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Three-dimensional flux states as a model for the pseudogap phase of transition metal oxides

D. F. Schroeter* and S. Doniach
Department of Physics, Stanford University, Stanford, California 94305

~Received 8 January 2002; published 26 August 2002!

We propose that the pseudogap state observed in the transition metal oxides can be explained by a three-
dimensional flux state, which exhibits spontaneously generated currents in its ground state due to electron-
electron correlations. We compare the energy of the flux state to other classes of mean field states, and find that
it is stabilized over a wide range oft andd. The signature of the state will be peaks in the neutron diffraction
spectra, the location and intensity of which are presented. The dependence of the pseudogap in the optical
conductivity is calculated based on the parameters in the model.
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The motivation for this work is the observation of
pseudogap that opens up in optical conductivity meas
ments of the three-dimensional transition metal ox
SrRuO3

1 above its ferromagnetic transition temperature
TC'150 K. A pseudogap has also recently been seen
BaRuO3.2 In this pseudogapped regime,r(T) increases lin-
early with temperature, passing through the Ioffe-Regel li
without saturation,3 a behavior indicative of a ‘‘bad metal.’’4

The optical conductivity in this state is proportional to t
non-Fermi-liquid behavior ofv21/2 at high frequency and
has a peak at low frequencies1 at approximately 250 cm21,
the precise location of the peak being temperature depend

We propose that this pseudogap state can be unders
by considering a ground state with spontaneously gener
electronic currents circulating around the plaquettes. T
currents arise from electron-electron correlations, due to
biquadratic terms in the Hamiltonian. The state that we p
pose is a generalization of the two-dimensional flux sta
invented by Affleck and Marston,5 and studied in their chira
extension by Wen, Wilzcek, and Zee.6 Unlike the two-
dimensional case, there is no possibility of fractional sta
tics in three dimensions. However, the spontaneous gen
tion of gauge fields is a possibility in three dimensions, a
these gauge fields can lead to a ground state with circula
electronic currents. Earlier work was done on thre
dimensional flux states by Libby and coworkers7,8 and Zee.9

In actuality, SrRuO3 has five bands crossing the Ferm
surface formed by hybridizing the rutheniumd orbitals with
the oxygenp orbitals.10 The crystal structure is orthorhom
bic, becoming cubic at temperatures greater than 90011

Undoubtedly, the actual electronic structure of SrRuO3, and
particularly the presence of a van Hove singularity near
Fermi surface, influence the material’s behavior. The mo
that we consider is vastly simplified and serves as a star
point for considering the nature of the pseudogapped sta
the three-dimensional transition metal oxides. A mo
which incorporates some of these electronic features,
does not focus on the pseudogap regime, has been prop
by Laad and Mu¨ller-Hartmann.12

Based on the experimental evidence, it is clear that e
tron correlation effects are extremely important in und
standing the physics of SrRuO3. It has been suggested b
Ahn et al.13 that SrRuO3 is near a Mott transition, and can b
driven even closer to the transition by doping with calciu
0163-1829/2002/66~7!/075120~9!/$20.00 66 0751
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to form CaxSr12xRuO3. Data from photoemission14 and op-
tical conductivity13 experiments provide evidence that th
on-site Coulomb repulsion is substantial in SrRuO3, on the
order ofU53 –5 eV, in spite of the extended nature of th
4d electron wavefunctions, and a value of 5 eV has be
used by Laad and Mu¨ller-Hartmann.12 The value of the hop-
ping term can be obtained from the linearized argumen
plane-wave calculations performed by Mazinet al.10 The
hopping element between the ruthenium orbitals is given
Vpd

2 /(ed2ep), whereVpd is the Ru-O overlap and thee are
the on-site energies. For the primarilyt2g-pp band, this gives
a hopping element oft'1 eV.

I. MODEL SYSTEM

Given the proximity of SrRuO3 to a Mott transition and
the large value of the Coulomb repulsion, we believe tha
consideration of thet-J model can give insight into the phys
ics of SrRuO3. The Hamiltonian that we consider is therefo
the single orbitalt-J model given by

H5J(̂
i j &

Si•Sj2t (
^ i j &s

cis
† cj s , ~1!

where the sum over̂i j & denotes nearest neighbors on a c
bic three-dimensional lattice. TakingJ54t2/U and using the
values above gives aJ corresponding to a Ne´el temperature
of approximately 103 K. Implicit in this equation is that we
have setU5`. The hopping matrix elementt which appears
in Eq. ~1! is taken to be an effective hopping element, whi
has been greatly reduced due to this on-site Coulomb re
sion. The value oft will be set by two calculations in this
paper: the stability of the flux phase versus other mean fi
states calculated in Sec. II, and the value of the optical c
ductivity calculated in Sec. V.

The spin operators may be written in terms of the ferm
operators to give the Hamiltonian

H52
J

2 (̂
i j &

(
ss8

cis
† cj scj s8

† cis82t(̂
i j &

(
s

cis
† cj s1

3NJ

4
.

~2!

The Hamiltonian will be treated in the mean field,
Hartree-Fock, approximation. We make the replacement
©2002 The American Physical Society20-1
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(
s

cis
† cj s→x i j 1S (

s
cis

† cj s2x i j D . ~3!

The assumption is made that the term in brackets, wh
corresponds to fluctuations about the mean fieldx i j , is small
and can be included only to linear order. The result
Hamiltonian is given by

H5
J

2 (̂
i j &

H Ux i jU222F S x i j 1
t

JD cj
†ci1H.c.G J , ~4!

where we have dropped the redundant spin index. Ther
no a priori reason to believe that the fluctuations about
mean field will be small, although it has been rigorous
shown in the two-dimensional case for the large-n limit,5

wheren is the particle spin.
We allow thex i j to break the translational symmetry o

the lattice. We choose a four-atom unit cell as shown in F
1. The lattice is generated by the primitive translation vect
(1,0,1), (1,0,21), and (0,2,0), in units of the bond lengthb.
The x i j in Eq. ~4! are then parametrized by 12 comple
numbers. We use the notationx in , where the indexi
51, . . . ,4 is thelocation of the atom in the unit cell and th
index n gives the direction$x,y,z%.

This choice is made because it allows for the formation
a p per plaquette flux phase, something that a two atom
cell does not allow in three dimensions. The model is co
putationally simpler than the eight-band model studied
Libby and co-workers,7,8 at the expense of picking out
preferred direction. To get a feel for what this corresponds
one can think of the gauge fields in the sample as be
generated by Dirac monopoles of alternating charge sittin
the centers of each cube. The ‘‘tails’’ of the monopoles
connected to form dipoles. Theŷ direction in our model cor-
responds to the dipolar axis.

The self-consistency of the model is the requirement t
the energy as determined by Eq.~4! be a local minimum with
respect to variations of the 12 complex parametersx in . This
can be seen by writing

^H&5
NJ

8 (
i 51

4

(
n51

3 H ux inu222F S x in* 1
t

JD ^ci
†ci 1n&1H.c.G J .

~5!

FIG. 1. Unit cell for the symmetry-broken bond Hamiltonia
The dark line passes through the four atoms in the planar unit
The spheres at the center of the cubes represent oppositely ch
Dirac monopoles with the ‘‘tail’’ running through the interface b
tween the two cubes.
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Minimizing this function with respect tox in* gives the self-
consistency relation

^ci
†ci 1n&5

x in

2
. ~6!

Also note that, at this minimum, the expectation value of
Hamiltonian is given by

^H&52
NJ

8 (
i 51

4

(
n51

3 F ux inu212
t

J
Re~x in!G . ~7!

The Hamiltonian in Eq.~4! contains both a field strengt
and a term which we define as the bond Hamiltonian:

HB5J(̂
i j &

(
s

S x j i 1
t

JD cis
† cj s1H.c. ~8!

The bond Hamiltonian can be diagonalized by introducin
set of operators

cql
† 5

1

AN (
l

eiq•r luql~ l !cr l

† , ~9!

whereN is the number of sites in the lattice,l is the band
index that runs from 1 to 4, and theuql( l ) are a set of
functions periodic in the unit cell. The bands are determin
by the eigenvalue equation

Hquql5eqluql , ~10!

whereHq is written in terms of the hopping elements an
uql is a four-component vectoruql(1)•••uql(4). For the
unit cell depicted in Fig. 1, the Hamiltonian takes the form

Hq5JS 0 h1 h3 0

h1* 0 0 h4

h3* 0 0 h2

0 h4* h2* 0

D , ~11!

where

h15x̃1ye
iqy1x̃2y* e2 iqy,

h25x̃3ye
iqy1x̃4y* e2 iqy,

h35x̃1xe
iqx1x̃1ze

iqz1x̃3x* e2 iqx1x̃3z* e2 iqz,

h45x̃2xe
iqx1x̃2ze

iqz1x̃4x* e2 iqx1x̃4z* e2 iqz. ~12!

The tilde in the expression above means that these num
include the actual hopping element:x̃ in5x in1t/J. The
eigenenergies for the four bands are given by

eq56JAh ih i*

2
6AS h ih i*

2
D 2

2uh1h2* 2h3h4* u2,

~13!

with the usual Einstein summation convention. In Sec. III
will consider the band structure and eigenstates of one

ll.
ged
0-2
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ticular solution of the bond Hamiltonian, the flux state whe
the hopping elements are complex and equal in magnitu
ux inu5x for all i ,n.

For t50 the gauge fieldsx i j are unobservable. Howeve
as soon ast is increased they lead to real circulating ele
tronic currents. Consider the sitei and the six sitesj that are
its nearest neighbors. The sum of the currents flowing o
ward from sitei is then the time rate of change of the numb
operatorni on sitei,

(
j

j i j 5 K ]

]t
ni L

5
i

\
^@HB ,ni #&5

2i

\ (
j

~Jx i j 1t !^cj
†ci&2H.c.,

~14!

where the factor of 2 arises from the spin. The termx i j ^cj
†ci&

is real and gives no contribution, but fort.0 andx i j com-
plex, the bonds carry electronic currents. These currents
the signature of the flux state. They have long-range or
and can be probed by neutron diffraction, as will be shown
Sec. IV.

II. THE PHASE DIAGRAM

The Hamiltonian described in Sec. I admits a number
self-consistent solutions. We have performed a numer
search as a function of the hopping elementt and the doping
d. The function to be minimized is

E5
N
8 F J(

in
ux inu212

1

Nm
(
kl

8

elkG , ~15!

whereNm5N/4 is the number of unit cells in the lattice. Th
search is performed using Powell’s method in the space
thex in . At each point in the space, the bands are determi
by Eq. ~13!, and the lower magnetic bands are filled up w
Ne5N(12d) electrons.

Our search is limited to three classes of states. We c
sider the flux phase withux i u5uxu for all i, with the phases of
the hopping elements unconstrained. Att5d50 the flux
phase has a fluxF5p per plaquette as defined by

eiF5 )
plaquette

x̃ in

ux̃ inu
. ~16!

Note that a flux ofp and a flux of2p per plaquette are
indistinguishable since in either case the electron acquir
phase of21 upon traversing the plaquette. This is the chi
symmetry of the model. Away fromt5d50, the flux per
plaquette is no longerp and the chiral symmetry is broken

Another state that we have considered is the dimer st
In this case each site forms a bond with a neighboring site
the case oft5d50, one particular manifestation of the sta
is x1z5x4x51 with all otherx in50. The dimer state has fla
bands (eq56J) and can be considered to be a charg
density state with the charge localized on the bonds
which x in51.5 Away from the pointt5d50, the state be-
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comes partially dimerized. There are in principle a numbe
nonequivalent dimer solutions, but the solution mention
above appears to be the lowest energy configuration.

At values of d*0.2 another local minimum is the kite
state which hasx1y5x2x5x3z5x4yÞx in . The state is
called a kite state because the lines of charge, if the ana
from the dimer state above is used, form zigzagging patte
through the lattice, and could lead to a lattice distortion fro
the large Coulomb repulsion between charged lines. T
particular instantiation of the kite state is chosen for the sa
reasons as the dimer above. The last state that is consid
is the uniform state with allx in equal and real valued. Thi
state is a simple Fermi liquid, with a renormalized value
the hopping matrix element.

The phase diagram is shown in Fig. 2. While we ha
performed the calculation for an arbitrary flux state as
scribed above, the phase diagram shows a calculation
formed using a restricted parameter set. The parameters
are shown as different arrows in Fig. 3 below. This is do
because atd'0.1, there is a transition to a flux phase with

FIG. 2. Phase diagram for bond states. The diagram shows
competition between the four types of states considered in the
The contours in the flux phase region show the average flux
plaquette, as defined by Eq.~16!.

FIG. 3. Thep per plaquette flux phase. All bonds have the sa
magnitude. The arrows correspond to complex phases off (.),
f2p/4 ~x!, and 3p/42f (c), wheref is determined by tanf
5A2. This diagram shows the same portion of the lattice as
shown in Fig. 1.
0-3



he
no
o

o
th

-
th

o

bo

d
al
nt
x

y

up
a

e
t

w

is

te

ul
ng
a

th

e
r

or-
ts
neu-

It
e

e

se

the
rs

o

ne

at

D. F. SCHROETER AND S. DONIACH PHYSICAL REVIEW B66, 075120 ~2002!
different type of ordering which is outside the scope of t
current discussion. Apart from this transition, there is
qualitative change in the phase diagram when the unc
strained flux state is considered. From the phase diagram
see that the flux state is stabilized over a fairly wide range
doping, but that the flux per plaquette decreases from
value ofp as one leaves the pointt5d50. In the calcula-
tions which follow we will assume thatt/J50.1, a point at
which the highly symmetricp per plaquette flux state dis
cussed below in Sec. III is a reasonable approximation to
actual mean field state.

One must also consider the possibilities of other types
order which are not described by the mean-fieldx i j . The
most insidious of these is antiferromagnetic order. Att5d
50, the energies of the two stabilized states discussed a
are

Edimer52
NJ

4
, Eflux'20.95

NJ

4
. ~17!

For comparison, the Ne´el state, which is characterized by

x i j 50 ^cis
† szcis8&5~21! i , ~18!

has an energy of23NJ/4, lower than either of the two bon
states att5d50. In order for the bond states to be actu
ized, a term has to be added which will destabilize the a
ferromagnetic order. This can be done by adding a ne
nearest-neighbor hopping termJ8,15 in which case the energ
of the Néel state will be

ENéel52
3NJ

4 S 122
J8

J D . ~19!

The energies of the bond states are actually unchanged
a value ofJ8/J'1/3, which is the threshold for acquiring
nonzero value of the next-nearest neighborx i j as shown by
Laughlin and Zou.16 At the valueJ85J/3, the energy of the
Néel state is equal to the energy of the dimer state and v
close to the energy of the flux state. Doping will also serve
destabilize the antiferromagnet so that the crossover
actually occur at a lower value ofJ8 than the one reported
here. Therefore, while it is not treated explicitly in th
paper, some term such as the next-nearest neighborJ8 must
be added to this model in order to make the bond sta
energetically favorable with respect to the Ne´el-ordered
state.

III. FLUX PHASE

In the calculations which follow, we consider thep per
plaquette flux phase described in Sec. II, which is only tr
stabilized atd5t50. Some care must be used in selecti
this state, since att5d50 the system is invariant under
gauge transformation where

ci→eif ici , x i j →ei (f j 2f i )x i j . ~20!

Away from this point, this symmetry disappears, and
low-energy state is the one for which the quantity
07512
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Re@x in#, ~21!

is a maximum as can be seen from Eq.~7!. The state is
shown in Fig. 3. It can be found either by maximizing th
function in Eq.~21! for an arbitrary gauge transformation, o
by numerically continuing a state fromt.0 down to t50.
The choice of the correct symmetry-breaking gauge is imp
tant since it will affect the distribution of electronic curren
in the sample and hence observable features such as the
tron diffraction and optical conductivity.

In this state, the Hamiltonian in Eq.~9! can be rewritten
using a set of Dirac matricesax , ay , andaz , such that

Hq52Juxu(
n

cos~qnb!an , ~22!

where the matrices satisfy the algebra

$a i ,a j%52d i j . ~23!

Explicit forms for the matrices are given in the Appendix.
is found numerically thatuxu'0.4. The eigenvalues of th
Hamiltonian are twofold degenerate and are given by

eq562JuxuA(
n

cos2~qnb!. ~24!

The band structure is shown in Fig. 4. At half-filling th
Fermi surface reduces to two isolated points atqb
5(p/2,p/2,p/2) and qb5(p/2,p/2,2p/2) shown at the
point S in Fig. 4. The low-energy excitations about the
points are relativistic.

In order to calculate the neutron cross section and
optical conductivity, we also will need the eigenvecto
which appear in Eq.~9!. The matrixu whose rows corre-
spond to the bands 1. . . 4 andwhose columns correspond t
the position in the unit cell is given by

FIG. 4. Flux phase band structure. Points in the Brillouin zo
are G5(0,0,0), D5(p/2,0,0), R5(p/2,0,p/2), and S
5(p/2,p/2,p/2). There are two distinct Dirac points located
qb5(p/2,p/2,p/2) andqb5(p/2,p/2,2p/2).
0-4
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hq
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e2 if 0 gq

hq
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ugqu 0
gq

ugqu
e2 if 2hq

gq

ugqu

uhqu
hq

uhqu
e2 if 0 2gq

hq

uhqu D , ~25!
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where we have defined the quantities

hq5
cosqyb

Gq
, gq5e2 ip/4

cosqxb2 icosqzb

Gq
,

Gq5A(
n

cos2~qnb!. ~26!

The phases of the eigenvectors in Eq.~25! have been se
lected so that the eigenstates in Eq.~9! are invariant under
q→q1Q whereQ is any vector in the reciprocal lattice.

IV. NEUTRON SCATTERING

The flux states can be probed by neutron scattering, as
neutron spin interacts with the magnetic dipoles generate
the real electron currents circulating on the plaquettes.
interaction potential17 is written

V~r !52(̂
i j &

t~ci
†cj2H.c.!expF ie

\cExi

xj
A•dlG , ~27!

where the vector potential is given by

A5m3
re2rn

ure2rnu3
, m52g

e\

mnc
S. ~28!

In these expressionsS is the neutron spin andg'1.91 is a
constant. It can be shown18 that

E dreiq•rnV~r !

5 i ~gr 0!S m

m*
D 8p\2

mn

1

uqbu2 (
n

Jn

n̂•~S3q!

q•n̂
, ~29!

with the current operator defined as

Jn5(
k

ck1q
† ck f n~k,q!,

f n~k,q!5cos~knb!2cos~knb1qnb!. ~30!

In these expressions we have replaced the hopping elemt
by \2/(2m* b2), with m* the effective mass. Since we a
assuming~see Sec. II! that t/J50.1, the effective mass wil
07512
he
by
e

nt

be quite large. If we assume thatJ takes the typical value o
0.1 eV, we havem* '15m. The vectorn̂ is a unit vector with
the sum running over thex, y, andz directions.

Converting this to a cross section and averaging over
spin, assuming that the incoming beam is unpolarized,
expression for the cross section is given by

ds

dV
5~gr 0!2S m

m*
D 2

4

uqbu4
(

n,n8
U qn

qn8

^Jn8&2
qn8
qn

^Jn&U2

.

~31!

In order to calculate the matrix elements in Eq.~31!, we need
to rewrite the current operator in terms of the eigenstate
our system. We first break up the momentum sum so tha
runs only over the first Brillouin zone,

Jn5(
k

8

(
i 51

4

ck1q1Qi

† ck1Qi
f n~k1Qi ,q!, ~32!

where Q1b50, Q2b5(p,0,p), Q3b5(0,p,0), and Q4b
5p. We can rewrite the electron operators at momentumk
1Q in terms of thecq( l ) defined as

cq
†~ l !5

1

ANm
(
R

eiq•(R1r l )cR1r l

† , ~33!

whereR runs over all the unit cells andr l is the position of
the l th atom in the unit cell. This introduces a matrixg with
elementsgil 5exp@iQi•r l #/2, and results in the current opera
tor

Jn5(
k

8

(
imp

gimgipck1q
† ~m!ck~p! f n~k1Qi ,q!. ~34!

We also note thatf n(k1Qi ,q)5@Q̄n# i i f n(k,q), where the
matrix Q̄n is diagonal with elements exp@iQi•nb#. The sum
on i can then be performed to obtain

Jn5(
k

8

(
mp

ck1q
† ~m!@gQ̄ng#mpck~p! f n~k,q!. ~35!
0-5
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The matrixgQ̄ng in the above expression has a natural
terpretation. It merely connects all sites in the lattice
connected by a hopping element in then direction. It can be
written in the form

gQ̄ng5S sx 0

0 sxD dny1S 0 1

1 0D ~dnx1dnz!.

~36!

Finally, we can rewrite Eq.~35! by inverting the eigenvecto
matrix in Eq.~25!. This gives

Jn5(
k

8

(
ll8

@uk~gQ̄ng!uk1q
† #l8l f n~k,q!cl,k1q

† cl8,k .

~37!

If we assume that the lower bands are completely filled,
can then write a simple expression for the expectation va
of these matrix elements:

^Jn&5(
t

(
k

8

Tr8@uk~gQ̄ng!uk1q
† # f n~k,q!dqt . ~38!

The prime on the trace indicates that it runs only over
lower two bands, and the sum ont runs over all vectors in
the reciprocal lattice.

Expression~38! is quite general, and can be used to c
culate properties away from zero doping by restricting
sum onk such thatk,kF . Additionally, this equation as
sumes nothing about the actual structure of the eigenve
matrix uk . Specializing to the case of the flux state discus
in Sec. III, the trace forn5y is

i S 12
gk1q*

gk*
D hksinf. ~39!

Here we have used the fact thathk1q52hk , a condition
enforced by the presence off y in Eq. ~38!. We see that the
trace is zero unlessgk1q52gk , which means that̂Jy& van-
ishes unlessqnb is an odd multiple ofp for all n. For the
n5x andn5z cases, the traces are the same as can be
from Eq. ~36!. They are given by

i S 12
hk1q

hk
D Imgkcosf2 i S 11

hk1q

hk
DRegksinf, ~40!

where we have takengk1q52gk for the same reasons a
above. This expression takes two different values depen
on whetherqyb is an even or an odd multiple ofp.

Scattering will only occur at the reciprocal-lattice vecto
as guaranteed by the delta function in Eq.~38!. The recipro-
cal lattice is shown in Fig. 5. There is no magnetic scatter
at the nuclear locations, since they occur at even multiple
p. There is additionally no scattering at the line centersqb

5p ŷ, since all three matrix elements vanish at these poi
Scattering does occur at both the face centers atqb
5(p,0,p) and at the body center atqb5p. The former dis-
tinguishes the scattering from Bragg scattering from a cu
antiferromagnet. It is likely that the actual material wou
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consist of domains containing all possible dipolar orien
tions, so that scattering would actually be observed at all
face centers.

The magnitude of the scattering will in general be qu
small. We write the cross section as

ds

dV
5Nm

~2p!3

v0m
~gr 0!2S m

m*
D 2

(
t

M ~q!d~q2t!, ~41!

where we have rewritten the Kronecker delta function fro
Eq. ~38! in terms of the Dirac delta function with the prope
normalization of (2p)3/V. The termv0m54b3 is the volume
of the unit cell. The structure factor is given by

M ~q!5
4

3

uxu2

uqbu2
F ~31cosqyb!S 1

~qxb!2
1

1

~qzb!2D
14

12cosqyb

~qyb!2 G ~12cosqxb!~12cosqzb!.

~42!

In deriving this expression, we have repeatedly used the
that

1

Nm
(

k

8 coskncoskn8
Gk

5uxudnn8 , ~43!

with theGk defined as in Eq.~26!. This relation follows from
the symmetry of the momentum sum and Eq.~15!. The struc-
ture factor in Eq.~42! takes the same value at the two sma
est scattering angles corresponding to the pointsQ2b
5(p,0,p) andQ4b5p in the reciprocal lattice:

M ~q!5
64

3p4
uxu2. ~44!

FIG. 5. Reciprocal-lattice vectors for the flux phase. The bla
dots show the scattering from the nuclear centers. The white
shows the antiferromagnetic scattering vector atqb5p. The shaded
dots at the face centers show those points in the reciprocal la
space of the flux phase which produce scattering, and the lig
shaded dots along the line centers show those points in
reciprocal-lattice space which do not produce scattering.
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To give a feel for the order of magnitude of the scatter
from the flux states, we compare to the scattering from
antiferromagnet. In that case one has

ds

dV
uAF5

2

3
N m

AF ~2p!3

v0m
AF

~gr 0!2^Sh&2(
t

uF~t!u2d~q2t!,

~45!

where the factor of 2/3 arises by assuming that the subla
magnetization is along a crystallographic axis. We can e
mate the form factor for the antiferromagnet by assumin
is the same as that of chromium, a typical band antiferrom
net. Chromium has a form factor ofF(p/b)'0.4.19 The unit
cell in the flux phase is twice as large as the antiferrom
netic unit cell, and thereforeN m

AF52Nm and v0m
AF5v0m/2.

Assuming that the spins are 50% polarized such that^Sh&
51/4, and takingm* 515m, we see that the scattering from
the antiferromagnet is roughly 170 times larger than the s
tering from the flux state at the wave vectorqb5p. Note
that the discrepancy in size is due primarily to the size of
effective hopping elementt, which must be small compare
to J if the flux phase is going to be stabilized away fromd
50, as was shown in Sec. II.

V. OPTICAL CONDUCTIVITY

In our model, the peak in the optical conductivity aris
from transitions between the bands shown in Fig. 4. T
model is too simple to accurately predict the optical cond
tivity of a material such as SrRu03. However, the calculation
illustrates both the dependence of the location of the pea
the spin-exchange energyJ and the intensity of the peak o
the ratio oft/J.

The calculation of the optical conductivity is very simila
to that of the neutron diffraction. In this case we couple
system to a time-dependent vector potentialA5A(t)n̂,
where the vector potential’s time dependence and relatio
the electric field are given by

A~ t !5Ae2 ivt, E5
iv

c
A. ~46!

We assume that the wavelength of the light is long eno
that we can ignore any spatial dependence in the fields.
vector potential couples to the hopping terms in the Ham
tonian. A phase is acquired according to

cj
†ci→cj

†ciexpF ie

\cExi

xj
A•dlG . ~47!

It is important to note that the correspondingx i j appearing in
Eq. ~4! also acquire an equal and opposite phase, so
when we expand the Hamiltonian to linear order in the v
tor potentialA(t) we do not get any contribution from th
terms proportional tox i j . The perturbation to the Hamil
tonian is

H852
L

c
A• j , ~48!
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whereL5N 1/3b is the length of the sample and the curre
operator in then direction is given by

j n5
2i teb

\L (
i

@ci
†ci 1n2ci 1n

† ci #. ~49!

Note that the operator in Eq.~49! defines the total current
not the current density, flowing in then direction. The com-
plex optical conductivity is related to the induced curre
density in the sample by

Jind5sE. ~50!

The induced current can be calculated using linear
sponse theory. In that case, it can be shown from Eqs.~46!,
~48!, and~50! that the real portion of the optical conductivit
is related to the complex portion of the current-current c
relation function

s1~v!52
1

v
Imx~v!, ~51!

where the current-current correlation function is given by

x~v!5
1

L (
n

u^0u j un&u2F 1

\v2En1E01 is

2
1

\v1En2E01 isG . ~52!

The infinitesimals arises from assuming that the perturbati
in Eq. ~48! vanishes att52`. The statesu0& andun& are to
be evaluated att52` or A50. The current operator in Eq
~49! can be written in terms of the eigenstates of the syst
following the same approach applied in Eqs.~32!–~38!. The
result is that

j n54
teb

L\ (
k

8

(
ll8

@uk~gQ̄ng!uk
†#l8lsin~knb!clk

† cl8k .

~53!

Eq. ~53! is very similar to Eq.~37!. In this case, however, we
are considering matrix elements connecting the ground s
to excited states and so pick up the contributions atlÞl8.
Averaging the optical conductivity over the three directio
in the lattice, it takes the form

s1~v!5
p

12uxu2
e2

\b S t

JD 21

m

1

Nm
(

q

8

F~q!d~m2Gq!,

~54!

whereGq was defined in Eq.~26! and where we have define
a dimensionless frequency given bym5\v/4Juxu. The
structure factor is given by

F~q!5(
n

(
l51

2

(
l853

4

u@uq~gQ̄ng!uq
†#l8lu2sin2qnb.

~55!

The sums in Eq.~55! can be performed to give
0-7
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F~q!5S 4

3
1

~gk2gk* !2

6 D ~sin2kxb1sin2kzb!

1
2

3
~11hk

2!sin2kyb, ~56!

with the quantities defined as in Eq.~26!.
Equations~54! and~56! have been evaluated numericall

and the result is shown in Fig. 6. Within our model, th
location of the peak is proportional to the exchange energJ.
Assuming this takes the value 0.1 eV, we find that the p
occurs at approximately 1000 cm21, which gives order of
magnitude agreement with the observed value of 250 cm21

in SrRuO3.1 Due to the simplicity of the model we are solv
ing, one would not expect more accurate agreement.
magnitude of the peak is governed by the ratio oft/J. A
direct comparison of this quantity with experiment is mo
difficult. This is due to the fact that SrRuO3 has five bands,
whereas we have considered only a single orbital. Additi
ally, our calculation only considers the interband contributi
to the conductivity, whereas the real material also has
intraband contribution from thermally excited carriers. If o
assumes that the result shown in Fig. 6 needs to be scale
a factor of roughly five to account for the number of orbita
in SrRuO3, the results are reasonable compared with
measured conductivity of 6000V21 cm21.

VI. DISCUSSION

We propose that the three-dimensional flux state is a g
candidate for the pseudogap state seen in the transition m
oxides. Its signature will be the presence of weak neutr
diffraction peaks arising from the ordered electronic curre

FIG. 6. Interband contribution to optical conductivity for th
flux phase.
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in the material. The fact that SrRuO3 is not near an antifer-
romagnetic transition and the fact that the three-dimensio
flux states produce scattering at wave vectors other thanqb
5p make the system an excellent candidate in which
observe this type of order. Further theoretical work is w
ranted to understand how the actual electronic structure
the material will influence the behaviors discussed here.
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APPENDIX

The matrices from Eqs.~22! and~23! are given explicitly
by

ax

5S 0 0 Ze23ip/4 0

0 0 0 Z* eip/4

Z* e3ip/4 0 0 0

0 Ze2 ip/4 0 0

D ,

az

5S 0 0 Ze2 ip/4 0

0 0 0 Z* e3ip/4

Z* eip/4 0 0 0

0 Ze23ip/4 0 0

D ,

~A1!

ay5S 0 Z 0 0

Z* 0 0 0

0 0 0 Z*

0 0 Z 0

D ,

where

Z5eif5
1

A3
1 iA2

3
. ~A2!
ev.
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