move without suffecting statistics at the contacts. On the other hand, Coulomb
fering any scattering from contact to contact, i.e., the carriecorrelations can modify the carrier passing statistics inside
mean free path is much longer than the sample characteristibe active regions. The effect of both mechanisms results in
dimensions. In metals, ballistic transport is usually studied invalues of the current noise below the full Poissonian value,
point contacts. Such contacts allow the analysis of elastici.e., in shot-noise suppression. Thus, the nonequilibrium low
and inelastic scattering processes by means of the so-calléquency current spectral density is given&y0)= y2ql,
point contact spectroscopySince the Fermi wavelength in with | being the current flowing through the sample ane
metals is very small0.5 nm), the nature of carrier trans- dimensionless parametéFano factor which takes values
port is semiclassical and quantum effects related to the wavieelow unity because of the negative correlations induced by
nature of the electrons can be disregarded. In semiconduboth mechanisms. The relative relevance of Coulomb and
tors, ballistic transport has been investigated in bulkPauli suppression in determining the Fano factor depends on
materials>** point contacts, and two-dimensional electron parameters like the sample length, the temperature, the car-
gases some studies have allowed the development of balier density, or the applied voltage, thus allowing the moni-
listic emission spectroscopyor the analysis of semiconduc- toring of both correlation mechanisms.
tor heterointerfaces. Moreover, a variety of ballistic electron  The first theoretical analyses on the nonequilibrium noise
devices with promising performances have been redlized properties of ballistic conductors were performed by Van der
or proposed®™*? Since the Fermi wavelength in semicon- Ziel and Bosman inn*-n~-n" ballistic semiconductor
ductors can be as large as 40 nm, the nature of the carrigiodes*and by Kulik and Omel’'yanchuk in ballistic metallic
transport can be either semiclassical or quantum dependirgpint contacts? In the former case, by considering nonde-
on the characteristic sample dimensiohswith respect to  generate injection conditions, only the effect of the Coulomb
the Fermi wavelengthy . For <L transport is semiclas- correlations was evidenced. In particular, by using ideas bor-
sical, while for\g~L transport is quantum. rowed from North's theory of vacuum tub&it was shown
From a fundamental point of view, the study of nonequi-that under space charge conditions current noise results sup-
librium electronic noisdshot noisg'® of ballistic conductors  pressed below the full Poissonian val(see also Refs. 17
in the semiclassical transport regime offers a unique scenariand 18. In the latter case, the high carrier density of metals
where the simultaneous effect of two fundamental physicaprevented the presence of significant space charge effects,
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and hence the possibility to test the effect of the long-range
Coulomb correlations. In this case, by means of a self-
consistent semiclassical kinetic theory based on the &
Boltzmann—Langevin equatidi,which included the effects E| M
of the Pauli principle, it was shown that in the collision free " L
regime ballistic metallic point contacts displayed Nyquist o IAEC Ex
noise with low frequency current spectral density given by AE ‘[
S,(0)=4kgT/Rg, wherekg is the Boltzmann constani, the |
temperature, anBs=muv/(g?n) the Sharvin contact resis-
tance, withm being the electron effective mass; the Fermi
velocity, g the unit charge, and the carrier concentration | I
inside the sample. This result is applied in the physical limit x=0 x=L
whereqV,kgT<Eg, and arbitrary relation betweeqV and
kgT, whereV is the applied bias an&r the Fermi energy. FIG. 1. Schematic band diagram of the ballistic structure under
These initial studies did not allowed the study of the simul-study.
taneous effect of both Pauli and Coulomb correlation mecha-
nisms. The paper is organized as follows. In Sec. Il we describe
It was only very recently that ballistic structures including the system under study. In Sec. Ill we present the physical
the simultaneous effect of Pauli and Coulomb correlationsnodel used to analyze the nonequilibrium noise properties.
have been analyzed-?? By making use of a semianalytical In Sec. IV the analytical expressions obtained for the trans-
approact’ Monte Carlo (MC) simulations’® and an port and noise properties are reported, and their validity is
asymptotic analytical approaéhnonequilibrium noise prop- checked by means of MC simulations. In Sec. V we propose
erties of ballistic semiconductor structures have been invesa general scheme able to provide a systematic physical pic
tigated. It was shown that these structures, by allowing bothure of the shot-noise properties of two-terminal ballistic
space charge effects and degenerate injection statistics, werenductors, and check its reliability by means of the devel-
unique in order to study the simultaneous effect of both Paulpped theory. Finally, in Sec. VI we summarize the main re-
and Coulomb correlatior’s. However, the existing studies, sults of the paper. The Appendix is devoted to technical deri-
being valid only under some limit conditions or performed vations.
for some specific sets of system parameters, do not offer a
complete overview of the relative relevance of Pauli and Il. SYSTEM UNDER STUDY
Coulomb correlations in the whole range of system param- ) ) o .
eters and applied bias. This lack of a general overview can The system under study is tiné -i-n" ballistic semicon-
prevent the designing of suitable experimental strategies tguctor diode shown in Fig. 1. It consists of an undoped semi-
test the theoretical predictions. The aim of the present worléonductor of lengttL, where injected carriers move in the
is precisely to address this issue. total absence of scattering events, sandwiched between two

To this purpose we work out a general theory for the lowhighly doped regions which act as ideal injecting contacts as
frequency shot-noise properties of ballistié-i-n* semi- specified later. The contacts _and the balll_stlc region are taken
conductor diodes that also consistently describes currentaf the same materiahomodiode or of different material
voltage characteristics. We consider lightly doped bulk semi{heterodiode In the former case the band offs&tE.
conductor materials since at low temperatures the bulieU(0)—E¢=U(L)—Eg (a symmetric structure is assumed
electrons are trapped by their parent donors, neutralizinfor simplicity) vanishes, while in the latter case it takes a
them and thus minimizing both the-e interaction and ion- finite value. The ballistic region is taken to be perfectly
ized impurity scattering, thus allowing long mean free pathscoupled with the contacts, thus no reflections take place at
up to relatively high electron energiés?® The theory pre- the interfaces. The contacts are assumed to be in quasiequi-
sented accounts for both the Pauli exclusion principle and thébrium at the given temperature, and at electrochemical po-
long-range Coulomb interaction, and is applied to the wholdentialsé, andé, , with & — &,=qV. The voltage drop in the
range of system parametetsample length, temperature, contacts is assumed to be negligibly sni@hmic contacts
contact doping and external bias. In particular, the theory and hence all the band bending occurs in the active region of
allows us to study in a unifying framework the transition the sample. Under these assumptions, the effective contact
from: (i) nondegenerate to degenerate injection conditionszhemical potentiak, defined asu=§&,—U(0)=¢ —U(L),

(i) short to (asymptotically long sample lengths andiji) is independent of the applied bias. Note that for the case of
low to (asymptotically high applied voltages. By overcom- an homodiodeu coincides with the contact Fermi energy,
ing the limitations of the previous existing theories, the EFE§0—E2=§O—EE, while for the case of an heterodiode
present study allows us to compress into a general schenume hasu=E—AE.. We note the existence of a maximum
the full scenario displayed by the Pauli and Coulomb correwith amplitudeU, in the potential energy along the active
lations in these ballistic structures. This scheme, validatedegion due to the presence of space charge. The structure is
and tested with a wide set of MC simulations, is believed toassumed to be sufficiently thick in the transversal directions
be of relevant assistance in designing future investigationso as to allow for a one-dimension@dlD) electrostatic treat-

on an experimental and/or simulation basis. ment. Thus the system is 1D in real space and three-
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dimensional3D) in momentum spac¥ The carriers are in- carrier density is neglected in comparison to the injected car-
jected into the active region in accordance with theriers. Moreover, the boundary conditions for the potential
equilibrium Fermi—Dirac distribution function and satisfying energy read

the Pauli exclusion principle, thus following the correspond-

ing binomial injection statistic&?’ For simplicity, a single U(0)=U,=0, U(L,H)=U =V, (4)
spherical parabolic band is assumed.

The parameters describing the above-introduced mode&lhere we have assumed that the applied bias is fixed by a
system are therefore the length of the condudtpthe cross-  low impedance external circuit so that neither the electric
sectional ared, the effective contact chemical potential,  potential nor the contact potential energies fluctuates, i.e.,
the temperatureT, the static dielectric constant of the me- sU(t)= 56U (t)=6V(t)=0. Accordingly, the boundary
dium, €, the electron effective mass), and the charge car- conditions for the distribution function at the contacts read:
riers q. The independent-variable parameter is the applied
voltage, V. =

Asgmentioned previously, the correlations between differ- F(Ox ) =F(vx) + Fo(vi,1),  05>0, ®)
ent current pulses in the present system is twofold. On the o
one hand, Pauli correlations have an influence on the contact F(L,vy,t)=F(vy) +F (vy,t), v,<O. (6)
injecting statistics. Carriers above the Fermi energy, at the
tail of the Fermi distribution at the contacts, are injectedThese boundary conditions consist of two contributions. The
obeying Poissonian statistics due to the negligible influencérst is of deterministic nature, and gives the average value of
of the Pauli principle at such high energies. Carriers near anthe distribution function. The second is of stochastic nature,
below the Fermi energy are injected following a binomialand describes the random injection of carriers. The average
(sub-Poissonignstatistics due to the increasing influence of distribution function is given by
the Pauli principle at the highly occupied states. On the other

hand, Coulomb correlations, through the potential energy _ +oo

maximumU,, associated with the presence of space charge, F(vx):f de, frp(e +ex—u)

can modify the carrier passing statistics inside the active re- 0

gion. Indeed, the fluctuations &f,, originated by the pas- =In(1+e "M =f (e,—u), 7

sage of carriers over the maximum modulate the transmis-
sion of further carriergspacing them out more regularly in with ¢,= 02 ande, = 2v? being the longitudinal and trans-
time) and smooth out the current fluctuations imposed by thQ/ersaJ kinetic energy, respective|y’ and where

random injection at the contacts. The relative importance of

the two types of correlating mechanisms depends on the val-

ues ofL, u, andV. fep(e)=

1+¢€° ®

I1l. PHYSICAL MODEL
. . . o is the Fermi—Dirac distribution function. Note that due to the
Within a semiclassical approach the description of thentegration over the transverse momentum directions the ef-
transport and noise properties of the system under study cg8ctive one-dimensional contact distribution function is
be carried out by means of the Vlasov equation, selff () instead off (). Moreover, the fluctuating contribu-

consistently coupled to the Poisson equation, and supplgions sF (v, ,t) and SF,(v,,t) have zero mean and low
mented by appropriatéuctuatingboundary condition&? In frequency spectral density given®y

the one-dimensional approximation followed here, the
Vlasov—Poisson system of equations readslimensionless

. g + ’
units, as specified later zf SF 4(vy,t) 6F o/ (v, 1) dt

[ d . d  JU(Xt) a F =0 @ ot )

— U - - X!U L = 1 8 -

at - "Xox X vy X :%5“' S(ey—e))d(t—t")

2
d U(>2<,t) — n(x.b), 2 =frplex— ) Saa 8(ex—ey) S(t—t').  (9)
X
Equationg1)—(9) constitute the complete set of equations to
+oo study the noise properties of the ballistic structure described
n(x,t)=f_ doyF(X,vy,1), 3 in sec. II.

In the previous set of equations, and in what follows, we
wheret is the time variablex the spatial coordinate,, the  use dimensionless variables to simplify the notation. The di-
velocity in the x direction, U(x,t) the potential energy, mensionalizing factors used for energy, length, carrier den-
F(x,v4,t) the distribution function integrated over transver- sity, velocity, distribution function, electric potential, electric
sal momentum directions, amx,t) the carrier density. In field, electric current, resistance, and current spectral density
the Poisson equation the contribution of the intrinsic freeare, respectively,
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E q
] ]
NokgT Y 4
Eo=\——— 10=0ANwo, Ro=7", $,=2qlo, ° 1
€ IO 0
whereh is the Planck constant. With these dimensionalizing ] ] Y ]
factors the dimensionless parameters describing the system 0 %%y oot o N8 o B X o\
areL/Lo—L and u/kgT— w, and the dimensionless inde- 10 100 101 102 10° 104
pendent variable igV/kgT— V. The physical meaning of qV/k,T
the different parameters is the followinlyy is the effective
density of states in the conduction barg, is the Debye FIG. 2. Maximum energy potentidl ,/ksT as a function of

screening length associatedMg, Uy is the thermal energy, voltage for u/ksT=8 and several values of the sample length
vg is the thermal velocityV, is the thermal voltagek, the  L/L,. Solid line refers to the result of the analytical calculations and
thermal electric fieldl, the current associated My andvy, open circles to those of the MC simulations.

Ry the resistance associated\g/lo, andS, | the shot noise

level associated tby,. — [*=

To complete our analysis, we will perform MC simula- I= Jl,m dulfe(u=&)=fe(u=¢o)], (1)
tions of the system under study, so that the validity of the o
analytical theory can be checked by comparison. To this endheref (¢) is given in Eq.(7), U,, is the average value of
we use an ensemble MC simulator, 3D in momentum spacthe maximum potential energy at applied bis and &
and self-consistently coupled with a 1D Poisson solver to=V+ u and é,=u are the electrochemical potentials at the
account for Coulomb interaction. The carrier dynamics iscontacts located at=L andx=0, respectively. The value of
simulated in the ballistic active region of the structure andy  can be calculated througlsee the Appendix
the electron injection from the thermal reservoirs is modeled

according to Fermi statistics. Due to the Pauli principle, the u, du u, du
instantaneous occupancy of an incoming electron state with L= J, —— J, Pr———— (12
energye and impinging at the interface between the ideal Uo E7(U,Up) U E7(U,Up)
thermal reservoir and the active region fluctuates in timgyhere
obeying a binomial distributidfi with a probability of suc-
cess given by ep(e — ). This statistic is implemented in the U o —
MC simulation of the contact injection by introducing a dis- E (U*Um):[ JU du[vu=U—=~u=Up]
cretization of momentum space and using the rejection tech- "
nigue to select the times of injection at every momentum X[fo(u=§& ) +f(u—¢&p)]
state?’ As limiting cases, wher —u<—1, fep(e—pu)=1 _ "
and tI_1e i_njection statistic of the corresponding state is uni- + JumdU\/Wch(u—fo) 234 (13)
form in time. By contrast, wher —u>1, fep(e—u)<1 u
and the injection statistic is Poissonian. For the calculations
we use the following parameters:T=300 Km and
=0.25 my,e=11.7 ¢j, with my the free electron mass and o o _
€, the vacuum permittivity. E*(U,U,= —{ j* du[yu—U—~u—Up]
UI‘T‘I
IV. ANALYTICAL SOLUTION X[fo(u=¢& )+ f(u—¢&p]
The low frequency solution of the model presented in Sec. Un 12

Il can be obtained in fully analytical form. For the sake of +f duyu—u2f (u—&); 2%
conciseness, in the following we only present the final ex- v
pression of the relevant quantities of interest and refer to the (14

Appendix for the details of the derivation. Figure 2 reports the maximum potential energy as a function

of the voltage, as calculated from E(L2) with ©=8 at
A. 1=V characteristics and steady-state profiles different values of the sample length. MC results are also
Following the results presented in Appendix, the currenshown. Excellent agreement is found between analytical and
voltage (—V) characteristics of the ballistic conductor pre- MC calculations. At vanishing voltage¥,, saturates at
sented in Sec. Il can be calculated as higher values the longer the normalized length, because of
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102 g——rrrm . rr— Ty seen in Fig. 3. In the case that>V{,, whereV{, is the bias
UL, =05 o228 TR I o value at which the maximum of the potential energy disap-
107 3 oWl e e // pears(see Fig. 2, one hasV = u+ 3. Otherwise, whem
100 ] 5%~ o8 v <V™ one hasV,,=V™, and saturation coincides with the
Yo o " 29 o 7~V disappearance of the maximum of the potential energy. Be-
<101 4 - ol . 109/ tween the linear and the current saturation regimed thé
= D el o s characteristic displays a nonlinear region, whose properties
102 ] o7 T o . P 7 Wk, T=8 are determined t_)y the _precisc_a values_Lofand m. The
: e = A /// — Theory asymptotic behavior oft_hls nonlinear region for large values
103 4 2 Ty o Monte-Carlo of L in the limit whenU,,<V<V,, consists of a slightly
] - /// sublinear region followed by a superlinear characteristic of
10+ 3 # Child—Langmuir typé® |, =V®?%L?, as has been found in
10 100 10! 102 103 104 Ref. 22. The sublinear region is associated with a nonzero
qV/k, T temperature value which smooths out the Fermi distribution.

The superlinear region is associated with space-charge ef-
FIG. 3. 1-V characteristics fopu/kgT=8 and several values of fects driven by the presence 0f,,.
the sample lengtih/L,. Solid lines refer to the result of the ana-  The steady state profiles can also be calculated in closed
lytical calculations and open circles to those of MC simulations.analytical form. The potential energy profile can be obtained

Dashed curves indicate the typical power law behaviors of thdn inverse form from the following relationsee the Appen-
Ohmic (V) and Child—Langmuir ¥*?) regimes. dix):

the increasing effect of space charge inside the ballistic re- U0 dU -
gion. At increasing voltage¥ ,, starts decreasing until van- f ————=X%, 0<X<Xpq, a7
ishing at a threshold voltage!” . Vo E(U,Up)

Figure 3 shows thé-V characteristics as calculated from
Eqg. (11) for =8 and several sample lengths. Figure 3 also Ut dU
reports the results of MC simulations. We have found perfect Ju m
agreement between the results of the theory and those of MC t om
simulations as expected, since both results are exact solu- — . . . .
tions of the same physical model. The main features of thé(vherexm is the location of the potent|al energy maximum
|-V characteristics consist in the presence of a lineathside the ballistic region. The value Bf, can be calculated
(Ohmic) behavior at low applied voltages and a current satufrom either Eq.(17) or Eq.(18) by setting the value olﬂ(x)

ration reglme at hlgh voItages The resistance of the |Ineaéqua| toU . Once the potenua] energy pr0f||e is obtained,

=x—L, Xu<x<L, (18)

regime is given by(in dimensionless unijs the electric field profile can be calculated(ase the Appen-
dix)
1
Req:7' (15) o J— —
fo(Uni—u) — ET[UT(X),Unl,  0<X<Xp
Eco={ , —, " _ (19)
In general, this value depends on both the sample lehgth ET[UT(X),Unl,  Xm<xX<L,

and the reduced chemical potential When U <|u| the
resistance takes a value independent of the sample leng
R””'” 1/f.(— ) in agreement with the results of Ref. 28.
Typ|caIIy this happens fot. <5 andu>5, which represent
the conditions for negligible space charge inside the ballistic
region. In this limit, and whenu>1, Rg;" tends to the

Sharvin contact resistand@s. The value of the saturation fﬁm /Z[U—U_(X)]

current is given byin dimensionless uniis

U du
+ o + [
lsar= Jo fe(u—p)du. 16 fU_(x) /Z[U—U*(x)]

hereE~(U,U,,) andE*(U,U,,) are given in Eqs(13) and
4), respectively. Finally, the carrier density profile is ob-
tained from(see the Appendix

[fe(u=&o) +fc(u—§&)]

2f(U—&); 0<X<Xp

n(x)=
Current saturation takes place when all carriers injected from J e [f(u—&)+(u—E)]
one contact reach the opposite one, while none of the carriers U, m c o) TTc L
injected from the other contact is able to cross the ballistic
region. The value of the saturation current is independent of .
the sample length since it is only determined by the emission + f_+ —————2f (U=, Xp<x<L.
properties of the contacts. The voltage for the onset of cur- \ U 0\2[u—U"(x)]
rent saturationV.,, depends on both and u, as can be (20
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10 4 T et eceotonooboneat ' ' ' B. Noise properties
0 A -1 The low frequency noise properties of the system under
10 4 -10 y study are characterized by the low frequency spectral density
00 ] : of current fluctuations defined &% dimensionless unijs
= ] ]
m . _ l.l./k T = 8 L/ = 8 - i +owo__
< 80778 Lo 40 ] s.(O)zf S1(0) 31 (H)dt. 21)
X -40 | Theory —
D 1 o Monte Carlo 1 . . . . .
-50 - VICT < —80 - When interested in the study of the microscopic correlations
60 QV/Kg ! == ] the proper figure of merit is the Fano factgr which is
70 ] ] obtained fromS,;(0) as(in the dimensionless unijts
' ' S(0)
y=—. (22)

I
For conditions far from thermal equilibriumVV¢&=3) a value

different current pulses, whilee<<1(y>1) corresponds to
the presence of negativpositive correlations.

As shown in the AppendixS,(0) can be calculated in
closed analytical form for the model presented in Sec. Il
The final result can be written in the following compact form
(see the Appendix

E(x)/E

+ o
2 $(0)= | duly ( Preo(u- &)
K L
| o ;
1 +f7 dul yo(u) 1*fep(u—&o), (23
10" o Uo
. ] where(see the Appendix
E 1+057(u), Up<u<+oo
- nw={ __ e (24
Qyr(u), U <u<Up,
10° 4 - _
] ] —1+Q5 (u), Up<u<+o
T T T ' T T T T T T T T T ’)/O(U): ~ — J— (25)
o 1 2 3 4 5 & 7 8 Qg (u), Uo<u<Up
0 Here, we have defined
FIG. 4. Steady state profiles of the potential enex)/kgT, F(0.— F(U.—
electric fieldE(x)/E,, and carrier densityi(x)/N, for u/kgT=8 Q=— [fe(Um— &)~ Te(Um—&o)] (26)

and L/L,=8, at different values of the applied voltagd//kgT. A
Solid lines refer to the results of analytical calculations, open CirC|e§Nith
to those of MC simulations.

A=E—0——+J "duyy (u)fep(u— &)

Figure 4 reports the steady state profiles fo=8 andL

=8, at several values of the applied bias. For the sake of
comparison, Fig. 4 also reports the profiles obtained from
MC simulations. Again analytical calculations are found to + fjde;P(U)[f_FD(U—fo) +f_FD(U—§L)]- (27)
perfectly agree with the simulations. Figure 4 clearly illus-

trates the space-charge nature of the transport and the praggyreover,

ence of the potential energy maximum. The value of the

potential energy maximum decreases systematically at in- V2(u—U)—+v2(u— U

creasing biagas already indicated in Fig),2while its loca- fu du E-(U,U,)°

tion shifts toward the left contact. At the same time, the free 0 m
charge redistributes inside the structure by shifting the mini- U, 2(u-U)— V2(u-U,)
mum of the carrier density from the center of the sample —J; du ——
towards the right contact. Ui E"(U,Un)

Um, ~— —
+f— duyg (U)fep(u—£o)
Uo

. (28
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102 e Theory T = o]] tween low and high bias regions, or the case of small sample
] 05 ° I\Agg;l?[-)%atitlothe: ] lengths in which the conditiob) ,<V<V,, cannot be satis-
100 o e e fied.
g al o o O B o8 = Saasats S -1 . i
3 o coma { The main features of the low frequency spectral density
6‘3100 i Sea. e 4 depicted in Fig. 5 are summarized as follows. At low volt-
Y] : e A ages ¥<3), where Ohmic conditions are satisfi&j(0) is
S " fo0 bias independent and takes the vafinedimensionless vari-
~=10" B—o—oufe—¢ N bl
(’J ; o) ‘ G TS "' a e$
< > o660 o eer—C" oo
102 4 T RegR Q. 2 —
Y €0 0)= — = 2f (UsI—
o ooy g ee® ™ UL =10 S0 Req (Um'=a), (33
108 4 :
101 100 101 102 10° 10 in agreement with Nyquist th(_aqre??lAt high voltages 1% _
qV/k.T >V,,), when the sample exhibits current saturation condi-
B

tions, S;(0) is again bias independent and given (oy di-
FIG. 5. Low frequency current spectral densgy0)/2ql, as a mensionless variablgs
function of the applied voltaggV/kgT for u/kgT=8 and several .
values of the sample length/L,. Solid lines refer to the results of at ) — f ” e N—f
analytical calculations, open circles to those of MC simulations. S\? (0) dufep(u=£o)=fo(—u). (34)

Dot-dashed lines are the results of the asymptotic théRef. 22.
In the region of intermediate values of voltag&s(0) can

YT, present a monotonic or a honmonotonic behaweith the
3’?(U)=—2f_u dUZ(u—_U), (29)  presence of a minimumdetermined by the interplay be-
u. ET(U,Up)? tween Coulomb and Pauli correlations, as will be detailed in
Sec. V.
~ u V2(u—U)
Yo (w)=2|_dU (30) V. THE SCENARIO OF SHOT-NOISE IN BALLISTIC

7—_:3.
U  E7(U,Up) n*-i-n* STRUCTURES

From the previous equations we can evalug{®) and, in The present theory enables us to investigate separately the
turn, the Fano factoy. Note that these analytical expressionsrelevance of the two mechanisms responsible for the corre-
are valid in the whole range of system parameteend w, lations in the system under study, namely, the Pauli exclusion
and in the whole range of applied bi¥s principle and the long-range Coulomb interaction, in the

For the purpose of a reliability test, the results obtainedvhole range of system parameters. Accordingly, we propose
from the analytical formulas are compared with those of MCa general scheme which summarizes the whole scenario of
simulations in Fig. 5. Here, the low frequency current specthe shot-noise properties exhibited by'-i-n* ballistic
tral density is reported as a function of applied bias gor semiconductor structures. To construct such a scheme, we
=8 and several sample lengths. As can be seen in Fig. 5, thaake use of the Fano factoy, which is factorized into the
agreement between the analytical theory and MC simulationsvo independent contributionsyp and yc, related to the
is excellent, thus proving the reliability of both theory and Pauli and Coulomb correlations, respectively. Indeed, ac-
simulations. For the sake of completeness Fig. 5 also reporgording to Eq.(9), the fluctuations of the contact distribution
the results obtained by means of the asymptotic theory déunction at different energy levels are uncorrelated, so that
veloped in Ref. 22. According to this theory, in the limit of the only source of correlations among carriers injected with
U, <V<V, the low frequency current spectral density candifferent energy is the Coulomb interaction in the active re-
be approximated byin dimensionless variablgs gion. As a consequence, both contributions to the Fano factor

are independent, which implieg= ypyc. Thus, the Pauli
o | contributionyp corresponds to the Fano factor that would be
SYM™=B(pu—Up)——, (31) obtained in the absence of the self-consistent long-range
V+Up Coulomb interaction. It can be easily evaluated from the
. noise calculation performed in the Appendix by neglecting
with the self-consistent contribution. This is equivalent to the
setup in Eq(23),
7 [Fyda)]?

Bla)=9|1— — ———/, (32 1, U,
4 Fo(a)F(a) » Up<u<+o
e W= G el (35
whereFj(a) =11 (j+1)[dy Y fep(y—a), with I'(z) be- bk m’
ing the gamma function. As seen in Fig. 5 the asymptotic -
: — -1, U<u<+w
theory agrees well with the present theory for,<V yo(u)= o o (36)
<V¢,. However, it cannot describe either the transition be- 0, Ug<u<U,.
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For the current spectral density associated with Pauli corre- W/ ) B | A LA LA L LA LS,

lations only, it is thus obtained 102 3N 00 faub ™

No Pauli low V

P — — ] // Pauli high V
S (0)=f(Upn—§&) +T(Un—E&o), (37) ] l—l=0 Coulomb
so that the Pauli contribution to the Fano factor is found to 17" 3 — —— U, 3
be o ] \/ Y, I - 3
3 : P(;,l)Jli 1
P T 1 — | S Coulomb =
| +o ) 1No CoulomH ® L= LDCF—:
_ dulfe(u=¢ ) —fc(u=¢&o)] /// Pauli |
Um | No Coulomb
10! Hbrrt A -

where use is made of E¢L1). 40 -5 0 5 10 15 20 25 30 35 40
The Coulomb contribution is then evaluated ag wk. T
B

=yl vyp. According to these definitions, for>3 values of
yp#1 correspond to the presence of Pauli correlations, g 6. parameter plane in the length /chemical potential space
while values ofyc#1 correspond to the presence of Cou- representing the five different behaviors of the shot-noise properties

lomb COFF§|atI0ﬂS _ o _of a ballistic conductor according to the relevance of the Pauli and
A detailed analysis of Eq(38) indicates that the Pauli Coulomb correlations. The three continuous lines define, respec-

contribution is essentially dependent on the differeh_l;g tively, the equalitiesL =Lp_, =0, andU®%=
— . Hence, wherJ ,—u>0 it is yp—1, thus indicating
the absence of Pauli correlations. In particular, for nondegencoulomb and Pauli correlations. The different regions in Fig.

erate injection conditiongt<<0, one always has thdtl,, 6 are determined by the three lines defined by the equalities
— >0, hence indicating the absence of Pauli correlatlonsL Lp,, #=0, andu= Ueq
as should be. By contrast, wheh,— x<0 itis yp<1,thus The shot-noise behavior in each of the five regions corre-

indicating the presence of Pauli correlations. Sikkgis a  sponds, respectively, tdi) the absence of both Pauli and
decreasing function of the bias, the conditib_tﬁ]q—u<0 Coulomb correlations <0 andL/Lp <1); (i) the pres-
implies automatically that the inequality,,— x <O is satis- ence of Pauli correlations and the absence of Coulomb cor-
fied for all bias values, and hence the presence of Pauli corelations >0, Ueq—,u<0 andL/Lp <1); (iii) the ab-

relations forvV>3. On the contrary, whehJeq—,u>0 Pauli  sence of Pauli correlations and the presence of Coulomb
correlations are absent for lotr intermediatg bias values correlations <0 and L/LDC> 1); (iv) the absencépres-

and present for bias values sufficiently high to validate theence of Pauli correlations for lowthigh) bias and the pres-

conditionU,— u<0. ence of Coulomb correlationsu(0, US%-4>0, and
Concerning Coulomb correlations, their presence or abL/LD >1); (v) the presence of both Pauli and Coulomb cor-
sence is roughly determined by a value of the ratia
any Y %:  relations (>0, UM~ 1<0, andL/Lp, >1).

higher or Iowgr than unity, reSpect|Yer, Whet%c 's th The reliability of the above-mentioned scheme has been
Debye scréening length _correspondlng to an hpmogeneoqésted by performing a series of theoretical calculations for
system with charge density equal to the equilibrium contac,e rejevant regions identified previously. We have found that
density. Taking into account the effects of degenerabgy,  {he proposed scheme is essentially valid, except in the zones
is calculated agin dimensionless variablgs close to the lines separating the different regions, where in-
termediate behaviors have been observed. Representative ex-
amples concerning the Fano facter,and the contributions
(39 into which it is decomposedyp and yc, are shown in Figs.
fFD(U ©) 7-10 for each of the five regions individuated in theu
f plane.
Figure 7 displays the Fano factor far=5 andu=—5
where we used that from EO0) one has (L/LDC=O.32) corresponding to regid) (continuous ling
and forL=0.5 andu=8 (L/Lp_=0.71) corresponding to
ne%=ned(0)=2 +°°dufc(“_f““) (40) region (ii) (dot-dashed ling In both cases the presence of
J2u space charge in the active region is nearly negligible, insuf-
ficient to originate a potential energy maximum large enough
On the basis of these considerations, for the scenario afo as to lead to Coulomb suppression. Therefore, both re-
the shot-noise properties in ballistic conductors we proposgions are concerned with the absence of Coulomb correla-
the general scheme displayed in Fig. 6. In this scheme w#ons (yc=1). In region (i) Pauli correlations are absent
identify five different regions in the planel(u), corre- (yp=1 for V>3), sinceu=—5 implies that carriers are
sponding to five different possibilities of interplay betweeninjected at the contacts with energies- >3, so that the

d neq —-1/2

LD:

Cc
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1 -
101 . 10 wkgT =8, /L, =20 3
] WkT =5, UL, = 5 region (iv)
region (i) 1 100 N T ]
/ - ERC N T |
Yo
> ) > ] {
100 o2 A= ] . /.
] Yo \ B 10 3 ~X I e
: . ] E Yasym > i E
/\_\ S /
wkgT =8,LLy=05 T —————: ] 102 ~-
region (i ] 1
107 100 101 102 107 100 107 102 103
VikT
Vs qV/ikgT
FIG. 7. Fano factor as a function of the applied voltagékg T FIG. 9. Fano factor as a function of the applied voltay&kg T

for L/Lo=5 andu/kgT=—5 corresponding to regiofi) of Fig. 6 o | /| =20 andu/ksT=8 corresponding to regiofiv) of Fig. 6
(solid ling) andL/L,=0.5 andu/kgT=8 corresponding to region (gjig ling). Dashed and dotted lines represent, respectively, the
(ii) of Fig. 6 (dot-dashed line Dashed line represents the Coulomb ¢q10mb and Pauli contributions to the Fano factor. Dashed-dotted
contribution to the Fano factor. By definition, in this case the Pa”“line represents the results of the asymptotic theory.
contribution to the Fano factor is indistinguishable from the actual
Fano factor.
fo(—u)
distribution function at the contacts is well approximated by 4 +°Cf 0 '
the nondegenerate Maxwell-Boltzmann distribution, and the 0 o(U=p)du
injection statistics is Poissonian. On the contrary, in region
(i) Pauli correlations are responsible for the suppression ofvhich corresponds to current saturation conditions. To obtain
shot noise ¢p<1 for V>3) since degenerate injection con- Eq.(42) use is made of Eq$16) and(34). The value ofy*?!
ditions prevalil. It is worth noting that, in all cases where theinterpolates monotonically between 1 far<—3 (nonde-
long-range Coulomb correlations are absent, as in the presegénerate injection statisticand 2j for >3 (strongly de-
case, the Fano factor at low voltages decreases inversely witlenerate injection statisticsSince the Coulomb correlations
the applied bias according to the law vanish identically at thermal equilibrium and under current
saturation conditions, the two limiting behaviors represented
th_ 2 by Eqgs.(41) and(42) are common to all cases, as we will see
\% in the following.
which corresponds to the thermal noise behavior, while at_ Figure 8 r_eports the Fano_ factor fdr_: 40 and
. . ; =-3 (L/Lp =6.9) corresponding to regiofii) of the
high voltages Y>V,,) it becomes constant with a value c
given by general scheme. It shows the presence of Coulomb correla-

(42)

101 4 wkgT = -3, ULy = 40 100 < wheT =8, ULy =2 5
] region (ii) ] region (v)
&= . Tp =100 T —— /-1
4 T 3 . ~ 3
T % T E ] « Y ]
N e
N =
~
7, 1 4 asym i
\.asym 10 ] < .
10-1 T —TTTTTTT T —TTTTTT T —T—TTTTT ' LA} ' LI} ' rrrrt
10 100 101 102 10° 10° 101 10
qV/k,T qV/k,T

FIG. 8. Fano factor as a function of the applied voltad&ksT FIG. 10. Fano factor as a function of the applied voltage
for L/Ly=40 andu/kgT= —3 corresponding to regiofiii ) of Fig. gV/kgT for L/Ly=2 andu/kgT=8 corresponding to regiofv) of
6 (solid line). Dashed and dotted lines represent, respectively, théig. 6 (solid line). Dashed and dotted lines represent, respectively,
Coulomb and Pauli contributions to the Fano factor. Dashed-dottethe Coulomb and Pauli contributions to the Fano factor. Dashed-
line represents the results of the asymptotic theory. dotted line represents the results of the asymptotic theory.
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tions (yc<1 for 3<V<V,,) and the absence of Pauli cor- 101 A

relations (yp=1 for V>3). Pauli correlations are absent be- 3 Llo=3 3
causeu=—3<0 (see above while Coulomb correlations ] region (v)
set in due to relevant space charge effects. Due to the small _ ________ e
value of the ratioL/LDC the asymptotic theofy provides \.*--k\:_?t\
only some rough agreement with the exact result in the lim- > ] AN ;
ited range of voltages associated with a suppressed behavior. 101 5 R\ T3
For larger values of the ratib/LDC the agreement improves. E 10 L, :

The behavior displayed by the system in regi@in) was 1 Yo

previously examined in detail in Ref. 18. 10% 1 -——" - 80/ 73
Figure 9 reports the Fano factor fdr=20 and u i N

=8 (L/Lp =28.2) corresponding to regidiv) of the gen- 10 100 101 102 10°

eral scheme. Here we assist to a low and intermediate volt- qV/k,T

age range where Coulomb correlations are dominating and to B

a high voltage range where Pauli correlations prevail. In- G, 11. Fano factor as a function of the applied voltage
deed, the Fano factor displays the presence of Coulomb cogv/k,T for L/L,=5 and several values gf/kgT corresponding to
relations (yc<1 for 3<V<V,,), the absence of Pauli cor- region(v) of Fig. 6 (solid line). Dashed and dotted lines represent,
relations in an intermediate bias rangep(-1 for 3<V  respectively, the Coulomb and Pauli contributions to the Fano fac-
=10), and the presence of Pauli correlations for higher biasor. The dashed-dotted line gives th&/Ilope.

(vp<1 for V=10). Physically, this behavior is due to the

fact that in this region, even if contacts are under degenerafg\0-Poissonian carriers contributing to the curreng.ase-
N o R0 >0 that f comes higher. These carriers lead to a more and more pro-
injection conditions f>0), one hasJ,,'= u>0, so that for o nced Pauli suppression while they do not contribute so

the lowest applied voltages 3V=10) itisU,,—u>0 and much to Coulomb suppression, since due to their sub-
the current flows are only due to Poissonian carriers at th®oissonian character the fluctuationslbf, they induce are
tail of the Fermi distribution function, leading tgo~1. As  much less significant than those originated by the Poissonian
Vincreases, it i¥) ,— »<0 and sub-Poissonian carriers near CaIriers above the Fermi level. For this reasgg,tends to
and below the Fermi level increasingly contribute to the cur-Saturate for the highest values &V, while vy, continues
rent and low-frequency noise, so that Pauli correlations bedecreasing. Remarkably enough, in regiwhfor V=30 the

come manifest in the noise, thus leadingyo<1. Note that total Fano factory is W.e” despribed in_ all cases by avl/

in region (iv) one generally hat/Lp =10, thus ensuring JePendence. As seen in the figure, this dependence on volt-
] ) c A age is due to the joint action of both Pauli and Coulomb

that the asymptotic theof§ provides a good approximation correlations. It can also be observed that the onset of Cou-

to_ the exact theory pre;ented here in the range of bias satigymp suppression takes place for higher values/dds u

fying U,<V<V,,, as illustrated in Fig. 9. increases, since for this suppression to become significant it

Finally, Fig. 10 reports the Fano factor far=2 andu  is necessary that the contribution to the current due to carri-
=8 (L/Lp =2.8) corresponding to regiafv) of the general ers injected at the right contact becomes negligible. This
scheme. The Fano factor displays the presence of both Pauéikes place wheV/+U .=, a condition that requires a
correlations ¢p<1 for V>3) and Coulomb correlations higher value ofV asu increases, for a given value bf
(ye<1 for 3<V<V,,). In this region one always hds, To illustrate a realistic example where the theoretical re-
—1<0, thus ensuring that Pauli correlations are present atults presented here could be applied, we consider as a sig-
all applied bias. Therefore, this is the most interesting regiofiicant example the case of a ballistic GaRs-i-n homo-
to analyze the interplay between Coulomb and Pauli c:orrela?('ci((j)'f6 at,gT_FA' K th_and ¢ cotntacli T?GE%'% nc\—/1.14
tions. We note that here the exact theory presented in this:,8 (002r2 rﬁeV)orL leélsnr#f u;ﬁd EI‘_ q:O% (212 ,nr#)
paper becomes strictly necessary, since in this region the ' » =0 D ’
ratio L/Lp_never takes values much higher than uriipe ~ Where we have takem=0.066m,, and e=12.9¢,. For a
typicall oi)tains EL/Lp =10), thus reducing significantl sample length of 500 nm, ~ 16, and according to Fig. 6 we
ypically D¢ ' g sig Y arein region(iv) of the general scheme. For a sample length
the usefulness of the asymptotic the®has illustrated in  of 70 nm, L~2.3 and we are in regiofv). For a sample
Fig. 10. length of 15 nm,L~0.5 and we are in regiofii). To ex-

To provide more insight into the interplay between Cou-plore regions(i) and (iii) one can refer to the case of
lomb and Pauli correlations in regidm), Fig. 11 reports the heterodiodes! We conclude that in principle the different
Fano factor as a function of bias for=3 and several values behaviors of the Fano factor predicted by the present theory
of u belonging to regioriv). It is observed that by increasing can be investigated experimentally within realistic condi-
the value ofu the contribution of the Pauli correlations de- tions.
creases faster than that of the Coulomb correlations. This is
understood by noting that fgt> 3, yp varies as 24, while V1. CONCLUSIONS

yc, being determined by the ratib/Lp_, varies as\u. We have presented a semiclassical theory of nonequilib-
Physically, this behavior reflects the increasing amount ofium noise(shot-nois¢ properties o *-i-n* ballistic semi-

A
[ 7 3
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conductor structures aimed at evaluating the relevance of the APPENDIX: DERIVATION OF THE MAIN FORMULAS
long-range Coulomb interaction and of the Pauli exclusion Here we derive the main formulas used in the paber b
principle. The theory covers the whole range of system P2 llowin q imilar to that 4in Ref ggph y
rameters, physically identified in the contact chemical poten- g a procedure similar to that used in Ret. .o, here
tial, the sample length, and the applied voltage. Within ex_tended o the case of de_gen_erate Injection con_dltl_ons_. To
; L -this end, the first step consists in solving for the distribution
unitary scheme free from any approximation we succeed %unction that satifies the Vlasov—Poisson—Langevin system
investigating the transition between: nondegenerate and d v i Eas1)—(9). To find th luti gf. i yt
generate injection conditions, short and long sample length Oha?qgi{jrl] cl;%ntsr:amsqqér)t_i(s z)lall(i)stil(? theetgglulgonn i\;\:Jedi:]r;I enr?e?
and low and high applied bias. Through the determination o f ' ; d f q ' 9 9y
the Fano factor, we have analyzed the relevance of Coulomf' @ carMeru, detined as
and Pauli correlations. At applied voltages above about

_1.2 _
3kgT/q both correlations lead to the suppression of shot u=zox FU D=2t UXD), (AL)

noise. We have identified five different regions in the plan€emains constant during the flight of the carrier through the
defined by the sample length and the chemical potential coksyycture. Then, we note that, since transport is ballistic, car-
responding, respectively, to the following conditiofi$.the riers can reach a given point inside the structure either di-
absence of Pauli and Coulomb correlatiofi; the presence rectly from the contacts or indirectly after reflection at the
of Pauli correlations and the absence of Coulomb correlageifconsistent potential barrier. Moreover, we can identify
tions; (iii ) the absence of Pauli correlations and the presencgqom which contact the carrier comes from. From these con-
of Coulomb correlationgjv) the absencepresenckof Pauli gjgerations it is easy to convince oneself that, in the low
correlations for lowthigh) bias and the presence of Coulomb frequency limit of interest in the present paper, the distribu-
correlations; andv) the presence of both Pauli and Coulomb g5 function solving the set of Eq$1)—(9) is given by
correlations. Caséi) corresponds to small sample lengths

and nondegenerate conditions when different current pulses g (x ;)

are clearly uncorrelated. Casi) occurs for small sample

lengths and degenerate injection conditions so that Pauli cor- [ fo(u,t) Up<u<o, 0,>0, 0<X<Xp
relations are the only being active. C4se) implies a large fL(ut) Up<u<w, 0,<0, 0<X<Xn
sample length and nondegenerate injection conditions so that

Coulomb correlations are the only being active. Caggis _ fo(u,)  Up<u<Up, vx<0, 0<x<Xp
associated with large samples and degenerate injection con- fo(u,t) Up<u<oe, 0,>0, X <x<L
ditions. Here Coulomb correlations are always present be-

cause of the small value of the Debye screening length. In flu)  Ui<u<Um, 0,>0, xm<x<L
addition, at low bias only Poissonian carriers at the tail of the (fu(ut) U <u<eo, 0v,<0, xp<x<L,
contact energy distribution contribute to the noise so that (A2)

Pauli correlations are absent, while at higher bias Pauli prin-
ciple becomes active due to the increasing amount of carrienshere
obeying binomial injection statistics that contribute to noise.

Finally, case(v) refers to moderately long samples and de- fo(u,t)=F[0,++2(u—Uy),t], (A3)
generate injection conditions so that both Coulomb and Pauli
correlations are present simultaneously. The results of the fL(u,t)=F[L,— ’—Z(u—UL) t] (A4)

theory are in perfect agreement with analogous MC simula-
tions. Therefore, besides offering a complete physical picturgvith F(0p,t) and F(L,v,,t) being obtained through the
of the subject, this study provides new insight into the noiseboundary conditions in Eq$5) and(6). In the previous ex-
properties of ballistic conductors, and of mesoscopic systemgressionU ,=U ,(t) and x,,=xXq(t) refer to the value and
in general. We believe that the theory here developed constiocation of the potential energy maximum, respectively,
tutes a powerful tool to design experimental investigations ofvhile U, and U, correspond to the values of the potential
the nonequilibrium noise properties of solid-state ballisticenergy at the contactsiote that, according to the boundary
conductors. conditions assumed here, these values do not flugtuate
Since EQ.(A2) depends on the value of the maximum
potential energy, to completely determine the distribution
function we need to derive the equation satisfied by the en-

Partial support from the DURSI of the Generalitat de€rgy maximum. To this purpose, we first obtain an expres-
CatalunyaSpain, the Consejéa de Educacioy Cultura de  sion for the carrier density by performing the integral in Eq.
la Junta de Castilla y Leothrough Project No. SA057/02, (3) with the help of Eq.(A2). After some algebra one can
the Ministerio de Ciencia y Tecnolagi(Spain through ~ show that the carrier density is given by
Project Nos. TIC2001-1754, BFM2000-0624, BFM2001-
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—[fo(u,t) +f (u,t)]

N (UUniTfof)= [ Jf

2fo(ut) (A6

+fum du
u y2(u—U)

and

————[fo(u,t)+f (u,t)]

n+<u,um:[fo,fL]>—f Ji

2f (ut). (A7)

+fum du
U VJ2(u—U)

In the previous equations the square brackets on the left- hand
side mean a functional dependence. Now, by multiplying the L
Poisson equation, Eq2), by dU(x,t)/dx and integrating
with respect tox, it can be shown that the electric field

E(x,t) is given through

E[U(x,1),
E*[U(X,1),

m;[fO
ma[an L]] Xm<X<L

fL1]0<x<x,

E(x,t)=[ A8)

with

E"(U,Up;lfo.fLD=

fc dulvu—U—+u—U][fo(u,t)
Um
+f (u,t)]

Unm 1/2
+f du\/u—UZfO(u,t)} 28/
U

(A9)
and

E*(U,Um;[fo,fL]):—[ J:O du[yu—U—yJu—U_]
X[ fo(u,t)+f (u,t)]

Um 1/2
+f duyu—U2f (ut)} 2%
U

(A10)

Finally, from the definitiondU(x,t)/dx=E(x,t) and its in-
tegration with respect to the space coordinate, we arrive at
the following inverse equations for the potential energy pro-

file

- du
f Yoo —x, (A11)

Up  E7(U,Up;[fo.fL])
valid for 0<x<x,,, and
Ut (xt) du
" =x—L,
Uo E"(U,Un;[fo.fLD)

valid for x,,<x<L.

(A12)

PHYSICAL REVIEW B 66, 075302 (2002

From the previous expressions the location of the maxi-
mum energy potential can be obtained by evaluating either
Eqg. (Al1l) or Eq.(A12) at X=X,

(A13)

=Xm>

fUm du
Uo Ei(U1Um;[f01fL])

=x,—L. (A14)

fum du
UL E+(U1Um;[f01fL])
By eliminating x,,, from the two resulting equations we de-

rive a closed equation for the value of the potential energy
maximum in the form

f Un du fum du
Up E_(UIUm;[f01fL]) Up E+(U1Um;[f01fL])

(A15)
Equation(A15) constitutes a closed equation to determine
the value of the potential energy maximuh,,. Notice that
it depends solely on the boundary conditions for the distri-
bution function and the sample length.

Once the value of the potential energy maximum is
known, one can determine its location through either Eq.
(A13) or Eq. (A14). Then, from Eq.(A2) one obtains the
explicit expression of the distribution function. In a similar
way the explicit spatial dependence of the potential energy
can be determined by substituting the valuelf in Egs.
(A11) and (A12), and that of the electric field and carrier
density by substituting) ,, in Eq. (A8) and Eq.(A5), respec-
tively. In this way, a complete analytical solution of the
model presented in Sec. Il is obtained.

In particular, the electrical current, defined as

+ oo
|(t)=—f dov,v,F(X,vy,1), (A16)
can be shown to be given by
+
- | Cautun-fouol @)
UI'T'I

Now, we are in the position to derive the corresponding ex-
pressions for the transport and noise properties.

1. Transport properties

The average steady-state transport properties can be com-
puted directly from Eqgs(A5)—(A17) presented above by
simply substituting into them

Um—>Um,

X=X,
(A18)

fo(u,t)—fo(u)=f(u—&),

fL(u,t)—fL(u)=f(u—¢),
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with f(&) given through Eq(7). In this way we arrive at the — B O Jor 1T
equations used in Sec. IV A. 77 (u)= Up[V2(u—U) = V2(u—Up)JdU
Uo E(U,Un;[fo.fL])?

2. Low frequency current noise properties ol J2u=0)— \/Z(Tum)] du

The fluctuating properties of any of the quantities of in- —f = = — 1.3 ,
terest can be evaluated directly from E§85)—(A17) de- UL E(U.Unilfo. T
rived above by just performing the corresponding perturba- (A24)
tion around the steady state, and by taking into account that

the only source of fluctuations in the system is located at the ~ u —2y2(u—-U)du
contacts, and represented by the fluctuating term in(Bq. yo(w)= fu E*(U,Upi[fo,f D3 (A25)
In this paper we are interested in the low frequency current - EmeLior L
fluctuations. To compute them we perturb E417) around —
the steady state thus obtaining }E(u)=fu 2\/2&1 Li)d_u ' (A26)
UoE ™ (U,Ups[fo,fL 1)
=+ oo
Sl(t)= j_ dul 8f | (u,t)—8fg(u,t)] By substituting Eq(A20) in Eq. (A19) for the current fluc-
Um tuations we finally obtain

— — + oo
[FL(Um) = Fo(Um)16Um(1), (A19) 5|(t)=f duy, (0)5f L (u.)

wheresU ,(t) represents the fluctuations of the potential en- U
ergy maximum. In Eq(A19) we distinguish two contribu- +oo
tions to the current fluctuation, one coming directly from the +f duyg(u)sfg(u,t), (A27)
contacts and the other coming indirectly through the self- Yo
consistent potential fluctuations. To express the dependenggth
of the second contribution on the noise sources, we perturb

Eq. (A15). In performing such a perturbation it is convenient yL(U)=0(u—U,,)+Qy (u), (A28)
to shift all the energy integration variables by an amount o
equal toU,,. After some algebra one then arrives at the yo(u)=—0(u—Um)+Q§/0(u), (A29)

following expression for the fluctuations of the maximum

potential energy: where

1 e _ [feUn= &)~ fe(Un—£0)]
5Um(t)=KfU duy (u)6f (u,t) A '

Now we are in the position to compute the low frequency
current spectral density, defined as

(A30)

1 (+e o
+KJUO dU’}/o(U)éfo(U,t), (AZO)

with S(0)= f_w 51(0) 8l (t)dt. (A31)
1 1 . By substituting Eq(A27) into Eq. (A31) we arrive at
A::_:+f duy (u)fep(u—&) +oo
BB Ju 5(0)= | adun (wfeolu-—£0)
Up
+ f duye(w) fep(u—éo), (A21) o
Yo +f_ duyo(u)*fep(u—&o), (A32)
Uo

where we have used thdf(u)=—frp(U—&;) and f| (u)

= where we have used that from E&) one has
=—fegp(u—§&). Here, we have defined

- - L _ 2f+ S ,(u,t) 8f . (u’ t7)dt’
yo(W =y (W) O(U=Up)+y (1)6(Uy—u), (A22) —

~ ~ — ~ — :fFD(u_g )5‘ rﬁ(u_u’)ﬁ(t_t’). (A33)
Yo(W =77 (W 6(u=Up)+ 75 (W) 8(Uy—u), (A23) e |
From Eqgs.(A24) to (A32) it is straightforward to arrive at
with the equations used in Sec. IV B.
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