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Theory of photonic crystal heterostructures

Emanuel Istrate, Mathieu Charbonneau-Lefort, and Edward H. Sargent
Department of Electrical and Computer Engineering, University of Toronto,
10 King’s College Road, Toronto, Ontario, Canada, M5S 3G4
(Received 4 December 2001; published 29 August 2002

We develop an envelope function formalism to describe the behavior of light inside a structure assembled
out of dissimilar photonic band-gap materials. These photonic heterostructures are the optical analogs of
guantum electronic heterostructures that make up resonant tunneling diodes and superlattices. We show that the
behavior of these media is readily quantified and explained by reducing each constituent photonic band-gap
material to a set of parameters related to the photonic crystals’ dispersion relation, which are then used as
inputs to an envelope equation. We also prove the validity of the approximation by comparison to full numeri-
cal simulations.
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[. INTRODUCTION well states; interband and intraband transition-matrix ele-
ments; resonant tunneling; and the formation of superlattice
Localization of light in certain strongly scattering dielec- subband§:”
tric medid? has received extensive attention in recent years. Photonic crystal heterostructures have been recently intro-
In view of recent experimental demonstrations of a full pho-duced and investigated through numerical simulation and via
tonic band gap inside large-scale infiltrated opallse pre- experimenﬁ_‘lz The placement and spatial differentiation of
dicted physical effects—suppressed spontaneous emissio?€lf-organizing photonic crystals on a planar substrate has
improved laser performance, enhanced nonlinearity—mayecently been demonstrated experimentalifhe behavior
soon be realized. of light in stacking faults of self-assembled crystals has also
The appealing analogy with the propagation and localizabeen explored? In view of the great promise of photonic
tion of electron waves inside electron-scattering medid@nd-gap superstructures to enable realization of functional
would suggest that the practical value of photonic crystal$hotonic devices, we seek in the present work to develop a
may lie not simply in their bulk properties, but in the real- method, analogous to the electronic envelope function ap-
ization of carefully differentiated structures of connected maProach, for analyzing the key features of photonic hetero-
terials having different dispersion relations. The field ofstructure behavior.
semiconductor quantum electronics relies on epitaxial
growth of materials to realize functional devices such as Il. THEORY
resonant tunneling diodes and transistors, multiquantum well

lasers, and intraband superlattice laders. . . Jom o
@dwalyss of semiconductor structuresignificant modifica-

Semiconductor quantum heterostructures are understo b de when i d of the Sd
quantitatively and qualitatively not through full solution of ONS must be made when, instead of the Sdimger equa-
tion, the electromagnetic wave equation is employed,

the Schrdinger equation inside each different superstruc-
ture, but instead by treating separately two distinct length 2, 2 T
scales on which electron wave behavior is manifestad, [Vi+ @ pe=V(V-)]E=0. @)
illustrated in Flg 1. First, bulk Bloch functions and the In the equation above, the last term of the Operaﬁ(r’v

atomic potential energy seen by electrons inside constituentg)  is new when compared to the equation for the electron.
semiconductors are used to obtain the density of states and

effective mass for a material. These embody the key conse I?ectron

While our analysis of the photonic case is inspired by the

guences of the rapidly varying atomic potential shown in
Fig. 1(a).

The behavior of the electronic envelope function is then [ J Electron
considered inside the macroscofieterostructunepotential /
1(b) formed by concatenations of the media whose bulk
properties are now known. In the electronic case, this yields
an effective Schidinger equation in which the confining po-

tential is determined by band o_ffsets at the heterojunctions s, = .. potential Heterostructure potential
The energy states of electrons in the heterostructure are the .

. . . . . (a) True atomic (b) Heterostructure
obtained from these equations, in which there remains nc potential potential and effective mass

explicit dependence on the potential variations on the scale
of the crystal lattice period. Phenomena accessible in this FIG. 1. Envelope approximation and effective mass in semicon-
approximation include quantum-confined discrete quantunaluctor structures.
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It reflects the vectorial nature of the electromagnetic fields in (V2+ wul ept € (r)]—V(V- ) up(r)eko'=0. (8)
the crystal.

A. The envelope equation Applying the_ operators in Eq7), simplifying and using Eq.
(8), we obtain
We separate the permittivity of the structure into a con-
stant background component and two varying ones. The
varying dielectric profiles describe the rapid variations, cor- iKrr L2 L2 —— v
responding to the underlying photonic crystal, and the %‘&ka,ke {= (K =ko) +2i[(k—ko)- V]=i(k=ko)
slower, confining, profile of the heterostructure= e

+e,(r) =€yt €(r)[1+A4(r)]. These are included in the X(V)=iV[(k=Kg) 1+k(k-)—Ko(ko*) + (o}
wave equation,
| — W) ulen+ ()] + w2 uer(r) A1) () =O.
{V+oiulepte(N]-V(V-)}E=0. (2 ©)
The subscriph is used to denote the frequency and the field
of the heterostructure mode. In order to separate the length scale of the crystal from

~ We assume that the heterostructure dielectric constant vaghat of the heterostructure, it is useful to separate the position
ies slowly enough that we can approximate the electric fielq,ectorr into two components,= R+ p. R gives the position

with a linear superposition of the bulk Bloch modés, of each unit cell of the crystal, whilp describes positions

=Unk(r)e™", inside each unit cell.
The separation of the position vector illustrates the idea of
Ev(r)=2>, Enk(N{EnlEy), (3) the env_elope approx_imatio_n. The_ Vecois associate_d with
n.k the rapidly varying dielectric profiles of the underlying pho-

tonic crystals. The vectoR, on the other hand, is used to
denote variations that occur on a length scale much greater
than that of the photonic crystal lattice. As such, the veBtor
labels variations associated with the heterostructure dielectric

where the sum is over all bands and all allowed wave vec
tors. The notatiofalb) is used to denote the projection lof
onto a, which is equivalent to the inner product afandb,

profile.
(a|b)zj a*(r)-b(r)dqr. (4) To solve EqQ.(9) we project it along a given mode by
multiplying it by e‘ik"’uﬁ(r) and integrating over the vol-

The Bloch functionsu, , can also be expanded in terms of yme of the crystal. The following integrals were used in this
the Bloch functionau, \ at a given vectok=kg. Defining  eyaluation:

Um, ko= Um and<um,ko|un,k>5<m|n,k>, we write

_ i(k—k')-r % 3
un,k:% Um(r){(m|n,k). ) ' J’crystale Un - Umd°F
It has been previously shoﬁhthat the above expansion :2 ei(k—k').RJ ei(k—k’)~pu:.umd3p. (10)
must be done over all photonic crystal bands, but also over R unit cell

some unphysical solutions of the wave equation, which have
zero frequency. Since in our later computations we will limit _ . .
ourselves to a small number of bands, neighboring a band aihe §um above is over all unit cells, and will be zero unless
interest, we will ignore the unphysical solutions, which onlyk:k

bring small corrections, as was pointed GutJsing these

expansions, the electric field in the heterostructure may be

expressed as l,= 5k,k’f u U d3p= 38\ Up m- (1)
— ik-r
Ex(r) g‘( Wi m (1), ©® a similar fashion, we obtain
where we have defined, ., == .(m|n,k)(E, y|E,). Using
this expression in the wave E), we obtain (k=K' 3
|2: el( )'rU:'Ef(r)Umd r:5kyk/5n‘m. (12)
crystal

mZk Wy mid V2 + ofulep+ €,(r)]=V(V-)}e* Tuy(r)=0.
' (7)  Here we have used the fact that Bloch modes in a photonic
) ) crystal are orthogonal with respect to the dielectric constant.
In & bulk photonic crystal, the electromagnetic wag,,  The next parts of Eq(9) are evaluated in a similar fashion.
=upe'o" obeys the equation, Special attention is paid to the term containitg
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ls= J:zrystalei(k—k/)»fu:~6f(r)As(r)Umd3r % W)Mm(R){(VZ"‘k(z)—wﬁq,uéb)un'm
i ' 190
~2 @ K RAYR) =A% 0 Omn- (13) + Kp,n,m(-———koyp>
® 5 j ap
2
After the integration, Eq(9) becomes _Ep: zq: (apﬁq +k0pk0q)un,p,m,q —wﬁ,uWA,n(R)

% W)\,m,k'( [— (kz_ kg) + (w>2\_ wﬁ'n)/-l“eb]un,m = % W)\,m(R)( - wiﬂebun,m)

2
+ E 2 (k,;qu_ko,pko,q)<Un,ko,p|Um,ko,q> ~ oW n(RLASR)+1]. (18

P=X,y,Z q=X,y,Z
Here again we use and q to represent the directionsy,

[hnm, (K =Koy + kynm(ky =koy) T kznm(kz  andz We have also defineah, p m o= (Un kop|Umkoq)» Where
p andq select a single component of the Bloch vectors.
_kO,z)]] +wf,u2 AWy ik We can express the above equation in matrix form as
k follows:
+ (02— 03) pW, o =0. (14)
OW, (R)=®w’W,(R). (19

Here the variablep and g represent the direction variables
X,Y, andz in sequence. The following definitions were also Here W, is the column vector consisting of the elements

made: W, ». The elements 0® and® are defined as
L J s o 2.2 2 19
Kx,n,mE<un|2|O7_X_|V(X')_|X(V')|um> G)n,mE_ (V +k0_wml’v5b)un,m+% Kp,n,m j_%_kOp
I o 3 & 2
=] Uy 2'5_|V(X')_|X(V’) umd [ (19 _g % m—i_kO,pkO,q Un,p,m,q _wnﬂgn,m )
(20)
(Unl2i =1V (§) = (V)]
Ky nm={(Up|2i ——=iV(y-)—iy(V-)|u
ymm " ay " CI)n,mE:vabun,m"',"L[As(R)"':I-:|5n,m- (21)
J ~ ~
_ ; ; ; 3
=J’ Uy | 2i @_'V(y')_'y(v') Und*p, (16) Equation(19) describes the envelopes of the modes in a

heterostructure. Knowledge of the matrix elements
UnmsUn,p,mq» @nd xpnm allows calculation of the hetero-
structure modes and their frequencies.

If the photonic crystal properties vary very little over the
entire heterostructure, we can assume this to be a small per-
turbation to the bulk crystal. This allows us to assume that
matrix ©® is constant everywhere, and the perturbation is
given by the term\¢(R). For larger perturbations, this is no
longer justified. In the case of abrupt heterojunctions, how-
ever, the matrices can be evaluated in each constant section
of the crystal. The perturbative terhy is then ignored, and
the effect of the junction is reflected in the boundary condi-
'tions, discussed below, that need to be imposed.

In the remainder of this work we will consider an abrupt
terostructure that varies in taelirection only. We will set

e background dielectric constagtto zero. When\; is not
used a background constant can be includeé;inThis re-
duces the heterostructure equation to

N
Kz,n,mE<un|2|5_|V(Z')_|Z(V')|um>

Efu:

In order to computeWV, ,, for a specific band, it is
possible to express all other envelope functidvg; ,., in
terms of the envelope of barmg which are then inserted in
Eq. (14). This would result in a single envelope equation
similar to the starting wave Ed1). This, however, is only
possible for nondegenerate bands, since the equation Wwe
contain frequency differences between the different bands i
the denominator. In this paper we will use a different
method.

We take the inverse Fourier transform of Et¢4) by mul-
tiplying by e*" 'R and integrating over ak’. The resulting
equation is OW, = w2 uW, . (22)

und3p. (17)

R
2|E—|V(z-)—|z(V~)
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52 satisfied by the waves at the interfaces. We consider two
Onm=- —2+k§z (Unm—Unzm2) crystalsA and B with an interface perpendicular to the
gz direction located az=0.

Since we are dealing with the envelope of an electric
(23) field, which is continuous, we assume that the envelope is
also continuous across the interface,

190 2
+ Kznm J-_E_ka _wnﬂ‘sn,m

The above equation is a second-order differential equation. _
Its solutions must therefore have an exponential form. We W) a(0)=W, g(0). (27)

assume that their propagation vector will be close to our . o
- We note that this condition is different from the boundary
chosen vectoky= zko, .

conditions of continuous tangential electric- and magnetic-
W, =W, el (koz+ H)Z, (24) field components imposed by Maxwell's equations. Thqse
' conditions apply at the boundary between the materials
forming the crystals, and are already incorporated in the
Bloch modes that we use. Assuming that the two crystals
5 12 forming the junction have the same embedding material, the
Gn,m=[(koz+ 8K)“ =k J(Unm—Un,zm.2) heterointerface will not in general overlap with a material
(26) interfa_\ce. W_e z_;\I_so assume that the fir_st derivative\bf
contains no infinite jumps. We now derive a boundary con-
We recognize this as a standard eigenvalue equation. In adition for the first derivative of the envelope function. We
dition, for real 8k, it can be shown that the matri® is  integrate Eq(19) from z=— e to z=+ ¢, and take the limit
Hermitian. This ensures that the frequency eigenvalues wilpf € going to zero
be real. This method allows calculation of the band structure

GW, o= wiuW, o, (25)

2
— Kz,nmOK+ @i Oy m-

of the bulk photonic crystal, if the modes are known at a e €
singlek vector. lim OW,dz=lim wff oW, dz (28
Although the band structure of a crystal can be computed €07 =0 o

by other means, such as the plane-wave expansion method, . ) ) o )
the method developed here allows computation of the attenythe right-hand side of the equation contains a finite function,
ation of a wave as a function of frequency inside the stoghtegrated over an interval going to zero. Hence it ap-
bands of the crystal. This is achieved by finding the energproaches zero. The equation can then be written as

eigenvalues corresponding to an imaginary propagation vec-

tor k. Knowledge of the attenuation of a wave inside a crys- B 92
tal is essential in designing devices based on finite-sized lim f > —erkSZ (Unm—Un.zm.2)
crystals. e~0J—em Jz
B. Bound diti Lo 2
. Boundary conditions +Kynm J_ = Koz | | Wy m— @3uW, ,dz=0.

In order to study devices involving junctions between dif-
ferent photonic crystals, we need to find the conditions to be (29

0~3 T T T T T T T 0~3

Band diagram expansion
Exact simulation  +
02 F b+ 4 N " 4 0.25
L

g
< + + +
& 02+ + 402
g
g
s o 015 FIG. 2. Band diagram for a bulk crystal of
g silicon spheres in air, comparing the results of our
E expansion and exact simulations.
k| L i
g 0.1 0.1
=
<
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0 1 1 1 1 1 1 1 1 0
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FIG. 4. Superlattice minibands computed with envelope ap-
proximation and with complete simulations.

Stopbands 7
(b) Energy diagram of structure We use the bands plotted in Fig. 2 together with,, and
) . Unzmz 0 compute the positions of the minibands in the
FIG. 3. Photonic crystal superlattice. structure. The barriers consist of spheres of dielectric con-

stante= 10, whereas the wells hawe=11.56. This will pro-
duce the band offset shown in Fig(b3 The width of the
wells, b, was chosen to be 4 lattice constarisThe barriers
have a widthc of 5 lattice constants. To find the positions of
¢ 52 the minibands, we employ the technique described in the
lim 2 —(Up m—Un 2m )Wy mdz=0. (30 Appendix. With reference to Fig. 4, the band-edge frequen-
e—om J-egz? o ’ cies of the well and barrier are,,=0.245, w,=0.260. The
miniband appears betwean;=0.252 andw,=0.260. All
angular frequencies are given in units of&,/a. We have
also computed the position of the miniband using a full MPB
J simulation. It appears betwees =0.252 andw,=0.258. It
% (un,m_un,z,m,z)EW)\,mzconSt- (31)  should be noted that for this calculation we need the disper-
sion relations of the bulk materials; the attenuation constants
This establishes a boundary condition for the derivative oin the stop band; and the boundary conditions. For the dis-
the envelope across a heterojunction, similar to the boundaryersion relation, we have the option of using the exact bands
condition for electrons in the semiconductor c&&he pa-  calculated using MPB or those calculated for the envelope
rametersu, n—Un . m,. Play the same role as the effective approximation. We use in this example the exact band struc-

Since we have assumed that the first derivativé\yf con-
tains no infinite jumps, the last two terms vanish in the limit.
We are left with

From this we obtain the boundary conditions for the deriva
tive of the envelope to be

mass of electrons. ture since it is precise and available. For the attenuation co-
efficients inside the stop band, we use the values obtained in
. NUMERICAL EXAMPLE the envelope approximation.

From these results, we conclude that the frequency posi-

proximation. The photonic crystals considered are compose, n of the lower edge of the miniband is obtained with a

of an array of spheres, arranged in a cubic structure. Th igh precision of 0.02% in the envelope approximation de-

heterostructures are made by varying the index of refractioff€/0P€d herein. The upper edge is off from its exact value by
of the spheres. The Bloch modes of the bulk crystals, needd8%—a result of the fact that the parameters, and
by our method, are computed using the Miffotonic bands ~ Un.zm,z @ré computed for a propagation veckgy,= m/a. At
(MPB) program®’ Using the envelope approximation, we the high frequencies at the top of the miniband, the propaga-
have computed the dispersion relation for the second ban@Pn vector in the well is not very close tq, .
near the edge of the Brillouin zone, as well as the imaginary
propagation vectors in the stop band. The results are shown
in Fig. 2 together with the true band diagram and attenuation IV. CONCLUSIONS
constants obtained from Refs. 11 and 17. The agreement be- ) ) ]
tween our approximation and the true bands is good both for We have shown that the envelope function approximation
real and imaginary propagation vectors. can be applied to photonic crystal heterostructures in a man-
We now app'y the theory deve|oped above to a Specifid]er similar to its use in semiconductor structures. The key
illustrative photonic crystal heterostructure. We consider thé@spects of the constituent photonic crystals are included
superlattice shown in Fig.(8). The structure consists of two through knowledge of the bulk band structure in each region
alternating photonic crystals. The two crystal types have difof photonic crystal. This allows us to focus in subsequent
ferent band edges, shown in FiglbB As is the case with computation on the evolution of spectral features arising out
semiconductor superlattices, one or several allowed minief mesoscopic heterostructure properties, facilitating design
bands are expected to appear for frequencies that are forbidnd analysis and reducing the problem from one which is
den in one of the two regions. We refer to the regions of thenumerically onerous to one which is readily tractable. The
structure where the wave is forbidden as liaeriers and the  comparison to full numerical simulations described herein
regions of allowed propagation as thells confirms the validity of the envelope approximation.

We now present results obtained using the envelope aqéo
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| Vi(b)=V,(—c)eld®*9, (A1)

with g being the Bloch propagation vector.

It should be noted that the matrix elemetjs, have very
few nondiagonal elements. By using an expansion around the
first two nondegenerate bands only, we can eliminate the
need to consider the sum of multiple modes in the envelope
representation. We represent the mode in each section as the

z

—c 0 b superposition of a forward and a backward propagating
wave,
FIG. 5. Geometry used to find minibands. . )
V) ;=AdkiZ+Be iz —c<z=<0, (A2)
APPENDIX: COMPUTATION OF MINIBAND POSITIONS V, ,= Celkoz4-De ikoz  0<z<b. (A3)

In this Appendix we describe the method used to comput&, andk, represent the propagation vectors in the two sec-
the minibands of the superlattice considered in Sec. lll.  tions of the superlattice. They are either real or imaginary,

Since we are working with waves close the Kag vector,  depending on whether propagation is allowed or forbidden in
we express the envelope of the wavedfs=V, e, Vv, those sections. The propagation vectors are a function of
represents the envelope with the oscillation k§, frequency and can be found using the methods described in
removed. Its boundary conditions require thef and Sec. Il A. In addition, for real propagation vectors, they can
2ty m(d/dz+Kkq,) V), n be continuous. Here we have de- be computed using any program that can find the dispersion
finedup m—Up zm2=thm- relations in a photonic crystal.

We use a treatment similar to the Kronig—Penney model, Applying the boundary and the Bloch conditions, Eq.
using the arrangement in Fig. 5. Since we have a periodi€Al), at two points in the superlattice, we obtain a set of four
structure, our solution must take the form of a Blochequations for the coefficienss,B,C, andD. These equations

function, can be presented in matrix form below
|
1 1 1 1
3 t1(ky+ko) t1(—ki+Ko) ta(ka+ko) ta(—kz+Ko)
M= o Ikicgiatb+o) alkacgia(b+o) aifob o ikab - (A9

ty(ky+ko)e KiCeldP+O) ¢ (—k;+ko)ek1teldPHO) ) (ko+ko)ekP  ty(—kytko)e k2P

This set of equations has a nonzero solution only if its determinant is zero. This forms the condition for the appearance of
minibands

det{M)=0. (A5)
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