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Mott insulators in strong electric fields

Subir Sachdev,* K. Sengupta,† and S. M. Girvin‡

Department of Physics, Yale University, P.O. Box 208120, New Haven, Connecticut 06520-8120
~Received 18 May 2002; published 30 August 2002!

Recent experiments on ultracold atomic gases in an optical lattice potential have produced a Mott insulating
state of87Rb atoms. This state is stable to a small applied potential gradient~an ‘‘electric’’ field!, but a resonant
response was observed when the potential energy drop per lattice spacing (E), was close to the repulsive
interaction energy~U! between two atoms in the same lattice potential well. We identify all states which are
resonantly coupled to the Mott insulator forE'U via an infinitesimal tunneling amplitude between neighbor-
ing potential wells. The strong correlation between these states is described by an effective Hamiltonian for the
resonant subspace. This Hamiltonian exhibits quantum phase transitions associated with an Ising density wave
order and with the appearance of superfluidity in the directions transverse to the electric field. We suggest that
the observed resonant response is related to these transitions and propose experiments to directly detect the
order parameters. The generalizations to electric fields applied in different directions and to a variety of lattices
should allow study of numerous other correlated quantum phases.

DOI: 10.1103/PhysRevB.66.075128 PACS number~s!: 71.10.Hf, 03.75.Fi, 67.90.1z, 32.80.Pj
s
tu
e
in
in
ed
io
ou

re
en

m

he
e

nt

h
o
ti
d

he

in
ti
th

b
a

e
is-
nt

em
Eq.
of

h-

ergy
o it

of
ith

ice
di-

s we

sive
oms
ain-
e di-
een

a

I. INTRODUCTION

Recent experiments on ultracold trapped atomic ga
have opened a new window onto the phases of quan
matter.1,2 A gas of bosonic atoms has been reversibly tun
between superfluid and insulating ground states by vary
the strength of a periodic potential produced by stand
waves of laser light.2 These experiments offer unprecedent
control of the microscopic parameters and allow explorat
of parameter regimes not previously available in analog
condensed matter systems.

This paper focuses on one such ‘‘extreme’’ parameter
gime. Letw be the amplitude for an atom to tunnel betwe
neighboring minima of the standing laser wave andU be the
repulsive interaction energy between two atoms in the sa
potential well. Whenw is smaller than a value of orderU, the
ground state is a Mott insulator for certain values of t
atomic density or chemical potential. In this state, the av
age number of atoms in each potential well must be an i
ger n0 ~see Fig. 1!. Now consider ‘‘tilting’’ this Mott
insulator2—i.e., placing it under an external potential whic
decreases linearly along a particular direction in space. C
ceptually, it is useful to imagine that the atoms carry a fic
tious ‘‘charge,’’ and then this potential gradient correspon
to applying a uniform ‘‘electric’’ fieldE ~in practice this field
is applied by changing the position of the center of t
atomic trap2!. We measureE in units of energy, definingE to
be the maximal drop in potential energy of an atom mov
between nearest-neighbor minima of the periodic poten
@the potential energy drop depends upon the choice of
nearest neighbor, and we choose the direction~s! along which
the drop is the largest to defineE#. In almost all Mott insu-
lators consisting of electrons or Cooper pairs, all reasona
electric fields that can be achieved in the laboratory are sm
enough so that the relationE!w,U is well satisfied. Re-
markably, in the new atomic systems significantly larg
‘‘electric’’ fields are easily achievable: This paper shall d
cuss the regimeE;U which has been explored in the rece
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experiments of Greineret al.2 More precisely, we shall dis-
cuss the regime

uU2Eu,w!E,U, ~1.1!

while allowing the ratio (U2E)/w to be arbitrary.
We mention, in passing, another experimental syst

which has been studied under conditions analogous to
~1.1!. Electron transport has been investigated in arrays
GaAs quantum dots,3 when the voltage drop between neig
boring quantum dots~the analog ofE) is at or above the
charging energy required to make the transition~the analog
of U). However, in these systems the excess electron en
can be dissipated away to the underlying lattice, and s

FIG. 1. Schematic representation of the Mott insulator and
various states coupled to it. Shown above is the Mott insulator w
n052. Each well represents a local minimum of the optical latt
potential—these we number 1–5 from the left. The potential gra
ent leads to a uniform decrease in the on-site energy of atom a
move to the right. The gray circles are thebi bosons of Eq.~1.2!.
The vertical direction represents increasing energy: the repul
interaction energy between the atoms is realized by placing at
vertically within each well, so that each atom displaces the rem
ing atoms upwards along the energy axis. We have chosen th
ameter of the atoms to equal the potential energy drop betw
neighboring wells—this corresponds to the conditionU5E. Con-
sequently,a resonant transition is one in which the top atom in
well moves horizontally to the top of a nearest-neighbor well; mo-
tions either upwards or downwards are nonresonant.
©2002 The American Physical Society28-1



d
s
is
um

r
i

en

r-
r

s
th

o

s

rin

c
e
im
a
a

s

io

pid
p-

ut
its

u-
y
not
s.

y
ig-

el

ny
itu-
ces-

or
d
can
u-

by
in

re-
oss

of

al-

the

SUBIR SACHDEV, K. SENGUPTA, AND S. M. GIRVIN PHYSICAL REVIEW B66, 075128 ~2002!
appears that the threshold behavior can be described by
sipative classical models.4 In contrast, for the atomic system
of interest in the present paper, there is essentially no d
pation over the time scales of interest, and a fully quant
treatment must be undertaken.

It is useful to explicitly state our model Hamiltonian fo
the Mott insulator for our subsequent discussion. We w
consider only Mott insulators of bosons, although the ext
sion to fermionic Mott insulators is possible.5 We label the
minima of the periodic potential by lattice sitesi and assume
that all bosons occupy a single band of ‘‘tight-binding’’ o
bitals centered on these sites. Letbi

† be the creation operato
for a boson on sitei. We will study the boson Hubbard
model6–8

H52w(̂
i j &

~bi
†bj1bj

†bi !1
U

2 (
i

ni~ni21!2E(
i

e•r ini ,

~1.2!

where^ i j & represents pairs of nearest-neighbor sites,

ni[bi
†bi , ~1.3!

r i are the spatial coordinates of the lattice sites~the lattice
spacing is unity!, and e is a vector in the direction of the
applied electric field (e is not necessarily a unit vector—it
length is determined by the strength of the electric field,
lattice structure, and our definition ofE above!. We will
mainly consider simple cubic lattices, with thee oriented
along one of the lattice directions and of unit length. N
shown in Eq.~1.2! is an implied chemical potential term
which is chosen so that the average density of atoms per
is n0. We will restrict our attention to the case wheren0 is of
order unity.

Some simple key points can be made by first conside
the noninteracting caseU50, and also by simplifying to one
spatial dimension.9 For this special case, we can writeH as

H052(
l

~wbl
†bl 111wbl 11

† bl1Elbl
†bl !, ~1.4!

where l is an integer labeling the lattice sites. The exa
single-particle eigenstates ofH0 can be easily obtained: th
eigenenergies form a Wannier-Stark ladder, and the most
portant property of the wave functions is that they are
localized. Specifically, the eigenstates can be labeled by
integerm which runs from2` to `, the exact eigenenergie
are

em5Em, ~1.5!

and the corresponding exact and normalized wave funct
can be expressed in terms of Bessel functions:

cm~ l !5Jl 2m~2w/E!; ~1.6!

for a derivation see, e.g., Ref. 10~their analysis is in a dif-
ferent gauge!. Themth state is localized near the sitel 5m,
and for largeu l 2mu its wave function decays as

ucm~ l !u;expF2u l 2mu lnS u l 2muE
ew D G ; ~1.7!
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the decay is faster than exponential and is extremely ra
under the conditions~1.1!. The reader should resist the tem
tation to imagine that a particle placed initially at the sitel
will eventually be accelerated by the applied electric field o
to infinity. Instead, the particle remains localized near
initial site and undergoesBloch oscillationswith periodh/E;
indeed, as is clear from the simple form of Eq.~1.5!, its wave
function is exactly equal to its initial wave function at reg
lar time intervals ofh/E. The particle can escape to infinit
only with a process of Zener tunneling to higher bands
included in the single-band tight-binding models in Eq
~1.4! and~1.2!; the probability of such tunneling is negligibl
small in the experiments of interest here and so will be
nored in our analysis.

We now return our discussion to the full Hubbard mod
Eq. ~1.2!. As was the case in~1.5!, the spectrum of this
Hamiltonian is unbounded from below forEÞ0, and so it
does not make sense to ask for its ‘‘ground state’’ for a
density of particles. Rather, guided by the experimental s
ation of Ref. 2, we are interested in states which are ac
sible from the translationally invariant Mott state~with an
average ofn0 particles on every site! over the experimentally
relevant time scales. The experiment2 begins atE50 with a
Mott insulator withn0 particles per site, rapidly ramps upE
to a value of orderU, and detects the change in the state. F
w!U and for most values ofE, the experiments displaye
little detectable change in the state of the system. We
initially understand this by a simple extension of the arg
ment presented above for the noninteracting modelH0. Con-
sider a ‘‘quasiparticle’’ state of the Mott insulator, created
adding a single additional particle on one site, as shown
Fig. 2~a!. To leading order inw/U, the motion of this qua-
siparticle along the directione is described by an effective
Hamiltonian which is identical in form toH0, but with the
hopping matrix elementw replacedw(n011). So any such
quasiparticle states created above the Mott insulator will
main localized and will not have the chance to extend acr

FIG. 2. Schematic representation of the Mott insulator and
various states coupled to it. Notation as in Fig. 1.~a! A quasiparticle
on site 3; the motion of this quasiparticle is described by the loc
ized wave functions~1.6! but with w replaced by 3w. ~b! A quasi-
hole on site 3; the motion of this quasihole is also described by
localized wave functions~1.6! but with w replaced by 2w.
8-2



im
ow
ite

on
to

th
no
rib
b

at
he

he
-
F
fo

n

b
o
q

so
o

na
in
tic

n

ly a
ow
ur-
o-
1),
ese

ott

be

of
en-
B.
be

of
fac-
in

rip-
to
of

re 3
ole
ks, it
uch
-
en
wo
her
re

o

al

ari-
are

lt is a

use
am-

tate

MOTT INSULATORS IN STRONG ELECTRIC FIELDS PHYSICAL REVIEW B66, 075128 ~2002!
the system to create large changes in the initial state. A s
lar localization argument applies to the quasihole state sh
in Fig 2~b!: it experiences an electric force in the oppos
direction, the effective hopping matrix element iswn0, and
all quasihole states are also all localized in the directione.
Indeed, it is not difficult to see that the same localizati
argument applies to all deformations of the Mott insula
which carry a net charge.

The important exceptions to the above argument for
stability of the Mott state are deformations which carry
net charge. It is the primary purpose of this paper to desc
the collective properties of such neutral states. They will
shown to yield a resonantly strong effect on the Mott st
when E;U, which has been dramatically observed in t
experiments of Greineret al.2 Indeed, Greineret al. have
already identified an important neutral deformation of t
Mott state—it is thedipolestate consisting of a quasiparticle
quasihole pair on nearest-neighbor sites, as shown in
3~a!. A key consequence of our discussion above is that,
w!E ~a condition we assume throughout!, we can safely
neglect the independent motion of the quasiparticle and
the quasihole along the direction ofe. Only their paired mo-
tion as dipoles will be important alonge, although they can
move independently along directions orthogonal toe.

For w50, the dipole state in Fig. 3~a! differs in energy
from the Mott state byU2E. So these states become dege
erate atU5E, and an infinitesimalw leads to aresonant
coupling between them. However, there are a large num
of other states which are resonantly coupled to one of m
of these states, and they also have to be treated on an e
footing. Indeed, it is sufficient for an given state to be re
nantly coupled to any one other state in the manifold
resonant states for it to be an equal member of the reso
family—it is not necessary to have a direct resonant coupl
to the parent Mott insulator. The reader should already no
that multiple dipole deformations of the Mott insulator@like
the state in Fig. 3~b!# are part of the resonant family. I

FIG. 3. Schematic representation of the Mott insulator and
various states coupled to it. Notation as in Fig. 1.~a! A dipole on
sites 2 and 3; this state is resonantly coupled by an infinitesimw
to the Mott insulator in~a! whenE5U. ~b! Two dipoles between
sites 2 and 3 and between 4 and 5; this state is connected
multiple resonant transitions to the Mott insulator forE5U.
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dimensions greater than one, these dipole states are on
small fraction of the set of resonant states, as we will sh
below. We are now in a position to succinctly state the p
pose of this paper:identify the complete set of states res
nantly coupled to the Mott state under the conditions (1.
obtain the effective Hamiltonian within the subspace of th
states, and determine its spectrum and correlations.The re-
sults will allow us to address the strong response of the M
insulator to an electric fieldE;U observed by Greiner
et al.2 and lead to some definite predictions which can
tested in future experiments.

The first step in our program is a complete description
the set of resonant states. We will do this first for one dim
sion in the Sec. I A and for all higher dimensions in Sec. I
The effective Hamiltonian in the resonant subspace will
shown to contain strong correlations among its degrees
freedom, but we will demonstrate that these can be satis
torily treated by available analytic and numerical methods
many-body theory. Before embarking on a detailed desc
tion of our computation, the reader may find it useful
examine Figs. 3 and 4 for an understanding of the origin
the strong correlations in the one-dimensional case. Figu
contains only dipole states: notice that while resonant dip
states can be created separately on nearest-neighbor lin
is not possible to create two dipoles simultaneously on s
links @as in Fig. 4~a!# without violating the resonant condi
tions. This implies an infinite repulsive interaction betwe
nearest-neighbor dipoles in the effective Hamiltonian. T
~or more! dipoles can be safely created when they are fart
apart, as shown in Fig. 3~b!. Thus the dipole resonances a

f

via

FIG. 4. Schematic representation of the Mott insulator and v
ous states coupled to it. Notation as in Fig. 1. Two states which
not part of the resonant manifold.~a! An attempt to create dipoles
between sites 2 and 3 and also between sites 3 and 4; the resu
single dipole of length 2 which has energyU22E relative to the
Mott insulator, and so this long dipole isnot part of the resonant
family of states.~b! A state with energy 3(U2E) relative to the
Mott insulator; this state is not part of the resonant family beca
its largest effective matrix element to any state in the resonant f
ily is of orderw2/U @for U5E; see Eq.~1.8!#. In contrast, all states
within the resonant family are connected to at least one other s
also in the family by a matrix element of orderw.
8-3
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SUBIR SACHDEV, K. SENGUPTA, AND S. M. GIRVIN PHYSICAL REVIEW B66, 075128 ~2002!
not independent of each other, and the wave function c
tains nontrivial ‘‘entanglements’’ between them.

A. One dimension

It is not difficult to see that, in one spatial dimension, t
set of all nearest-neighbor dipole states constitutes the e
family of states resonantly coupled to the Mott insulator
Fig. 1 for U5E and an infinitesimalw. The only subtlety
concerns states like those in Fig. 4~b!, which are not made up
of nearest-neighbor dipoles. Forw50, this state has energ
3(U2E) relative to that in Fig. 1. However, reaching th
state in Fig. 4~b! from any state in the resonant family re
quires a detour through a nonresonant state. A sim
second-order perturbation theory calculation shows that
closest state from the resonant family connected to Fig. 4~b!
is a state with dipoles between sites 3 and 4 and that
effective matrix element between them is

w2n0An0~n011!

2 S 1

U
1

1

2U2ED ; ~1.8!

this is negligibly small, under the conditions~1.1!, compared
to the nonzero matrix elements (5w) between states within
the resonant family. Hence we can safely neglect the sta
Fig. 4~b!. More completely, the argument is that after w
diagonalize the Hamiltonian within the resonant fami
states coupled to that in Fig. 4~b! will differ from it by an
energy of orderw; the coupling in Eq.~1.8! will then be too
weak to induce a resonance.

It is convenient now to introduce bosonic dipole creati
operatorsdl

† to allow us to specify the resonant subspace a
its effective Hamiltonian. LetuMn0& be the Mott insulator
with n0 particles on every site~the state in Fig. 1 isuM2&!.
We identify this state with the dipole vacuumu0&. Then the
single dipole state is

dl
†u0&[

1

An0~n011!
blbl 11

† uMn0&. ~1.9!

Notice that we have placed the dipole operator on the
edge of the dipole which actually resides on links betwe
the lattice sites. Clearly, we cannot create more than
dipole resonantly on the same link: hence the dipoles sa
an on-site hard core constraint

dl
†dl<1. ~1.10!

Moreover, we cannot create two dipoles simultaneously
nearest-neighbor links—this leads to a nonresonant state
that in Fig. 4~a!; such states are prohibited by a hard-co
repulsion between nearest-neighbor sites:

dl
†dldl 11

† dl 1150. ~1.11!

The resonant family of states can now be completely sp
fied as the set of all states of the bosondl which satisfy Eqs.
~1.10! and ~1.11!. A typical state is sketched in Fig. 5~a!.
Notice that the dipole vacuumuMn0& is one of the allowed
states.
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It is now a simple matter to write down the effectiv
HamiltonianHd for the dl . It costs energyU2E to create
each dipole, and each dipole can be created or annihil
with an amplitude of orderw ~this corresponds to the hori
zontal motion of particles in Figs. 1–4!. So we have

Hd52wAn0~n011! (
l

~dl1dl
†!1~U2E!(

l
dl

†dl .

~1.12!

The Hamiltonian~1.12!, along with the constraints~1.10!
and~1.11!, constitute one of the correlated many-body pro
lems we shall analyze in this paper. The eigenstates ofHd
are characterized byn0 and the single dimensionless numb

l[
U2E

w
, ~1.13!

and a description of their properties asl ranges over all rea
values is in Sec. II.@Strictly speaking, the eigenstates ofHd

depend onlyl/An0(n011), but l and n0 do not combine
into a single constant in higher dimensions.#

It is interesting to note that there is no explicit hoppin
term for thedl bosons inHd : it appears that the bosons a
only allowed to be created from, and to disappear into,
vacuum by the first term in Eq.~1.12!. However, this is mis-
leading: as we will see in Sec. II, the combination of t
terms in Eq.~1.12! and the constraint~1.11! does generate a
local hopping term for thedl bosons@see Eq.~2.1!#. Addi-
tional dipole hopping terms also arise from virtual proces
of order w2/U in the underlying Hubbard modelH; how-

FIG. 5. Typical states in the resonant subspace for~a! D51 and
~b! D52. Black circles represent sites with quasiparticles„these
sites haveni5n011 @see Eq.~1.3!# and gray circles represen
quasiholes~these sites haveni5n021), while the remaining sites
haveni5n0. Note thatQl in Eq. ~1.17! is zero for each column;
i.e., the total number of quasiparticles in every column equals
total number of quasiholes in the column to its immediate left. O
in D51 does this constraint imply that all states contain on
nearest-neighbor dipoles.
8-4
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MOTT INSULATORS IN STRONG ELECTRIC FIELDS PHYSICAL REVIEW B66, 075128 ~2002!
ever, these are negligibly small compared to those just m
tioned and do not need to be included inHd .

We close this subsection by noting that the Hamilton
Hd in Eq. ~1.12! and the constraints~1.10! and ~1.11! can
also be written in the form of a quantum spin chain. W
identify the dipole present-absent configuration on a sitel as
a pseudospins l

z up/down (sx,y,z are the Pauli matrices!.
Thens l

z52dl
†dl21 and

Hd5(
l

@2wAn0~n011!s l
x1~U2E!~s l

z11!/2

1J~s l
z11!~s l 11

z 11!#. ~1.14!

The constraint~1.11! is implemented by taking theJ→`
limit of the last term. The spin chain model so obtained is
S51/2 Ising spin chain inboth transverse and longitudina
fields. This is known not to be integrable for finiteJ, but it
does appear that the problem simplifies in theJ→` limit we
consider here.

B. Higher dimensions

We consider here only hypercubic lattices inD spatial
dimensions, withe oriented along one of the principal cub
axes and a lattice spacing in length@e.g., D53 and e
5(1,0,0)#. Other lattices and other directions ofe also allow
for interesting correlated phases and these will be mentio
in Sec. IV.

Extension of our reasoning above quickly shows that
dipole states now constitute only a negligibly small fracti
of the set of states in the resonant family. Once a dipole
been created on a pair of sites separated by the vectore, its
quasiparticle and quasihole constituents can move freely
resonantly, with matrix elements of orderw, in the (D21)
directions orthogonal toe. Allowing this process to occu
repeatedly~while maintaining some constraints discussed
low!, we can build up the set of all resonantly coupled sta
A typical resonant state inD52 is shown in Fig. 5~b!. As in
Sec. I A, it is useful to give an operator definition of th
resonant family. To allow us to distinguish between the
rections parallel and orthogonal toe, we replace the
D-dimensional site labeli by the composite label (l ,n),
wherel is an integer measuring the coordinate alonge ~as in
the one-dimensional case!, while n is a label for sites along
the (D21) transverse directions. Rather than using dip
operators, we now want to work with bosonic quasiparti
(pl ,n

† ) and quasihole (hl ,n
† ) operators, which create states lik

those in Figs. 2~a! and 2~b!, respectively. More precisely, w
now identify uMn0& with quasiparticle and quasihole vacuu
u0&, and so

pl ,n
† u0&[

1

An011
bl ,n

† uMn0&,

hl ,n
† u0&[

1

An0

bl ,nuMn0&. ~1.15!

The set of resonant states can now be specified by a
simple constraints on these operators, which are the ana
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of Eqs.~1.10! and~1.11!. First, there are the obvious on-si
hard-core constraints that no site can have more than
particle or hole:

pl ,n
† pl ,n<1,

hl ,n
† hl ,n<1,

pl ,n
† pl ,nhl ,n

† hl ,n50. ~1.16!

Additionally, because of the manner in which these quasip
ticles and quasiholes appear from the Mott state, the t
number of quasiparticles in the (D21)-dimensional layer
with coordinatel 11 must equal the total number of quas
holes in layerl:

Ql[(
n

~pl 11,n
† pl 11,n2hl ,n

† hl ,n!50. ~1.17!

While the quasiparticles and quasiholes are allowed to m
freely within each (D21)-dimensional layer, they canno
move resonantly out of any layer on their own; this is,
course, related to the localization of the Wannier-Stark lad
states discussed earlier in this section.

Continuing the analogy with Sec. I A, we can now eas
write down the effective HamiltonianHph for the quasipar-
ticles and quasiholes which acts on the set of states defi
by Eqs. ~1.16! and ~1.17!. The terms in the first two lines
are the same as those already present in Eq.~1.12!, but ex-
pressed now in terms of the quasiparticle-hole operat
while the last line is associated with motion along the tra
verseD21 directions:

Hph52wAn0~n011! (
l ,n

~pl 11,nhl ,n1pl 11,n
† hl ,n

† !

1
~U2E!

2 (
l ,n

~pl ,n
† pl ,n1hl ,n

† hl ,n!

2w (
l ,^nm&

~n0hl ,n
† hl ,m1~n011!pl ,n

† pl ,m1H.c.!.

~1.18!

Here^nm& represents a nearest-neighbor pair of sites wit
a single (D21)-dimensional layer orthogonal toe. Notice
that all theQl in Eq. ~1.17! commute withHph , as is re-
quired for the consistency of our approach. As was the c
in one dimension, the properties ofHph are determined by
the single dimensionless constantl in Eq. ~1.13!; these will
be described in Sec. III.

It is worth reiterating explicitly here that upon specializ
tion to the case ofD51 ~when the indicesn,m only have a
single allowed value and the set^nm& is empty!, the Hamil-
tonian Hph above is exactly equivalent to the on
dimensional dipole modelHd in Eq. ~1.12!.

We note in passing that in a manner similar toHd , Hph in
Eq. ~1.18! can also be written as aS51 spin model, with the
empty-qausiparticle-quasihole states on a site correspon
to spin states withSz50,1,21.

The outline of the remainder of the paper is as follow
The properties theD51 modelHd will be described in Sec.
II, while the D.1 modelHph will be considered in Sec. III.
We discuss extensions of our results to other lattices and
8-5
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directions in Sec. IV. Implications of our results for expe
ments appear in Sec. V. The Appendixes contain some t
nical discussion of the nature of the quantum phase tra
tions found in the body of the paper.

II. DIPOLE PHASES IN ONE DIMENSION

This section will describe the spectrum of the on
dimensional dipole HamiltonianHd in Eq. ~1.12!, subject to
the constraints~1.10! and ~1.11!.

An essential point becomes clear simply by looking
the limiting casesl→` and l→2` @the couplingl was
defined in Eq.~1.13!#. For l→` the ground state ofHd
is the nondegenerate dipole vacuumu0&. In contrast, for
l→2` the ground state is doubly degenerate, beca
there are two distinct states with maximal dipole numb
(•••d1

†d3
†d5

†
•••)u0& and (•••d2

†d4
†d6

†
•••)u0&. This immedi-

ately suggests the existence of an Ising quantum crit
point at some intermediate value ofl, associated with an
order parameter which is a density wave of dipoles of per
two lattice spacings. We will shortly present numerical e
dence which strongly supports this conclusion.

Further analytic evidence for an Ising quantum critic
point can be obtained by examining the excitation spectra
the limiting l regimes and noting their similarity to those o
either side of the critical point in the quantum Ising chain11

For l→`, the lowest excited states are the single dipol
u l &5dl

†u0&; there areN such states (N is the number of
sites!, and at l5`, they are all degenerate at ener
U2E. The degeneracy is lifted at second order in a per
bation theory in 1/l: By a standard approach using canonic
transformations, these corrections can be described by
effective HamiltonianHd,eff that acts entirely within the sub
space of single-dipole states. We find

Hd,eff5~U2E!(
l

F u l &^ l u1
n0~n011!

l2

3~ u l &^ l u1u l &^ l 11u1u l 11&^ l u!G . ~2.1!

Notice that, quite remarkably, a local dipole hopping te
has appeared, as we promised earlier at the end of Sec
The constraints~1.10! and~1.11! played a crucial role in the
derivation of Eq.~2.1!. Upon considering perturbations tou l &
from the first term in Eq.~1.12! it initially seems possible to
obtain an effective matrix element between any two statesu l &
andu l 8&. However, this connection can generally happen
two possible intermediate statesu l &→dl

†dl 8
† u0&→u l 8& and

u l &→u0&→u l 8&, and the contributions of the two process
exactly cancel each other for mostl, l 8. Only when the con-
straints~1.10! and~1.11! block the first of these processes
a residual matrix element possible, and these are show
Eq. ~2.1!. It is a simple matter to diagonalizeHd,eff by going
to momentum space, and we find a single band of dip
states. The lowest-energy dipole state has momentump: The
softening of this state upon reducingl is then consisten
with the appearance of density wave order of period 2. T
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higher excited states at largel consist of multiparticle con-
tinua of this band of dipole states, just as in the Ising chai11

A related analysis can be carried out forl→2`, and the
results are very similar to those for the ordered state in
quantum Ising chain.11 The lowest excited states are sing
bands of domain walls between the two filled dipole stat
and above them are the corresponding multiparticle contin

Exact diagonalization

We numerically determined the exact spectrum ofHd for
lattice sizes up toN518. As will be evident below, these
sizes were adequate to reliably extract the limiting behav
of the N→` limit.

The complete spectrum ofHd is shown in Fig. 6 forN
58 andn051. We used periodic boundary conditions on t
dipole Hamiltonian in Eq.~1.12!. Note that these do not cor
respond to periodic boundary conditions for the origin
model~1.2!; indeed, for Eq.~1.2! the presence of the electri
field implies that periodic boundary conditions are not phy
cally meaningful. Nevertheless, it is useful to apply period
boundary conditions to the translationally invariant effecti
model ~1.12!, merely as a mathematical tool for rapidly a
proaching theN→` limit. Note that Fig. 6 shows a uniqu
ground state forl→` and a twofold-degenerate state forl
→2`. Above these lowest-energy states, there is a fin
energy gap, and the excited states have clearly split
bands corresponding to the various ‘‘particle’’ continu
these ‘‘particles’’ are dipoles forl→` and domain walls
between the two ground states forl→2`, as we discussed
in the perturbative analysis above.

We test for a quantum critical point at intermediate valu
of l by plotting the energy gap,D, in Fig. 7. This gap is the
spacing the between the lowest two of the eigenvalues p
ted in Fig. 6~for finite system sizes, these low-lying leve
are always nondegenerate!. It becomes exponentially sma

FIG. 6. All the eigenvalues ofHd for N58 andn051. Note
that the ground state is non-degenerate for positivel, and there are
two low-lying levels with an exponentially small splitting forl
,0 andulu large.
8-6
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MOTT INSULATORS IN STRONG ELECTRIC FIELDS PHYSICAL REVIEW B66, 075128 ~2002!
in the system size as we approach the two degenerate gr
states which are present forl sufficiently negative. In the
opposite limit,D approaches a finite nonzero value, whi
becomesU2E, for l large and positive. If these two phas
are separated by a quantum critical point, we expect the
ergy gap to scale asD;N2z at the critical pointl5lc ,
wherez is the dynamic critical exponent. The Ising critic
point hasz51, and so Fig. 7 plotsND as a function ofl.
We observe a clear crossing point atlc'21.850 which we
identify as the position of the Ising quantum phase transiti
Note that the critical point is shifted away from the nai
value E5U (l50) to E.U because of quantum fluctua
tions associated with the hopping of the dipoles.

A second test of Ising criticality is provided by also re
caling the horizontal axis of Fig. 7 withN. General finite-size
scaling arguments imply that the energy gap should obey
scaling form

D5N2zf„N1/n~l2lc!…, ~2.2!

wheref is a universal scaling function andn is the correla-
tion length exponent. We test for Eq.~2.2! in Fig. 8 with the
Ising exponentn51 and again find excellent agreement.

A final and most sensitive test for Ising criticality is pro
vided by a measurement of the anomalous dimension of
order parameter. The order parameter is the density of
poles at momentump, and so we computed its equal-tim
structure factor

Sp5
1

N K S (
l

~21! ldl
†dl D 2L . ~2.3!

Standard scaling arguments imply that this should scale
N22z2h at l5lc , whereh is the anomalous dimension o
the order parameter. Using the Ising exponenth51/4, we
expectSp;N3/4. This is tested in Fig. 9. Note that there is a
excellent crossing point atlc'21.853. This position of the
crossing point is completely consistent with the cross
point found in Fig. 7. Thus Fig. 9 provides strong eviden

FIG. 7. The spacing between the lowest two eigenvalues ofHd

(5D) as a functionl for various system sizes andn051. We used
periodic boundary conditions forHd .
07512
nd

n-

.

e

e
i-

as

g
e

for the expected Ising exponenth51/4. We have also exam
ined a plot which scales the horizontal axis in Fig. 9 as
Fig. 8: The data collapse is again excellent.

III. QUASIPARTICLE AND QUASIHOLE PHASES
IN HIGHER DIMENSIONS

This section will discuss the properties of theD.1 di-
mensional model of thepl ,n quasiparticles andhl ,n quasi-
holes described the HamiltonianHph in Eq. ~1.18!, subject to
the constraints~1.16! and ~1.17!.

As in Sec. II, it is instructive to first look at the two
distinct limiting values ofl. The nature of the ground state
is very similar to those inD51 for these ranges ofl. For
l→`, we have a unique ground state which contains o
small perturbations from the quasiparticle and quasih

FIG. 8. Scaling plot of the energy gap to test for Eq.~2.2!. We
usedlc521.850 andn051.

FIG. 9. Scaling plot of numerical results for the order parame
structure factorSp defined in Eq.~2.3!. We usedn051.
8-7
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SUBIR SACHDEV, K. SENGUPTA, AND S. M. GIRVIN PHYSICAL REVIEW B66, 075128 ~2002!
vacuumu0&. For l→2`, it is clear that we want to maxi
mize the total number of quasiparticles and quasiholes in
ground state, subject to the constraints~1.16! and ~1.17!.
There are a very large number of ways of doing this, but
considering perturbative corrections to the ground-state
ergy in powers of 1/ulu, it is not difficult to see that it pays to
choose one of two regular arrangements, in which the oc
pation numbers are independent ofn: )n) l evenpl 11,n

† hl ,n
† u0&

or )n) l oddpl 11,n
† hl ,n

† u0&. So there is a twofold-degenera
ground state forl,0 andulu large, associated with a broke
translational symmetry and the development of density w
order of period 2 in the longitudinal direction, in both th
quasiparticle and quasihole densities.

The excitation spectrum in the limiting ranges ofl can
also be determined as in Sec. II. However, the computat
are more involved and we limit ourselves to an analysis
the l→` case in Sec. III A. We will investigate physics
intermediate values ofl in the subsequent subsection
where we will see that the possibilities are richer than
appearance of a single Ising quantum critical point betw
the states just discussed: Section III B will present a me
field theory, while Appendixes A and B will discuss co
tinuum quantum field theories which can describe lon
wavelength fluctuations near the phase boundaries.

A. Excitations for l large and positive

There is a large manifold of lowest excited states, all
which have energyU2E, in the limit l→`. These are the
states with exactly onep quasiparticle and oneh quasihole,
with the particle on the (D21) dimensional layerl 11 and
the hole on the layerl. We label these states by

u l ,n,m&[pl 11,n
† hl ,m

† u0&. ~3.1!

We break the degeneracy between these states by consid
corrections in powers of 1/l. At order 1/l, the term in the
last line in Eq.~1.18! will allow the quasiparticle and the
quasihole to hop independently in their own layers, but w
not induce any couplings between states with different val
of l. The latter appear at order 1/l2, when as in Eq.~2.1!, a
nearest-neighbor dipole pair can hop longitudinally betwe
neighboring layers; again, as inD51, the constraints~1.16!
and ~1.17! play a crucial role in determining these perturb
tive corrections. These processes are described the follow
effective Hamiltonian for the manifold of excited states w
energy'(U2E):

Hph,eff5~U2E!(
l

F(
n,m

u l ,n,m&^ l ,n,mu

2
1

l (
^nm&,k

@n0u l ,n,k&^ l ,m,ku1~n011!u l ,k,n&

3^ l ,k,mu#1
n0~n011!

l2 (
n

~ u l ,n,n&^ l ,n,nu

1u l ,n,n&^ l 11,n,nu1u l 11,n,n&^ l ,n,nu!G . ~3.2!
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Note that the first summation overn,m is unrestricted and
ranges independently over the two variables, while the s
ond is over nearest-neighbor pairs^nm&.

The HamiltonianHph,eff can be analyzed by the standa
techniques of scattering theory. The terms within the first t
summations in Eq.~3.2! lead to a ‘‘two-particle’’ continuum
of quasiparticle and quasihole states, while the terms wit
the last summation allow these states to scatter and pos
form a dipole bound state. We first form states with to
transverse momentumQ' and relative transverse momentu
q' @these momenta are (D21)-dimensional vectors#:

u l ,Q' ,q'&5
1

N'
(
n,n

eiq'•rn1 i (Q'2q')•rmu l ,n,m&, ~3.3!

whereN' is the number of sites in each layer andrn are the
spatial positions of the sites. In this basis of statesHph,eff.
Next, we also transform the single longitudinal coordinatl
to a ‘‘dipole momentum,’’qi :

uqi ,Q' ,q'&5
1

Ni
(

l
eiq i l u l ,Q' ,q'&. ~3.4!

In this basis of states,Hph,eff takes a form which makes th
mapping to standard scattering theory very explicit. The to
transverse momentumQ' and the longitudinal dipole mo
mentumqi are conserved, while there is scattering betwe
different values ofq' :

Hph,eff~Q' ,qi!5(
q'

@«p~q'!1«h~Q'2q'!#uqi ,Q' ,q'&

3^qi ,Q' ,q'u1
w2n0~n011!~112cosqi!

N'~U2E!

3 (
q' ,q'8

uqi ,Q' ,q'&^qi ,Q' ,q'8 u, ~3.5!

where~for a hypercubic lattice!

«p~q'!5
~U2E!

2
22w~n011!(

a
cos~q'a! ~3.6!

and the summation overa extends over theD21 compo-
nents ofq' . The expression for«h(q') is identical to Eq.
~3.6! but with n011 replaced byn0. The Hamiltonian in Eq.
~3.5! is that of a particle moving inD21 dimensions with
momentumq' and dispersion«p(q')1«h(Q'2q'), scat-
tering off a d-function potential at the origin with strengt
w2n0(n011)(112cosqi)/(U2E). Its solution is well
known: in addition to the scattering states, a bound s
must be present inD2151,2 for any infinitesimal attractive
potential and for strong enough attraction forD21.2. So
for the physically relevant cases ofD52,3, a bound state
must form for a range ofqi values nearp. It is clear that the
lowest-energy bound state hasQ'50 andqi5p: this is a
dipole state, and just as inD51, it is a precursor to the
appearance of longitudinal density wave order of period
The appearance of this dipole bound state suggests tha
first quantum phase transition out of the featureless
8-8
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MOTT INSULATORS IN STRONG ELECTRIC FIELDS PHYSICAL REVIEW B66, 075128 ~2002!
gapped phase present for large positivel is into a state with
Ising charge order; however, our discussion here is fo
system with a well-developed gap to quasiparticle and qu
hole states, and it is yet not clear whether this appro
continues to hold when the gap becomes small—we
return to this question in Appendix A.

B. Mean-field theory

This section will present the results of a mean-field ana
sis ofHph . The central idea of the mean-field theory is ve
simple: We treat the quantum fluctuations along the long
dinal direction for alln by the exact numerical treatmen
developed in Sec. II forD51, while the transverse cou
plings are treated in a mean-field manner. One impor
benefit of this approach is that the important constra
~1.16! are treated exactly.

This approach also naturally suggests the appearanc
additional phases which have no analog in theD51 case. In
particular, the motion of singlep andh bosons in the trans
verse direction implies that superfluid order can deve
along theseD21 dimensions only. There is no possibility o
superfluidity in the longitudinal direction because moti
along this direction can occur only via charge neutral dip
pairs which appear in the first term in Eq.~1.18!. This trans-
verse superfluidtherefore has a ‘‘smectic’’ character,12 and
its existence implies that we have to allow for^p& and ^h&
condensates: These appear naturally in our mean-field th

As in the mean-field treatment of the zero-field bos
Hubbard model,6,7 the approximation involves a decouplin
of a hopping term. In particular, we only decouple the l
transverse hopping term in Eq.~1.18!, and obtain the follow-
ing mean-field Hamiltonian for a set of sites, labeled byl,
representing any chain along the longitudinal direction

Hph,m f@^pl&,^hl&#

5(
l

F2wZn0~^hl&hl
†1^hl&* hl !2wZ~n011!~^pl&pl

†

1^pl&* pl !2wAn0~n011!~pl 11hl1pl 11
† hl

†!

1
~U2E!

2
~pl

†pl1hl
†hl !2m l~pl 11

† pl 112hl
†hl !G .

~3.7!

Here Z is the coordination number of any site along theD
21 transverse directions, and the expectation values^hl&
and ^pl& have to determined self-consistently from a diag
nalization of Eq.~3.7! subject to the constraints associat
with Eq. ~1.16!, which now become

pl
†pl<1, hl

†hl<1, pl
†plhl

†hl50. ~3.8!

We have imposed the constraints~1.17! in a mean-field man-
ner by chemical potentialsm l , whose values must be chose
so that

^pl 11
† pl 11&5^hl

†hl& ~3.9!
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is obeyed; note that these constraints are macroscopic, an
there is no approximation involved in using a chemical p
tential to impose them. In practice, the diagonalization
Hph,m f@^pl&,^hl&# must be carried out for a finite number o
sitesl 51, . . . ,N; we found that the mean-field solutions a
proached theN5` limit at quite small and manageable va
ues ofN. The ground-state energy ofHph per chain is not
equal to the lowest eigenvalue,E0, of Hph,m f@^pl&,^hl&# but
is easily computable from it by the relation

Eph,m f5E01wZ(
l

@n0u^hl&u21~n011!u^pl&u2#.

~3.10!

Indeed, we can also vieŵpl& and^hl& as arbitrary complex
numbers which are determined by the minimization of E
~3.10!.

The results of the solution of the above mean-field eq
tions are summarized in the schematic phase diagram
Fig. 10 and in the numerical results in Figs. 11 and 12. I
useful to discuss the phases, in turn, as a function of decr
ing l.

For l very large and positive~to the right of the pointA in
Fig. 10!, no symmetry is broken, and we have a featurel
ground state with no superfluidity and an energy gap to
excitations.

There is a superfluid-insulator transition atA driven by
the condensation of thep and h bosons. The superfluidity
appears in the direction transverse to the electric field, and
layers behave equivalently. We will examine fluctuatio

FIG. 10. Schematic phase diagrams as a function ofl. In ~a! we
display the topology of the phase diagram found by the solution
the mean-field equations: thin lines are second-order quantum p
transitions, while the thick line is a first-order transition. The par
of the l index is indicated as a subscript to thep operators. The
expectation values ofh quasiholes obey the same relations as th
for the p quasiparticles, but with the roles of ‘‘even’’ and ‘‘odd
interchanged. The Ising density wave order is present for alll to
the left of C. In ~b! we display a hypothetical phase diagram, po
sibly induced by fluctuations, in which the first-order transition
replaced by two second-order transitions; now Ising order is pre
at l to the left ofC1. There are superfluid-insulator transitions atA,
B, C, andC2 and Ising density wave transitions atC andC1.
8-9
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near this critical point in Appendix A and show that the i
terlayer coupling is irrelevant near the critical point inD
53, and so each layer is described by an independent cri
theory.

As shown in Fig. 10~a!, the mean-field theory exhibits
first-order quantum transition at the the pointC associated
with the sudden development of Ising density wave ord
i.e., the states withl to the left of C have ^peven

† peven&
Þ^podd

† podd&, and similar for the density of theh bosons. In
mean-field theory, the state to the immediate left ofC also
has the loss of thep condensate in the odd layers~say! and
the loss ofh condensate in the even layers. In general, i
quite possible that fluctuations, beyond those included in
present mean-field theory, will replace the first-order tran

FIG. 11. Mean-field numerical values of the condensates^pl&
and ^hl& as a function ofl for n051 and Z54. The solutions
shown are obtained by diagonalizing Eq.~3.7! for N56, but essen-
tially identical results are obtained forN54.

FIG. 12. As in Fig. 11. The values of̂hodd1heven& are very
close, but not identical, to thep values shown above.
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tion at C by two second-order transitions atC1 and C2, as
shown in Fig. 10~b!. At the first transition atC1, the order
parameter is only the Ising density wave, while there isp and
h transverse superfluidity in all layers; the second transit
at C2 involves the continuous vanishing of thep ~h! conden-
sate in the odd~even! layers in a superfluid-insulator trans
tion, in the presence of a background of Ising density wa
order.

The final transition at the pointB involves loss of allp
and h condensates. There is long-range Ising density w
order at alll to the left ofB, and a gap to all excitations.

The theory of fluctuations about these mean-field res
is discussed in Appendixes A and B. As we have alrea
noted, these could be strong enough to also modify the
pology of the phase diagram in Fig. 10~a!. One extreme pos-
sibility is that the transverse superfluid phases could dis
pear entirely, and we are left only with two insulating phas
one with Ising density wave order and the other without;
phase diagram is then as inD51. However, we show in
Appendix A that the value of a particular critical expone
determines that this is not the generic situation.

IV. OTHER FIELD ORIENTATIONS AND LATTICES

Our discussion has so far limited itself to hypercubic l
tices, with the direction of the electric fielde oriented along
one of the principal axes. Similar analyses can be carried
for other lattices and for other directions ofe. A large variety
of correlated phases appear possible, including many no
lated to those already discussed. We will illustrate these p
sibilities by an example here, but leave a more detailed
cussion to future work.

Consider a square lattice~in D52) but with e5(1,1). In
this case, the resonant transitions from the Mott insula
involve moving abi boson by one lattice spacing, eithe
along the1x or 1y direction. However, once such a dipo
has been created, the quasiparticle and the quasihole ca
move resonantly to any other sites~except by processes o
orderw2/U which we have consistently neglected here!. So
the resonant subspace can be described completely in t
of dipole states, just as in theD51 case discussed earlier.
typical state is illustrated in Fig. 13. The effective Ham
tonian of this space of dipole resonant states is identica
form to Eq.~1.12!:

H d852wAn0~n011!(
a

~da1da
†!1~U2E!(

a
da

†da ,

~4.1!

except now the labela extends over the links of the squa
lattice. There continues to be a hard-core constraintda

†da

<1 like Eq.~1.10!, but the possibility for new physics arise
from the complexity of the generalization of the constra
~1.11!, which is now

da
†dadb

†db50 for linksa,b which share a common site.
~4.2!
8-10
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MOTT INSULATORS IN STRONG ELECTRIC FIELDS PHYSICAL REVIEW B66, 075128 ~2002!
Note that each dipole blocks the occupancy of dipoles on
neighboring links. It would be interesting to determine t
properties ofH d8 subject to the constraint~4.2!.

The possibility of rich physics becomes apparent in thin
ing about the casel,0 and ulu large. Here the low-lying
manifold of states corresponds to maximizing the numbe
dipoles, and these are in one-to-one correspondence with
close-packed dimer coverings of the square lattice. A nat
ring-exchange term of the dipole bosons also becomes ap
ent upon considering perturbative corrections in powers
1/ulu: this derivation is similar in spirit to that in Sec. II~see
Fig. 13!. We emphasize that the dominant ring exchan
does not come from virtual higher-order processes in
underlying Hubbard modelH ~which are strongly suppresse
by factors ofw/U), but is already contained within the phy
ics of the resonant subspace as described by Eqs.~4.1! and
~4.2!. In analogy with other studies of quantum dim
models13–15and boson ring-exchange models, possibilities
bond-ordered phases open up. Fractionalized and Bose m
phases16 are also possible, but these may be more likely
nonbipartite lattices.

We close by noting that it is easily possible to oriente so
that only one direction is resonant. For a cubic lattice inD
53 this can be done by choosinge5(1,a,b) where a,b
Þ0,1 are some arbitrary real numbers. Then resonant tra
tions to dipole states can occur only along thex direction,
and the resonant manifold separates into decoupled
dimensional systems, each of which is separately descr
by the one-dimensional~1D! dipole HamiltonianHd in Eq.
~1.12!. This may be a simple way of experimentally realizin
the modelHd .

V. IMPLICATIONS FOR EXPERIMENTS

An important issue that must be faced at the outset is
extent to which the nonequilibrium time-dependent expe
ments can be described by the ground and low-energy s

FIG. 13. A typical state in the resonant subspace for a squ
lattice with e5(1,1). Representation is as in Fig. 5. The quasip
ticles and quasiholes occur only occur in dipoles oriented along
1x or 1y directions. Note that it is possible for dipoles to under
a ring exchange around a plaquette, in which the configura
around plaquettea can become like that around plaquetteb; this
process is contained in the resonant modelH d8 in Eqs. ~4.1! and
~4.2! and doesnot require much weaker virtual processes in t
Hubbard modelH ~which are suppressed by powers ofw/U).
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of the effective models that have been discussed in this
per. In the experiments of Greineret al.,2 the ‘‘electric field’’
~in practice, this is realized by a magnetic field gradient! is
turned from an initial zero value toE in a time of orderh/w.
In a system under the conditions~1.1!, this may not allow
easy access of the ground state. As an alternative, we sug
that E be ramped up rapidly to a value to the right of th
point A in Fig. 10, and then slowly increased through t
possible critical points in Fig. 10. This could produce sta
with either the density wave Ising order, or the transve
superfluid order.

Having produced such states, the next challenge is to
rectly detect the quantum order parameters associated
the phases in Fig. 10. We address two possible probes in
subsections below.

A. Momentum distribution

One experimental quantity that is relatively easy to m
sure is the momentum distribution of the atoms contained
the optical lattice. This is done by shutting off the lattic
potential and the trapping potential and allowing the atoms
freely expand until the resulting cloud is large enough that
density profile can be spatially resolved optically. The sc
to which the cloud expands before measurement can be m
much larger than the original lattice dimensions. In this lim
the final spatial position at which an atom is detected de
mines the momentum at which the momentum distribut
function is being measured.

The momentum distribution for the boson Hubbard mo
containingN sites is given by

P~q!5u f ~q!u2
1

N (
j ,k

eiq•(r j 2r¢k)^bj
†bk&, ~5.1!

where f (q) is the form factor for the tight-binding orbital
associated with the lattice potential and the momentumq
5mR/(\tex), where R is the distance from the detectio
position to the center of the trap,m is the mass of the atoms
and tex is the time elapsed in the expansion~this expression
ignores the influence of gravity, but an appropriate modifi
tion is straightforward!. The development of off-diagona
long-range order peaks the momentum distribution at
values ofq equal to the reciprocal lattice vectors of the o
tical lattice potential and has been used as an experime
signature of the superfluid phase.1,2

Let us first consider theD51 case. A very important
consequence of our restriction to the subspace of reso
states is that the boson correlator^bl

†bl 8& vanishes for
u l 2 l 8u.1. Hence Eq.~5.1! becomes (q is the component of
q in the direction of the ‘‘electric’’ field!

P1D~q!5u f ~q!u2Fn01
An0~n011!

2

3(
l

$eiq^dl
†&1e2 iq^dl&%G , ~5.2!

where the lattice spacing has been taken to be unity, andl
†

is the dipole creation operator defined in Eq.~1.9!. For the
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periodic boundary conditions we have used~as we noted
earlier, such boundary conditions are not physical, but t
should not modify the results in the limit of large syste
sizes!, the values of̂ dl& depend only on the parity ofl ~a
very small ordering field is applied to lift the Ising symmetr
and we choose one of the ground states in the region
spontaneous Ising order!, and hence the overall amplitude o
Eq. ~5.2! is determined only bŷ deven&1^dodd&. We show
our numerical results for these and other related quant
for the HamiltonianHd in Eq. ~1.12! in Fig. 14. There is a
broad maximum in^deven&1^dodd& near the Ising critical
point, as this is the region with the maximal dipole numb
fluctuations. The critical singularity in this quantity atl
5lc is determined by that of the energy operator of the Is
field theory: this singularity is weak and is essentially uno
servable in Fig. 14. The quantities sensitive to the Ising or
parameter~such aŝ deven&2^dodd&) show more singular be
havior in Fig. 14 nearlc determined by the magnetizatio
exponentb. However, these observables are not detecta
by a measurement of the momentum distribution function

In higher dimensions (D.1) for the case wheree is
aligned along one of the lattice directions, the dependenc
the distribution function onqi should be qualitatively similar
to theq dependence in theD51 case discussed above. How
ever, a much clearer signal of the transverse superflui
should be visible. The presence of the^p& and ^h& conden-
sates implies that the correlator~5.1! has phase-coherent con
tributions whenr j2r k lies in the plane perpendicular to th
applied ‘‘electric’’ field. This implies that in states with trans
verse superfluidity, there should be Bragg peaks alonglines
in q spacewith values ofq' equal to the reciprocal lattice
vectors of the (D21)-dimensional lattice lying in the plan
perpendicular toe. As the transverse dimensionality isD
2152, the superfluid order can only be quasi long range
nonzero temperature, and hence the Bragg peaks are no
d functions in the infinite-volume limit, but are power-la
singularities. Experimental detection of these Bragg lin
would be quite interesting.

FIG. 14. Ground state expectation values of^dl& and^dl
†dl& for

the D51 modelHd in ~1.12!. The results are forN516 sites and
periodic boundary conditions. A very small ordering field was a
plied to choose one of the degenerate Ising ground states prese
sufficiently negativel. We have chosen the gauge in which^d& are
real.
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B. Ising order parameter

We have seen that the Ising order is not directly reflec
in the momentum distribution and hence cannot be meas
in the free expansion method described above. The pro
ties of the Ising order parameterf are discussed in Appendi
B; one convenient definition forf is

f5
1

N (
l

~21! l^dl
†dl& ~5.3!

in D51 @see Eq.~2.3!#, and a related definition can be mad
for higherD. One possibility for coupling to the Ising orde
parameter experimentally would be to introduce a pha
locked subharmonic standing wave at half the wave vecto
the optical lattice so that the standing wave takes the form~in
1D!

F~x,t !}@cos~Qx!cos~Qct!1Bcos~Qx/21u!cos~Qct/2!#.
~5.4!

Squaring this and taking the time average gives the effec
lattice potential

V~x!}2@cos2~Qx!1B2cos2~Qx/21u!#. ~5.5!

Adjusting the relative phase tou50 or p/2 adds a ‘‘stag-
gered magnetic field’’ term to the Ising Hamiltonian

HB}6B2f. ~5.6!

A simpler experimental method for the case where
trap confinement is strong in the directions transverse to
axis of the 1D lattice is the following. An additional standin
wave ~derived from the same laser! but oriented in they
direction ~say! would yield

F~x,y50,t !}@cos~Qx!cos~Qct!1B cos~Qct!# ~5.7!

and hence a potential along thex axis of

V~x,y50!}2@cos2~Qx!12Bcos~Qx!1B2#, ~5.8!

which would also couple to the Ising order

HB}Bf. ~5.9!

In either case, such a perturbation could be used to break
Ising symmetry and selectively populate one of the two Is
states. In addition, it could be used tomeasurethe order
parameter itself. The ac Stark shift of the atomic hyperfi
levels would differ between adjacent sites. The relat
strengths of the split hyperfine absorption lines would th
be a measure of the Ising order parameter.17
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APPENDIX A: FLUCTUATIONS AND QUANTUM FIELD
THEORIES: SUPERFLUID-INSULATOR TRANSITIONS

The mean-field theory of Sec. III B can be used as a st
ing point for a more sophisticated treatment of fluctuatio
Such fluctuations will modify the mean-field exponents
the vicinity of the second-order phase boundaries in F
10~a!, but could also change the topology of the phase d
gram to that in Fig. 10~b!.

We analyze fluctuations about the mean-field results us
a method very similar to that described in Chap. 10 of R
11 for the Hubbard model. We decouple theintralayer hop-
ping terms inHph @those in the last line of Eq.~1.18!# only
by Hubbard-Stratonovich transformations using comp
fields Pl(r' ,t) and Hl(r' ,t) wherer' is a spatial coordi-
nate for theD21 transverse directions andt is imaginary
time. Then, after standard simplifications, we obtain an
pression for the partition functionZph of Hph which has the
following schematic form:

Zph5E DPl~r' ,t!DHl~r' ,t!

3expF2E dD21r'~S01S1!G . ~A1!

The actionS0 involves couplings only within a single layerl,
but with different values ofr' ,

S0[E dt(
l

@Kpu¹'Pl~r' ,t!u21r puPl~r' ,t!u2

1Khu¹'Hl~r' ,t!u21r huHl~r' ,t!u2#, ~A2!

andKp,h , r p,h are coupling constants. Note that the facto
of n0 andn011 in the last line of Eq.~1.18! break particle-
hole symmetry and so there is no special symmetry rela
between these coupling constants. The actionS1 couples dif-
ferent layers and times together for the same value ofr' :

e2S1[E Dpl~t!Dhl~t!P@pl~t!,hl~t!#

3expF2E dtH(
l

S pl
† ]pl

]t
1hl

† ]hl

]t D
1Hph,m f@Pl~r' ,t!,Hl~r' ,t!#J G , ~A3!

with Hph,m f defined in Eq.~3.7!, andP is a projection op-
erator which represents the constraints~3.8! ~these could be
imposed formally in the functional integral by a very stro
on-site repulsive interaction among thepl andhl bosons!. As
in Sec. III B, we have imposed the constraints~1.17! by
time-independent Lagrange multipliers~‘‘chemical poten-
tials’’ ! m l : As we noted earlier, there is no approximatio
involved in neglecting the fluctuations ofm l , because there
is only one constraint per layer and there are a macrosc
number of particles within each layer. The values ofm l are to
be determined at the end by the requirements
07512
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] lnZph

]m l
50. ~A4!

Further progress in describing the properties ofZph re-
quires some understanding of the structure ofS1. This was
already addressed to some extent in Sec. III B where
explored the properties of the HamiltonianHph,m f . How-
ever, here we need to generalize that analysis to the
where its arguments are time-dependent fieldsPl(r' ,t)
Hl(r' ,t). This is quite an involved task, but we will onl
need some general constraints that are placed on the stru
of S1 by the principles of gauge invariance. In particula
associated with the conservation laws~1.17!, we observe that
Zph is invariant under the time- and layer-dependent tra
formations generated by the arbitrary fieldf l(t):

pl 11→pl 11eif l (t),

hl→hle
2 if l (t),

Pl 11→Pl 11eif l (t),

Hl→Hle
2 if l (t),

m l→m l1 i
]f l

]t
. ~A5!

We are interested here only in the case of time-independ
m l , and so this transformation takesm l into an unphysical
set of values; nevertheless, as we will see shortly, Eq.~A5! is
still useful in placing constraints onS1 in the physical
regime.

First, we address the influence of fluctuations by a
proaching the transition involving condensation ofPl , Hl
from the side of large and positivel; i.e., we increaseE ~and
decreasel) until mean-field theory indicates we are a
proaching a phase with transverse superfluidity at the poinA
in Fig. 10. The ground state ofHph,m f is translationally in-
variant in this region, and so we can safely assume tha
the coupling constants inS1 are also independent ofl. Simi-
larly, we can assume thatm l is also independent ofl. If we
were to approach the condensation ofPl , Hl from the oppo-
site side of negativel, the ground state ofHph,m f would
have a broken Ising symmetry, and the following analy
would only need to be modified by allowing all coupling
and m, to depend upon thel sublattice. We describe th
actionS1 by expanding it in powers of the fieldsPl , Hl and
in their temporal gradients~ther' andt dependence of thes
fields is now implicit!; to second order in the fields and t
first order in temporal gradients, the most general terms
variant under Eqs.~A5! are

S15(
l
E dtF K̃pPl*

]Pl

]t
1K̃hHl*

]Hl

]t

1K̃phS Pl 11

]Hl

]t
1Pl 11*

]Hl*

]t D 1 r̃ puPl u21 r̃ huHl u2

1 r̃ ph~Pl 11Hl1Pl 11* Hl* !G . ~A6!
8-13
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Consistently requiring invariance of Eq.~A6! under the time-
dependent gauge transformations~A5! to the order we have
performed the expansion inS1 demands additional con
straints on the coupling constants above; these are

K̃p52
] r̃ p

]m
, K̃h5

] r̃ h

]m
, K̃ph5

] r̃ ph

]m
. ~A7!

There are also a large number of permitted higher-or
terms inS1 which we have not written down explicitly; som
of these will play an important role below.

Armed with the low-order terms in the actionS01S1 con-
trolling the fluctuations ofPl andHl we can now use stan
dard techniques to focus on the low-energy excitations. I
natural to diagonalize the quadratic form displayed in th
actions: this will lead to two eigenmodes with distinct eige
values. We focus attention on the lower eigenmode, w
integrating out the higher eigenmode. We identify the low
eigenmode by the fieldC l : this has the structure

C l~r' ,t!5cpPl 11~r' ,t!1chHl* ~r' ,t! ~A8!

for some constantscp,h . Note that we are performing th
same ‘‘rotation’’ in field space for allr' andt ~and hence all
frequencies!. This ensures thatC l has a simple behavior un
der Eqs.~A5!:

C l→C le
if l (t). ~A9!

We integrate out the high-energy mode orthogonal to
~A8! and obtain our final effective action now expressed
terms ofC l :

Zph5E DC l~r' ,t!expF2E dD21r'dt(
l

~L01L1!G ,
L05u¹'C l u21U]C l

]t U2

1r cuC l u21
u

2
uC l u41vuC l u2uC l 11u2,

L15KcC l*
]C l

]t
. ~A10!

We have rescaledC l and time to obtain unit coefficients fo
the first two terms inL0, and ther' dependence ofC l is
implicit. We have also written down a quartic nonlineari
within a layer~u! and the simplest coupling between neig
boring layers (v) which preserves invariance under Eq.~A9!;
we expect both these couplings to be positive because o
repulsive interactions between the microscopic bosonic
grees of freedom. The parameterr c tunes the system acros
the quantum phase transition at the pointA in Fig. 10 which
resides atr c5r cc ; the transition is from the featureles
gapped phase at large positivel (r c.r cc) to a phase with
superfluidity in the transverseD21 dimensions asl is de-
creased (r c,r cc); the superfluidity is associated with th
condensation ofC l .

Just as in the derivation of Eqs.~A7!, we can also exam
ine the consequences of time-dependent gauge transfo
tions in Eqs.~A5! and~A9! on Eqs.~A10!. This now leads to
the relationship
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Kc52
]r c

]m
. ~A11!

Combined with Eq.~A4!, the above result now yields a cru
cial result. Close to the quantum critical point, the singu
free energy associated withZph is determined directly byr c .
For this singular term to obey Eq.~A4!, we conclude~as also
argued in Chap. 10 of Ref. 11! that ]r c /]m50 at r c
5r cc ; Eq. ~A11! now implies

Kc50 at r c5r cc . ~A12!

So we can neglectL1, and the critical theory is describe
entirely byL0. Within each layerl, this theory has the rela
tivistic invariance of (D21)11 spacetime dimensions an
dynamic critical exponentz51.

Before turning to an examination of the properties of E
~A10!, we pause to discuss the modifications required to
scribe the onset of transverse superfluidity with increasinl
in the regionl,0 at the pointB in Fig. 10 @a similar rea-
soning can also be applied to the pointC2 in Fig. 10~b!#.
Here, long-range Ising order is already present inHph,m f for
l sufficiently negative. We can proceed to a description
the superfluid transition as above, but as noted earlier,
couplings in Eqs.~A10! will acquire anl dependence which
modulates with period 2. The tuning parameterr c will also
be different for even and oddl. Consequently onlyC l with l
even~say! will become critical near the transition, whileC l
with l odd remains noncritical and can be integrated out. T
simplest interlayer coupling between critical modes is n
uC l u2uC l 12u2, but its coefficient should be small and is like
to be attractive.

We now return to an examination of Eqs.~A10! for the
case ofl-independent couplings at the transition withU2E
positive at the pointA in Fig. 10. It remains to examine th
consequences of the interlayer couplingv on the standard
theory of the superfluid-insulator transition. Atv50, we
have the standardw4 field theory with O~2! symmetry in
(D21)115D spacetime dimensions. As a first step, we c
compute the scaling dimension ofv at its critical point. A
standard power-counting argument shows that

dim@v#5
2

n
2D5

a

n
, ~A13!

wheren anda are the standard correlation length and ‘‘sp
cific heat’’ exponents inD spacetime dimensions. InD53,
the O~2! fixed point has18 a520.015,0, and so we con-
clude thatv is formally irrelevant. InD52, the very weak
specific heat singularity at the Kosterlitz-Thouless transit
suggests the same conclusion.

A more complete analysis of the influence ofv can be
obtained by considering a physical susceptiblity for order
in the longitudinal direction. As we have seen in Secs. II a
III B, the simplest allowed ordering is a density wave
period 2. The tendency to this ordering is measured by
static susceptibilityxp :
8-14
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xp5
1

Ni
(
l ,l 8

E dD21r'dt~21! l 1 l 8

3^uC l~r' ,t!u2uC l 8~0,0!u2&. ~A14!

Note that this response function is similar toSp in Eq. ~2.3!,
but we are considering here a zero frequency response, w
Eq. ~2.3! involved an equal-time correlator. We can compu
Eq. ~A14! in powers of v and, by a familiar Dyson-type
argument, write it as

xp5
C

122vC , ~A15!

whereC is an ‘‘irreducible’’ correlator within a single laye
~it is irreducible with respect to cutting av interaction line!:

C5E dD21r'dt^uC l~r' ,t!u2uC l~0,0!u2&. ~A16!

The computation leading to Eqs.~A15! and ~A16! is the
field-theoretic analog of the computations which lead to
dipole bound state induced by the interlayer coupling in
strong-coupling analysis of Sec. III A. Ignoring the influen
of v on C, standard scaling arguments imply thatC has a
singular part which behaves as

C;ur c2r ccu2a. ~A17!

If we had a.0, then the denominator in Eq.~A15! would
vanish at somer c.r cc for any smallv, andxp would then
diverge: this would imply the presence of an Ising dens
wave transition before the onset of superfluidity. Howev
a,0 in D53, and so this condition does not apply. Neve
theless, there is a significant~albeit finite! enhancement o
the specific near the O~2! critical point in D53, and so the
instability in xp may well occur for a moderate value ofv. If
so, the mean-field phase diagram would be modified, and
Ising ordered phase would fully overlap and extend beyo
the region with transverse superfluidity. Indeed, under s
able conditions, the superfluid phase could also shrink
zero, and we would then have only a single Ising transit
between two insulating phases. Alternatively, if the Isi
fluctuations are weaker,xp could diverge somewhere in th
superfluid phase to the left ofA in Fig. 10, and then the
mean-field phase diagram would be modified to the struc
in Fig. 10~b!.

APPENDIX B: ISING PHASE TRANSITION

In Appendix A we completed a description of fluctuatio
near all the superfluid-insulator transitions in Fig. 10. It
mains to describe the second-order Ising critical pointC1 in
Fig. 10~b!; this we do in the present appendix.

As usual, we expect the Ising phase transition to be r
ized by a quantum field theory of a real scalar fieldf(r ,t),
wherer5( l ,r') is a D-dimensional spatial coordinate. Th
main subtlety here is that the Ising transition occurs in
background of transverse superfluid order, and correct
from superflow fluctuations can lead to anisotropic singu
corrections to the critical theory. A theory of an Ising ord
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parameter coupled to isotropic superflow fluctuations
been analyzed by Frey and Balents;19 here, we will show that
the particular anisotropic nature of both the superfluid a
Ising order leads to a more singular coupling between
two order parameters.

Any observable sensitive to the period-2 modulation
the density of particles or holes can be used to define
order parameterf(r ,t). A convenient choice in our presen
continuum formulation is to take

f~ l ,r' ,t!;~21! l uC l~r' ,t!u2. ~B1!

An effective actionSf for the Ising fieldf can be generated
by usingf as a Hubbard-Stratonovich field to decouple t
v term in Eqs.~A10!. This leads to an action with the struc
ture

Sf5E dDrdtF1

2
~]tf!21

K'

2
~¹'f!21

K i

2
~¹if!21uIf

4G
2wI(

l
E dD21r'dt~21! l uC l~r' ,t!u2f~ l ,r' ,t!,

~B2!

where the fluctuations ofC l are described by Eqs.~A10! and
we have included the usual analytic terms present in thef4

theory of an Ising quantum critical point. The last term in E
~B2! represents a linear coupling between the Ising or
parameter and density fluctuations in the superfluid state
the isotropic case considered by Frey and Balents suc
linear coupling was absent, and the simplest allowed c
pling was betweenf2 and the density fluctuations: this wa
because the Ising order parameter represented a density
at a large wave vector, and they coupled linearly only
fluctuations of the superfluid phase at the same wave ve
and the latter are quite high energy. In the present case,
the (21)l factor in the last term in Eq.~B2! also shows that
f couples linearly to the superfluid phase fluctuations a
wave vectorqi5p. However, the key difference here is th
the superfluidity is present only along the transverse dir
tion, and to leading order, the superfluid phase fluctuati
are independentof qi .

The singular effect of thewI term in Eq. ~B2! can be
illustrated by integrating out theC l using the action~A10! in
a single-loop approximation. To leading order inu, we are in
the transverse superfluid state as long asr c,0, and a simple
calculation of the phase and amplitude fluctuations of
superfluid order parameter shows that we generate the
lowing term inSf :

1

2u (
qi ,q' ,v

uf~qi ,q' ,v!u2
ur cu~q'

2 1v2!

ur cu~q'
2 1v2!1Kc

2v2/2
,

~B3!

wherev is an imaginary frequency. Note that this is a si
gular function ofq' and v only whenKcÞ0. We do not
expect Kc50 near the Ising critical point, because exa
particle-hole symmetry is not present in the underlyi
Hamiltonian, and the arguments which lead to Eq.~A12!
8-15



u

h

io
o
a

as

nd

we

SUBIR SACHDEV, K. SENGUPTA, AND S. M. GIRVIN PHYSICAL REVIEW B66, 075128 ~2002!
hold only at the superfluid-insulator transition. All the co
plings in Sf can be expected to be a smooth function ofm,
and the constraint is now expected to lead only to a Fis
renormalization20 of exponents. An analysis ofSf with Eq.
~B3! included requires a renormalization group computat
this we leave to future work, as a full discussion of the ren
malization of the momentum dependence of the propag
requires a two-loop analysis.
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In closing, we note that althoughKcÞ0, in practice the
degree of particle-hole symmetry breaking is quite small,
indicated by the almost equal values of^p& and^h& in Figs.
11 and 12. SoKc can also be expected to be quite small, a
we should, therefore, also consider the caseKc50. In this
case, Eq.~B3! does not induce any singular terms, and
have to consider terms induced byC l fluctuations at higher
orders inu and also the term included in Ref. 19.
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