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Three-dimensional flux states as a model for the pseudogap phase of transition metal oxides
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We propose that the pseudogap state observed in the transition metal oxides can be explained by a three-
dimensional flux state, which exhibits spontaneously generated currents in its ground state due to electron-
electron correlations. We compare the energy of the flux state to other classes of mean field states, and find that
it is stabilized over a wide range ofand 5. The signature of the state will be peaks in the neutron diffraction
spectra, the location and intensity of which are presented. The dependence of the pseudogap in the optical
conductivity is calculated based on the parameters in the model.
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The motivation for this work is the observation of a to form CaSr;_,RuQ;. Data from photoemissidfand op-
pseudogap that opens up in optical conductivity measuretical conductivity® experiments provide evidence that the
ments of the three-dimensional transition metal oxideon-site Coulomb repulsion is substantial in SrRuon the
SrRuQ! above its ferromagnetic transition temperature oforder ofU=3-5 eV, in spite of the extended nature of the
Tc~150 K. A pseudogap has also recently been seen iad electron wavefunctions, and a value of 5 eV has been
BaRuQ,.? In this pseudogapped regimg(T) increases lin- used by Laad and Mier-Hartmann'? The value of the hop-
early with temperature, passing through the loffe-Regel limitping term can be obtained from the linearized argumented
without saturatiori,a behavior indicative of a “bad metal”  plane-wave calculations performed by Mazall® The
The optical conductivity in this state is proportional to the hopping element between the ruthenium orbitals is given by
non-Fermi-liquid behavior ofv~ %2 at high frequency and V24 (€4 €p), whereV,q is the Ru-O overlap and the are
has a peak at low frequenctest approximately 250 ¢,  the on-site energies. For the primariby-p,. band, this gives
the precise location of the peak being temperature dependent.hopping element dfi~1 eV.

We propose that this pseudogap state can be understood
by considering a ground state with spontaneously generated
electronic currents circulating around the plaquettes. The
currents arise from electron-electron correlations, due to the Given the proximity of SrRu@to a Mott transition and
biguadratic terms in the Hamiltonian. The state that we prothe large value of the Coulomb repulsion, we believe that a
pose is a generalization of the two-dimensional flux statesonsideration of the-J model can give insight into the phys-
invented by Affleck and Marstonand studied in their chiral ics of SrRuQ@. The Hamiltonian that we consider is therefore
extension by Wen, Wilzcek, and Z&eUnlike the two-  the single orbitat-J model given by
dimensional case, there is no possibility of fractional statis-
tics in three dimensions. However, the spontaneous genera-
tion of gauge fields is a possibility in three dimensions, and H :‘]<i2.

: o . 1)
these gauge fields can lead to a ground state with circulating
electronic currents. Earlier work was done on three-where the sum ove(ij) denotes nearest neighbors on a cu-
dimensional flux states by Libby and coworketand Ze€.  bic three-dimensional lattice. Takirg= 4t%/U and using the

In actuality, SrRu@ has five bands crossing the Fermi values above gives &corresponding to a Mg temperature
surface formed by hybridizing the rutheniwhorbitals with  of approximately 18 K. Implicit in this equation is that we
the oxygenp orbitals’® The crystal structure is orthorhom- have set) =c. The hopping matrix elemettwhich appears
bic, becoming cubic at temperatures greater than 996 K. in Eq. (1) is taken to be an effective hopping element, which
Undoubtedly, the actual electronic structure of SrRu@hd  has been greatly reduced due to this on-site Coulomb repul-
particularly the presence of a van Hove singularity near th&ion. The value ot will be set by two calculations in this
Fermi surface, influence the material's behavior. The modepaper: the stability of the flux phase versus other mean field
that we consider is vastly simplified and serves as a startingtates calculated in Sec. Il, and the value of the optical con-
point for considering the nature of the pseudogapped state iductivity calculated in Sec. V.
the three-dimensional transition metal oxides. A model The spin operators may be written in terms of the fermion
which incorporates some of these electronic features, buiperators to give the Hamiltonian
does not focus on the pseudogap regime, has been proposed

. MODEL SYSTEM

s~sj—t<2 ClCios 1)

ijyo

by Laad and Miller-Hartmann:? J 3NV

. . . — t t _ t
Based on the experimental evidence, it is clear that elec-H=— 2 % 2 CisCjoCjyrCio t% EU: CioCiot —4
tron correlation effects are extremely important in under- i 2

standing the physics of SrRyYOIt has been suggested by
Ahn et al® that SrRuQ is near a Mott transition, and can be The Hamiltonian will be treated in the mean field, or
driven even closer to the transition by doping with calciumHartree-Fock, approximation. We make the replacement
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Minimizing this function with respect tg;, gives the self-
consistency relation

r“/j@ T
4 | 3 z
Xiv
Q — )_y (clein) =5 ©
4
N Also note that, at this minimum, the expectation value of the
©, !

Hamiltonian is given by

FIG. 1. Unit cell for the symmetry-broken bond Hamiltonian. N 2 8 t
. . ) __ 2
The dark line passes through the four atoms in the planar unit cell. (HY= e 2 2 Ixiy| +23Re()(i,,)
The spheres at the center of the cubes represent oppositely charged =1v=1
Dirac monopoles with the “tail” running through the interface be-
tween the two cubes.

. (7)

The Hamiltonian in Eq(4) contains both a field strength
and a term which we define as the bond Hamiltonian:

Z CiTUCjU_Xij>- ©) Hg=3 X

(i) o

The assumption is made that the term in brackets, whicﬂ_he bond Hamiltonian can be diagonalized by introducing a

corresponds to fluctuations about the mean figjd is small ~ S¢t of operators
and can be included only to linear order. The resulting
Hamiltonian is given by

¢l ¢+ H.c. (8)

t
Xity

.
> CisCio— Xijt
ag

1
%”:J_/T/

2—2[(Xi'+£ } (4) where is the number of sites in the latticg, is the band
N ' index that runs from 1 to 4, and they, () are a set of
functions periodic in the unit cell. The bands are determined
where we have dropped the redundant spin index. There isy the eigenvalue equation
no a priori reason to believe that the fluctuations about the
mean field will be small, although it has been rigorously HqUgy = €quUqy » (10)

. - . . . 5
shown in the two-dimensional case for the largémit,”  \yhereH,, is written in terms of the hopping elements and
wheren is the particle spin. Ug is a four-component vectag, (1) - - Ug (4). For the

We allow they;; to break the translational symmetry of it cell depicted in Fig. 1, the Hamiltonian takes the form
the lattice. We choose a four-atom unit cell as shown in Fig.

2 eMug ey, ©)
J

53

()

H

c/ci+H.c.

1. The lattice is generated by the primitive translation vectors 0 7 73 0

(1,0,1), (1,0-1), and (0,2,0), in units of the bond lendth * 0 0

The x;; in Eq. (4) are then parametrized by 12 complex H.=]J K 74 (11)
numbers. We use the notatiog,,, where the indexi q 75 0 0 7|’
=1,...,4 is thdocation of the atom in the unit cell and the 0 e s 0

index v gives the directior{x,y,z}.
This choice is made because it allows for the formation ofwhere
a m per plaquette flux phase, something that a two atom unit

cell does not allow in three dimensions. The model is com- 7= X1,€ Y+ x3,€7'Y,

putationally simpler than the eight-band model studied by

Libby and co-workerd? at the expense of picking out a 7= X3y W+ xhe ',

preferred direction. To get a feel for what this corresponds to,

one can think of the gauge fields in the sample as being ngz}lxeiqx+}(1zeiqz+}§xe—iqx+;(*3<ze—iqz,
generated by Dirac monopoles of alternating charge sitting at

the centers of each cube. The “tails” of the monopoles are Na= Xox€ X+ x2,892+ i @71+ Yk o7l (12)

connected to form dipoles. Triedirection in our model cor- o .
responds to the dipolar axis. The tilde in the expression above means that these numbers

The self-consistency of the model is the requirement thatnclude the actual hopping elemeng;,=xi,+t/J. The
the energy as determined by Ed) be a local minimum with ~ €igenenergies for the four bands are given by
respect to variations of the 12 complex parametgrs This
can be seen by writing nin it 2
=23\ ——=\ || ~lmn—»namil?

s 2 2
] (13)

t
Xiy+ _)<CiTCi+v>+H-C- . o . .
J with the usual Einstein summation convention. In Sec. Il we
(5 will consider the band structure and eigenstates of one par-

i=1v=1

N 3
= 5 3 -2
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ticular solution of the bond Hamiltonian, the flux state where 0.25 T
the hopping elements are complex and equal in magnitude:
|xi,|=x for all'i,v.

Fort=0 the gauge fieldg;; are unobservable. However,
as soon ag is increased they lead to real circulating elec-
tronic currents. Consider the sitend the six siteg that are 0.15
its nearest neighbors. The sum of the currents flowing out-
ward from sitel is then the time rate of change of the number
operatorn; on sitei, 0.1

) Jd
; Jij_<ani> 0.05

ol

uniform

t)J

i 2i . ol
=g<[HB'”i]>=g;(JXiJ+t)<CjCi>_H-C-’ 0 01 02 03 04 05

(14
. . FIG. 2. Phase diagram for bond states. The diagram shows the
t
where the factor of 2 arises from the spin. The t%mcj Ci) competition between the four types of states considered in the text.

is real and gives no contributipn, but for-0 andXii COM- The contours in the flux phase region show the average flux per
plex, the bonds carry electronic currents. These currents aggaquette, as defined by E€.6).

the signature of the flux state. They have long-range order

and can be probed by neutron diffraction, as will be shown in . L L
Sec. IV. comes partially dimerized. There are in principle a number of

nonequivalent dimer solutions, but the solution mentioned
above appears to be the lowest energy configuration.
At values of =0.2 another local minimum is the kite
The Hamiltonian described in Sec. | admits a number ofstate which hasy1y= x2x= x3:= xay# Xi,- The state is
self-consistent solutions. We have performed a numericatalled a kite state because the lines of charge, if the analogy
search as a function of the hopping elemeand the doping from the dimer state above is used, form zigzagging patterns
5. The function to be minimized is through the lattice, and could lead to a lattice distortion from
the large Coulomb repulsion between charged lines. This
N 1 particular instantiation of the kite state is chosen for the same
E=213> [xi?+2—+ 2 el (150  reasons as the dimer above. The last state that is considered
8 W Nin & is the uniform state with alk;, equal and real valued. This

where\,,= A74 is the number of unit cells in the lattice. The Staté is a simple .Fermi liquid, with a renormalized value of
search is performed using Powell's method in the space df'€ hopping matrix element. o .
the x;, . At each point in the space, the bands are determined The phase diagram is shown in Fig. 2. While we have

by Eq.(13), and the lower magnetic bands are filled up with performed the calculation for an arbitrary flux state as de-
No=A{(1— ) electrons. scribed above, the phase diagram shows a calculation per-

Our search is limited to three classes of states. We corformed using a restricted parameter set. The parameters used
sider the flux phase withy;|=| x| for all i, with the phases of are shown as different arrows |n.l':|g. 3 below. This is QOne
the hopping elements unconstrained. ¥t 5=0 the flux because ab~0.1, there is a transition to a flux phase with a

phase has a flusb = 7 per plaquette as defined by

Il. THE PHASE DIAGRAM

’

- 1 (2) 1
ev= ==, 16 /_\%\"/
plal;gette|x- | ( )
v 3 4 3

Note that a flux ofr and a flux of — 7 per plaquette are
indistinguishable since in either case the electron acquires a
phase of— 1 upon traversing the plaquette. This is the chiral
symmetry of the model. Away from=6=0, the flux per
plaquette is no longefr and the chiral symmetry is broken.
Another state that we have considered is the dimer state. 1 \2J 1
In this case each site forms a bond with a neighboring site. In

the case of=6=0, one particular manifestation of the state  F|G. 3. Ther per plaquette flux phase. All bonds have the same
IS X1,= xax=1 with all othery;,=0. The dimer state has flat magnitude. The arrows correspond to complex phaseg (f),
bands €,=*J) and can be considered to be a charge-¢—x/4 (>), and 3m/4— ¢ (»), where¢ is determined by tae
density state with the charge localized on the bonds for 2. This diagram shows the same portion of the lattice as is
which x;,=1.5 Away from the pointt= §=0, the state be- shown in Fig. 1.

075120-3



D. F. SCHROETER AND S. DONIACH PHYSICAL REVIEW B6, 075120 (2002

different type of ordering which is outside the scope of the
current discussion. Apart from this transition, there is no
gualitative change in the phase diagram when the uncon-
strained flux state is considered. From the phase diagram we
see that the flux state is stabilized over a fairly wide range of
doping, but that the flux per plaquette decreases from the
value of 7 as one leaves the poibt §=0. In the calcula-
tions which follow we will assume thafJ=0.1, a point at
which the highly symmetricr per plaquette flux state dis-
cussed below in Sec. Il is a reasonable approximation to the
actual mean field state.

One m_USt also Cons'der,the possibilities of ‘?thef types of FIG. 4. Flux phase band structure. Points in the Brillouin zone
order which are not described by the mean-figld. The g I'=(0,0,0), A=(w/2,0,0), R=(w/2,0a/2), and 3
most insidious of these is antiferromagnetic ordertAtS = (z/27/2,7/2). There are two distinct Dirac points located at
=0, the energies of the two stabilized states discussed abo® = (#/2,7/2,7/2) andqb=(m/2,m/2,— 7/2).
are

€a/J Ix

N N
Edimer: - T: Eﬂux% - 095T . (17) % RQXI v]! (21)

For comparison, the N# state, which is characterized by is a maximum as can be seen from Ed). The state is

shown in Fig. 3. It can be found either by maximizing the
function in Eq.(21) for an arbitrary gauge transformation, or

has an energy of 3AJ/4, lower than either of the two bond PY numerically continuing a state from»>0 down tot=0.

states at=56=0. In order for the bond states to be actual- The choice of the correct symmetry-breaking gauge is impor-

ized, a term has to be added which will destabilize the antifant since it will affect the distribution of electronic currents

ferromagnetic order. This can be done by adding a nextln the .samplle and henc_e observablie_features such as the neu-

nearest-neighbor hopping tedn,'® in which case the energy tron diffraction and optical conductivity. _

of the Neel state will be In this state, the Hamiltonian in E@9) can be rewritten
using a set of Dirac matrices,, «,, anda,, such that

Xij:0 <CiT()'0-ZCiU’>:(_1)i1 (18)

3N J’
127 19

Eneer=———|1-27

. He=2Jx|2 coga,b)a,, (22
The energies of the bond states are actually unchanged up to v

a value ofJ’/J~1/3, which is the threshold for acquiring a

nonzero value of the next-nearest neighggras shown by  where the matrices satisfy the algebra

Laughlin and Zou® At the valueJ’' =J/3, the energy of the

Neel state is equal to the energy of the dimer state and very

close to the energy of the flux state. Doping will also serve to {ai,aj} =26 . (23
destabilize the antiferromagnet so that the crossover will

actually occur at a lower value df than the one reported Explicit forms for the matrices are given in the Appendix. It
here. Therefore, while it is not treated explicitly in this js found numerically thaty|~0.4. The eigenvalues of the

paper, some term such as the next-nearest neighbotust  Hamiltonian are twofold degenerate and are given by
be added to this model in order to make the bond states
energetically favorable with respect to the eélerdered

state. = +23xI\/ D cog(q,b). 24)

v

Ill. FLUX PHASE

In the calculations which fO”OW, we consider the per The l?and structure is shown in Flg 4, At haIf-fllllng the
plaguette flux phase described in Sec. II, which is only truly"€'mi surface reduces to two isolated points gt
stabilized ats=t=0. Some care must be used in selecting= (7/27/2,m/2) and gb=(m/2,m/2,—m/2) shown at the
this state, since at= =0 the system is invariant under a point 3 in Fig. 4. The low-energy excitations about these

gauge transformation where points are relativistic. _
In order to calculate the neutron cross section and the

c,—e'%ic;, Xij_)ei(cbrfbi)xij_ (20) optical conductivity, we also will need the eigenvectors
which appear in Eq(9). The matrixu whose rows corre-
Away from this point, this symmetry disappears, and thespond to the bands 1 . 4 andwhose columns correspond to
low-energy state is the one for which the quantity the position in the unit cell is given by
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7 i 7

|ng - ——e7i¢ 0 —

T 74 gl
B2 0 RATP _ nqﬁ

1 |')’q| |7q|

Uq:—2 n n y (25)

gl e ' 0 ~Yq T

a |77q| a | 7q

Y Y
|4l 0 S A e

: 74l 7]y

|
where we have defined the quantities be quite large. If we assume thatakes the typical value of

0.1 eV, we haven* ~ 15m. The vector is a unit vector with
y =g i the sum running over the y, andz directions.
d Iq d Iy ’ Converting this to a cross section and averaging over the
spin, assuming that the incoming beam is unpolarized, the

re= /2 co(q,b). (26) expression for the cross section is given by

cosqyb—icosq,b

_ cosgyb

2 2
The phases of the eigenvectors in EB5) have been se- d_‘T:(yro)z m)_4 > q ( ,>_£<J )
lected so that the eigenstates in KE@). are invariant under dQ m* ) |gbl* , < |q, Y q, "
g—qg+ Q whereQ is any vector in the reciprocal lattice. (3D
IV. NEUTRON SCATTERING In order to calculate the matrix elements in E8fl), we need

to rewrite the current operator in terms of the eigenstates of

The flux states can be probed by neutron scattering, as thgur system. We first break up the momentum sum so that it
neutron spin interacts with the magnetic dipoles generated byns only over the first Brillouin zone,

the real electron currents circulating on the plaquettes. The
interaction potential is written ra
1

ie [x JI/:E E
+ J k i=
V(=22 t(cic;—H.e)exg—| A-dl|, (27
) hcly
where Q;b=0, Q,b=(,0,m), Q3b=(0,7,0), and Qb
= . We can rewrite the electron operators at momenkum
+Q in terms of thecy(l) defined as

Cl+q+QiCk+Qi fv(k+Qi vq)v (32)

where the vector potential is given by

A= px—e = i g (28)
* |re_rn|3, # ymnc '
Ty — ig-(R T
In these expressiornS is the neutron spin angi=1.91 is a cq(D= IV ER: el +r|)CR+r|1 (33
constant. It can be showhthat m
. whereR runs over all the unit cells and is the position of
f dre'9 V() thelth atom in the unit cell. This introduces a matgxwith
elementg; =exdiQ;-r,]/2, and results in the current opera-
R tor
_ m\8mh? 1 v-(SXQq)
=i(yro)| — > = (29
m* ) M |gb[* ™ q-v '
_ +
with the current operator defined as Jv—Ek: %, JimJipCi+ o(M)Ck(P)f,(k+Q;,0). (39
JF? ch - oCkf L (K,Q), We also note thaf ,(k+Q; ,q)=[Q"1;if (k,q), where the
matrix Q" is diagonal with elements ej®;- vb]. The sum
f (k,q)=cogk,b)—cogk,b+q,b). (30) oni can then be performed to obtain

In these expressions we have replaced the hopping eldment '

by #2/(2m*b?), with m* the effective mass. Since we are g = e (MITa0 Al cu(p)f (K 35
assuming(see Sec. )thatt/J=0.1, the effective mass will v ; % kol MIGQ"GImpc(PIT,(koq). (39
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The matrixgQ"g in the above expression has a natural in-
terpretation. It merely connects all sites in the lattice are
connected by a hopping element in theirection. It can be
written in the form

ot 0

0 ot

0 1

+
Oy 1 0

) (8uxt 61z).
(36)

Finally, we can rewrite Eq(35) by inverting the eigenvector
matrix in Eq.(25). This gives

95”g=(

3=2 2 [U9Q9) Uk gha Tk DY gt k-

A
S FIG. 5. Reciprocal-lattice vectors for the flux phase. The black
If we assume that the lower bands are completely filled, wWejots show the scattering from the nuclear centers. The white dot
can then write a simple expression for the expectation valueshows the antiferromagnetic scattering vectagtat 7. The shaded
of these matrix elements: dots at the face centers show those points in the reciprocal lattice
space of the flux phase which produce scattering, and the lighter
o shaded dots along the line centers show those points in the
(J,)= Z ; Tr’[uk(gQVg)qu]f,,(k,q)5q7. (38) reciprocal-lattice space which do not produce scattering.
T

’

The prime on the trace indicates that it runs only over thé;onsist of domains pontaining all possible dipolar orienta-

lower two bands. and the sum anruns over all vectors in  tONS, so that scattering would actually be observed at all the

the reciprocal lattice. face centers. o .
Expression(38) is quite general, and can be used to cal- The magn_|tude of the scattering will in general be quite

culate properties away from zero doping by restricting theS™all. We write the cross section as

sum onk such thatk<kg. Additionally, this equation as- q (2m)° m 2

H H g aa

sumes nothing _ab_o_ut the actual structure of the eigenvector — =N, (vl —| > M(q)s(g—7, (4D

matrix u, . Specializing to the case of the flux state discussed dQ Uom m* | 7

in Sec. lll, the trace fov=y is

where we have rewritten the Kronecker delta function from
v Eq. (38) in terms of the Dirac delta function with the proper
i ( 1— 249 sing. (399  normalization of (2r)%/V. The termv,,=4b* is the volume

*

Yk of the unit cell. The structure factor is given by

Here we have used the fact that, ;= — 7, a condition 4 |yf? 1 1
enforced by the presence 6f in Eq. (38). We see that the M(q)== X (3+cosq b)(—+—)

; _ ; _ 3 2 y 2 2
trace is zero unlesg, , ;= — yx, which means thatl,) van |qgb] (g4b)* (g b)
ishes unlesg|,b is an odd multiple ofm for all v. For the
v=x andv=z cases, the traces are the same as can be seen +41—003qyb (1—cosq,b)(1—cosa,b)
from Eq.(36). They are given by (qyb)2 A qz0)-

(42)
i(l— ”k*q)|mykcos¢—i(1+”k*q Rey,sing, (40) o _ _
K K In deriving this expression, we have repeatedly used the fact

where we have taken,, = — y for the same reasons as that

above. This expression takes two different values depending ,

on whethergyb is an even or an odd multiple of. 1 > cosk,cosk,, ~|x|o 43)
Scattering will only occur at the reciprocal-lattice vectors, N K I'y X1 Oww

as guaranteed by the delta function in E8g). The recipro-

cal lattice is shown in Fig. 5. There is no magnetic scatterini‘f‘ith thel', defined as in E¢(26). This relation follows from
at the nuclear locations, since they occur at even multiples g€ Symmetry of the momentum sum and Ecp). The struc-
. There is additionally no scattering at the line centgios ture factor in Eq(42) takes the same value at the two small-

= ary, since all three matrix elements vanish at these points?_st scattering_angles corresponding to the poiQsh

Scattering does occur at both the face centersgat m,0.m) and Qb= in the reciprocal lattice:
=(,0,7) and at the body center gb= 7. The former dis-

A . ; : 64

tinguishes the scattering from Bragg scattering from a cubic M(q)=—:|x|2. (44)
antiferromagnet. It is likely that the actual material would 374
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To give a feel for the order of magnitude of the scatteringwhereL =A% is the length of the sample and the current
from the flux states, we compare to the scattering from amperator in they direction is given by
antiferromagnet. In that case one has

2iteb
- t T
do 2 27)° J»= 2 [CiCit»Cit,Cil- (49)
d—QlAF=§NﬁF( L (oSS [F(n)2ea- o) AL
vom ! (45) Note that the operator in Eq49) defines the total current,

not the current density, flowing in the direction. The com-
where the factor of 2/3 arises by assuming that the sublatticelex optical conductivity is related to the induced current
magnetization is along a crystallographic axis. We can estidensity in the sample by

mate the form factor for the antiferromagnet by assuming it

is the same as that of chromium, a typical band antiferromag- Jina=oE. (50
net. Chromium has a form factor & /b)~0.41° The unit
cell in the flux phase is twice as large as the antiferromag

netic unit cell, and therefor&/," =2\, and vg-=v /2. : . o
Assuming that the spins are 50% polarized such {is2) _(48), and(50) that the real portl_on of the optical conductivity
is related to the complex portion of the current-current cor-

=1/4, and takingn* = 15m, we see that the scattering from lation functi

the antiferromagnet is roughly 170 times larger than the scaf< ation function

tering from the flux state at the wave vectgio= 7. Note 1

that the discrepancy in size is due primarily to the size of the oi(w)=——Imy(w), (51
effective hopping elemertt which must be small compared @

to J if the flux phase is going to be stabilized away fr@m \vhere the current-current correlation function is given by
=0, as was shown in Sec. Il.

_ The induced current can be calculated using linear re-
sponse theory. In that case, it can be shown from E3,

1
x(@)=1 2 [0]j[n)I?

V. OPTICAL CONDUCTIVITY how—E,+Ep+is

In our model, the peak in the optical conductivity arises 1
from transitions between the bands shown in Fig. 4. The T hotE—E.tis
. . ; . w+E,—Eqgtis
model is too simple to accurately predict the optical conduc-
tivity of a material such as SrRyOHowever, the calculation The infinitesimals arises from assuming that the perturbation
illustrates both the dependence of the location of the peak oim Eq. (48) vanishes at= —c. The state$0) and|n) are to
the spin-exchange energyand the intensity of the peak on be evaluated at= —« or A=0. The current operator in Eq.
the ratio oft/J. (49) can be written in terms of the eigenstates of the system,
The calculation of the optical conductivity is very similar following the same approach applied in E(R2)—(38). The
to that of the neutron diffraction. In this case we couple theresult is that

system to a time-dependent vector potentAa#A(t);/, .

where the vector potential’s time dependence and relation to teb — 4 ) +

the electric field are given by =4 Ek: 2 [uk(gQ @)Uy Ty Sin(k,b) g iy k.
AN

(53

. iw
A(t)=Ae", E:FA- (46) Eq. (53) is very similar to Eq(37). In this case, however, we

are considering matrix elements connecting the ground state
We assume that the wavelength of the light is long enougho excited states and so pick up the contributiona &t ’.
that we can ignore any spatial dependence in the fields. Th&veraging the optical conductivity over the three directions
vector potential couples to the hopping terms in the Hamil-in the lattice, it takes the form
tonian. A phase is acquired according to

3) w A, 2 F@du-Ty),

t t ie %
CjCi—C;Ciex 7C A-dl
i (54)

Itis important to note that the correspondipg appearing in wherel; was defined in Eq26) and where we have defined

Eq. (4) also acquire an equal and opposite phase, so tha} dimensionless frequency given Qy=fw/4J|x|. The
when we expand the Hamiltonian to linear order in the vecycture factor is given by

tor potential A(t) we do not get any contribution from the

. (52

o(w)=

T e_z(t)zi 1
. (47) 12|)(|2ﬁb M

terms proportional toy;; . The perturbation to the Hamil- 2 4 .
tonian is F(g)=2, ;1 [[ug(gQ g)ul ], | ?sirfg,b.
VA=l \—3
L (55)
Hi==2Ad 48 The sums in Eq(55) can be performed to give
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200 | in the material. The fact that SrRy@ not near an antifer-

T romagnetic transition and the fact that the three-dimensional
g 150 = N flux states produce scattering at wave vectors other dfan

T 100 | | =ar make the system an excellent candidate in which to

L, observe this type of order. Further theoretical work is war-

3 s0f _ ranted to understand how the actual electronic structure of
c the material will influence the behaviors discussed here.
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4 (n—7)% . .
Fla)={3+ Tk (sirPkyb + stk b) APPENDIX
2 The matrices from Eq€$22) and(23) are given explicitly
+5(1+ p)sink,b, (56) by

with the quantities defined as in E6). %x

Equationg(54) and(56) have been evaluated numerically, 0 0 Ze 3iml4 0
and the result is shown in Fig. 6. Within our model, the 0 0 0 7% ginl
location of the peak is proportional to the exchange endrgy  _ .
Assuming this takes the value 0.1 eV, we find that the peak z*edim4 0 0 o |’
occurs at approximately 1000 ¢rh which gives order of 0 Zeiml4 0 0
magnitude agreement with the observed value of 250 'cm
in SrRuQ,.! Due to the simplicity of the model we are solv- a,
ing, one would not expect more accurate agreement. The _
magnitude of the peak is governed by the ratiotaf. A 0 0 Ze '™ 0
d@rect comparison of this quantity with experiment is more 0 0 0 7 g3iml4
difficult. This is due to the fact that SrRyMas five bands, =| s imia
whereas we have considered only a single orbital. Addition- Z7e 0 0 0
ally, our calculation only considers the interband contribution 0 Ze Siml4 0 0
to the conductivity, whereas the real material also has an
intraband contribution from thermally excited carriers. If one (A1)
assumes that the result shown in Fig. 6 needs to be scaled by
a factor of roughly five to account for the number of orbitals
in SrRuQ,, the results are reasonable compared with the z*
measured conductivity of 60002 *cm ™t S

O O O N
N o o O
N
*

VI. DISCUSSION

We propose that the three-dimensional flux state is a goo\cqlhere
candidate for the pseudogap state seen in the transition metal 5
oxides. Its signature will be the presence of weak neutron- Z=e¢=—""+j \[§

(A2)
diffraction peaks arising from the ordered electronic currents
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