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Theory of photonic crystal heterostructures
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We develop an envelope function formalism to describe the behavior of light inside a structure assembled
out of dissimilar photonic band-gap materials. These photonic heterostructures are the optical analogs of
quantum electronic heterostructures that make up resonant tunneling diodes and superlattices. We show that the
behavior of these media is readily quantified and explained by reducing each constituent photonic band-gap
material to a set of parameters related to the photonic crystals’ dispersion relation, which are then used as
inputs to an envelope equation. We also prove the validity of the approximation by comparison to full numeri-
cal simulations.

DOI: 10.1103/PhysRevB.66.075121 PACS number~s!: 42.70.Qs, 73.40.Lq, 42.25.Fx
c-
r
o

si
a

za
di
ta
l-
a
o

xia
a

we

to
f

uc
gt

e
e
a
s
in

e

ul
ld
-
n
th
n

ca
th
tu

le-
tice

tro-
via

of
has

lso
c
nal
p a
ap-
ro-

the

on.

on-
I. INTRODUCTION

Localization of light in certain strongly scattering diele
tric media1,2 has received extensive attention in recent yea
In view of recent experimental demonstrations of a full ph
tonic band gap inside large-scale infiltrated opals,3 the pre-
dicted physical effects—suppressed spontaneous emis
improved laser performance, enhanced nonlinearity—m
soon be realized.

The appealing analogy with the propagation and locali
tion of electron waves inside electron-scattering me
would suggest that the practical value of photonic crys
may lie not simply in their bulk properties, but in the rea
ization of carefully differentiated structures of connected m
terials having different dispersion relations. The field
semiconductor quantum electronics relies on epita
growth of materials to realize functional devices such
resonant tunneling diodes and transistors, multiquantum
lasers, and intraband superlattice lasers.4

Semiconductor quantum heterostructures are unders
quantitatively and qualitatively not through full solution o
the Schro¨dinger equation inside each different superstr
ture, but instead by treating separately two distinct len
scales on which electron wave behavior is manifested,5 as
illustrated in Fig. 1. First, bulk Bloch functions and th
atomic potential energy seen by electrons inside constitu
semiconductors are used to obtain the density of states
effective mass for a material. These embody the key con
quences of the rapidly varying atomic potential shown
Fig. 1~a!.

The behavior of the electronic envelope function is th
considered inside the macroscopic~heterostructure! potential
1~b! formed by concatenations of the media whose b
properties are now known. In the electronic case, this yie
an effective Schro¨dinger equation in which the confining po
tential is determined by band offsets at the heterojunctio
The energy states of electrons in the heterostructure are
obtained from these equations, in which there remains
explicit dependence on the potential variations on the s
of the crystal lattice period. Phenomena accessible in
approximation include quantum-confined discrete quan
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well states; interband and intraband transition-matrix e
ments; resonant tunneling; and the formation of superlat
subbands.6,7

Photonic crystal heterostructures have been recently in
duced and investigated through numerical simulation and
experiment.8–12 The placement and spatial differentiation
self-organizing photonic crystals on a planar substrate
recently been demonstrated experimentally.13 The behavior
of light in stacking faults of self-assembled crystals has a
been explored.14 In view of the great promise of photoni
band-gap superstructures to enable realization of functio
photonic devices, we seek in the present work to develo
method, analogous to the electronic envelope function
proach, for analyzing the key features of photonic hete
structure behavior.

II. THEORY

While our analysis of the photonic case is inspired by
analysis of semiconductor structures,5 significant modifica-
tions must be made when, instead of the Schro¨dinger equa-
tion, the electromagnetic wave equation is employed,

@¹21v2me2“~“• !#E50. ~1!

In the equation above, the last term of the operator,“(“
•E), is new when compared to the equation for the electr

FIG. 1. Envelope approximation and effective mass in semic
ductor structures.
©2002 The American Physical Society21-1
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It reflects the vectorial nature of the electromagnetic fields
the crystal.

A. The envelope equation

We separate the permittivity of the structure into a co
stant background component and two varying ones.
varying dielectric profiles describe the rapid variations, c
responding to the underlying photonic crystal, and
slower, confining, profile of the heterostructure,e5eb
1ev(r )5eb1e f(r )@11Ds(r )#. These are included in th
wave equation,

$¹21vl
2m@eb1ev~r !#2“~“• !%El50. ~2!

The subscriptl is used to denote the frequency and the fi
of the heterostructure mode.

We assume that the heterostructure dielectric constant
ies slowly enough that we can approximate the electric fi
with a linear superposition of the bulk Bloch modes,En,k
5un,k(r )eik•r,

El~r !5(
n,k

En,k~r !^En,kuEl&, ~3!

where the sum is over all bands and all allowed wave v
tors. The notation̂aub& is used to denote the projection ofb
onto a, which is equivalent to the inner product ofa andb,

^aub&[E a* ~r !•b~r !d3r . ~4!

The Bloch functionsun,k can also be expanded in terms
the Bloch functionsun,k0

at a given vectork5k0 . Defining

um,k0
[um and ^um,k0

uun,k&[^mun,k&, we write

un,k5(
m

um~r !^mun,k&. ~5!

It has been previously shown15 that the above expansio
must be done over all photonic crystal bands, but also o
some unphysical solutions of the wave equation, which h
zero frequency. Since in our later computations we will lim
ourselves to a small number of bands, neighboring a ban
interest, we will ignore the unphysical solutions, which on
bring small corrections, as was pointed out.15 Using these
expansions, the electric field in the heterostructure may
expressed as

El~r !5(
m,k

eik•rWl,m,kum~r !, ~6!

where we have definedWl,m,k[(n^mun,k&^En,kuEl&. Using
this expression in the wave Eq.~2!, we obtain

(
m,k

Wl,m,k$¹
21vl

2m@eb1ev~r !#2“~“• !%eik•rum~r !50.

~7!

In a bulk photonic crystal, the electromagnetic waveEm,k0

5umeik0•r obeys the equation,
07512
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$¹21vm
2 m@eb1e f~r !#2“~“• !%um~r !eik0•r50. ~8!

Applying the operators in Eq.~7!, simplifying and using Eq.
~8!, we obtain

(
m,k

Wl,m,ke
ik•r$2~k22k0

2!12i @~k2k0!•“#2 i ~k2k0!

3~“• !2 i“@~k2k0!•#1k~k• !2k0~k0• !1~vl
2

2vm
2 !m@eb1e f~r !#1vl

2me f~r !Ds~r !%um~r !50.

~9!

In order to separate the length scale of the crystal fr
that of the heterostructure, it is useful to separate the posi
vectorr into two components,r5R1r. R gives the position
of each unit cell of the crystal, whiler describes positions
inside each unit cell.

The separation of the position vector illustrates the idea
the envelope approximation. The vectorr is associated with
the rapidly varying dielectric profiles of the underlying ph
tonic crystals. The vectorR, on the other hand, is used t
denote variations that occur on a length scale much gre
than that of the photonic crystal lattice. As such, the vectoR
labels variations associated with the heterostructure diele
profile.

To solve Eq.~9! we project it along a given mode b
multiplying it by e2 ik8•run* (r ) and integrating over the vol
ume of the crystal. The following integrals were used in th
evaluation:

I 15E
crystal

ei (k2k8)•run* •umd3r

5(
R

ei (k2k8)•RE
unit cell

ei (k2k8)•run* •umd3r. ~10!

The sum above is over all unit cells, and will be zero unle
k5k8

I 15dk,k8E un* •umd3r[dk,k8un,m . ~11!

In a similar fashion, we obtain

I 25E
crystal

ei (k2k8)•run* •e f~r !umd3r5dk,k8dn,m . ~12!

Here we have used the fact that Bloch modes in a photo
crystal are orthogonal with respect to the dielectric consta
The next parts of Eq.~9! are evaluated in a similar fashion
Special attention is paid to the term containingDs
1-2
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I s5E
crystal

ei (k2k8)•run* •e f~r !Ds~r !umd3r

'(
R

ei (k2k8)•RDs~R!dm,n[Dk2k8
s dm,n . ~13!

After the integration, Eq.~9! becomes

(
m

Wl,m,k8H @2~k22k0
2!1~vl

22vm
2 !meb#un,m

1 (
p5x,y,z

(
q5x,y,z

~kp8kq82k0,pk0,q!^un,k0,puum,k0,q&

1@kx,n,m,~kx82k0,x!1ky,n,m~ky82k0,y!1kz,n,m~kz8

2k0,z!#J 1vl
2m(

k
Dk2k8

s Wl,n,k

1~vl
22vn

2!mWl,n,k850. ~14!

Here the variablesp and q represent the direction variable
x,y, andz in sequence. The following definitions were al
made:

kx,n,m[^unu2i
]

]x
2 i“~ x̂• !2 i x̂~“• !uum&

[E un* F2i
]

]x
2 i“~ x̂• !2 i x̂~“• !Gumd3r, ~15!

ky,n,m[^unu2i
]

]y
2 i“~ ŷ• !2 i ŷ~“• !uum&

[E un* F2i
]

]y
2 i“~ ŷ• !2 i ŷ~“• !Gumd3r, ~16!

kz,n,m[^unu2i
]

]z
2 i“~ ẑ• !2 i ẑ~“• !uum&

[E un* F2i
]

]z
2 i“~ ẑ• !2 i ẑ~“• !Gumd3r. ~17!

In order to computeWl,n,k8 for a specific bandn, it is
possible to express all other envelope functionsWl, j ,k8 , in
terms of the envelope of bandn, which are then inserted in
Eq. ~14!. This would result in a single envelope equatio
similar to the starting wave Eq.~1!. This, however, is only
possible for nondegenerate bands, since the equation
contain frequency differences between the different band
the denominator. In this paper we will use a differe
method.

We take the inverse Fourier transform of Eq.~14! by mul-
tiplying by eik8•R and integrating over allk8. The resulting
equation is
07512
,

ill
in
t

(
m

Wl,m~R!F ~¹21k0
22vm

2 meb!un,m

1(
p

kp,n,mS 1

j

]

]p
2k0,pD

2(
p

(
q

S ]2

]p]q
1k0pk0qDun,p,m,qG2vn

2mWl,n~R!

5(
m

Wl,m~R!~2vl
2mebun,m!

2vl
2mWl,n~R!@Ds~R!11#. ~18!

Here again we usep and q to represent the directionsx,y,
andz. We have also definedun,p,m,q[^un,k0,puum,k0,q&, where
p andq select a single component of the Bloch vectors.

We can express the above equation in matrix form
follows:

QWl~R!5Fvl
2Wl~R!. ~19!

Here Wl is the column vector consisting of the elemen
Wl,n . The elements ofQ andF are defined as

Qn,m[2H ~¹21k0
22vm

2 meb!un,m1(
p

kp,n,mS 1

j

]

]p
2k0pD

2(
p

(
q

F S ]2

]p]q
1k0,pk0,qDun,p,m,qG2vn

2mdn,mJ ,

~20!

Fn,m[mebun,m1m@Ds~R!11#dn,m . ~21!

Equation~19! describes the envelopes of the modes in
heterostructure. Knowledge of the matrix elemen
un,m ,un,p,m,q , and kp,n,m allows calculation of the hetero
structure modes and their frequencies.

If the photonic crystal properties vary very little over th
entire heterostructure, we can assume this to be a small
turbation to the bulk crystal. This allows us to assume t
matrix Q is constant everywhere, and the perturbation
given by the termDs(R). For larger perturbations, this is n
longer justified. In the case of abrupt heterojunctions, ho
ever, the matrices can be evaluated in each constant se
of the crystal. The perturbative termDs is then ignored, and
the effect of the junction is reflected in the boundary con
tions, discussed below, that need to be imposed.

In the remainder of this work we will consider an abru
heterostructure that varies in thez direction only. We will set
the background dielectric constanteb to zero. WhenDs is not
used a background constant can be included ine f . This re-
duces the heterostructure equation to

QWl5vl
2mWl . ~22!
1-3
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Qn,m[2F S ]2

]z2
1k0z

2 D ~un,m2un,z,m,z!

1kz,n,mS 1

j

]

]z
2k0zD2vn

2mdn,mG . ~23!

The above equation is a second-order differential equat
Its solutions must therefore have an exponential form.
assume that their propagation vector will be close to
chosen vectork05 ẑk0z .

Wl5Wl,0e
i (k0z1dk)Z, ~24!

GWl,05vl
2mWl,0 , ~25!

Gn,m5@~k0z1dk!22k0,z
2 #~un,m2un,z,m,z!

2kz,n,mdk1vn
2mdn,m . ~26!

We recognize this as a standard eigenvalue equation. In
dition, for real dk, it can be shown that the matrixG is
Hermitian. This ensures that the frequency eigenvalues
be real. This method allows calculation of the band struct
of the bulk photonic crystal, if the modes are known a
singlek vector.

Although the band structure of a crystal can be compu
by other means, such as the plane-wave expansion me
the method developed here allows computation of the atte
ation of a wave as a function of frequency inside the s
bands of the crystal. This is achieved by finding the ene
eigenvalues corresponding to an imaginary propagation v
tor k. Knowledge of the attenuation of a wave inside a cr
tal is essential in designing devices based on finite-si
crystals.

B. Boundary conditions

In order to study devices involving junctions between d
ferent photonic crystals, we need to find the conditions to
07512
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satisfied by the waves at the interfaces. We consider
crystals A and B with an interface perpendicular to thez
direction located atz50.

Since we are dealing with the envelope of an elec
field, which is continuous, we assume that the envelope
also continuous across the interface,

Wl,A~0!5Wl,B~0!. ~27!

We note that this condition is different from the bounda
conditions of continuous tangential electric- and magne
field components imposed by Maxwell’s equations. Tho
conditions apply at the boundary between the mater
forming the crystals, and are already incorporated in
Bloch modes that we use. Assuming that the two crys
forming the junction have the same embedding material,
heterointerface will not in general overlap with a mater
interface. We also assume that the first derivative ofWl

contains no infinite jumps. We now derive a boundary co
dition for the first derivative of the envelope function. W
integrate Eq.~19! from z52e to z51e, and take the limit
of e going to zero

lim
e→0

E
2e

e

UWldz5 lim
e→0

vl
2E

2e

e

FWldz. ~28!

The right-hand side of the equation contains a finite functi
integrated over an interval going to zero. Hence it a
proaches zero. The equation can then be written as

lim
e→0

E
2e

e

(
m

F S ]2

]z2
1k0z

2 D ~un,m2un,z,m,z!

1kz,n,mS 1

j

]

]z
2k0zD GWl,m2vn

2mWl,ndz50.

~29!
f
ur
FIG. 2. Band diagram for a bulk crystal o
silicon spheres in air, comparing the results of o
expansion and exact simulations.
1-4
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Since we have assumed that the first derivative ofWl con-
tains no infinite jumps, the last two terms vanish in the lim
We are left with

lim
e→0

(
m

E
2e

e ]2

]z2
~un,m2un,z,m,z!Wl,mdz50. ~30!

From this we obtain the boundary conditions for the deri
tive of the envelope to be

(
m

~un,m2un,z,m,z!
]

]z
Wl,m5const. ~31!

This establishes a boundary condition for the derivative
the envelope across a heterojunction, similar to the bound
condition for electrons in the semiconductor case.16 The pa-
rametersun,m2un,z,m,z play the same role as the effectiv
mass of electrons.

III. NUMERICAL EXAMPLE

We now present results obtained using the envelope
proximation. The photonic crystals considered are compo
of an array of spheres, arranged in a cubic structure.
heterostructures are made by varying the index of refrac
of the spheres. The Bloch modes of the bulk crystals, nee
by our method, are computed using the MITphotonic bands
~MPB! program.17 Using the envelope approximation, w
have computed the dispersion relation for the second b
near the edge of the Brillouin zone, as well as the imagin
propagation vectors in the stop band. The results are sh
in Fig. 2 together with the true band diagram and attenua
constants obtained from Refs. 11 and 17. The agreemen
tween our approximation and the true bands is good both
real and imaginary propagation vectors.

We now apply the theory developed above to a spec
illustrative photonic crystal heterostructure. We consider
superlattice shown in Fig. 3~a!. The structure consists of tw
alternating photonic crystals. The two crystal types have
ferent band edges, shown in Fig. 3~b!. As is the case with
semiconductor superlattices, one or several allowed m
bands are expected to appear for frequencies that are fo
den in one of the two regions. We refer to the regions of
structure where the wave is forbidden as thebarriers and the
regions of allowed propagation as thewells.

FIG. 3. Photonic crystal superlattice.
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We use the bands plotted in Fig. 2 together withun,m and
un,z,m,z to compute the positions of the minibands in t
structure. The barriers consist of spheres of dielectric c
stante510, whereas the wells havee511.56. This will pro-
duce the band offset shown in Fig. 3~b!. The width of the
wells, b, was chosen to be 4 lattice constants,a. The barriers
have a widthc of 5 lattice constants. To find the positions
the minibands, we employ the technique described in
Appendix. With reference to Fig. 4, the band-edge frequ
cies of the well and barrier arevw50.245,vb50.260. The
miniband appears betweenv150.252 andv250.260. All
angular frequencies are given in units of 2pc0 /a. We have
also computed the position of the miniband using a full MP
simulation. It appears betweenv150.252 andv250.258. It
should be noted that for this calculation we need the disp
sion relations of the bulk materials; the attenuation consta
in the stop band; and the boundary conditions. For the
persion relation, we have the option of using the exact ba
calculated using MPB or those calculated for the envelo
approximation. We use in this example the exact band st
ture since it is precise and available. For the attenuation
efficients inside the stop band, we use the values obtaine
the envelope approximation.

From these results, we conclude that the frequency p
tion of the lower edge of the miniband is obtained with
high precision of 0.02% in the envelope approximation d
veloped herein. The upper edge is off from its exact value
0.8%—a result of the fact that the parametersun,m and
un,z,m,z are computed for a propagation vectork0,z5p/a. At
the high frequencies at the top of the miniband, the propa
tion vector in the well is not very close tok0,z .

IV. CONCLUSIONS

We have shown that the envelope function approximat
can be applied to photonic crystal heterostructures in a m
ner similar to its use in semiconductor structures. The k
aspects of the constituent photonic crystals are inclu
through knowledge of the bulk band structure in each reg
of photonic crystal. This allows us to focus in subsequ
computation on the evolution of spectral features arising
of mesoscopic heterostructure properties, facilitating des
and analysis and reducing the problem from one which
numerically onerous to one which is readily tractable. T
comparison to full numerical simulations described her
confirms the validity of the envelope approximation.

FIG. 4. Superlattice minibands computed with envelope
proximation and with complete simulations.
1-5
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APPENDIX: COMPUTATION OF MINIBAND POSITIONS

In this Appendix we describe the method used to comp
the minibands of the superlattice considered in Sec. III.

Since we are working with waves close the thek0,z vector,
we express the envelope of the waves asWl5Vlejk0,zz. Vl

represents the envelope with the oscillation atk0,z
removed. Its boundary conditions require thatVl and
(mtn,m(d/dz1k0,z)Vl,m be continuous. Here we have d
fined un,m2un,z,m,z[tn,m .

We use a treatment similar to the Kronig–Penney mod
using the arrangement in Fig. 5. Since we have a perio
structure, our solution must take the form of a Blo
function,

FIG. 5. Geometry used to find minibands.
W
. A

on

-

s:
,

-

n,

S
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te

l,
ic

Vl~b!5Vl~2c!ejq(b1c), ~A1!

with q being the Bloch propagation vector.
It should be noted that the matrix elementstn,m have very

few nondiagonal elements. By using an expansion around
first two nondegenerate bands only, we can eliminate
need to consider the sum of multiple modes in the envel
representation. We represent the mode in each section a
superposition of a forward and a backward propagat
wave,

Vl,15Aejk1z1Be2 jk1z 2c<z<0, ~A2!

Vl,25Cejk2z1De2 jk2z 0<z<b. ~A3!

k1 andk2 represent the propagation vectors in the two s
tions of the superlattice. They are either real or imagina
depending on whether propagation is allowed or forbidden
those sections. The propagation vectors are a function
frequency and can be found using the methods describe
Sec. II A. In addition, for real propagation vectors, they c
be computed using any program that can find the disper
relations in a photonic crystal.

Applying the boundary and the Bloch conditions, E
~A1!, at two points in the superlattice, we obtain a set of fo
equations for the coefficientsA,B,C, andD. These equations
can be presented in matrix form below
rance of
M5F 1 1 1 1

t1~k11k0! t1~2k11k0! t2~k21k0! t2~2k21k0!

e2 jk1cejq(b1c) ejk1cejq(b1c) ejk2b e2 jk2b

t1~k11k0!e2 jk1cejq(b1c) t1~2k11k0!ejk1cejq(b1c) t2~k21k0!ejk2b t2~2k21k0!e2 jk2b

G . ~A4!

This set of equations has a nonzero solution only if its determinant is zero. This forms the condition for the appea
minibands

det~M !50. ~A5!
-
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