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Semiclassical theory of shot noise in ballisticn¿- i -n¿ semiconductor structures:
Relevance of Pauli and long-range Coulomb correlations
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We work out a semiclassical theory of shot noise in ballisticn1-i -n1 semiconductor structures aiming at
studying two fundamental physical correlations coming from Pauli exclusion principle and long-range Cou-
lomb interaction. The theory provides a unifying scheme which, in addition to the current-voltage character-
istics, describes the suppression of shot noise due to Pauli and Coulomb correlations in the whole range of
system parameters and applied bias. The whole scenario is summarized by a phase diagram in the plane of two
dimensionless variables related to the sample length and contact chemical potential. Here different regions of
physical interest can be identified where only Coulomb or only Pauli correlations are active, or where both are
present with different relevance. The predictions of the theory are proven to be fully corroborated by Monte
Carlo simulations.
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I. INTRODUCTION

Ballistic conductors are characterized by an active reg
where carriers, once injected by contacts, move without
fering any scattering from contact to contact, i.e., the car
mean free path is much longer than the sample characte
dimensions. In metals, ballistic transport is usually studied
point contacts.1 Such contacts allow the analysis of elas
and inelastic scattering processes by means of the so-c
point contact spectroscopy.2 Since the Fermi wavelength i
metals is very small (;0.5 nm), the nature of carrier trans
port is semiclassical and quantum effects related to the w
nature of the electrons can be disregarded. In semicon
tors, ballistic transport has been investigated in b
materials,3,4 point contacts,5 and two-dimensional electro
gases;6 some studies have allowed the development of b
listic emission spectroscopy7 for the analysis of semiconduc
tor heterointerfaces. Moreover, a variety of ballistic electr
devices with promising performances have been realize8,9

or proposed.10–12 Since the Fermi wavelength in semico
ductors can be as large as 40 nm, the nature of the ca
transport can be either semiclassical or quantum depen
on the characteristic sample dimensions,L, with respect to
the Fermi wavelength,lF . For lF!L transport is semiclas
sical, while forlF;L transport is quantum.

From a fundamental point of view, the study of noneq
librium electronic noise~shot noise!13 of ballistic conductors
in the semiclassical transport regime offers a unique scen
where the simultaneous effect of two fundamental phys
0163-1829/2002/66~7!/075302~14!/$20.00 66 0753
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interactions, namely the long-range Coulomb interaction a
the Pauli exclusion principle, can be investigated. On the
hand, Pauli correlations have an influence on the carrier
jecting statistics at the contacts. On the other hand, Coulo
correlations can modify the carrier passing statistics ins
the active regions. The effect of both mechanisms result
values of the current noise below the full Poissonian val
i.e., in shot-noise suppression. Thus, the nonequilibrium
frequency current spectral density is given bySI(0)5g2qI,
with I being the current flowing through the sample andg a
dimensionless parameter~Fano factor! which takes values
below unity because of the negative correlations induced
both mechanisms. The relative relevance of Coulomb
Pauli suppression in determining the Fano factor depend
parameters like the sample length, the temperature, the
rier density, or the applied voltage, thus allowing the mo
toring of both correlation mechanisms.

The first theoretical analyses on the nonequilibrium no
properties of ballistic conductors were performed by Van
Ziel and Bosman inn1-n2-n1 ballistic semiconductor
diodes14 and by Kulik and Omel’yanchuk in ballistic metalli
point contacts.15 In the former case, by considering nond
generate injection conditions, only the effect of the Coulom
correlations was evidenced. In particular, by using ideas b
rowed from North’s theory of vacuum tubes,16 it was shown
that under space charge conditions current noise results
pressed below the full Poissonian value~see also Refs. 17
and 18!. In the latter case, the high carrier density of met
prevented the presence of significant space charge eff
©2002 The American Physical Society02-1
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GOMILA, CANTALAPIEDRA, GONZÁLEZ, AND REGGIANI PHYSICAL REVIEW B 66, 075302 ~2002!
and hence the possibility to test the effect of the long-ra
Coulomb correlations. In this case, by means of a s
consistent semiclassical kinetic theory based on
Boltzmann–Langevin equation,19 which included the effects
of the Pauli principle, it was shown that in the collision fre
regime ballistic metallic point contacts displayed Nyqu
noise with low frequency current spectral density given
SI(0)54kBT/RS , wherekB is the Boltzmann constant,T the
temperature, andRS5mvF /(q2n) the Sharvin contact resis
tance, withm being the electron effective mass,vF the Fermi
velocity, q the unit charge, andn the carrier concentration
inside the sample. This result is applied in the physical lim
whereqV,kBT!EF , and arbitrary relation betweenqV and
kBT, whereV is the applied bias andEF the Fermi energy.
These initial studies did not allowed the study of the sim
taneous effect of both Pauli and Coulomb correlation mec
nisms.

It was only very recently that ballistic structures includin
the simultaneous effect of Pauli and Coulomb correlatio
have been analyzed.20–22 By making use of a semianalytica
approach,20 Monte Carlo ~MC! simulations,21 and an
asymptotic analytical approach,22 nonequilibrium noise prop-
erties of ballistic semiconductor structures have been inv
tigated. It was shown that these structures, by allowing b
space charge effects and degenerate injection statistics,
unique in order to study the simultaneous effect of both P
and Coulomb correlations.23 However, the existing studies
being valid only under some limit conditions or perform
for some specific sets of system parameters, do not off
complete overview of the relative relevance of Pauli a
Coulomb correlations in the whole range of system para
eters and applied bias. This lack of a general overview
prevent the designing of suitable experimental strategie
test the theoretical predictions. The aim of the present w
is precisely to address this issue.

To this purpose we work out a general theory for the l
frequency shot-noise properties of ballisticn1-i -n1 semi-
conductor diodes that also consistently describes curre
voltage characteristics. We consider lightly doped bulk se
conductor materials since at low temperatures the b
electrons are trapped by their parent donors, neutraliz
them and thus minimizing both thee–e interaction and ion-
ized impurity scattering, thus allowing long mean free pa
up to relatively high electron energies.24,25 The theory pre-
sented accounts for both the Pauli exclusion principle and
long-range Coulomb interaction, and is applied to the wh
range of system parameters~sample length, temperature
contact doping! and external bias. In particular, the theo
allows us to study in a unifying framework the transitio
from: ~i! nondegenerate to degenerate injection conditio
~ii ! short to ~asymptotically! long sample lengths and,~iii !
low to ~asymptotically! high applied voltages. By overcom
ing the limitations of the previous existing theories, t
present study allows us to compress into a general sch
the full scenario displayed by the Pauli and Coulomb cor
lations in these ballistic structures. This scheme, valida
and tested with a wide set of MC simulations, is believed
be of relevant assistance in designing future investigati
on an experimental and/or simulation basis.
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The paper is organized as follows. In Sec. II we descr
the system under study. In Sec. III we present the phys
model used to analyze the nonequilibrium noise propert
In Sec. IV the analytical expressions obtained for the tra
port and noise properties are reported, and their validity
checked by means of MC simulations. In Sec. V we prop
a general scheme able to provide a systematic physical
ture of the shot-noise properties of two-terminal ballis
conductors, and check its reliability by means of the dev
oped theory. Finally, in Sec. VI we summarize the main
sults of the paper. The Appendix is devoted to technical d
vations.

II. SYSTEM UNDER STUDY

The system under study is then1-i -n1 ballistic semicon-
ductor diode shown in Fig. 1. It consists of an undoped se
conductor of lengthL, where injected carriers move in th
total absence of scattering events, sandwiched between
highly doped regions which act as ideal injecting contacts
specified later. The contacts and the ballistic region are ta
of the same material~homodiode! or of different material
~heterodiode!. In the former case the band offsetDEc

[U(0)2Ec
05U(L)2Ec

L ~a symmetric structure is assume
for simplicity! vanishes, while in the latter case it takes
finite value. The ballistic region is taken to be perfec
coupled with the contacts, thus no reflections take place
the interfaces. The contacts are assumed to be in quasie
librium at the given temperature, and at electrochemical
tentialsj0 andjL , with jL2j05qV. The voltage drop in the
contacts is assumed to be negligibly small~Ohmic contacts!,
and hence all the band bending occurs in the active regio
the sample. Under these assumptions, the effective con
chemical potentialm, defined asm[j02U(0)5jL2U(L),
is independent of the applied bias. Note that for the case
an homodiodem coincides with the contact Fermi energ
EF[j02Ec

05j02Ec
L , while for the case of an heterodiod

one hasm5EF2DEc . We note the existence of a maximu
with amplitudeUm in the potential energy along the activ
region due to the presence of space charge. The structu
assumed to be sufficiently thick in the transversal directio
so as to allow for a one-dimensional~1D! electrostatic treat-
ment. Thus the system is 1D in real space and thr

FIG. 1. Schematic band diagram of the ballistic structure un
study.
2-2
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SEMICLASSICAL THEORY OF SHOT NOISE IN . . . PHYSICAL REVIEW B66, 075302 ~2002!
dimensional~3D! in momentum space.18 The carriers are in-
jected into the active region in accordance with t
equilibrium Fermi–Dirac distribution function and satisfyin
the Pauli exclusion principle, thus following the correspon
ing binomial injection statistics.26,27 For simplicity, a single
spherical parabolic band is assumed.

The parameters describing the above-introduced mo
system are therefore the length of the conductor,L, the cross-
sectional areaA, the effective contact chemical potential,m,
the temperature,T, the static dielectric constant of the m
dium, e, the electron effective mass,m, and the charge car
riers q. The independent-variable parameter is the app
voltage,V.

As mentioned previously, the correlations between diff
ent current pulses in the present system is twofold. On
one hand, Pauli correlations have an influence on the con
injecting statistics. Carriers above the Fermi energy, at
tail of the Fermi distribution at the contacts, are inject
obeying Poissonian statistics due to the negligible influe
of the Pauli principle at such high energies. Carriers near
below the Fermi energy are injected following a binom
~sub-Poissonian! statistics due to the increasing influence
the Pauli principle at the highly occupied states. On the ot
hand, Coulomb correlations, through the potential ene
maximumUm associated with the presence of space cha
can modify the carrier passing statistics inside the active
gion. Indeed, the fluctuations ofUm originated by the pas
sage of carriers over the maximum modulate the transm
sion of further carriers~spacing them out more regularly i
time! and smooth out the current fluctuations imposed by
random injection at the contacts. The relative importance
the two types of correlating mechanisms depends on the
ues ofL, m, andV.

III. PHYSICAL MODEL

Within a semiclassical approach the description of
transport and noise properties of the system under study
be carried out by means of the Vlasov equation, s
consistently coupled to the Poisson equation, and sup
mented by appropriatefluctuatingboundary conditions.19 In
the one-dimensional approximation followed here, t
Vlasov–Poisson system of equations reads~in dimensionless
units, as specified later!:

F ]

]t
1vx

]

]x
2

]U~x,t !

]x

]

]vx
GF~x,vx ,t !50, ~1!

]2U~x,t !

]x2
52n~x,t !, ~2!

n~x,t !5E
2`

1`

dvxF~x,vx ,t !, ~3!

wheret is the time variable,x the spatial coordinate,vx the
velocity in the x direction, U(x,t) the potential energy
F(x,vx ,t) the distribution function integrated over transve
sal momentum directions, andn(x,t) the carrier density. In
the Poisson equation the contribution of the intrinsic fr
07530
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carrier density is neglected in comparison to the injected c
riers. Moreover, the boundary conditions for the poten
energy read

U~0,t ![U050, U~L,t ![UL5V, ~4!

where we have assumed that the applied bias is fixed b
low impedance external circuit so that neither the elec
potential nor the contact potential energies fluctuates,
dU0(t)5dUL(t)5dV(t)50. Accordingly, the boundary
conditions for the distribution function at the contacts rea

F~0,vx ,t !5F̄~vx!1dF0~vx ,t !, vx.0, ~5!

F~L,vx ,t !5F̄~vx!1dFL~vx ,t !, vx,0. ~6!

These boundary conditions consist of two contributions. T
first is of deterministic nature, and gives the average value
the distribution function. The second is of stochastic natu
and describes the random injection of carriers. The aver
distribution function is given by

F̄~vx!5E
0

1`

d«' f FD~«'1«x2m!

5 ln~11e2«x1m![ f c~«x2m!, ~7!

with «x5 1
2 vx

2 and«'5 1
2 v'

2 being the longitudinal and trans
versal kinetic energy, respectively, and where

f FD~«!5
1

11e«
~8!

is the Fermi–Dirac distribution function. Note that due to t
integration over the transverse momentum directions the
fective one-dimensional contact distribution function
f c(«) instead off FD(«). Moreover, the fluctuating contribu
tions dF0(vx ,t) and dFL(vx ,t) have zero mean and low
frequency spectral density given by22

2E
2`

1`

dFa~vx ,t !dFa8~vx
8 ,t8!dt

5
] f c~«x2m!

]m
da,a8d~«x2«x8!d~ t2t8!

5 f FD~«x2m!da,a8d~«x2«x8!d~ t2t8!. ~9!

Equations~1!–~9! constitute the complete set of equations
study the noise properties of the ballistic structure descri
in Sec. II.

In the previous set of equations, and in what follows,
use dimensionless variables to simplify the notation. The
mensionalizing factors used for energy, length, carrier d
sity, velocity, distribution function, electric potential, electr
field, electric current, resistance, and current spectral den
are, respectively,
2-3
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U05kBT, L05AekBT

q2N0

, N054p
~mkBT!3/2

h3
,

v05S kBT

m D 1/2

, F05
N0

v0
, V05

kBT

q
, ~10!

E05AN0kBT

e
, I 05qAN0v0 , R05

V0

I 0
, SI 0

52qI0 ,

whereh is the Planck constant. With these dimensionaliz
factors the dimensionless parameters describing the sy
are L/L0→L and m/kBT→m, and the dimensionless inde
pendent variable isqV/kBT→V. The physical meaning o
the different parameters is the following:N0 is the effective
density of states in the conduction band,L0 is the Debye
screening length associated toN0 , U0 is the thermal energy
v0 is the thermal velocity,V0 is the thermal voltage,E0 the
thermal electric field,I 0 the current associated toN0 andv0 ,
R0 the resistance associated toV0 /I 0, andSI 0

the shot noise

level associated toI 0.
To complete our analysis, we will perform MC simula

tions of the system under study, so that the validity of
analytical theory can be checked by comparison. To this
we use an ensemble MC simulator, 3D in momentum sp
and self-consistently coupled with a 1D Poisson solver
account for Coulomb interaction. The carrier dynamics
simulated in the ballistic active region of the structure a
the electron injection from the thermal reservoirs is mode
according to Fermi statistics. Due to the Pauli principle,
instantaneous occupancy of an incoming electron state
energy« and impinging at the interface between the ide
thermal reservoir and the active region fluctuates in ti
obeying a binomial distribution26 with a probability of suc-
cess given byf FD(«2m). This statistic is implemented in th
MC simulation of the contact injection by introducing a di
cretization of momentum space and using the rejection te
nique to select the times of injection at every moment
state.27 As limiting cases, when«2m!21, f FD(«2m)>1
and the injection statistic of the corresponding state is u
form in time. By contrast, when«2m@1, f FD(«2m)!1
and the injection statistic is Poissonian. For the calculati
we use the following parameters:T5300 K,m
50.25 m0 ,e511.7 e0, with m0 the free electron mass an
e0 the vacuum permittivity.

IV. ANALYTICAL SOLUTION

The low frequency solution of the model presented in S
III can be obtained in fully analytical form. For the sake
conciseness, in the following we only present the final
pression of the relevant quantities of interest and refer to
Appendix for the details of the derivation.

A. I – V characteristics and steady-state profiles

Following the results presented in Appendix, the curr
voltage (I –V) characteristics of the ballistic conductor pr
sented in Sec. II can be calculated as
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Ī 5E
Ūm

1`

du@ f c~u2jL!2 f c~u2j0!#, ~11!

where f c(«) is given in Eq.~7!, Ūm is the average value o
the maximum potential energy at applied biasV, and jL
5V1m andj05m are the electrochemical potentials at t
contacts located atx5L andx50, respectively. The value o
Ūm can be calculated through~see the Appendix!

L5E
Ū0

Ūm dU

E2~U,Ūm!
2E

ŪL

Ūm dU

E1~U,Ūm!
, ~12!

where

E2~U,Ūm!5H E
Ūm

`

du@Au2U2Au2Ūm#

3@ f c~u2jL!1 f c~u2j0!#

1E
U

Ūm
duAu2U2 f c~u2j0!J 1/2

23/4 ~13!

and

E1~U,Ūm!52H E
Ūm

`

du@Au2U2Au2Ūm#

3@ f c~u2jL!1 f c~u2j0!#

1E
U

Ūm
duAu2U2 f c~u2jL!J 1/2

23/4.

~14!

Figure 2 reports the maximum potential energy as a func
of the voltage, as calculated from Eq.~12! with m58 at
different values of the sample length. MC results are a
shown. Excellent agreement is found between analytical
MC calculations. At vanishing voltagesŪm saturates at
higher values the longer the normalized length, becaus

FIG. 2. Maximum energy potentialŪm /kBT as a function of
voltage for m/kBT58 and several values of the sample leng
L/L0. Solid line refers to the result of the analytical calculations a
open circles to those of the MC simulations.
2-4
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the increasing effect of space charge inside the ballistic
gion. At increasing voltagesŪm starts decreasing until van
ishing at a threshold voltageVcr

m .
Figure 3 shows theI –V characteristics as calculated fro

Eq. ~11! for m58 and several sample lengths. Figure 3 a
reports the results of MC simulations. We have found perf
agreement between the results of the theory and those of
simulations as expected, since both results are exact s
tions of the same physical model. The main features of
I –V characteristics consist in the presence of a lin
~Ohmic! behavior at low applied voltages and a current sa
ration regime at high voltages. The resistance of the lin
regime is given by~in dimensionless units!

Req5
1

f c~Ūm
eq2m!

. ~15!

In general, this value depends on both the sample lengL

and the reduced chemical potentialm. When Ūm
eq!umu the

resistance takes a value independent of the sample le
Req

univ51/f c(2m) in agreement with the results of Ref. 2
Typically this happens forL!5 andm@5, which represent
the conditions for negligible space charge inside the balli
region. In this limit, and whenm@1, Req

univ tends to the
Sharvin contact resistanceRS . The value of the saturation
current is given by~in dimensionless units!

I sat5E
0

1`

f c~u2m!du. ~16!

Current saturation takes place when all carriers injected f
one contact reach the opposite one, while none of the car
injected from the other contact is able to cross the balli
region. The value of the saturation current is independen
the sample length since it is only determined by the emiss
properties of the contacts. The voltage for the onset of c
rent saturation,Vcr , depends on bothL and m, as can be

FIG. 3. I –V characteristics form/kBT58 and several values o
the sample lengthL/L0. Solid lines refer to the result of the ana
lytical calculations and open circles to those of MC simulatio
Dashed curves indicate the typical power law behaviors of
Ohmic ~V! and Child–Langmuir (V3/2) regimes.
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seen in Fig. 3. In the case thatm.Vcr
m , whereVcr

m is the bias
value at which the maximum of the potential energy disa
pears~see Fig. 2!, one hasVcr>m13. Otherwise, whenm
,Vcr

m , one hasVcr5Vcr
m , and saturation coincides with th

disappearance of the maximum of the potential energy.
tween the linear and the current saturation regimes theI –V
characteristic displays a nonlinear region, whose proper
are determined by the precise values ofL and m. The
asymptotic behavior of this nonlinear region for large valu
of L in the limit when Ūm!V,Vcr consists of a slightly
sublinear region followed by a superlinear characteristic
Child–Langmuir type29 I CL5V3/2/L2, as has been found in
Ref. 22. The sublinear region is associated with a nonz
temperature value which smooths out the Fermi distributi
The superlinear region is associated with space-charge
fects driven by the presence ofUm .

The steady state profiles can also be calculated in clo
analytical form. The potential energy profile can be obtain
in inverse form from the following relations~see the Appen-
dix!:

E
U0

Ū2(x) dU

E2~U,Ūm!
5x, 0,x, x̄m , ~17!

E
UL

Ū1(x) dU

E1~U,Ūm!
5x2L, x̄m,x,L, ~18!

where x̄m is the location of the potential energy maximu
inside the ballistic region. The value ofx̄m can be calculated
from either Eq.~17! or Eq.~18! by setting the value ofŪ(x)
equal toŪm . Once the potential energy profile is obtaine
the electric field profile can be calculated as~see the Appen-
dix!

Ē~x!5H E2@Ū2~x!,Ūm#, 0,x, x̄m

E1@Ū1~x!,Ūm#, x̄m,x,L,
~19!

whereE2(U,Um) andE1(U,Um) are given in Eqs.~13! and
~14!, respectively. Finally, the carrier density profile is o
tained from~see the Appendix!

n̄~x!5

¦

E
Ūm

1` du

A2[u2Ū2(x)]
[ f c(u2j0)1 f c(u2jL)]

1E
Ū2(x)

Ūm
du

A2[u2Ū2(x)]
2 f c(u2j0); 0,x, x̄m

E
Ūm

1` du

A2[u2Ū1(x)]
[ f c(u2j0)1 f c(u2jL)]

1E
Ū1(x)

Ūm
du

A2[u2Ū1(x)]
2 f c~u2jL!; x̄m,x,L.

~20!

.
e
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Figure 4 reports the steady state profiles form58 and L
58, at several values of the applied bias. For the sake
comparison, Fig. 4 also reports the profiles obtained fr
MC simulations. Again analytical calculations are found
perfectly agree with the simulations. Figure 4 clearly illu
trates the space-charge nature of the transport and the
ence of the potential energy maximum. The value of
potential energy maximum decreases systematically at
creasing bias~as already indicated in Fig. 2!, while its loca-
tion shifts toward the left contact. At the same time, the f
charge redistributes inside the structure by shifting the m
mum of the carrier density from the center of the sam
towards the right contact.

FIG. 4. Steady state profiles of the potential energyU(x)/kBT,
electric fieldE(x)/E0, and carrier densityn(x)/N0 for m/kBT58
and L/L058, at different values of the applied voltageqV/kBT.
Solid lines refer to the results of analytical calculations, open circ
to those of MC simulations.
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B. Noise properties

The low frequency noise properties of the system un
study are characterized by the low frequency spectral den
of current fluctuations defined as~in dimensionless units!

SI~0!5E
2`

1`

dI ~0!dI ~ t !dt. ~21!

When interested in the study of the microscopic correlatio
the proper figure of merit is the Fano factorg, which is
obtained fromSI(0) as~in the dimensionless units!

g5
SI~0!

Ī
. ~22!

For conditions far from thermal equilibrium (V.3) a value
of g51 corresponds to the absence of correlations betw
different current pulses, whileg,1(g.1) corresponds to
the presence of negative~positive! correlations.

As shown in the Appendix,SI(0) can be calculated in
closed analytical form for the model presented in Sec.
The final result can be written in the following compact for
~see the Appendix!:

SI~0!5E
ŪL

1`

du@gL~u!#2f FD~u2jL!

1E
Ū0

1`

du@g0~u!#2f FD~u2j0!, ~23!

where~see the Appendix!

gL~u!5H 11Vg̃.~u!, Ūm,u,1`

Vg̃L
,~u!, ŪL,u,Ūm ,

~24!

g0~u!5H 211Vg̃.~u!, Ūm,u,1`

Vg̃0
,~u!, Ū0,u,Ūm .

~25!

Here, we have defined

V52
@ f̄ c~Ūm2jL!2 f̄ c~Ūm2j0!#

D
, ~26!

with

D5
1

Ē0

2
1

ĒL

1E
ŪL

Ūm
dug̃L

,~u! f̄ FD~u2jL!

1E
Ū0

Ūm
dug̃0

,~u! f̄ FD~u2j0!

1E
Ūm

1`

dug̃.~u!@ f̄ FD~u2j0!1 f̄ FD~u2jL!#. ~27!

Moreover,

g̃.~u!5E
Ū0

Ūm
dU

A2~u2U !2A2~u2Ūm!

E2~U,Ūm!3

2E
ŪL

Ūm
dU

A2~u2U !2A2~u2Ūm!

E1~U,Ūm!3
, ~28!

s
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SEMICLASSICAL THEORY OF SHOT NOISE IN . . . PHYSICAL REVIEW B66, 075302 ~2002!
g̃L
,~u!522E

ŪL

u

dU
A2~u2U !

E1~U,Ūm!3
, ~29!

g̃0
,~u!52E

Ū0

u

dU
A2~u2U !

E2~U,Ūm!3
. ~30!

From the previous equations we can evaluateSI(0) and, in
turn, the Fano factorg. Note that these analytical expressio
are valid in the whole range of system parametersL andm,
and in the whole range of applied biasV.

For the purpose of a reliability test, the results obtain
from the analytical formulas are compared with those of M
simulations in Fig. 5. Here, the low frequency current sp
tral density is reported as a function of applied bias form
58 and several sample lengths. As can be seen in Fig. 5
agreement between the analytical theory and MC simulat
is excellent, thus proving the reliability of both theory an
simulations. For the sake of completeness Fig. 5 also rep
the results obtained by means of the asymptotic theory
veloped in Ref. 22. According to this theory, in the limit o
Ūm!V,Vcr the low frequency current spectral density c
be approximated by~in dimensionless variables!

SI
asym5b~m2Ūm!

I

V1Ūm

, ~31!

with

b~a!59S 12
p

4

@F1/2~a!#2

F0~a!F1~a! D , ~32!

whereF j (a)51/G( j 11)*0
`dy yj f FD(y2a), with G(z) be-

ing the gamma function. As seen in Fig. 5 the asympto
theory agrees well with the present theory forŪm!V
,Vcr . However, it cannot describe either the transition b

FIG. 5. Low frequency current spectral densitySI(0)/2qI0 as a
function of the applied voltageqV/kBT for m/kBT58 and several
values of the sample lengthL/L0. Solid lines refer to the results o
analytical calculations, open circles to those of MC simulatio
Dot-dashed lines are the results of the asymptotic theory~Ref. 22!.
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tween low and high bias regions, or the case of small sam
lengths in which the conditionŪm!V,Vcr cannot be satis-
fied.

The main features of the low frequency spectral dens
depicted in Fig. 5 are summarized as follows. At low vo
ages (V,3), where Ohmic conditions are satisfied,SI(0) is
bias independent and takes the value~in dimensionless vari-
ables!

SI
eq~0!5

2

Req
52 f c~Ūm

eq2m!, ~33!

in agreement with Nyquist theorem.30 At high voltages (V
.Vcr), when the sample exhibits current saturation con
tions, SI(0) is again bias independent and given by~in di-
mensionless variables!

SI
sat~0!5E

0

1`

du fFD~u2j0!5 f c~2m!. ~34!

In the region of intermediate values of voltages,SI(0) can
present a monotonic or a nonmonotonic behavior~with the
presence of a minimum! determined by the interplay be
tween Coulomb and Pauli correlations, as will be detailed
Sec. V.

V. THE SCENARIO OF SHOT-NOISE IN BALLISTIC
n¿- i -n¿ STRUCTURES

The present theory enables us to investigate separatel
relevance of the two mechanisms responsible for the co
lations in the system under study, namely, the Pauli exclus
principle and the long-range Coulomb interaction, in t
whole range of system parameters. Accordingly, we prop
a general scheme which summarizes the whole scenari
the shot-noise properties exhibited byn1-i -n1 ballistic
semiconductor structures. To construct such a scheme
make use of the Fano factor,g, which is factorized into the
two independent contributions,gP and gC , related to the
Pauli and Coulomb correlations, respectively. Indeed,
cording to Eq.~9!, the fluctuations of the contact distributio
function at different energy levels are uncorrelated, so t
the only source of correlations among carriers injected w
different energy is the Coulomb interaction in the active
gion. As a consequence, both contributions to the Fano fa
are independent, which impliesg5gPgC . Thus, the Pauli
contributiongP corresponds to the Fano factor that would
obtained in the absence of the self-consistent long-ra
Coulomb interaction. It can be easily evaluated from t
noise calculation performed in the Appendix by neglecti
the self-consistent contribution. This is equivalent to t
setup in Eq.~23!,

gL~u!5H 1, Ūm,u,1`

0, ŪL,u,Ūm ,
~35!

g0~u!5H 21, Ūm,u,1`

0, Ū0,u,Ūm .
~36!

.
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For the current spectral density associated with Pauli co
lations only, it is thus obtained

SI
P~0!5 f c~Ūm2jL!1 f c~Ūm2j0!, ~37!

so that the Pauli contribution to the Fano factor is found
be

gP5
SI

P~0!

Ī
5

f c~Ūm2jL!1 f c~Ūm2j0!

E
Ūm

1`

du@ f c~u2jL!2 f c~u2j0!#

, ~38!

where use is made of Eq.~11!.
The Coulomb contribution is then evaluated asgC

5g/gP . According to these definitions, forV.3 values of
gPÞ1 correspond to the presence of Pauli correlatio
while values ofgCÞ1 correspond to the presence of Co
lomb correlations.

A detailed analysis of Eq.~38! indicates that the Paul
contribution is essentially dependent on the differenceŪm

2m. Hence, whenŪm2m.0 it is gP→1, thus indicating
the absence of Pauli correlations. In particular, for nondeg
erate injection conditionsm,0, one always has thatŪm
2m.0, hence indicating the absence of Pauli correlatio
as should be. By contrast, whenŪm2m,0 it is gP,1, thus
indicating the presence of Pauli correlations. SinceŪm is a
decreasing function of the bias, the conditionŪm

eq2m,0

implies automatically that the inequalityŪm2m,0 is satis-
fied for all bias values, and hence the presence of Pauli
relations forV.3. On the contrary, whenŪm

eq2m.0 Pauli
correlations are absent for low~or intermediate! bias values
and present for bias values sufficiently high to validate
conditionŪm2m,0.

Concerning Coulomb correlations, their presence or
sence is roughly determined by a value of the ratioL/LDc

higher or lower than unity, respectively, whereLDc
is the

Debye screening length corresponding to an homogene
system with charge density equal to the equilibrium cont
density. Taking into account the effects of degenerancy,LDc

is calculated as~in dimensionless variables!

LDc
5S dnc

eq

dm
D 21/2

5
1

A2E
0

1`

du
f FD~u2m!

A2u

, ~39!

where we used that from Eq.~20! one has

nc
eq5n̄eq~0!52E

0

1`

du
f c~u2m!

A2u
. ~40!

On the basis of these considerations, for the scenari
the shot-noise properties in ballistic conductors we prop
the general scheme displayed in Fig. 6. In this scheme
identify five different regions in the plane (L,m), corre-
sponding to five different possibilities of interplay betwe
07530
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Coulomb and Pauli correlations. The different regions in F
6 are determined by the three lines defined by the equal
L5LDc

, m50, andm5Ūm
eq .

The shot-noise behavior in each of the five regions co
sponds, respectively, to:~i! the absence of both Pauli an
Coulomb correlations (m,0 andL/LDc

,1); ~ii ! the pres-
ence of Pauli correlations and the absence of Coulomb
relations (m.0, Ūm

eq2m,0, andL/LDc
,1); ~iii ! the ab-

sence of Pauli correlations and the presence of Coulo
correlations (m,0 andL/LDc

.1); ~iv! the absence~pres-
ence! of Pauli correlations for low~high! bias and the pres
ence of Coulomb correlations (m.0, Ūm

eq2m.0, and
L/LDc

.1); ~v! the presence of both Pauli and Coulomb co

relations (m.0, Ūm
eq2m,0, andL/LDc

.1).
The reliability of the above-mentioned scheme has b

tested by performing a series of theoretical calculations
the relevant regions identified previously. We have found t
the proposed scheme is essentially valid, except in the zo
close to the lines separating the different regions, where
termediate behaviors have been observed. Representativ
amples concerning the Fano factor,g, and the contributions
into which it is decomposed,gP andgC , are shown in Figs.
7–10 for each of the five regions individuated in theL –m
plane.

Figure 7 displays the Fano factor forL55 andm525
(L/LDc

50.32) corresponding to region~i! ~continuous line!

and for L50.5 andm58 (L/LDc
50.71) corresponding to

region ~ii ! ~dot-dashed line!. In both cases the presence
space charge in the active region is nearly negligible, ins
ficient to originate a potential energy maximum large enou
so as to lead to Coulomb suppression. Therefore, both
gions are concerned with the absence of Coulomb corr
tions (gC51). In region ~i! Pauli correlations are absen
(gP51 for V.3), sincem525 implies that carriers are
injected at the contacts with energies«2m.3, so that the

FIG. 6. Parameter plane in the length /chemical potential sp
representing the five different behaviors of the shot-noise prope
of a ballistic conductor according to the relevance of the Pauli
Coulomb correlations. The three continuous lines define, res

tively, the equalities:L5LDc
, m50, andŪm

eq5m.
2-8
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SEMICLASSICAL THEORY OF SHOT NOISE IN . . . PHYSICAL REVIEW B66, 075302 ~2002!
distribution function at the contacts is well approximated
the nondegenerate Maxwell–Boltzmann distribution, and
injection statistics is Poissonian. On the contrary, in reg
~ii ! Pauli correlations are responsible for the suppression
shot noise (gP,1 for V.3) since degenerate injection co
ditions prevail. It is worth noting that, in all cases where t
long-range Coulomb correlations are absent, as in the pre
case, the Fano factor at low voltages decreases inversely
the applied bias according to the law

g th5
2

V
, ~41!

which corresponds to the thermal noise behavior, while
high voltages (V.Vcr) it becomes constant with a valu
given by

FIG. 7. Fano factor as a function of the applied voltageqV/kBT
for L/L055 andm/kBT525 corresponding to region~i! of Fig. 6
~solid line! andL/L050.5 andm/kBT58 corresponding to region
~ii ! of Fig. 6 ~dot-dashed line!. Dashed line represents the Coulom
contribution to the Fano factor. By definition, in this case the Pa
contribution to the Fano factor is indistinguishable from the act
Fano factor.

FIG. 8. Fano factor as a function of the applied voltageqV/kBT
for L/L0540 andm/kBT523 corresponding to region~iii ! of Fig.
6 ~solid line!. Dashed and dotted lines represent, respectively,
Coulomb and Pauli contributions to the Fano factor. Dashed-do
line represents the results of the asymptotic theory.
07530
e
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gsat5
f c~2m!

E
0

1`

f c~u2m!du

, ~42!

which corresponds to current saturation conditions. To ob
Eq. ~42! use is made of Eqs.~16! and~34!. The value ofgsat

interpolates monotonically between 1 form,23 ~nonde-
generate injection statistics! and 2/m for m.3 ~strongly de-
generate injection statistics!. Since the Coulomb correlation
vanish identically at thermal equilibrium and under curre
saturation conditions, the two limiting behaviors represen
by Eqs.~41! and~42! are common to all cases, as we will se
in the following.

Figure 8 reports the Fano factor forL540 and m
523 (L/LDc

56.9) corresponding to region~iii ! of the
general scheme. It shows the presence of Coulomb corr

li
l

e
d

FIG. 9. Fano factor as a function of the applied voltageqV/kBT
for L/L0520 andm/kBT58 corresponding to region~iv! of Fig. 6
~solid line!. Dashed and dotted lines represent, respectively,
Coulomb and Pauli contributions to the Fano factor. Dashed-do
line represents the results of the asymptotic theory.

FIG. 10. Fano factor as a function of the applied volta
qV/kBT for L/L052 andm/kBT58 corresponding to region~v! of
Fig. 6 ~solid line!. Dashed and dotted lines represent, respectiv
the Coulomb and Pauli contributions to the Fano factor. Dash
dotted line represents the results of the asymptotic theory.
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GOMILA, CANTALAPIEDRA, GONZÁLEZ, AND REGGIANI PHYSICAL REVIEW B 66, 075302 ~2002!
tions (gC,1 for 3,V,Vcr) and the absence of Pauli co
relations (gP51 for V.3). Pauli correlations are absent b
causem523,0 ~see above!, while Coulomb correlations
set in due to relevant space charge effects. Due to the s
value of the ratioL/LDc

the asymptotic theory22 provides

only some rough agreement with the exact result in the l
ited range of voltages associated with a suppressed beha
For larger values of the ratioL/LDc

the agreement improves

The behavior displayed by the system in region~iii ! was
previously examined in detail in Ref. 18.

Figure 9 reports the Fano factor forL520 and m
58 (L/LDc

528.2) corresponding to region~iv! of the gen-
eral scheme. Here we assist to a low and intermediate v
age range where Coulomb correlations are dominating an
a high voltage range where Pauli correlations prevail.
deed, the Fano factor displays the presence of Coulomb
relations (gC,1 for 3,V,Vcr), the absence of Pauli cor
relations in an intermediate bias range (gP;1 for 3,V
&10), and the presence of Pauli correlations for higher b
(gP,1 for V*10). Physically, this behavior is due to th
fact that in this region, even if contacts are under degene
injection conditions (m.0), one hasŪm

eq2m.0, so that for

the lowest applied voltages (3,V&10) it is Ūm2m.0 and
the current flows are only due to Poissonian carriers at
tail of the Fermi distribution function, leading togP;1. As
V increases, it isŪm2m<0 and sub-Poissonian carriers ne
and below the Fermi level increasingly contribute to the c
rent and low-frequency noise, so that Pauli correlations
come manifest in the noise, thus leading togP,1. Note that
in region ~iv! one generally hasL/LDc

*10, thus ensuring
that the asymptotic theory22 provides a good approximatio
to the exact theory presented here in the range of bias s
fying Um!V,Vcr , as illustrated in Fig. 9.

Finally, Fig. 10 reports the Fano factor forL52 andm
58 (L/LDc

52.8) corresponding to region~v! of the general
scheme. The Fano factor displays the presence of both P
correlations (gP,1 for V.3) and Coulomb correlation
(gC,1 for 3,V,Vcr). In this region one always hasŪm
2m,0, thus ensuring that Pauli correlations are presen
all applied bias. Therefore, this is the most interesting reg
to analyze the interplay between Coulomb and Pauli corr
tions. We note that here the exact theory presented in
paper becomes strictly necessary, since in this region
ratio L/LDc

never takes values much higher than unity~one

typically obtains 1&L/LDc
&10), thus reducing significantly

the usefulness of the asymptotic theory,22 as illustrated in
Fig. 10.

To provide more insight into the interplay between Co
lomb and Pauli correlations in region~v!, Fig. 11 reports the
Fano factor as a function of bias forL53 and several value
of m belonging to region~v!. It is observed that by increasin
the value ofm the contribution of the Pauli correlations d
creases faster than that of the Coulomb correlations. Th
understood by noting that form.3, gP varies as 2/m, while
gC , being determined by the ratioL/LDc

, varies asAm.
Physically, this behavior reflects the increasing amount
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sub-Poissonian carriers contributing to the current asm be-
comes higher. These carriers lead to a more and more
nounced Pauli suppression while they do not contribute
much to Coulomb suppression, since due to their s
Poissonian character the fluctuations ofUm they induce are
much less significant than those originated by the Poisso
carriers above the Fermi level. For this reason,gC tends to
saturate for the highest values ofV,Vcr while gp continues
decreasing. Remarkably enough, in region~v! for V.30 the
total Fano factorg is well described in all cases by a 1/V
dependence. As seen in the figure, this dependence on
age is due to the joint action of both Pauli and Coulom
correlations. It can also be observed that the onset of C
lomb suppression takes place for higher values ofV as m
increases, since for this suppression to become significa
is necessary that the contribution to the current due to ca
ers injected at the right contact becomes negligible. T
takes place whenV1Ūm>m, a condition that requires a
higher value ofV asm increases, for a given value ofL.

To illustrate a realistic example where the theoretical
sults presented here could be applied, we consider as a
nificant example the case of a ballistic GaAsn1-i -n1 homo-
diode at T54 K and contact density nc51.14
31016 cm23. For this structure kBT/q50.3 mV, m
58 (0.24 meV), L0;31 nm and LDc

;0.7 (22 nm),
where we have takenm50.066m0, and e512.9e0. For a
sample length of 500 nm,L;16, and according to Fig. 6 we
are in region~iv! of the general scheme. For a sample leng
of 70 nm, L;2.3 and we are in region~v!. For a sample
length of 15 nm,L;0.5 and we are in region~ii !. To ex-
plore regions~i! and ~iii ! one can refer to the case o
heterodiodes.31 We conclude that in principle the differen
behaviors of the Fano factor predicted by the present the
can be investigated experimentally within realistic con
tions.

VI. CONCLUSIONS

We have presented a semiclassical theory of nonequ
rium noise~shot-noise! properties ofn1-i -n1 ballistic semi-

FIG. 11. Fano factor as a function of the applied volta
qV/kBT for L/L055 and several values ofm/kBT corresponding to
region ~v! of Fig. 6 ~solid line!. Dashed and dotted lines represe
respectively, the Coulomb and Pauli contributions to the Fano
tor. The dashed-dotted line gives the 1/V slope.
2-10
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SEMICLASSICAL THEORY OF SHOT NOISE IN . . . PHYSICAL REVIEW B66, 075302 ~2002!
conductor structures aimed at evaluating the relevance o
long-range Coulomb interaction and of the Pauli exclus
principle. The theory covers the whole range of system
rameters, physically identified in the contact chemical pot
tial, the sample length, and the applied voltage. Within
unitary scheme free from any approximation we succeed
investigating the transition between: nondegenerate and
generate injection conditions, short and long sample leng
and low and high applied bias. Through the determination
the Fano factor, we have analyzed the relevance of Coulo
and Pauli correlations. At applied voltages above ab
3kBT/q both correlations lead to the suppression of s
noise. We have identified five different regions in the pla
defined by the sample length and the chemical potential
responding, respectively, to the following conditions.~i! the
absence of Pauli and Coulomb correlations;~ii ! the presence
of Pauli correlations and the absence of Coulomb corr
tions; ~iii ! the absence of Pauli correlations and the prese
of Coulomb correlations;~iv! the absence~presence! of Pauli
correlations for low~high! bias and the presence of Coulom
correlations; and~v! the presence of both Pauli and Coulom
correlations. Case~i! corresponds to small sample lengt
and nondegenerate conditions when different current pu
are clearly uncorrelated. Case~ii ! occurs for small sample
lengths and degenerate injection conditions so that Pauli
relations are the only being active. Case~iii ! implies a large
sample length and nondegenerate injection conditions so
Coulomb correlations are the only being active. Case~iv! is
associated with large samples and degenerate injection
ditions. Here Coulomb correlations are always present
cause of the small value of the Debye screening length
addition, at low bias only Poissonian carriers at the tail of
contact energy distribution contribute to the noise so t
Pauli correlations are absent, while at higher bias Pauli p
ciple becomes active due to the increasing amount of car
obeying binomial injection statistics that contribute to noi
Finally, case~v! refers to moderately long samples and d
generate injection conditions so that both Coulomb and P
correlations are present simultaneously. The results of
theory are in perfect agreement with analogous MC simu
tions. Therefore, besides offering a complete physical pic
of the subject, this study provides new insight into the no
properties of ballistic conductors, and of mesoscopic syst
in general. We believe that the theory here developed con
tutes a powerful tool to design experimental investigations
the nonequilibrium noise properties of solid-state ballis
conductors.
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APPENDIX: DERIVATION OF THE MAIN FORMULAS

Here we derive the main formulas used in the paper
following a procedure similar to that used in Ref. 18, he
extended to the case of degenerate injection conditions
this end, the first step consists in solving for the distributi
function that satifies the Vlasov–Poisson–Langevin sys
of equations, Eqs.~1!–~9!. To find the solution we first note
that, since transport is ballistic, the total longitudinal ener
of a carrieru, defined as

u5 1
2 vx

21U~x,t !5«x1U~x,t !, ~A1!

remains constant during the flight of the carrier through
structure. Then, we note that, since transport is ballistic, c
riers can reach a given point inside the structure either
rectly from the contacts or indirectly after reflection at t
self-consistent potential barrier. Moreover, we can iden
from which contact the carrier comes from. From these c
siderations it is easy to convince oneself that, in the l
frequency limit of interest in the present paper, the distrib
tion function solving the set of Eqs.~1!–~9! is given by

F~x,vx ,t !

55
f 0~u,t ! U0,u,`, vx.0, 0,x,xm

f L~u,t ! Um,u,`, vx,0, 0,x,xm

f 0~u,t ! U0,u,Um , vx,0, 0,x,xm

f 0~u,t ! Um,u,`, vx.0, xm,x,L

f L~u,t ! UL,u,Um , vx.0, xm,x,L

f L~u,t ! UL,u,`, vx,0, xm,x,L,

~A2!

where

f 0~u,t !5F@0,1A2~u2U0!,t#, ~A3!

f L~u,t !5F@L,2A2~u2UL!,t#, ~A4!

with F(0,vx ,t) and F(L,vx ,t) being obtained through the
boundary conditions in Eqs.~5! and ~6!. In the previous ex-
pressionUm[Um(t) and xm[xm(t) refer to the value and
location of the potential energy maximum, respective
while U0 and UL correspond to the values of the potent
energy at the contacts~note that, according to the bounda
conditions assumed here, these values do not fluctuate!.

Since Eq.~A2! depends on the value of the maximu
potential energy, to completely determine the distributi
function we need to derive the equation satisfied by the
ergy maximum. To this purpose, we first obtain an expr
sion for the carrier density by performing the integral in E
~3! with the help of Eq.~A2!. After some algebra one ca
show that the carrier density is given by

n~x,t !5H n2@U~x,t !,Um ;@ f 0 , f L## 0,x,xm

n1@U~x,t !,Um ;@ f 0 , f L## xm,x,L,
~A5!

where
2-11
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n2~U,Um ;@ f 0 , f L# !5E
Um

1` du

A2~u2U !
@ f 0~u,t !1 f L~u,t !#

1E
U

Um du

A2~u2U !
2 f 0~u,t ! ~A6!

and

n1~U,Um ;@ f 0 , f L# !5E
Um

1` du

A2~u2U !
@ f 0~u,t !1 f L~u,t !#

1E
U

Um du

A2~u2U !
2 f L~u,t !. ~A7!

In the previous equations the square brackets on the left-h
side mean a functional dependence. Now, by multiplying
Poisson equation, Eq.~2!, by ]U(x,t)/]x and integrating
with respect tox, it can be shown that the electric fiel
E(x,t) is given through

E~x,t !5H E2@U~x,t !,Um ;@ f 0 , f L## 0,x,xm

E1@U~x,t !,Um ;@ f 0 , f L## xm,x,L,
~A8!

with

E2~U,Um ;@ f 0 , f L# !5H E
Um

`

du@Au2U2Au2Um#@ f 0~u,t !

1 f L~u,t !#

1E
U

Um
duAu2U2 f 0~u,t !J 1/2

23/4

~A9!

and

E1~U,Um ;@ f 0 , f L# !52H E
Um

`

du@Au2U2Au2Um#

3@ f 0~u,t !1 f L~u,t !#

1E
U

Um
duAu2U2 f L~u,t !J 1/2

23/4.

~A10!

Finally, from the definition]U(x,t)/]x5E(x,t) and its in-
tegration with respect to the space coordinate, we arriv
the following inverse equations for the potential energy p
file

E
U0

U2(x,t) dU

E2~U,Um ;@ f 0 , f L# !
5x, ~A11!

valid for 0,x,xm , and

E
UL

U1(x,t) dU

E1~U,Um ;@ f 0 , f L# !
5x2L, ~A12!

valid for xm,x,L.
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From the previous expressions the location of the ma
mum energy potential can be obtained by evaluating eit
Eq. ~A11! or Eq. ~A12! at x5xm ,

E
U0

Um dU

E2~U,Um ;@ f 0 , f L# !
5xm , ~A13!

E
UL

Um dU

E1~U,Um ;@ f 0 , f L# !
5xm2L. ~A14!

By eliminating xm from the two resulting equations we de
rive a closed equation for the value of the potential ene
maximum in the form

L5E
U0

Um dU

E2~U,Um ;@ f 0 , f L# !
2E

UL

Um dU

E1~U,Um ;@ f 0 , f L# !
.

~A15!

Equation ~A15! constitutes a closed equation to determi
the value of the potential energy maximum,Um . Notice that
it depends solely on the boundary conditions for the dis
bution function and the sample length.

Once the value of the potential energy maximum
known, one can determine its location through either E
~A13! or Eq. ~A14!. Then, from Eq.~A2! one obtains the
explicit expression of the distribution function. In a simila
way the explicit spatial dependence of the potential ene
can be determined by substituting the value ofUm in Eqs.
~A11! and ~A12!, and that of the electric field and carrie
density by substitutingUm in Eq. ~A8! and Eq.~A5!, respec-
tively. In this way, a complete analytical solution of th
model presented in Sec. III is obtained.

In particular, the electrical current, defined as

I ~ t !52E
2`

1`

dvxvxF~x,vx ,t !, ~A16!

can be shown to be given by

I ~ t !5E
Um

1`

du@ f L~u,t !2 f 0~u,t !#. ~A17!

Now, we are in the position to derive the corresponding
pressions for the transport and noise properties.

1. Transport properties

The average steady-state transport properties can be
puted directly from Eqs.~A5!–~A17! presented above by
simply substituting into them

Um→Ūm ,

xm→ x̄m ,
~A18!

f 0~u,t !→ f̄ 0~u!5 f c~u2j0!,

f L~u,t !→ f̄ L~u!5 f c~u2jL!,
2-12
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with f c(«) given through Eq.~7!. In this way we arrive at the
equations used in Sec. IV A.

2. Low frequency current noise properties

The fluctuating properties of any of the quantities of
terest can be evaluated directly from Eqs.~A5!–~A17! de-
rived above by just performing the corresponding pertur
tion around the steady state, and by taking into account
the only source of fluctuations in the system is located at
contacts, and represented by the fluctuating term in Eq.~7!.
In this paper we are interested in the low frequency curr
fluctuations. To compute them we perturb Eq.~A17! around
the steady state thus obtaining

dI ~ t !5E
Ūm

1`

du@d f L~u,t !2d f 0~u,t !#

2@ f̄ L~Ūm!2 f̄ 0~Ūm!#dUm~ t !, ~A19!

wheredUm(t) represents the fluctuations of the potential e
ergy maximum. In Eq.~A19! we distinguish two contribu-
tions to the current fluctuation, one coming directly from t
contacts and the other coming indirectly through the s
consistent potential fluctuations. To express the depend
of the second contribution on the noise sources, we per
Eq. ~A15!. In performing such a perturbation it is convenie
to shift all the energy integration variables by an amo
equal to Um . After some algebra one then arrives at t
following expression for the fluctuations of the maximu
potential energy:

dUm~ t !5
1

DEUL

1`

dug̃L~u!d f L~u,t !

1
1

DEU0

1`

dug̃0~u!d f 0~u,t !, ~A20!

with

D5
1

ĒL

2
1

Ē0

1E
UL

1`

dug̃L~u! f̄ FD~u2jL!

1E
U0

1`

dug̃0~u! f̄ FD~u2j0!, ~A21!

where we have used thatf̄ 08(u)52 f̄ FD(u2j0) and f̄ L8(u)

52 f̄ FD(u2jL). Here, we have defined

g̃L~u!5g̃.~u!u~u2Ūm!1g̃L
,~u!u~Ūm2u!, ~A22!

g̃0~u!5g̃.~u!u~u2Ūm!1g̃0
,~u!u~Ūm2u!, ~A23!

with
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g̃.~u!5E
U0

Ūm@A2~u2U !2A2~u2Ūm!#dU

E~U,Ūm ;@ f̄ 0 , f̄ L# !3

2E
UL

Ūm@A2~u2U !2A2~u2Ūm!#dU

E~U,Ūm ;@ f̄ 0 , f̄ L# !3
,

~A24!

g̃L
,~u!5E

UL

u 22A2~u2U !dU

E1~U,Ūm ;@ f̄ 0 , f̄ L# !3
, ~A25!

g̃0
,~u!5E

U0

u 2A2~u2U !dU

E2~U,Ūm ;@ f̄ 0 , f̄ L# !3
. ~A26!

By substituting Eq.~A20! in Eq. ~A19! for the current fluc-
tuations we finally obtain

dI ~ t !5E
UL

1`

dugL~u!d f L~u,t !

1E
U0

1`

dug0~u!d f 0~u,t !, ~A27!

with

gL~u!5u~u2Ūm!1Vg̃L~u!, ~A28!

g0~u!52u~u2Ūm!1Vg̃0~u!, ~A29!

where

V52
@ f̄ c~Ūm2jL!2 f̄ c~Ūm2j0!#

D
. ~A30!

Now we are in the position to compute the low frequen
current spectral density, defined as

SI~0!5E
2`

1`

dI ~0!dI ~ t !dt. ~A31!

By substituting Eq.~A27! into Eq. ~A31! we arrive at

SI~0!5E
ŪL

1`

dugL~u!2f FD~u2jL!

1E
Ū0

1`

dug0~u!2f FD~u2j0!, ~A32!

where we have used that from Eq.~9! one has

2E
2`

1`

d f a~u,t !d f a8~u8,t8!dt8

5 f FD~u2j
a
!da,a8d~u2u8!d~ t2t8!. ~A33!

From Eqs.~A24! to ~A32! it is straightforward to arrive at
the equations used in Sec. IV B.
2-13



r,

y

on

n,

E

.

eg

B

of
e, for

ni,

ol.

.
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