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Recent experiments on ultracold atomic gases in an optical lattice potential have produced a Mott insulating
state of®’Rb atoms. This state is stable to a small applied potential gra@iarfelectric” field), but a resonant
response was observed when the potential energy drop per lattice spkging/ds close to the repulsive
interaction energyU) between two atoms in the same lattice potential well. We identify all states which are
resonantly coupled to the Mott insulator fér=U via an infinitesimal tunneling amplitude between neighbor-
ing potential wells. The strong correlation between these states is described by an effective Hamiltonian for the
resonant subspace. This Hamiltonian exhibits quantum phase transitions associated with an Ising density wave
order and with the appearance of superfluidity in the directions transverse to the electric field. We suggest that
the observed resonant response is related to these transitions and propose experiments to directly detect the
order parameters. The generalizations to electric fields applied in different directions and to a variety of lattices
should allow study of numerous other correlated quantum phases.
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[. INTRODUCTION experiments of Greineet al2 More precisely, we shall dis-
cuss the regime

Recent experiments on ultracold trapped atomic gases
have opened a new window onto the phases of quantum |U—E|,w<E,U, (1.9
matter:? A gas of bosonic atoms has been reversibly tuneq, p,ijo allowing the ratio U— E)/w to be arbitrary
between superfluid and insulating ground states by varying \ye mention, in passing, another experimental system
the strength of a periodic potential produced by standingyhich has been studied under conditions analogous to Eq.
waves of laser light These experiments offer unprecedented(1.1). Electron transport has been investigated in arrays of
control of the microscopic parameters and allow explorationaAs quantum dotdwhen the voltage drop between neigh-
of parameter regimes not previously available in analogougoring quantum dotsthe analog ofE) is at or above the
condensed matter systems. charging energy required to make the transititive analog

This paper focuses on one such “extreme” parameter reof U). However, in these systems the excess electron energy
gime. Letw be the amplitude for an atom to tunnel betweencan be dissipated away to the underlying lattice, and so it
neighboring minima of the standing laser wave &hbe the
repulsive interaction energy between two atoms in the same
potential well. Wherw is smaller than a value of ordél, the
ground state is a Mott insulator for certain values of the
atomic density or chemical potential. In this state, the aver- 8

age number of atoms in each potential well must be an inte-

ger ny (see Fig. 1L Now consider “tilting” this Mott 8
insulatof—i.e., placing it under an external potential which 8
decreases linearly along a particular direction in space. Con-

ceptually, it is useful to imagine that the atoms carry a ficti-

tious “charge,” and then this potential gradient corresponds

to applylng a un|form “electric” f|e|dE (|n pract|ce th|s f|e|d FIG. 1. Schematic I’epl’esenta’[ion of the Mott insulator and of
is applied by changing the position of the center of thevarious states coupled to it. Shown ab(_)v_e is the Mott ins_ulator v_vith
atomic traﬁ). We measuré in units of energy, defining to n0=2.. Each well represents a local minimum of the optlcgl Iattlcg
be the maximal drop in potential energy of an atom movingpotentlal—these we number 1—5_ from the Igft. The potential gradi-
between nearest-neighbor minima of the periodic potentia?nt leads to a_unlform decrea§e in the on-site energy of atom as we
[the potential energy drop depends upon the choice of thmove to the right. The gray circles are thebosons of Eq(1.2).

. . . ‘Ia'he vertical direction represents increasing energy: the repulsive
hearest n_elghbor, and we chqose the direcsiaaiong W_h'Ch interaction energy between the atoms is realized by placing atoms
the drop is the largest to defirt€]. In almost all Mott insu-

R . vertically within each well, so that each atom displaces the remain-
Iators.co.nS|st|ng of electrons_or quper pairs, all reasonablﬁ,]g atoms upwards along the energy axis. We have chosen the di-
electric fields that can be achieved in the laboratory are smallneter of the atoms to equal the potential energy drop between

enough so that the relatioi<w,U is well satisfied. Re- npeighboring wells—this corresponds to the conditlér E. Con-
markably, in the new atomic systems significantly largersequentlya resonant transition is one in which the top atom in a
“electric” fields are easily achievable: This paper shall dis-well moves horizontally to the top of a nearest-neighbor web-
cuss the regim&~ U which has been explored in the recent tions either upwards or downwards are nonresonant.
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appears that the threshold behavior can be described by dis-
sipative classical modefsin contrast, for the atomic systems

of interest in the present paper, there is essentially no dissi-
pation over the time scales of interest, and a fully quantum
treatment must be undertaken.

It is useful to explicitly state our model Hamiltonian for
the Mott insulator for our subsequent discussion. We will
consider only Mott insulators of bosons, although the exten- (a)
sion to fermionic Mott insulators is possibléle label the
minima of the periodic potential by lattice siteand assume
that all bosons occupy a single band of “tight-binding” or-
bitals centered on these sites. Ibdtbe the creation operator
for a boson on sitd. We will study the boson Hubbard

-8
modef (b)
u . , .
H= _WZ (binJ-+bJTbi)+— 2 ni(ni_l)_Ez ern, FIG. 2. Schematic representation of the Mott insulator and of
M 29 i various states coupled to it. Notation as in Fig(a) A quasiparticle

(1.2 on site 3; the motion of this quasiparticle is described by the local-

. . e . ized wave functiong1.6) but with w replaced by %. (b) A quasi-
Where<”> represents pairs of nearest-neighbor sites, hole on site 3; the motion of this quasihole is also described by the

niEbini ’ (1.3 localized wave function$l.6) but with w replaced by @.

ri are the spatial coordinates of the lattice sit¢® lattice  the decay is faster than exponential and is extremely rapid
spacing is unity, ande is a vector in the direction of the ynder the conditionél.1). The reader should resist the temp-
applied electric field ¢ is not necessarily a unit vector—its tation to imagine that a particle placed initially at the dite
length is determined by the strength of the electric field, theyill eventually be accelerated by the applied electric field out
lattice structure, and our definition d& above. We will  to infinity. Instead, the particle remains localized near its
mainly consider simple cubic lattices, with tleeoriented initial site and undergoeBloch oscillationswith periodh/E;
along one of the lattice directions and of unit Iength. NOtindeed, as is clear from the simp|e form of E]]_S), its wave
shown in Eq.(1.2) is an implied chemical potential term function is exactly equal to its initial wave function at regu-
which is chosen so that the average density of atoms per si{gr time intervals oh/E. The particle can escape to infinity
is ng. We will restrict our attention to the case whexgis of  only with a process of Zener tunneling to higher bands not
order unity. included in the single-band tight-binding models in Egs.
Some simple key points can be made by first considering1.4) and(1.2); the probability of such tunneling is negligibly
the noninteracting cad¢ =0, and also by simplifying to one small in the experiments of interest here and so will be ig-
spatial dimensiofl.For this special case, we can writtas  nored in our analysis.
We now return our discussion to the full Hubbard model
HOZ_E (Wbrb|+1+wbr+1b|+Elbrb|), (1.4 Eq. (_1.2)._ As- was the case irfl.5), the spectrum of th.is
[ Hamiltonian is unbounded from below f@&+# 0, and so it
does not make sense to ask for its “ground state” for any
density of particles. Rather, guided by the experimental situ-
rﬁ”}tion of Ref. 2, we are interested in states which are acces-
sible from the translationally invariant Mott stateith an
verage of, particles on every sijever the experimentally
relevant time scales. The experinfebegins atE=0 with a
Mott insulator withng particles per site, rapidly ramps
to a value of ordelJ, and detects the change in the state. For
en=Em, (1.55 w<U and for most values oE, the experiments displayed
) . . little detectable change in the state of the system. We can
and the correspondmg exact and normallz_ed wave functlonﬁitia”y understand this by a simple extension of the argu-
can be expressed in terms of Bessel functions: ment presented above for the noninteracting médgel Con-
_ . sider a “quasiparticle” state of the Mott insulator, created by
Ym(1)=d1-m(2WIE); (1.6 adding a single additional particle on one site, as shown in
for a derivation see, e.g., Ref. Itheir analysis is in a dif- Fig. 2(@). To leading order inv/U, the motion of this qua-
ferent gauge The mth state is localized near the site m, siparticle along the directior is described by an effective
and for large|]l —m| its wave function decays as Hamiltonian which is identical in form t@4,, but with the
hopping matrix elementv replacedw(ny+1). So any such
) 1.7 quasiparticle states created above the Mott insulator will re-
' ' main localized and will not have the chance to extend across

where | is an integer labeling the lattice sites. The exact
single-particle eigenstates &f, can be easily obtained: the
eigenenergies form a Wannier-Stark ladder, and the most i
portant property of the wave functions is that they are all
localized Specifically, the eigenstates can be labeled by a
integerm which runs from— oo to o, the exact eigenenergies
are

||—m|E)

|¢m<|>|~exr{—|l—m|ln(
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(b) (b)

FIG. 3. Schematic representation of the Mott insulator and of FIG. 4. Schematic representation of the Mott insulator and vari-
various states coupled to it. Notation as in Fig(d).A dipole on  ous states coupled to it. Notation as in Fig. 1. Two states which are
sites 2 and 3; this state is resonantly coupled by an infinitesimal not part of the resonant manifol¢e) An attempt to create dipoles
to the Mott insulator in(@) whenE=U. (b) Two dipoles between between sites 2 and 3 and also between sites 3 and 4; the result is a
sites 2 and 3 and between 4 and 5; this state is connected viingle dipole of length 2 which has energy— 2E relative to the
multiple resonant transitions to the Mott insulator o+ U. Mott insulator, and so this long dipole i®t part of the resonant

) o ~ family of states.(b) A state with energy 3¢ —E) relative to the
the system to create large changes in the initial state. A simiyqt insulator; this state is not part of the resonant family because
lar localization argument applies to the quasihole state showigs jargest effective matrix element to any state in the resonant fam-
in Fig 2(b): it experiences an electric force in the oppositeily is of orderw?/U [for U=E; see Eq(1.8)]. In contrast, all states
direction, the effective hopping matrix elementws,, and  within the resonant family are connected to at least one other state
all quasihole states are also all localized in the direcéon also in the family by a matrix element of ordet
Indeed, it is not difficult to see that the same localization

argument applies to all deformations of the Mott inSUIatordimensions greater than one, these dipole states are only a

which carry a net charge. small fraction of the set of resonant states, as we will show

The important exceptions to the above argument for thet':)elow We are now in a position to succinctly state the pur-
stability of the Mott state are deformations which carry no ’ P y P

net charge. It is the primary purpose of this paper to describB0S€ Of this papendentify the complete set of states reso-
the collective properties of such neutral states. They will bd12ntly coupled to the Mott state under the conditions (1.1),
shown to yield a resonantly strong effect on the Mott statPbtain the effectlve_Hamlltoman within the subspace of these
when E~U, which has been dramatically observed in theStates, and determine its spectrum and correlatidrre re-
experiments of Greineet al? Indeed, Greineret al. have sults will allow us to address the strong response of the Mott
already identified an important neutral deformation of theinsulator to an electric field=~U observed by Greiner
Mott state—it is thedipole state consisting of a quasiparticle- et al> and lead to some definite predictions which can be
quasihole pair on nearest-neighbor sites, as shown in Figested in future experiments.
3(a). A key consequence of our discussion above is that, for The first step in our program is a complete description of
w<E (a condition we assume throughpuive can safely the set of resonant states. We will do this first for one dimen-
neglect the independent motion of the quasiparticle and o$ion in the Sec. | A and for all higher dimensions in Sec. | B.
the quasihole along the direction @f Only their paired mo- The effective Hamiltonian in the resonant subspace will be
tion as dipoles will be important along although they can shown to contain strong correlations among its degrees of
move independently along directions orthogonaéto freedom, but we will demonstrate that these can be satisfac-
For w=0, the dipole state in Fig.(8) differs in energy torily treated by available analytic and numerical methods in
from the Mott state byJ — E. So these states become degen-many-body theory. Before embarking on a detailed descrip-
erate atU=E, and an infinitesimalv leads to aresonant tion of our computation, the reader may find it useful to
coupling between them. However, there are a large numbegxamine Figs. 3 and 4 for an understanding of the origin of
of other states which are resonantly coupled to one of moréhe strong correlations in the one-dimensional case. Figure 3
of these states, and they also have to be treated on an eq@alntains only dipole states: notice that while resonant dipole
footing. Indeed, it is sufficient for an given state to be reso-states can be created separately on nearest-neighbor links, it
nantly coupled to any one other state in the manifold ofis not possible to create two dipoles simultaneously on such
resonant states for it to be an equal member of the resonalinks [as in Fig. 4a)] without violating the resonant condi-
family—it is not necessary to have a direct resonant couplingions. This implies an infinite repulsive interaction between
to the parent Mott insulator. The reader should already noticeearest-neighbor dipoles in the effective Hamiltonian. Two
that multiple dipole deformations of the Mott insulaftike ~ (or more dipoles can be safely created when they are farther
the state in Fig. ®)] are part of the resonant family. In apart, as shown in Fig.(B). Thus the dipole resonances are
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not independent of each other, and the wave function con- _|_¢_¢_¢_¢_'_|_¢_¢_

tains nontrivial “entanglements” between them. (a)
A. One dimension o o
It is not difficult to see that, in one spatial dimension, the ® O ) O
set of all nearest-neighbor dipole states constitutes the entire [
family of states resonantly coupled to the Mott insulator in 0 T
Fig. 1 for U=E and an infinitesimalv. The only subtlety O L
concerns states like those in Figb#l which are not made up P N PPN
of nearest-neighbor dipoles. Far=0, this state has energy
3(U—E) relative to that in Fig. 1. However, reaching the O I:}_O \ &
state in Fig. 4b) from any state in the resonant family re-
quires a detour through a nonresonant state. A simple i T
second-order perturbation theory calculation shows that the L 4 I
closest state from the resonant family connected to Fiy. 4 O C Q
is a state with dipoles between sites 3 and 4 and that the / —.e
effective matrix element between them is (b)
2 /
W NoVNo(No+ 1) i+ 1 ); (1.9 FIG. 5. Typical states in the resonant subspacddpb =1 and
2 U 2U-E (b) D=2. Black circles represent sites with quasipartiolg®ese

sites haven;=ny+1 [see Eq.(1.3] and gray circles represent

. ... quasiholeqthese sites have;=ny—1), while the remaining sites
to the nonzero matrix elements-(v) between states within haven =n,. Note thatQ, in Eq. (117 is zero for each column:

the resonant family. Hence we can safely neglect the state i ., the total number of quasiparticles in every column equals the

Fig. 4(b). More completely, the argument is that after we o451 number of quasiholes in the column to its immediate left. Only
diagonalize the Hamiltonian within the resonant family,in p=1 does this constraint imply that all states contain only

states coupled to that in Fig(l will differ from it by an nearest-neighbor dipoles.
energy of ordew; the coupling in Eq(1.8) will then be too
weak to induce a resonance. o _ It is now a simple matter to write down the effective

It is convenient now to introduce bosonic dipole creationHamiltonianH4 for the d, . It costs energy) —E to create
pperatorsd? to allow us to specify the resonant subspace an@ach dipole, and each dipole can be created or annihilated
its effective Hamiltonian. LetMny) be the Mott insulator with an amplitude of ordew (this corresponds to the hori-
with ng particles on every sitéhe state in Fig. 1 i$M2)).  zontal motion of particles in Figs. 134So we have
We identify this state with the dipole vacuu®). Then the

single dipole state is Hy=—wWyNg(Ng+ 1) Z (d|+d|T)+(U—E)E| dfd,.

1
d{]0)= —=—====byb/,,|Mny). (1.9 (112
No(No+ 1) The Hamiltonian(1.12), along with the constraint§1.10

Notice that we have placed the dipole operator on the lef@ind(1.11), constitute one of the correlated many-body prob-
edge of the dipole which actually resides on links betweedems we shall analyze in this paper. The eigenstateX pf
the lattice sites. Clearly, we cannot create more than onare characterized by, and the single dimensionless number
dipole resonantly on the same link: hence the dipoles satisfy U—E

an on-site hard core constraint A= — (1.13

this is negligibly small, under the conditio.1), compared

"

didy=<1. (110 and a description of their properties asanges over all real
Moreover, we cannot create two dipoles simultaneously oyalues is in Sec. lI[Strictly speaking, the elgenstatesh:sfj
nearest-neighbor links—this leads to a nonresonant state liké&epPend onlyA/yng(ne+1), but andng do not combine
that in Fig. 4a); such states are prohibited by a hard-coreinto a single constant in higher dimensidns.

repulsion between nearest-neighbor sites: It is interesting to note that there is no explicit hopping
term for thed, bosons inH,: it appears that the bosons are
dFd|dF+1d|+1=0- (1.10 only allowed to be created from, and to disappear into, the

vacuum by the first term in Eq1.12. However, this is mis-
The resonant family of states can now be completely specileading: as we will see in Sec. Il, the combination of the
fied as the set of all states of the boshrwhich satisfy Eqs. terms in Eq.(1.12 and the constraintl.11) does generate a
(1.10 and (1.11). A typical state is sketched in Fig(@®. local hopping term for thel, bosons[see Eq.(2.1)]. Addi-
Notice that the dipole vacuufiMng) is one of the allowed tional dipole hopping terms also arise from virtual processes
states. of orderw?/U in the underlying Hubbard modé¥; how-
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ever, these are negligibly small compared to those just meref Egs.(1.10 and(1.11). First, there are the obvious on-site

tioned and do not need to be includedHfy . hard-core constraints that no site can have more than one
We close this subsection by noting that the Hamiltonianparticle or hole:
Hgq in EQ. (1.12 and the constraint§l.10 and (1.11) can t <1
; . \ X PinPins4,
also be written in the form of a quantum spin chain. We
identify the dipole present-absent configuration on alsie hf"nh,,ns 1,
a pseudospins{ up/down @*¥# are the Pauli matricgs T +
Theno?=2d/d,—1 and Py nP1 Dy oy n=0. (1.16

Additionally, because of the manner in which these quasipar-
ticles and quasiholes appear from the Mott state, the total
number of quasiparticles in theD( 1)-dimensional layer
with coordinatel +1 must equal the total number of quasi-
holes in layer:

Hy= Z [—wyno(no+ 1) o+ (U—E)(a?+1)/2

+J(of+1)(of,,+1)]. (1.14

The constraint(1.11) is implemented by taking thd— oo

limit of the last term. The spin chain model so obtained is an Q=2 (Pls1nPr+10—h ohy ) =0, (1.17)

S=1/2 Ising spin chain irboth transverse and longitudinal "

fields. This is known not to be integrable for finidebut it ~ While the quasiparticles and quasiholes are allowed to move

does appear that the problem simplifies in dhe limitwe  freely within each D—1)-dimensional layer, they cannot

consider here. move resonantly out of any layer on their own; this is, of

course, related to the localization of the Wannier-Stark ladder

states discussed earlier in this section.

) _ ) ) Continuing the analogy with Sec. | A, we can now easily
_We consider here only hypercubic lattices Inspatial  write down the effective Hamiltoniaf,, for the quasipar-

dimensions, withe oriented along one of the principal cubic ticles and quasiholes which acts on the set of states defined

axes and a lattice spacing in lengfe.g., D=3 ande py Egs.(1.16 and (1.17. The terms in the first two lines

= (1 0 0)] Other lattices and other directionseélso allow are the same as those a|ready present |n(Eq_2) but ex-

for interesting correlated phases and these will be mentlonegressed now in terms of the quasiparticle-hole operators,

in Sec. IV. while the last line is associated with motion along the trans-
Extension of our reasoning above quickly shows that the,erseD — 1 directions:

dipole states now constitute only a negligibly small fraction

of the set of states in the resonant family. Once a dipole has N sy t t
been created on a pair of sites separated by the vecits Hpn=~W\no(No+1) % (Prs2afhint Pis1nNin)
guasiparticle and quasihole constituents can move freely and
resonantly, with matrix elements of ordet in the D —1)
directions orthogonal t@. Allowing this process to occur
repeatedlywhile maintaining some constraints discussed be-

B. Higher dimensions

(U E)

2 (pl npl n+hl nhl n)

low), we can build up the set of all resonantly coupled states. —w X (ngh hy e+ (No+1)p/ Py mtH.C).
A typical resonant state iD= 2 is shown in Fig. B). As in ! (nm)
Sec. | A, it is useful to give an operator definition of the (1.18

resonant family. To allow us to distinguish between the di-Here(nm) represents a nearest-neighbor pair of sites within
rections parallel and orthogonal te, we replace the a single O—1)-dimensional layer orthogonal ® Notice
D-dimensional site label by the composite labell (n), that all theQ, in Eqg. (1.17 commute withH,, as is re-
wherel is an integer measuring the coordinate aleri@s in  quired for the consistency of our approach. As was the case
the one-dimensional casevhile n is a label for sites along in one dimension, the properties &f,,, are determined by
the (D—1) transverse directions. Rather than using dipolehe single dimensionless constanin Eq. (1.13); these will
operators we now want to work with bosonic quasiparticlebe described in Sec. lIl.
(pI n) and quaS|hoIef(I o) operators, which create states like It is worth reiterating explicitly here that upon specializa-
those in Figs. @) and Zb) respectively. More precisely, we tion to the case ob =1 (when the indices,m only have a
now identify|Mny) with quasiparticle and quasihole vacuum single allowed value and the sgtm) is empty, the Hamil-
|0), and so tonian H,, above is exactly equivalent to the one-
dimensional dipole modét4 in Eq. (1.12).
We note in passing that in a manner similafg, Hpp, in
Eqg. (1.18 can also be written as%=1 spin model, with the
empty-qausiparticle-quasihole states on a site corresponding
to spin states witts,=0,1,— 1.
n|0) ——Db n|Mny). (1.15 The outline of the remainder of the paper is as follows.
‘/— The properties th® =1 modelHy will be described in Sec.
The set of resonant states can now be specified by a feW, while the D>1 model*,, will be considered in Sec. Ill.
simple constraints on these operators, which are the analoyge discuss extensions of our results to other lattices and field

bIT,n| M n0>v

1
T —
0)=——
pl,n| > /—n0+1
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directions in Sec. IV. Implications of our results for experi- 304
ments appear in Sec. V. The Appendixes contain some tech
nical discussion of the nature of the quantum phase transi
tions found in the body of the paper.

Il. DIPOLE PHASES IN ONE DIMENSION 10

This section will describe the spectrum of the one- Ew |
dimensional dipole Hamiltoniaf{y in Eq. (1.12), subject to 0-
the constraint$1.10 and(1.11).

An essential point becomes clear simply by looking at
the limiting cases\ —« and A\— —c0 [the coupling\ was 10152
defined in Eq.(1.13]. For A—o the ground state of4
is the nondegenerate dipole vacuyfy. In contrast, for
A——x the ground state is doubly degenerate, because
there are two distinct states with maximal dipole number: - . . —
(---dldldi---)|0) and (- -didldi---)[0). This immedi- 6 4 2 0, 2 4 6
ately suggests the existence of an Ising quantum critical
point at some intermediate value ®f associated with an FIG. 6. All the eigenvalues oHy for N=8 andny=1. Note
order parameter which is a density wave of dipoles of periodhat the ground state is non-degenerate for poskivand there are
two lattice spacings. We will shortly present numerical evi-two low-lying levels with an exponentially small splitting for
dence which strongly supports this conclusion. <0 and|\| large.

Further analytic evidence for an Ising quantum critical
point can be obtained by examining the excitation spectra fohigher excited states at largeconsist of multiparticle con-
the limiting \ regimes and noting their similarity to those on tinua of this band of dipole states, just as in the Ising cfin.
either side of the critical point in the quantum Ising chin. A related analysis can be carried out for —o0, and the

For\— o, the lowest excited states are the single dipolesresults are very similar to those for the ordered state in the
|IY=d]|0); there areN such statesN is the number of quantum Ising chaif: The lowest excited states are single
siteg, and at\A=<, they are all degenerate at energy bands of domain walls between the two filled dipole states,
U—E. The degeneracy is lifted at second order in a perturand above them are the corresponding multiparticle continua.
bation theory in 2{: By a standard approach using canonical
transformations, these corrections can be described by an
effective Hamiltoniarl, . that acts entirely within the sub-

space of single-dipole states. We find We numerically determined the exact spectruniyffor
lattice sizes up taN=18. As will be evident below, these

No(No+ 1) sizes were adequate to reliably extract the limiting behavior
||><||+% of the N—oo limit.
A The complete spectrum dfly is shown in Fig. 6 forN
=8 andny=1. We used periodic boundary conditions on the
XA+ D+ 2]+ [T+ 1) |)]. (2.1  dipole Hamiltonian in Eq(1.12. Note that these do not cor-
respond to periodic boundary conditions for the original
) ) ) ) model(1.2); indeed, for Eq(1.2) the presence of the electric
Notice that, quite remarkably, a local dipole hopping termfie|d implies that periodic boundary conditions are not physi-
has appeared, as we promised earlier at the end of Sec. | ally meaningful. Nevertheless, it is useful to apply periodic
The constraint$1.10 and(1.11) played a crucial role in the  houndary conditions to the translationally invariant effective
derivation of Eq(2.1). Upon considering perturbations|t)  model (1.12, merely as a mathematical tool for rapidly ap-
from the first term in Eq(1.12 it initially seems possible o proaching theN— < limit. Note that Fig. 6 shows a unique
obtain an effective matrix element between any two stdjes ground state fon— o and a twofold-degenerate state for
and|l"). However, this connection can generally happen via_, —«. Above these lowest-energy states, there is a finite
two possible intermediate staték)—dd,|0)—|I') and  energy gap, and the excited states have clearly split into
[I)»—]0)—|l"), and the contributions of the two processesbands corresponding to the various “particle” continua;
exactly cancel each other for mdst’. Only when the con- these “particles” are dipoles foh—« and domain walls
straints(1.10 and(1.12) block the first of these processes is between the two ground states for-» —«, as we discussed
a residual matrix element possible, and these are shown in the perturbative analysis above.
Eq.(2.1). It is a simple matter to diagonaliZe ¢ by going We test for a quantum critical point at intermediate values
to momentum space, and we find a single band of dipol®f A by plotting the energy gap), in Fig. 7. This gap is the
states. The lowest-energy dipole state has momentuithe  spacing the between the lowest two of the eigenvalues plot-
softening of this state upon reducing is then consistent ted in Fig. 6(for finite system sizes, these low-lying levels
with the appearance of density wave order of period 2. Thare always nondegeneratét becomes exponentially small

-20

Exact diagonalization

Hd,eﬂ:w—E)Z
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FIG. 7. The spacing between the lowest two eigenvaluek pof
(=A) as a function\ for various system sizes amg=1. We used
periodic boundary conditions fdt .

in the system size as we approach the two degenerate ground
states which are present far sufficiently negative. In the

opposite limit, A approaches a finite nonzero value, which YS€4c=

becomedJ — E, for \ large and positive. If these two phases
are separated by a quantum critical point, we expect the e
ergy gap to scale ad~N"?% at the critical point\ =\,
wherez is the dynamic critical exponent. The Ising critica
point hasz=1, and so Fig. 7 plotdlA as a function of\.
We observe a clear crossing pointhaat~ —1.850 which we
identify as the position of the Ising quantum phase transition.
Note that the critical point is shifted away from the naive
value E=U (A=0) to E>U because of quantum fluctua-
tions associated with the hopping of the dipoles.

A second test of Ising criticality is provided by also res-
caling the horizontal axis of Fig. 7 witN. General finite-size
scaling arguments imply that the energy gap should obey th
scaling form

A=N"ZH(NY"(A =)o), (2.2

PHYSICAL REVIEW B6, 075128 (2002

5.0
« N=10
= N=12
*N=14
40} “N=e
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3.0t
20+
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»
0.0 :
-10.0 -5.0

N(A-kc)
FIG. 8. Scaling plot of the energy gap to test for Eg2). We

—1.850 andhg=1.

5.0 10.0

rj(_)r the expected Ising exponent=1/4. We have also exam-
ined a plot which scales the horizontal axis in Fig. 9 as in
| Fig. 8: The data collapse is again excellent.

IIl. QUASIPARTICLE AND QUASIHOLE PHASES
IN HIGHER DIMENSIONS

This section will discuss the properties of tBe>1 di-
mensional model of the, , quasiparticles andh, , quasi-
holes described the Hamiltoniad,, in Eq. (1.18), subject to
the constraint$1.16) and (1.17).

As in Sec. Il, it is instructive to first look at the two
Sistinct limiting values of\. The nature of the ground states
is very similar to those ilD=1 for these ranges of. For

N—o, we have a unique ground state which contains only

small perturbations from the quasiparticle and quasihole

where¢ is a universal scaling function andis the correla-

—a— N=8
—e— N=10
—A— N=12
—v— N=14
—o— N=16

tion length exponent. We test for E@.2) in Fig. 8 with the 02204
Ising exponenty=1 and again find excellent agreement. r

A final and most sensitive test for Ising criticality is pro-
vided by a measurement of the anomalous dimension of the 0'216'\
order parameter. The order parameter is the density of di- -\.
poles at momentumr, and so we computed its equal-time 0.912 4
structure factor S, N ]

1 2 0.208
sﬂ=ﬁ<(2 (-1)'d/dq, > (2.9
[

Standard scaling arguments imply that this should scale a:  ©2%47
N2"2"7 at \=\., where is the anomalous dimension of
the order parameter. Using the Ising exponent1/4, we 0.200 -—

expectS,~N%4 This is tested in Fig. 9. Note that there is an
excellent crossing point at,~ —1.853. This position of the

-1.90 -1.88

crossing point is completely consistent with the crossing FIG. 9. Scaling plot of numerical results for the order parameter
point found in Fig. 7. Thus Fig. 9 provides strong evidencestructure factoS, defined in Eq.(2.3). We usedny=1.
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vacuum|0). For \— —oo, it is clear that we want to maxi- Note that the first summation overm is unrestricted and
mize the total number of quasiparticles and quasiholes in theanges independently over the two variables, while the sec-
ground state, subject to the constraiisle and (1.17). ond is over nearest-neighbor pa{rsmy.

There are a very large number of ways of doing this, but by The Hamiltonian,, .4 can be analyzed by the standard
considering perturbative corrections to the ground-state ertechniques of scattering theory. The terms within the first two
ergy in powers of JA|, it is not difficult to see that it pays to summations in Eq(3.2) lead to a “two-particle” continuum
choose one of two regular arrangements, in which the occuwsf quasiparticle and quasihole states, while the terms within
pation numbers are independentrofll, 1, eyeP/1,0{ 4|0)  the last summation allow these states to scatter and possibly
or 11,11, oddp|T+1,nh|T,n|0>- So there is a twofold—degénerate form a dipole bound state. We first form states with total

ground state fok <0 and|\| large, associated with a broken transverse momentu@, and relative transverse momentum

translational symmetry and the development of density wavél, [these momenta ard)(—1)-dimensional vectols

order of period 2 in the longitudinal direction, in both the 1

quasipartic[e gnd quasihole .densiti(?s._ _ 1,Q, .0, )=~ E e Tt ] 0 m), (3.3)
The excitation spectrum in the limiting ranges ofcan N, n

also be determined as in Sec. Il. However, the computations

. L . ]yvhereNL is the number of sites in each layer angdare the
are more involved and we limit ourselves to an analysis of. Jatial positions of the sites. In this basis of st
the A—o case in Sec. Ill A. We will investigate physics at b b ) R e

intermediate values oh in the subsequent subsections, Next, we also transform the single longitudinal coordinate

where we will see that the possibilities are richer than the® dipole momentum, g

appearance of a single Ising quantum critical point between 1 A
the states just discussed: Section Il B will present a mean- IqH QL .a)= Ni 2 gl
field theory, while Appendixes A and B will discuss con- I

tinuum quantum field theories which can describe Iong-|n this basis of Stategiph,eff takes a form which makes the

1,Q,.q,). (3.9

wavelength fluctuations near the phase boundaries. mapping to standard scattering theory very explicit. The total
transverse momentur®, and the longitudinal dipole mo-
A. Excitations for N large and positive mentumq are conserved, while there is scattering between

There is a large manifold of lowest excited states, all Ofdlfferent values ofy, :

which have energy) —E, in the limit A —o0. These are the

states with exactly onp quasiparticle and onk quasihole,  Hypei( Q. ,q||)=2 [sp(ql)+sh(Ql—ql)]|q|| ,Q.,0,)
with the particle on the®—1) dimensional layet+1 and q

the hole on the layelr We label these states by w2ng(no+1)(1+2cosq))
1 T X<qH’QquL|+ N (U_E)
||rnvm>Epl+l,nhI,m|O>' (3'1) +
We break the degeneracy between these states by considering X E |qH Q1,0 )(q,Q. qll, (3.5
corrections in powers of 4/ At order 1A, the term in the IR

last line in Eqg.(1.18 will allow the quasiparticle and the
guasihole to hop independently in their own layers, but will
not induce any couplings between states with different values (U—E)

of I. The latter appear at order\, when as in Eq(2.1), a gp(0)= T—Zw(no+ 1)2 codq,,) (3.6
nearest-neighbor dipole pair can hop longitudinally between @

neighboring layers; again, as =1, the constraint¢l.16  and the summation over extends over th®—1 compo-
and(1.17) play a crucial role in determining these perturba- nents ofq, . The expression foe,(q,) is identical to Eq.

tive corrections. These processes are described the following g) pyt with no+ 1 replaced by,. The Hamiltonian in Eq.
effective Hamiltonian for the manifold of excited states with (3 5) is that of a particle moving i —1 dimensions with

where(for a hypercubic lattice

energy~(U—E): momentumg, and dispersiore,(q,)+en(Q, —q,), scat-
tering off a §-function potential at the origin with strength
2 . .
H —(U—E I.n,my(l.n,m weng(no+1)(1+2cosqp/(U—E). Its solution is well
phef=( )2| ;n | A | known: in addition to the scattering states, a bound state

1 must be present iD —1=1,2 for any infinitesimal attractive
— Z [noll,n,K){(I,m,k|+ (ng+1)|I,k,n) potential and for strong enough attraction @r-1>2. So
N (rm.k for the physically relevant cases 8f=2,3, a bound state
No(Ng+1) must form for a range ofj values nearr. It is clear that the
><(I,k,m|]+—2 > (|1,n,n){1,n,n| lowest-energy bound state h@s =0 andq=: this is a
A n dipole state, and just as iB=1, it is a precursor to the
appearance of longitudinal density wave order of period 2.
+[1,n,n){I+1n,n[+|1+1n,n)l,n,n|)|. (3.2 The appearance of this dipole bound state suggests that the
first quantum phase transition out of the featureless and
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gapped phase present for large positives into a state with Dover>#0 <p>#0

Ising charge order; however, our discussion here is for a <p>=0 <p>=0
system with a well-developed gap to quasiparticle and quasi: Pode>=0 | <Peven>=<Poda >
hole states, and it is yet not clear whether this approack<p1;ve Peven># <p1¢;veq_peven>7£ <p’£veqpeven>= <Phyen Peven>=
continues to hold when the gap becomes small—we will  <Podd Pods™ <piddpodd> <Poda Poda> <Podd Poad>
return to this question in Appendix A. B ; C ; A n
Fo@

B. Mean-field theory H y
_ This section will present the results of a mean-field analy- ., _g '," <p>#0 <p>=0
sis of Hy . The central idea of the mean-field theory is very ! |<Peven>#<Poca>|
s!mple..We .treat the quantum fluctuations alpng the longitu- <Dhon Poens#| <Bhran Povenr " | <Bhen Peven>=
dinal direction for alln by the exact numerical treatment <p%ddpodd> o e <Diia Pode™
developed in Sec. Il foD=1, while the transverse cou- odd Podd N
plings are treated in a mean-field manner. One importani B C2 Cy A A
benefit of this approach is that the important constraints (b)

(1.'1|'?1)isaraepg?§£ﬂ 2T:cz:t:¥éturally suggests the appearance 8f FIG. 10. Schematic phase diagrams as a function. dh (a) we
o . . lay the topol f the ph di found by th luti f
additional phases which have no analog infhe 1 case. In Spray te topolody ol the phase clagram Tolnc by the soliton o

icul h . f sinal dh b in th the mean-field equations: thin lines are second-order quantum phase
particu ar, t € m‘?t'or? o singip an JOSONS In the trans- transitions, while the thick line is a first-order transition. The parity
verse direction implies that superfluid order can developy the | index is indicated as a subscript to theoperators. The

along thesd —1 dimensions only. There is no possibility of eypectation values df quasiholes obey the same relations as those
SupeI‘ﬂUIdlty |n the |Ong|tud|nal dlreCtIOH because mot'onfor the p quasiparti(jes’ but with the roles of “even” and “odd”
along this direction can occur only via charge neutral dipolénterchanged. The Ising density wave order is present fok db
pairs which appear in the first term in E@..18). Thistrans-  the left of C. In (b) we display a hypothetical phase diagram, pos-
verse superfluidherefore has a “smectic” charactérand  sibly induced by fluctuations, in which the first-order transition is
its existence implies that we have to allow fgr) and(h) replaced by two second-order transitions; now Ising order is present
condensates: These appear naturally in our mean-field theomtX to the left ofC,. There are superfluid-insulator transitionshat

As in the mean-field treatment of the zero-field bosonB, C, andC, and Ising density wave transitions @tandC.
Hubbard modet;’ the approximation involves a decoupling
of a hopping term. In particular, we only decouple the lastis obeyed; note that these constraints are macroscopic, and so
transverse hopping term in E(L..18), and obtain the follow- there is no approximation involved in using a chemical po-
ing mean-field Hamiltonian for a set of sites, labeledlpy tential to impose them. In practice, the diagonalization of

representing any chain along the longitudinal direction Hpnmd {P1),(h;)] must be carried out for a finite number of
sitesl=1, ... N; we found that the mean-field solutions ap-
Honmd (P1),(h)] proached théN= limit at quite small and manageable val-

ues ofN. The ground-state energy @f,, per chain is not

_ _ + o T equal to the lowest eigenvalug, of Hpnmi (P1).(h;)] but
El WZrp((hphy+Ch)*h) =wZ(ne+1)((p)Pp, is easily computable from it by the relation

* _ T T
+(pP*p1) —wyng(No+1)(py+1hi+ps1h)) Epnmi— E0+WZE| [no|(h) |2+ (ng+ 1)[(p)|2].
(U-E)

t— (pipi+hh) = m(pl, prea—hlhyp | (3.10

Indeed, we can also vieyp,) and(h,) as arbitrary complex
3.7 numbers which are determined by the minimization of Eg.
(3.10.
The results of the solution of the above mean-field equa-
tions are summarized in the schematic phase diagrams in
Fig. 10 and in the numerical results in Figs. 11 and 12. It is

Here Z is the coordination number of any site along tbe
—1 transverse directions, and the expectation valigs
and{p,) have to determined self-consistently from a diago-
nalization of Eq.(3.7) subject to the constraints associated

th hich b useful to discuss the phases, in turn, as a function of decreas-
with Eq. (1.16), which now become ing \.
pr <1 n'he<i pr hh =0 38 For\ very large and positivé&o the right of the poinAin
R4 =4, prpihyhy=u. :

Fig. 10, no symmetry is broken, and we have a featureless
ground state with no superfluidity and an energy gap to all
excitations.

There is a superfluid-insulator transition Atdriven by
the condensation of thp and h bosons. The superfluidity
N . appears in the direction transverse to the electric field, and all
(Pi+1pi+1)=(h'hy) (3.9  layers behave equivalently. We will examine fluctuations

We have imposed the constrairiis1?) in a mean-field man-

ner by chemical potentialg,, whose values must be chosen
so that
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B C A tion at C by two second-order transitions &; andC,, as
0s ' PUEEhahts R shown in Fig. 10b). At the first transition aCC,, the order
e parameter is only the Ising density wave, while therng &nd

0a | /' | h transverse superfluidity in all layers; the second transition
' #—— hole at C, involves the continuous vanishing of thgh) conden-

/

0.1 ,/
0.1 -K
\

<odd-even>
I

———————— e

sate in the oddeven layers in a superfluid-insulator transi-
tion, in the presence of a background of Ising density wave
order.
The final transition at the poirB involves loss of allp
and h condensates. There is long-range Ising density wave
order at all\ to the left of B, and a gap to all excitations.
The theory of fluctuations about these mean-field results
is discussed in Appendixes A and B. As we have already

03 \(— particle s -
. noted, these could be strong enough to also modify the to-
. pology of the phase diagram in Fig. (@D One extreme pos-
05 . i TS s : sibility is that the transverse superfluid phases could disap-
-15.0  -10.0 -5.0 0.0 5.0 10.0 15.0

pear entirely, and we are left only with two insulating phases,
one with Ising density wave order and the other without; the

phase diagram is then as =1. However, we show in
Appendix A that the value of a particular critical exponent
determines that this is not the generic situation.

FIG. 11. Mean-field numerical values of the condensdts’
and (h)) as a function ofA for np=1 andZ=4. The solutions
shown are obtained by diagonalizing E8.7) for N=6, but essen-
tially identical results are obtained fdd=4.

near this critical point in Appendix A and show that the in- IV. OTHER FIELD ORIENTATIONS AND LATTICES

terlayer coupling is irrelevant near the critical pointth  oyr discussion has so far limited itself to hypercubic lat-
=3, and so each layer is described by an independent criticges, with the direction of the electric fieldloriented along
theory. o i o one of the principal axes. Similar analyses can be carried out
~ As shown in Fig. 1(e), the mean-field theory exhibits a for other lattices and for other directions@fA large variety
first-order quantum transition at the the poldtassociated of correlated phases appear possible, including many not re-
with the sudden development of Ising density wave order|ated to those already discussed. We will illustrate these pos-
ie., the states with\ to the left of C have (pl,ePeven  sibilities by an example here, but leave a more detailed dis-
#(p(‘;dcpodcp, and similar for the density of thie bosons. In  cussion to future work.

mean-field theory, the state to the immediate lefiCoélso Consider a square lattiden D=2) but withe=(1,1). In

has the loss of the condensate in the odd layefsay and  this case, the resonant transitions from the Mott insulator
the loss ofh condensate in the even layers. In general, it isnvolve moving ab; boson by one lattice spacing, either
quite possible that fluctuations, beyond those included in thalong the+x or +y direction. However, once such a dipole
present mean-field theory, will replace the first-order transihas been created, the quasiparticle and the quasihole cannot

B c

0.6

<Podd + Peven™>
o
~
T
'Y

o
o

FIG. 12. As in Fig. 11. The values dhygqt hevey are very

close, but not identical, to the values shown above.

move resonantly to any other sitésxcept by processes of
orderw?/U which we have consistently neglected he®o

the resonant subspace can be described completely in terms
of dipole states, just as in tHg=1 case discussed earlier. A
typical state is illustrated in Fig. 13. The effective Hamil-
tonian of this space of dipole resonant states is identical in
form to Eq.(1.12:

Hiy=—wino(no+ 1) (da+dl)+(U—-E)> did,,
@1

except now the labeh extends over the links of the square
lattice. There continues to be a hard-core constrejut,
<1 like Eq.(1.10), but the possibility for new physics arises
from the complexity of the generalization of the constraint
(1.1, which is now

dld,dld,=0 forlinksa,b which share a common site.
(4.2
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of the effective models that have been discussed in this pa-
per. In the experiments of Greinet al.,? the “electric field”

(in practice, this is realized by a magnetic field gradiest
turned from an initial zero value té in a time of ordet/w.

In a system under the conditiori.1), this may not allow
easy access of the ground state. As an alternative, we suggest
that E be ramped up rapidly to a value to the right of the
point A in Fig. 10, and then slowly increased through the
possible critical points in Fig. 10. This could produce states
with either the density wave Ising order, or the transverse
superfluid order.

% € % Having produced such states, the next challenge is to di-
rectly detect the quantum order parameters associated with

FIG. 13. A typlcal state in the resonant SUbSpace for a squarghe phases in F|g 10. We address two possib'e probes in the
lattice withe=(1,1). Representation is as in Fig. 5. The quasipar-gpsections below.

ticles and quasiholes occur only occur in dipoles oriented along the

+x or +y directions. Note that it is possible for dipoles to undergo

a ring exchange around a plaquette, in which the configuration

around plaquett@ can become like that around plaqueltethis One experimental quantity that is relatively easy to mea-

process is contained in the resonant moHe€] in Egs. (4.1) and  sure is the momentum distribution of the atoms contained in

(4.2) and doesnot require much weaker virtual processes in the the optical lattice. This is done by shutting off the lattice

Hubbard modef (which are suppressed by powersvefU). potential and the trapping potential and allowing the atoms to

freely expand until the resulting cloud is large enough that its

Note that each dipole blocks the occupancy of dipoles on sigensity profile can be spatially resolved optically. The scale

neighboring links. It would be interesting to determine theto which the cloud expands before measurement can be made

properties ofH 4 subject to the constrairtd.2). much larger than the original lattice dimensions. In this limit
The possibility of rich physics becomes apparent in think-the final spatial position at which an atom is detected deter-

ing about the casa <0 and|\| large. Here the low-lying mines the momentum at which the momentum distribution

manifold of states corresponds to maximizing the number ofunction is being measured.

dipoles, and these are in one-to-one correspondence with the The momentum distribution for the boson Hubbard model

close-packed dimer coverings of the square lattice. A naturajontainingN sites is given by

ring-exchange term of the dipole bosons also becomes appar- L

ent upon considering perturbative corrections in powers of -

1/|\|: this derivation is similar in spirit to that in Sec. ($ee H(q)=|f(q)|2ﬁ % et rk)<bJTb'<>’ 5.

Fig. 13. We emphasize that the dominant ring exchange _ ) o )

does not come from virtual higher-order processes in thavheref(q) is the form factor for the tight-binding orbitals

under'ying Hubbard modéf (Wh|Ch are Strong|y Suppressed associated with the Ia.';“ce pOt?ntIa| and the momenq:lm

by factors ofw/U), but is already contained within the phys- =MR/(%te,), whereR is the distance from the detection

ics of the resonant subspace as described by @qy.and ~ Position to the.center of the. trap is the mass of the atoms,

(4.2. In analogy with other studies of quantum dimer @ndteyis the time elapsed in the expansithis expression

modeld3~'®and boson ring-exchange models, possibilities ofignores the influence of gravity, but an appropriate modifica-

bond-ordered phases open up. Fractionalized and Bose metin is straightforwaryl The development of off-diagonal

phase¥ are also possible, but these may be more likely ordong-range order peaks the momentum distribution at the

nonbipartite lattices. values ofq equal to the reciprocal lattice vectors of the op-
We C|ose by noting that |t is eas”y possib'e to Orierﬂo t|Ca| lattice pOtential and- has been used as an eXperimentaI

that only one direction is resonant. For a cubic latticdin Signature of the superfluid phase. _

=3 this can be done by choosirgr(1,a,b) where a,b Let us first consider theD_=1 case. A very important

#0,1 are some arbitrary real numbers. Then resonant transgonsequence of our restriction to the subspace of resonant

tions to dipole states can occur only along thelirection,  states is that the boson correlatéo/by ) vanishes for

and the resonant manifold separates into decoupled oné-—!'|>1. Hence Eq(5.1) becomes (¢ is the component of

dimensional systems, each of which is separately describe@in the direction of the “electric” field

by the one-dimensiondlLD) dipole Hamiltonian in Eq.

A. Momentum distribution

(1.12. This may be a simple way of experimentally realizing Typ(q)=|f(q)|2 no+ VNg(No+1)
the modelH,. 1ot DI Mo 2
V. IMPLICATIONS FOR EXPERIMENTS XE {eiq<dr>+efiq<d|>} , (5.2)
|

An important issue that must be faced at the outset is the
extent to which the nonequilibrium time-dependent experi-where the lattice spacing has been taken to be unity,dénd
ments can be described by the ground and low-energy statés the dipole creation operator defined in Ef.9). For the
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10— . T B. Ising order parameter
\\\___ We have seen that the Ising order is not directly reflected
0.8+ ey 1 in the momentum distribution and hence cannot be measured

in the free expansion method described above. The proper-
Py ties of the Ising order parametérare discussed in Appendix
i B; one convenient definition fog is

<d'd> -<d*d>odd‘|

‘even’

0.6

i 1
0.4 $=1 Z (—1)"(dfd) (5.3

0.2r e <dd> e in D=1 [see Eq(2.3)], and a related definition can be made
| for higherD. One possibility for coupling to the Ising order
0.0 . - P — parameter experimentally would be to introduce a phase-
-10 -5 0 A S 10 locked subharmonic standing wave at half the wave vector of

FIG. 14. Ground state expectation valueg ) and(d;d,) for the optical lattice so that the standing wave takes the famm

the D=1 modelH, in (1.12. The results are foN=16 sites and 1D)

periodic boundary conditions. A very small ordering field was ap-

plied to choose one of the degenerate Ising ground states present f (X,t) <[ cogQx)cogQct) +Bcog Qx/2+ #)cog Qct/2) ].
sufficiently negativex. We have chosen the gauge in whiaty are (5.9

real. Squaring this and taking the time average gives the effective

periodic boundary conditions we have us@s we noted lattice potential

earlier, such boundary conditions are not physical, but they

should not modify the results in the limit of large system V(x)x —[cog(Qx)+B%cog(Qx/2+ 6)]. (5.5
sizes, the values ofd;) depend only on the parity df (a

very small ordering field is applied to lift the Ising symmetry, Adjusting the relative phase t6=0 or 7/2 adds a “stag-
and we choose one of the ground states in the region witgered magnetic field” term to the Ising Hamiltonian
spontaneous Ising ordeand hence the overall amplitude of

Eq. (5.2 is determined only by deye)+(dgad). We show Hgx +B?¢. (5.6)
our numerical results for these and other related quantities . _
for the HamiltonianHy in Eq. (1.12 in Fig. 14. There is a A simpler experimental method for the case where the

broad maximum in{deyen +{doqg Near the lIsing critical trap confinement is strong in the directions transverse to the

point, as this is the region with the maximal dipole numberaxis of the 1D lattice is the following. An additional standing

fluctuations. The critical singularity in this quantity at  wave (derived from the same lagebut oriented in they

=\ is determined by that of the energy operator of the Isingdirection(say would yield

field theory: this singularity is weak and is essentially unob-

servable in Fig. 14. The quantities sensitive to the Ising order ~ ®(x,y=0t)x[cogQx)cogQct)+ B cogQct)] (5.7)

parametel(such asdeyen —{dogq)) Show more singular be-

havior in Fig. 14 nean. determined by the magnetization

exponentB. However, these observables are not detectable

by a measurement of the momentum distribution function.
_In higher dimensions [Q>_1) for t.he case where is v¥hich would also couple to the Ising order

aligned along one of the lattice directions, the dependence o

the distribution function om; should be qualitatively similar HgxBdb. (5.9

to theq dependence in the =1 case discussed above. How-

ever, a much clearer signal of the transverse superfluidityn either case, such a perturbation could be used to break the

should be visible. The presence of @ and(h) conden-  Ising symmetry and selectively populate one of the two Ising

sates implies that the correlat@r.1) has phase-coherent con- states. In addition, it could be used toeasurethe order

tributions whenr;—ry lies in the plane perpendicular to the parameter itself. The ac Stark shift of the atomic hyperfine

applied “electric” field. This implies that in states with trans- levels would differ between adjacent sites. The relative

verse superfluidity, there should be Bragg peaks aloves  strengths of the split hyperfine absorption lines would then

in g spacewith values ofg, equal to the reciprocal lattice be a measure of the Ising order paraméter.

vectors of the D —1)-dimensional lattice lying in the plane

perpendicular toe. As the transverse dimensionality T3 ACKNOWLEDGMENTS

—1=2, the superfluid order can only be quasi long range at
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and hence a potential along thexis of

V(x,y=0)x—[cog(Qx)+2BcogQx)+B?], (5.9
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APPENDIX A: FLUCTUATIONS AND QUANTUM FIELD aInZ,,
—P_p

THEORIES: SUPERFLUID-INSULATOR TRANSITIONS (A4)

I
The mean-field theory of Sec. Ill B can be used as a start- Furth in d ibi h . i
ing point for a more sophisticated treatment of fluctuations. . urther progress in escrioing the propertleszlgﬁ re
Such fluctuations will modify the mean-field exponents induires some understanding of the st_ructureng This was
the vicinity of the second-order phase boundaries in Figf'ilrealdy addressed t(.) some extent n S_ec. I B where we
10(a), but could also change the topology of the phase dia€xplored the properties of the Hamiltonidyn,me. How-
gram to that in Fig. 1(). ever, hgre we need to gent_erallze that analy5|s to the case
We analyze fluctuations about the mean-field results usinﬁ{here Its arguments are 't|me—dependent f|eR1$rl' '7)
a method very similar to that described in Chap. 10 of Ref. i(r,,7). ThiS is quite an !nvolved task, but we will only
11 for the Hubbard model. We decouple fnéralayer hop- need some gengra_l constraints thaF are placed on the §tructure
ping terms inH,, [those in the last line of Eq(1.18] only of §; .by the.pr|n0|ples of gauge invariance. In particular,
by Hubbard-Stratonovich transformations using complefssqc'ated W'th the conserv_atlon la@s17), we observe that
fields P,(r, ,7) andH,(r, ,7) wherer, is a spatial coordi- Zon |s_|nvar|ant under the time- .and Iayer—dependent trans-
nate for theD — 1 transverse directions andis imaginary ~ormations generated by the arbitrary fiek(7):
time. Then, after standard simplifications, we obtain an ex- ib1(7)
pression for the partition functiog,, of H,, which has the ’
following schematic form: h—he 4,

Pi+1—Pi+1€

PP ®),
th=f DPy(r,7)DH(r, ,7) _
Hl_)Hle*lqﬂ(T),

xex;{—f dP1r (Sp+S)) . (A1) )
s = = (A5)
The actionS, involves couplings only within a single layer

. . We are interested here only in the case of time-independent
but with different values of | , y b

M1, and so this transformation takeg into an unphysical
set of values; nevertheless, as we will see shortly,(E§) is
SOEJ d7-2| [Kp|VJ_PI(rJ_1T)|2+rp|PI(rJ_aT)|2 rs(telélirrt]Jzeful in placing constraints o; in the physical
First, we address the influence of fluctuations by ap-
proaching the transition involving condensation Rf, H,

andK,p, I are coupling constants. Note that the factorsfTom the side of large and positive i.e., we increas& (and
of ny andny+1 in the last line of Eq(1.18 break particle- decrease\) until mean-field theory indicates we are ap-
hole symmetry and so there is no special symmetry re|ati0|ﬁ>roa}ch|ng a phase with transverse su'perfIU|d|ty.at the p’olnt
between these coupling constants. The acSprouples dif- N Fig. 10. The ground state 6y, ¢ is translationally in-

ferent layers and times together for the same value, of variant in this region, and so we can safely assume that all
the coupling constants i§; are also independent &f Simi-

larly, we can assume that, is also independent df If we

+Kp| VL H(ry n) P4l Hi(r 1], (A2)

e*"”lzJ’ Dp(7)Dhi ()P pi(7),h(7)] were to approach the condensatiorPpf H, from the oppo-
site side of negative\, the ground state ot s would

9P| Tahl have a broken Ising symmetry, and the following analysis

X ex —J dr Z (IO| a7 h E) would only need to be modified by allowing all couplings,

and u, to depend upon thé sublattice. We describe the
actionS; by expanding it in powers of the field% , H, and
' (A3) in their temporal gradient§her, andr dependence of these
fields is now implici}; to second order in the fields and to
with Hp, s defined in Eq.(3.7), andP is a projection op- first_ order in temporal gradients, the most general terms in-
erator which represents the constraif@s9) (these could be Variant under EqS(AS) are
imposed formally in the functional integral by a very strong j
dr

+th,mf[P|(rJ_ iT)!HI(rJ_ !T)]}

on-site repulsive interaction among theandh, bosong. As S=2, KoPF il + K HF i}
in Sec. Il B, we have imposed the constrairiis17) by ' 7 ot
time-independent Lagrange multiplieschemical poten-

tials”) w,: As we noted earlier, there is no approximation +K
involved in neglecting the fluctuations @f;, because there

is only one constraint per layer and there are a macroscopic

number of particles within each layer. The valuegpfre to +?ph( PioH+ P HF )}_ (AB)

be determined at the end by the requirements

JH, IHF
+ Py

P|+1? I+1 ar

ph +T P2 +T 4 Hy |2
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Consistently requiring invariance of EGA6) under the time- ary
dependent gauge transformatiq@s) to the order we have Ky=——
performed the expansion i$; demands additional con-
straints on the coupling constants above; these are

P (A11)
Combined with Eq(A4), the above result now yields a cru-
g ~ cial result. Close to the quantum critical point, the singular
Kp=———, Kp=—, Kpn=—7—-. (A7) free energy associated wiff},;, is determined directly by, .
I For this singular term to obey E@A4), we concluddas also
There are also a large number of permitted higher-ordeffgued in Chap. 10 of Ref. 1ithat dr,/du=0 atr,
terms inS; which we have not written down explicitly; some =Fyc: EQ. (A11) now implies
of these will play an important role below.

Armed with the low-order terms in the actidiy + S; con- Ky=0 at r,=r,. (A12)
trolling the fluctuations o, andH,; we can now use stan-

dard techniques to focus on the low-energy excitations. It is5q we can neglect,, and the critical theory is described

natural to diagonalize the quadratic form displayed in thesgnirely by £,. Within each layel, this theory has the rela-
actions: this will lead to two eigenmodes W|th distinct €18€N-tjyistic invariance of D—1)+1 spacetime dimensions and
values. We focus attention on the lower eigenmode, Wh'ledynamic critical exponert=1.

integrating out the higher eigenmode. We identify the lower

) ; _ Before turning to an examination of the properties of Egs.
eigenmode by the fiel@, : this has the structure

(A10), we pause to discuss the modifications required to de-
scribe the onset of transverse superfluidity with increasing
in the region\ <0 at the pointB in Fig. 10[a similar rea-
for some constants, ,. Note that we are performing the soning can also be applied to the pof®j in Fig. 1ab)].
same “rotation” in field space for all, andr (and hence all Here, long-range Ising order is already preseritljf, n for
frequencies This ensures tha¥, has a simple behavior un- \ sufficiently negative. We can proceed to a description of
der Egs.(A5): the superfluid transition as above, but as noted earlier, all
. couplings in Eqs(A10) will acquire anl dependence which
V-l ), (A9)  modulates with period 2. The tuning parametgrwill also
be different for even and odd Consequently only, with |
even(say will become critical near the transition, whill,
with | odd remains noncritical and can be integrated out. The
simplest interlayer coupling between critical modes is now
|W,|2| W), ,|?, but its coefficient should be small and is likely
th:f D‘I’l(h,ﬂexl{—f d®~1r, d7Y, (Lo+Ly)], to be attractive.
! We now return to an examination of Eq#10) for the
) U case ofl-independent couplings at the transition with- E
+r¢,|‘1’||2+ §|‘P||4+U|‘I’||2|‘1'|+1|2, positive at the poinA in Fig. 10. It remains to examine the
consequences of the interlayer couplimgon the standard
theory of the superfluid-insulator transition. At=0, we
Ay have the standarg* field theory with G2) symmetry in
Ly=K,WVi o (A10) (D—1)+ 1=D spacetime dimensions. As a first step, we can

) . ) o compute the scaling dimension of at its critical point. A
We have rescale?, and time to obtain unit coefficients for standard power-counting argument shows that

the first two terms inly, and ther, dependence oW, is

implicit. We have also written down a quartic nonlinearity

within a layer(u) and the simplest coupling between neigh- dimv]= E_ D= ﬁ' (A13)

boring layers () which preserves invariance under E49); v v

we expect both these couplings to be positive because of the

repulsive interactions between the microscopic bosonic dewherev anda are the standard correlation length and “spe-

grees of freedom. The parametgytunes the system across cific heat” exponents irD spacetime dimensions. =3,

the quantum phase transition at the pdiin Fig. 10 which  the Q(2) fixed point ha¥® a=—0.015<0, and so we con-

resides atr,=r,.; the transition is from the featureless, clude thatv is formally irrelevant. InD =2, the very weak

gapped phase at large positixe(r ,>r ) to a phase with  specific heat singularity at the Kosterlitz-Thouless transition

superfluidity in the transverse —1 dimensions a& is de-  suggests the same conclusion.

creased 1(,<r,c); the superfluidity is associated with the A more complete analysis of the influence wfcan be

condensation off’, . obtained by considering a physical susceptiblity for ordering
Just as in the derivation of EgEA7), we can also exam- in the longitudinal direction. As we have seen in Secs. Il and

ine the consequences of time-dependent gauge transformil-B, the simplest allowed ordering is a density wave of

tions in Eqs(A5) and(A9) on Egs.(A10). This now leads to period 2. The tendency to this ordering is measured by the

the relationship static susceptibilityy . :

Wiy, 1)=CpPiya(r D)+ ChHf (r 1)  (A8)

We integrate out the high-energy mode orthogonal to Eq
(A8) and obtain our final effective action now expressed in
terms of ¥, :

, |
Lo=|V, ¥ |*+

T
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1 ) parameter coupled to isotropic superflow fluctuations has
X= =N > j d®~tr dr(—1)'"! been analyzed by Frey and Balehisiere, we will show that
(R the particular anisotropic nature of both the superfluid and
X{(|W(r, , 7|3V, (0,0)]). (A14) Ising order leads to a more singular coupling between the
) o ) two order parameters.
Note that this response function is similar3g in Eqg. (2.3), Any observable sensitive to the period-2 modulation in

but we are considering here a zero frequency response, whitge density of particles or holes can be used to define the
Eg. (A14) in powers ofv and, by a familiar Dyson-type continuum formulation is to take
argument, write it as

c G(lr D~ (=D'[W(r,, 7). (B1)

Xm=1 2,0 (A15)  An effective actionS,, for the Ising field¢ can be generated
by using¢ as a Hubbard-Stratonovich field to decouple the

where( is an “irreducible” correlator within a single layer  term in Eqgs.(A10). This leads to an action with the struc-
(it is irreducible with respect to cutting@interaction ling:  tyre

C=fdD—lridr<|\P.(u,r>|2|w|(o,0>|2>. (A16) sfdirdT

The computation leading to Eq$A15) and (A16) is the

field-theoretic analog of the computations which lead to a —w > f d®~ 1 dr(— 1) |, (r,,7)|2p(l,r, 1),

dipole bound state induced by the interlayer coupling in the [

strong-coupling analysis of Sec. Ill A. Ignoring the influence (B2)

of v on C, standard scaling arguments imply thathas a

singular part which behaves as where the fluctuations oF, are described by Eq§A10) and

we have included the usual analytic terms present ingthe

C~ry=ryel (A17)  theory of an Ising quantum critical point. The last term in Eq.

If we had @>0, then the denominator in E¢A15) would (B2) represents a linear coupling between the Ising order

vanish at some ;> ,. for any smallu, andy,, would then parameter and density fluctuations in the superfluid state. In

. : g . .. the isotropic case considered by Frey and Balents such a
diverge: this would imply the presence of an Ising denSItyIinear cou%ling was absent andythe gimplest allowed cou-

wave transition before the onset of superfluidity. However,pling was betweems? and the density fluctuations: this was

=0 in D=3, and so this condition does not apply. Never- because the Ising order parameter represented a density wave
theless, there is a significafdlbeit finite¢ enhancement of 9 P P . Y
. . LT at a large wave vector, and they coupled linearly only to
the specific near the @) critical point inD=3, and so the : )
fluctuations of the superfluid phase at the same wave vector,

instability in x , may well occur for a moderate value of If o
<o the n):ear)f-field)pl)hase diagram would be modified, and thand the latter are quite high energy. In the present case, also,

_ 1) i i
Ising ordered phase would fully overlap and extend beyoné%(a 1) faptor in the last term in .EO(BZ) also shows that
the region with transverse superfluidity. Indeed, under suit-d) couples linearly to the superfluid phase fluctuations at a
’ ’ ave vectorg = 7. However, the key difference here is that

able conditions, the superfluid phase could also shrink t he superfluidity is present only along the transverse direc-

zero, and we would then have only a single Ising transition. . : .
between two insulating phases. Alternatively, if the Isingn['on.’ and to leading order, the superfluid phase fluctuations
areindependenbf g .

fluctuations are weakey,. could diverge somewhere in the The singular effect of thav, term in Eq.(B2) can be

superfluid phase to the left && in Fig. 10, and then the . . ; . . .
mean-field phase diagram would be modified to the structurglustrated by Integrating out e, using the acn_orﬁAlO) N
in Fig. 10b). a single-loop approxmatmn. To leading ordeninwe are in

the transverse superfluid state as long gs0, and a simple
calculation of the phase and amplitude fluctuations of the
superfluid order parameter shows that we generate the fol-

In Appendix A we completed a description of fluctuations lowing term in S, :
near all the superfluid-insulator transitions in Fig. 10. It re-
mains to describe the second-order Ising critical p@iptn E 2 |f¢|(Cﬁ+w2)
Fig. 1Qb); this we do in the present appendix. 2u a5 |¢(q|| G o)) I |(CI2 + )+ K222’

As usual, we expect the Ising phase transition to be real- I P v (B3)
ized by a quantum field theory of a real scalar fiél¢t, 7),
wherer=(l,r,) is a D-dimensional spatial coordinate. The wherew is an imaginary frequency. Note that this is a sin-
main subtlety here is that the Ising transition occurs in agular function ofq, and » only whenK,#0. We do not
background of transverse superfluid order, and correctionexpectK,=0 near the Ising critical point, because exact
from superflow fluctuations can lead to anisotropic singulaparticle-hole symmetry is not present in the underlying
corrections to the critical theory. A theory of an Ising order Hamiltonian, and the arguments which lead to E412)

1 K K
5 (0,002 5 (V. )2+ 5 (V) 2+ u

APPENDIX B: ISING PHASE TRANSITION
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hold only at the superfluid-insulator transition. All the cou-  In closing, we note that althougk,,#0, in practice the
plings in S, can be expected to be a smooth functionuof  degree of particle-hole symmetry breaking is quite small, as
and the constraint is now expected to lead only to a Fisheindicated by the almost equal values(pfy and(h) in Figs.
renormalizatiof® of exponents. An analysis @, with Eq. 11 and 12. S&, can also be expected to be quite small, and
(B3) included requires a renormalization group computationwe should, therefore, also consider the cKse=0. In this
this we leave to future work, as a full discussion of the renorcase, Eq(B3) does not induce any singular terms, and we
malization of the momentum dependence of the propagatdiave to consider terms induced H% fluctuations at higher
requires a two-loop analysis. orders inu and also the term included in Ref. 19.
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