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We present self-consistent calculations of the spin-averaged pair distribution fugétipfior a homoge-
neous electron gas in the paramagnetic state in both three and two dimensions, based on an extension of a
model that was originally proposed by Overhaugean. J. Phys73, 683 (1995] and further evaluated by
Gori-Giorgi and PerdeWPhys. Rev. B64, 155102(2001)]. The model involves the solution of a two-electron
scattering problem via an effective Coulombic potential, which we determine within a self-consistent Hartree
approximation. We find numerical results fgfr) that are in excellent agreement with quantum Monte Carlo
data at low and intermediate coupling strenggh extending up ta ¢~ 10 in dimensionalityd =3. However,
the Hartree approximation does not properly account for the emergence of a first-neighbor peak at stronger
coupling, such as at,=5 in D=2, and has limited accuracy in regard to the spin-resolved compoggr(ty
andg; (r). We also report calculations of the electron-electsamave scattering length, to test an analytical
expression proposed by OverhauseDir 3 and to present new resultsiin=2 at moderate coupling strength.
Finally, we indicate how this approach can be extended to evaluate the pair distribution functions in inhomo-
geneous electron systems and hence to obtain improved exchange-correlation energy functionals.
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I. INTRODUCTION the advent of quantum Monte Carl®MC) techniqueg,
which have produced a wealth of accurate data on correlation
Many of the electron-electron interaction effects in simpleand response functions over a wide range of coupling
metals and semiconductors can be understood by referens&rength for both the 30Refs. 7 and B and 2D (Ref. 9
to the homogeneous electron-gas model. A central role isases. The QMC data have in turn stimulated a number of
played by the electron-pair distribution functigr), which  further theoretical studies.
describes how short-range exchange and correlations enter to Here we are specifically concerned with the approach pro-
determine the probability of finding two electrons at a rela-posed by Overhaus@rfor the evaluation of the valug(0)
tive distancer.! The mean potential energy of the electron of the pair distribution function at contact. Whilg;;(0)
gas can be calculated frog(r) and hence, through an inte- vanishes on account of the Pauli principgg, (0) is deter-
gration over its dependence on the coupling strength, thenined by the two-body scattering events and in Overhauser’s
total energy as well. Thus, an accurate knowledge of thisnodel was obtained from the solution of an effective Sehro
function is crucial for applications of density functional dinger equation for the relative motion of two electrons with
theonyf (DFT) in various schemes that have been proposed tantiparallel spins. Earlier work had demonstrated an exact
transcend the local density approximati@DA ) in the con-  cusp conditioft! relating the logarithmic derivative af; ()
struction of exchange and correlation energy functiofals. at contact to the Bohr radius and had emphasized the impor-
A precise definition ofy(r) is through the average num- tance of the electron-electron ladder diagrénits evaluating
ber of electrons contained in a spherical shell of radieed  g;,(0). Theapproach of Overhauser has subsequently been
thicknessdr centered on an electron at the origin, which isused to evaluatg, (0) in the 2D electron ga3 and has
given byng(r)QprP~1dr whereD is the space dimension- been extended by Gori-Giorgi and Perd&wo evaluatey(r)
ality, n the electron density, anfl the solid angle inD  at finiter in 3D through an accurate numerical solution of
dimensiongwith Q,=27 andQ3;=4 7). In fact,g(r) isthe  Overhauser’s two-body Schdimger equation. Their results
average of the distribution functions for parallel- andare in good agreement with QMC data in the short-range part
antiparallel-spin electron pairgy(r)=[g;;(r)+g;,(r)1/2.  of g(r).
While this spin average reflects the charge-charge correla- In the present work we further develop this approach to
tions in the electron gas, the spin-spin correlations are dethe evaluation of the pair distribution functions Gy adopt-
scribed by the difference distribution functiomgy(r) ing a self-consistent Hartree scheme for the determination of
=[gy1(r)—g; (1124 the effective potential entering the two-body Salirger
Early calculations of the pair distribution functions in the equation andii) carrying out calculations for both a 3D and
three-dimension&D) electron gas were based on the use ofa 2D electron gas. The paper is organized as follows. Section
a Bijl-Jastrow correlated wave function for the ground state Il presents the essential theoretical background, and Sec. IlI
and on exploiting the fluctuation-dissipation theorem for areports and discusses our numerical results. In Sec. IV we
self-consistent determination from the charge and spin reindicate how this approach could be extended to evaluate
sponse function®.These early results were validated with pair correlations in an inhomogeneous electron gas and
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hence to obtain improved exchange-correlation energy func- 2 i
tionals for applications of DFT. A brief summary concludes g(N=—o >  BPNOPUNDpsy (6
; rP=1 /=T{odd) ’ o
the paper in Sec. V.
and
Il. ESSENTIAL THEORY

Following the work of Overhaus¥tand of Gori-Giorgi (D), o1 [2
and Perdew! we aim to solve the two-electron scattering 9y,(r)= b1 (2o (D% pwy
problem in some effective interaction potenti(r) (as-
sumed to be independent of the spin state of the electron ~
pain in order to determine the wave functiois,(r,R) +/21 BEY|DPU))pe
and \I’i}K(r,R) for the parallel- and antiparallel-spin states. -
Here,r=ry—r, andR=(r,+r,)/2 are the relative coordi- where 3()=2/+1 and3‘?=2. Finally, the Schrdinger
nate and the center-of-mass coordinate of the pair, the corsguation for the wave functio® ©)(r) is
jugate momenta being andK. The spin-resolved pair dis- -

: (7)

tribution functionsg,,,(r) can then be obtained as { 52 g2 1 52
- L2+—(D—1)(D—3)}
oo’ 2 2| Db
0o (N =T (TR o ® Zudrt 2urfl T4
where ((-- ) p represents averages over the scattering vir) le® _ﬁzkz(D(D) g
angle and over the probability(k) of finding two electrons VD (PN =5 Pl ®

with relative momentunk in the electron gas,
) where u=m/2 is the reduced mass of the electron paﬁ,
F =#2/(/+1) with /=0,1,2 ..., andL2=42/? with /
0 zllﬂfdkkfdﬂo. 2 h=/( 1.2 2
{(O)abpug =(12o) 0 p(k) ° @ =0,=£1,%2, ... [the negative values of are accounted for
by the choiceB?’=2 in Eqgs.(6) and(7)]. In solving Eq.(8)
we impose as a boundary condition tH&P)(r) tend asymp-
totically to the free solutioiji.e., the one which is obtained
K01 5 by settingV(r)=0] except for a phase shift.
(k)= D j q n(a)n(|g+k|). &) Th_e form of Eq.(6) en_sure(sD;[hat the.relati(g}T(O)f.O is
n?(2 m)°J (2m)P satisfied, since all function®, ;(r) vanish at the origin for

) ) . ] /#0. The cusp condition og; (r) readsding; (r)/dr|,_o
The prefactor in front of the integral is obtained from the —1/5, in D=3 andding; (r)/dr|,_o=2/ag in D=2: follow-

The functionp(k) can be calculated from the momentum
distributionn(k),***° using

condition thatp(k) should integrate to unity. - ing the argument given by Kimbal it will be satisfied if
The pair wave functions can be written in the form of v/(r) tends to the bare Coulomb potential for:0. It is also
angular momentum expansions easily seelf that the Hartree-Fock results fag,(r) and

g;,(r) are recovered i¥(r) is set to zero in Eq(8). Given

expli K-R) o a general scattering potentM(r), there is no guarantee that
" o " 7 i A (D) (D) !
lkaK(r’R)_\/E p(D-1)12 /=1§20dd)' AZ(O)D/ () the charge neutrality condition
4
and [ Prign-11--1 ©
VL (r,R) is satisfied. We have numerical evidence that @.is ful-

filled for our choice ofV(r) (see Sec. Il A The accuracy
with which this happens depends in practice on the numeri-
cal solution of Eq.(8) and thus on the number of angular
momentum states that are included in E@g.and (5).1°

©) Before proceeding to present our choice for the potential

GV a\— 5, ; V(r) in Eq. (8), we report the expressions for the probability
nge:]%;ln?al(?(nggnzaz/)gz(;sz@;:;;egg)s ?:]t?ze L(elgetr;]cére function p(k) introduced in Eq.(3). Using the momentum
oy - 2 - q- & distributionn(k) = (kg — k) for the free Fermi gas, one ob-
sum over/ runs over odd integers, because the spinor assQzins
ciated with the 1 state is symmetric and hence the coordi-
nate part of the wave function has to be antisymmetric under 2 3 8
exchange. The spinor associated with thestate has instead _ _ Sl
no definite symmetry and hence the sum in &j.runs over Po(k) 24_§ 36_|‘§ - 12k,§
all integer values of’. Upon performing the angular average
in Eq. (1) one obtains in D=3 (Ref. 14 and

_exp(i K-R)

=— oo | PO+ X 1T ALOPRN |,

(10
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where v(k)=4me?/k? in D=3 andv(k)=2 we?/k in D

16k k k k2 ) .
Po(k)=— arcco%— ——\/1- (11 =2. To prove Eq.(15) in the 2D case, we notice that the
7Kg Ke ke kg Fourier transform oW y(r,z) from Eq.(13) is
in D=2 (Ref. 15. We have also evaluatgu(k) for interact- Are?
ing electrons using QMC data on the momentum distribution Vi(k,k,) = ———S(k), (16)
from the work of Ortiz and Ballorfein 3D and of Conti’ in K2+ k2

2D. However, this led to only small changes in the pair dis-
tribution functions reported in Sec. Il with the help of Egs. SO that
10) and(11).
(10 (@ ~ dk, . ~ 27re? L

Valk2)= [ Sebly(k k) =1 e Mis) (17)
A. Hartree potential and self-consistency 77

Overhauser’s proposdlfor calculatingg(0) in the 3D andV(k)=V,(k,z=0)=2me>S(k)/k.
case was to approxima\e(r) by the electr'iclal potential of a  Let us examine the asymptotic behaviors of the effective
model consisting of an electron at the origin and a neutralizpotential(k) given in Eq.(15). At large momenta the struc-

ing sphere of uniformly distributed charge with radiugy . =
_ —1/3 , . _ ture factorS(k) tends to unity, so tha¥ (k) —v (k) andV(r)
=(47n/3) . Gauss's law ensures thel(r) vanishes out . tends to the bare Coulomb potential in the limit-0. As

side the sphere, and an approxima_te so_lution of the Scattermegready remarked, this property ensures that the cusp condi-
problem could be obtained by an iterative procedure. In th '

A Sion ong(r) is satisfied. In the limik— 0, on the other hand,
work of Gori-Giorgi and Perdetf the same model fov(r) charge neutrality ensures the validity of the plasmon sum
was._adopted to evaluatg(r), but a full solution of the rule, which may be written in the form
Szchrcdinger equatior(8) was achieved. In the 2D case with '

e“/r interaction, on the other hand, the potential outside a ; _

uniformly charged disk of radiussag=(mn)~ 2 with an lmS{k)—sk/th|, (18

electron at its center does not vanish, since the electrical

force field extends outside the plane in which the electronsvheres,=#2k?/2m and wp is the leading term in the plas-

are moving. A more refined model is therefore necesSary. mon dispersion relation, given ly, = (4 mne?*/m)*?in 3D
Here we approximat®(r) in Eq. (8) by the Hartree po- and bywp,z(27—rne2k/m)1’2 in 2D. Therefore,

tential due to the whole distribution of electrical charge and

evaluate it with the help of Poisson’s equation. More pre- |imV(k):ﬁwpl/2n (19
cisely, in the 3D cas¥&/(r) is taken to satisfy the equation k—0
AN(r)=—4 7€ 8(r)+n(g(r)—1)] (120  inboth dimensionalities. That is, the Fourier transform of our

choice for the effective scattering potential tends in the long-
where A, is the radial Laplace operator. The appropriatewavelength limit to a constant iD=3 and to zero with a
Poisson equation for the Hartree potentfa(r,z) in the 2D kY2 law in D=2.
case, withr the radial distance in the electron plane aride

vertical distance from the plane, is B. swave scattering length
42 We complete this discussion by showing how theave
At — |Vu(r.2)= —4med 5(r)+n(g(r)—1)]8(z scattering lengtlag(rs) can be evaluated from the numerical
( AR H(r2) meLo(r+n(g(n-1)1o(z) solution of the electron-electron scattering problem. The

(13 swave phase shify(k) is introduced through the large-

) ) ) distance behavior of the two-particle scattering state with
and what is needed ¥(r) =Vy(r,0). Evidently, by solving =g at fixed momentunk,

Eq. (8) in conjunction with Eq(12) or Eq.(13) we obtain a
self-consistent determination of the effective potential and of -
the radial distribution function. d)&'f)(r%coz{ kr—(D=1) 4+ &(K)|. (20)
The solution of Eq(12) and Eq.(13) is easily obtained by
introducing Fourier transforms. We define the structure facgrom s,(k) the scattering length is obtained by the require-
tor S(k) through the relation ment that the wave function outside the range of the potential
should vanish at=a... In D=3 this yields from Eq(20)
S(k)=1+nf dPr[g(r)— 1] exp(—ik-r). (14) the well-known relation
9o(k)
o

It is then easily seen that the Fourier transform \fr) as{rg)=—lim (21)

[V(k), say] is given by k=0
5 A simple analytical expression f@{r) in the 3D electron
V(k)=v(k)S(k), (150  gas is available from the work of Overhaus@r:
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FIG. 1. The pair distribution function in a 3D electron gas at ! D=t
r,=10, as a function of/(rsag). The results of the self-consistent f6=8 ~--oo-
Hartree approximatiorisolid line) are compared with QMC data 0.8 - -
[crosses, from Ortiet al. (Ref. 8] and with the results of calcula-
tions by Gori-Giorgi and PerdewRef. 14 (dotted ling.
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The introduction of the concepts of effective range and 0z | ]
scattering length is much more delicateDr=2. In the work
of Verhaaret al'® the H-H atomic scattering problem was
analyzed in detail. The most appropriate form of the outer or -
wave function in 2D is i

() : 02 - .
Dy (r) ~expi 6o(k) ] cod dp(K) [{Jo(kr) , e , , , ,
0 05 1 1.5 2 25 3 35 4

—tar] 8o(k)] No(kn)}, (23 ®) ' W)

n terms of the Bessel_ functiorp(x) andNo(x). Th_e rela- . FIG. 2. Self-consistent scattering potentiéglr) in the Hartree
tion between scattering Iength. and phase shift thus I§1pproximatior(in units of2k2/m), as a function of /(r sag) in 3D
tar[ 50(.k)]:J0(kaS“)/N°(kaSC)’ taklng at low energy a form (top) and in 2D(bottom). The Overhauser potential in 3®ef. 10
which is the same as for the scattering of two hard spheres =10 and the result of the work of Poliet al (Ref. 13 in 2D

radiusas, atry=5 are reported for comparisddotted lines.

_ 2
cof Go(k)]=(2/m) [y+In(kayd2)]+o(k%), (24 anq perded within the same theoretical scheme, but with

where y is Euler’s constanty=0.57721566 ... . InSec. Overhauser’s choice for the effective potentgt), are also

Il we determine the scattering length for the 2D electron gaghown in Fig. 1. It is seen from the figure that both choices
by fitting the expression in E¢24) to the phase shift ob- 0f V(r) yield excellent agreement with the QMC data for the

tained from the asymptotic behavior of the two-electronshort-range part of the electron-electron correlations, up to
wave function as a function dfat low energy. An analytical r/(rsag)~1. However, the self-consistent calculation based

expression foagin the strong-coupling limit has been given on the use of the Hartree potential becomes definitely supe-
by Polini et al*® rior at large distance, whefat this intermediate value of the

coupling strengthit continues to be in excellent agreement
IIl. NUMERICAL RESULTS with the data. The Hartree potential at self-consistency is
shown in Fig. 2, for both the 3D and 2D cases. We may also
We report in Figs. 1-5 our numerical results for the pairremark that the cusp condition is satisfied by our numerical
distribution functions and for the self-consistent scatteringresults in both cases.
potential. Starting with the 3D system, Fig. 1 shows the spin- With further increase in the coupling strength the pair
averagedy(r) atrs=10, in comparison with the QMC data distribution function from the QMC work starts developing a
reported by Ortizt al® The results obtained by Gori-Giorgi first-neighbor peak, and this behavior is not reproduced
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+ FIG. 3. The pair distribution function in a 2D
< 06 06 L ¢ | electron gas at;=1 andr =5, as a function of
o - ) * r/(rsag). The results of the self-consistent Har-
0.4 04 L + | tree approximatioitsolid line) are compared with
) ) * QMC data[crosses, from Tanatar and Ceperley
’ Ref. 9].
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guantitatively by the theory. This is illustrated in Fig. 3 for the spin avarage, but will be magnified when one calculates
the electron gas iD =2. As is well known, the reduction in the difference distribution functiogy(r). Similar theoretical
dimensionality enhances the role of the electron-electron coresults are shown in Fig. 5 for the 2D system.
relations: this is also clear from comparing the scattering Finally, in Figs. 6 and 7 we report our results for the
potentials in the two panels in Fig. 2. While in 2D the self- swave scattering length as a function of coupling strength
consistent theory remains quite accurate at moderate couwz. For the 3D system the simple analytical formula obtained
pling strength as is shown by the comparison with the QMCby Overhauséf and reported in Eq(22) is seen in the top
data of Tanatar and Ceperfegtr =1 in the left-hand panel panel in Fig. 6 to give a very good account of our results.
in Fig. 3, quantitative differences from the QMC data areResults for the 2D electron gas at moderate coupling strength
seen to arise at,;=5 (right-hand panel in Fig.)3 are shown in the bottom panel in Fig. 6, while Fig. 7 shows
The other aspect of the theory that needs testing concerrw they have been obtained by fitting the expresgigin to
the quality of its predictions in regard to the spin-resolvedour numerical results for the phase shiftsmwave as a func-
pair distribution functions. This point is examined in Fig. 4 tion of momentum at low momenta. It may be remarked that
for the 3D system at,=5 and 10, using the QMC data of the magnitude oBy(k) in the present electron-electron scat-
Ortiz et al. as analyzed by Gori-Giorgit al® The discrepan- tering in 2D is smaller than that in the H-H scattering prob-
cies between theory and simulation are reasonably small &m studied by Verhaaet al'® by a factor of about 2. This
these values of the coupling strength. It is evident from theyields, however, huge differences in the magnitude of the
figure that these discrepancies largely cancel out in takingcattering length. Our results in the bottom panel in Fig. 6

T
re=10

FIG. 4. The spin-resolved pair distribution
functions in a 3D electron gas at=5 andrg
=10. The results of the self-consistent Hartree
approximation (solid lineg are compared with
the QMC data[crosses, from Gori-Giorget al.
(Ref. 8].

0 1 1 ] ] 1 ] 21 1 ] ] 1 ]

0 05 1 15 2 25 3 35 0 05 1 15 2 25 3 35
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G

FIG. 5. The spin-resolved pair distribution
functions in a 2D electron gas at=1 andrg
=5, from the self-consistent Hartree approxima-

tion.

0.8
= o6
(o))

0.4

0.2

0 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0051152253 35 4 0051152 253 35 4
r/(rsag) r/(rsag)

should thus be regarded as being very sensitive to the details o, ) )
of the theory and hence as having limited quantitative value. V(rlyrZ):U(|rl_r2|)+J d=r'[n(r')g(ry,r')

IV, EXTENSION TO INHOMOGENEOUS SYSTEMS —np(r")Ju([r' =ra)), (27

In this section we briefly indicate how the approach that
we have presented in Sec. Il could be extended to deal withrovides an approximate self-consistent closure of the prob-
the pair distribution function in an inhomogeneous electronem transcending the usual LDA or other approaches that

system, subject to an external scalar potentig(r). appeal to the exchange-correlation hole of the homogeneous
The electron-electron correlations are described in such glectron gas. In the previous equati@@7), ny(r’) is the

system by an inhomogeneous pair distribution functiongensity of the background.
g(r,r'), say. The exchange and correlation energy functional

I Finally, a relation betweeg(r,r’) and the two-electron
is given by

scattering state@elz(r,r’) is needed. This relation can in
1 _ general be written in the following form:
Exc=§fdDrfdDr’n(r)n(r’)[g(r,r’)—l]v(lr—r’l),
(25)
where n(r) is the inhomogeneous electron density and Oy (r,r')= 2 1“""/|d>

al €12
g(r,r') is obtained fromg(r,r’) by an integration over the €12+ 0CCUP.
coupling strength at fixed(r) (see, for instance, the book by

Dreizler and Gros8. The calculation of)(r,r’) by means of where the sum runs over all the occupied levels. The

a two-electron scattering problem remains in this case a iate d faclBf” for the ei | .
genuine two-body problem. It requires for each spin statPPropriate degeneracy fac glz or the eigenvalue,; IS

(rrHz, (29

€12

solution of the equation zero in the case =o', if ®€lz(r,r’) is symmetric under the
2 exchangea «<r’.
——— (A, + A, )+ Ve (11, T2) +V(r,1) [P, (11,1 ~ For building the exchange and correlation energy func-
2m (Bri* ) FVed a2 S tional in Eq.(25), one needs to calculate the pair distribution
=@, (11.,12), (26) function at each given coupling strengthby repeating the

procedure outlined above with(|r;—r,|)=\/|r;—r,|. The
where A, is the Laplace operatorye(rq,rs)=Veur1) density profilen(r) is needed at full coupling strength and
+Vedra), and V(rq,r,) is the effective electron-electron requires to be obtained by a parallel DFT procedure. The pair
potential. The Hartree approximation on the effective potendistribution function at full strength is, in itself, a very inter-
tial, leading to esting quantity.
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FIG. 7. Thes-wave phase shift in the 2D electron gas at various
0.0012 - values ofrg, as a function of reduced momentukike at low
momenta. Solid lines: from the numerical solution of the self-
0.001 | consistent Hartree approximation. Dashed lines: from(E4). with
the values of the scattering length shown in the right-hand panel in
0.0008 |- Fig. 6.
ma . - . . .
0.0008 - physical systems, which are in a sense intermediate between
3D and 2D, have been discussed for instance by Ullrich and
0.0004 | Vignaleé®® and by Luinet al??
' More generally, the possibility of testing theories of the
exchange-correlation hole and of the exchange-correlation
0.0002 energy density in strongly inhomogenous electronic systems
is opening up through novel applications of variational QMC
o> methods?
(b)

FIG. 6. Thes-wave scattering length as a functionrgf in units V- SUMMARY

of the Bohr radius. Top panel: the result of the self-consistent Har- | this work we have proposed an extension of Overhaus-
tree approximation for the 3D electron galid lin) is compared  er’s model for the electron-electron correlations in the 3D
with the analytical result of OverhauséRef. 10 in Eq. (22)  glectron gas on the basis of a self-consistent Hartree approxi-
(dashe_d Iiniia Bottom panel: results from the self-consistent Hartree ,ation for the electron-electron scattering potential. We have
approximatien for the 2D electron gas. confirmed that the model is quite accurately describing the
short-range part of the exchange-correlation hole, as already
As an example of application of such scheme, we woulddemonstrated by Gori-Giorgi and Perd&mnd shown that it
like to mention the problem of a finite number of electronscan be usefully extended to cover the full range of interelec-
confined in a quantum dd?.In this case the eigenvalues,  tronic separation over an appreciable range of values of the
are discrete and the summation procedure reported in Egoupling strength. As already noted in Sec. lll, the accuracy
(28) corresponds to filling the lowest energy states with allof the present Hartree approximation is limited to the range
the available electrons. of values ofrg below the development of a first-neighbor
Another problem of interest is represented by a system ofjeak in the pair distribution function. We have also shown
electrons confined in a quantum well in cases where the elet¢hat the original proposal of Overhauser yields a very accu-
tron dynamics is important also in the growth direction sorate analytical formula for the electron-electron scattering
that the confinement cannot be handled by a simple reductiolength and indicated how this approach could be extended to
to 2D. Compared to the previous example, the summatiodeal with the exchange-correlation hole in an inhomoge-
procedure is in this case more involved. The difficulty comeseous electron gas, leading perhaps to more accurate descrip-
from the fact that the motion in the transverse direction istions of the exchange-correlation energy functional.
free, and this implies that for each subband in the growth We have examined the usefulness of this approach in de-
direction there is a dispersion in the transverse direction asscribing the exchange-correlation hole in the 2D electron gas
sociated with the in-plane momentum. Examples of sucland the spin-resolved pair distribution functions in the 3D
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electron gas. As may be expected, the Hartree approximatiahe proposal made by Verhaat al® in the context of an

is quantitatively useful in 2D over a more limited range of atom-atom scattering process is just as useful in regard to
coupling strength and has more limited accuracy in regard telectron-electron scattering.

the splitting of the exchange-correlation hole into its parallel- We are currently examining how the Hartree scattering
and antiparallel-spin components. With regard to these spimotential may be supplemented by explicit inclusion of cor-
resolved pair fUnCtionS, hOWeVer, we feel that it is quite re'rections accounting for many_body exchange and correla-
markable that a Hartree approximation should already workions, with the main aims ofi) improving the quantitative

as well as it does in our calculations. We may hope thagccount of the spin-resolved components of the exchange-

major changes will not be needed to explicitly include many-correlation hole andii) studying how a first-neighbor shell
body exchange corrections in the electron-electron scatteringmerges with increasing coupling strength.

potential.

We have also given some attention to the determination of
the electron-electron scattering length in the 2D electron gas.
As is generally true for 2D systems, the logarithmic depen-
dence of thesswave phase shift okag at very low energy This work was partially supported by MIUR through the
makes this problem a very delicate one. We have shown th&RIN2001 program.
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