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Self-consistent Overhauser model for the pair distribution function of an electron gas
in dimensionalities DÄ3 and DÄ2
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We present self-consistent calculations of the spin-averaged pair distribution functiong(r ) for a homoge-
neous electron gas in the paramagnetic state in both three and two dimensions, based on an extension of a
model that was originally proposed by Overhauser@Can. J. Phys.73, 683 ~1995!# and further evaluated by
Gori-Giorgi and Perdew@Phys. Rev. B64, 155102~2001!#. The model involves the solution of a two-electron
scattering problem via an effective Coulombic potential, which we determine within a self-consistent Hartree
approximation. We find numerical results forg(r ) that are in excellent agreement with quantum Monte Carlo
data at low and intermediate coupling strengthr s , extending up tor s'10 in dimensionalityD53. However,
the Hartree approximation does not properly account for the emergence of a first-neighbor peak at stronger
coupling, such as atr s55 in D52, and has limited accuracy in regard to the spin-resolved componentsg↑↑(r )
andg↑↓(r ). We also report calculations of the electron-electrons-wave scattering length, to test an analytical
expression proposed by Overhauser inD53 and to present new results inD52 at moderate coupling strength.
Finally, we indicate how this approach can be extended to evaluate the pair distribution functions in inhomo-
geneous electron systems and hence to obtain improved exchange-correlation energy functionals.
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I. INTRODUCTION

Many of the electron-electron interaction effects in simp
metals and semiconductors can be understood by refer
to the homogeneous electron-gas model. A central rol
played by the electron-pair distribution functiong(r ), which
describes how short-range exchange and correlations en
determine the probability of finding two electrons at a re
tive distancer.1 The mean potential energy of the electr
gas can be calculated fromg(r ) and hence, through an inte
gration over its dependence on the coupling strength,
total energy as well. Thus, an accurate knowledge of
function is crucial for applications of density function
theory2 ~DFT! in various schemes that have been propose
transcend the local density approximation~LDA ! in the con-
struction of exchange and correlation energy functionals3

A precise definition ofg(r ) is through the average num
ber of electrons contained in a spherical shell of radiusr and
thicknessdr centered on an electron at the origin, which
given byng(r )VDr D21dr whereD is the space dimension
ality, n the electron density, andVD the solid angle inD
dimensions~with V252p andV354 p). In fact,g(r ) is the
average of the distribution functions for parallel- a
antiparallel-spin electron pairs,g(r )5@g↑↑(r )1g↑↓(r )#/2.
While this spin average reflects the charge-charge corr
tions in the electron gas, the spin-spin correlations are
scribed by the difference distribution functiongd(r )
5@g↑↑(r )2g↑↓(r )#/2.4

Early calculations of the pair distribution functions in th
three-dimensional~3D! electron gas were based on the use
a Bijl-Jastrow correlated wave function for the ground sta5

and on exploiting the fluctuation-dissipation theorem fo
self-consistent determination from the charge and spin
sponse functions.6 These early results were validated wi
0163-1829/2002/66~7!/075110~8!/$20.00 66 0751
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the advent of quantum Monte Carlo~QMC! techniques,7

which have produced a wealth of accurate data on correla
and response functions over a wide range of coupl
strength for both the 3D~Refs. 7 and 8! and 2D ~Ref. 9!
cases. The QMC data have in turn stimulated a numbe
further theoretical studies.

Here we are specifically concerned with the approach p
posed by Overhauser10 for the evaluation of the valueg(0)
of the pair distribution function at contact. Whileg↑↑(0)
vanishes on account of the Pauli principle,g↑↓(0) is deter-
mined by the two-body scattering events and in Overhaus
model was obtained from the solution of an effective Sch¨-
dinger equation for the relative motion of two electrons w
antiparallel spins. Earlier work had demonstrated an ex
cusp condition11 relating the logarithmic derivative ofg↑↓(r )
at contact to the Bohr radius and had emphasized the im
tance of the electron-electron ladder diagrams12 in evaluating
g↑↓(0). Theapproach of Overhauser has subsequently b
used to evaluateg↑↓(0) in the 2D electron gas13 and has
been extended by Gori-Giorgi and Perdew14 to evaluateg(r )
at finite r in 3D through an accurate numerical solution
Overhauser’s two-body Schro¨dinger equation. Their result
are in good agreement with QMC data in the short-range
of g(r ).

In the present work we further develop this approach
the evaluation of the pair distribution functions by~i! adopt-
ing a self-consistent Hartree scheme for the determinatio
the effective potential entering the two-body Schro¨dinger
equation and~ii ! carrying out calculations for both a 3D an
a 2D electron gas. The paper is organized as follows. Sec
II presents the essential theoretical background, and Sec
reports and discusses our numerical results. In Sec. IV
indicate how this approach could be extended to evalu
pair correlations in an inhomogeneous electron gas
©2002 The American Physical Society10-1



n
es

g

tro

s
-
co
-

in

m

he

of

s
di
d

e

t

eri-
r

tial
ty

-

B. DAVOUDI, M. POLINI, R. ASGARI, AND M. P. TOSI PHYSICAL REVIEW B66, 075110 ~2002!
hence to obtain improved exchange-correlation energy fu
tionals for applications of DFT. A brief summary conclud
the paper in Sec. V.

II. ESSENTIAL THEORY

Following the work of Overhauser10 and of Gori-Giorgi
and Perdew,14 we aim to solve the two-electron scatterin
problem in some effective interaction potentialV(r ) ~as-
sumed to be independent of the spin state of the elec
pair! in order to determine the wave functionsCk,K

↑↑ (r ,R)
and Ck,K

↑↓ (r ,R) for the parallel- and antiparallel-spin state
Here, r5r12r2 and R5(r11r2)/2 are the relative coordi
nate and the center-of-mass coordinate of the pair, the
jugate momenta beingk andK . The spin-resolved pair dis
tribution functionsgss8(r ) can then be obtained as

gss8~r !5^^uCk,K
ss8~r ,R!u2&u&p(k) , ~1!

where ^^•••&u&p(k) represents averages over the scatter
angle and over the probabilityp(k) of finding two electrons
with relative momentumk in the electron gas,

^^O&u&p(k)5~1/VD!E
0

kF
dkp~k!E dVD O. ~2!

The functionp(k) can be calculated from the momentu
distributionn(k),14,15 using

p~k!5
VDkD21

n2~2 p!DE dDq

~2p!D
n~q!n~ uq1ku!. ~3!

The prefactor in front of the integral is obtained from t
condition thatp(k) should integrate to unity.

The pair wave functions can be written in the form
angular momentum expansions

Ck,K
↑↑ ~r ,R!5A2

exp~ i K•R!

r (D21)/2 (
l 51 (odd)

`

i l A l
(D)~u!F l ,k

(D)~r !

~4!

and

Ck,K
↑↓ ~r ,R!

5
exp~ i K•R!

r (D21)/2 FF0,k
(D)~r !1 (

l 51

`

i l A l
(D)~u!F l ,k

(D)~r !G ,

~5!

whereA l
(3)(u)5(2l 11)Pl (cosu) in terms of the Legendre

polynomial Pl (x) and A l
(2)(u)52cos(l u). In Eq. ~4! the

sum overl runs over odd integers, because the spinor as
ciated with the↑↑ state is symmetric and hence the coor
nate part of the wave function has to be antisymmetric un
exchange. The spinor associated with the↑↓ state has instead
no definite symmetry and hence the sum in Eq.~5! runs over
all integer values ofl . Upon performing the angular averag
in Eq. ~1! one obtains
07511
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g↑↑~r !5
2

r D21 (
l 51 (odd)

`

B l
(D)^uF l ,k

(D)~r !u2&p(k) ~6!

and

g↑↓~r !5
1

r D21 F ^uF0,k
(D)~r !u2&p(k)

1 (
l 51

`

B l
(D)^uF l ,k

(D)~r !u2&p(k)G , ~7!

whereB l
(3)52l 11 andB l

(2)52. Finally, the Schro¨dinger
equation for the wave functionF l ,k

(D)(r ) is

H 2
\2

2m

d2

dr2
1

1

2m r 2 FLD
2 1

\2

4
~D21!~D23!G

1V~r !J F l ,k
(D)~r !5

\2k2

2m
F l ,k

(D)~r !, ~8!

wherem5m/2 is the reduced mass of the electron pair,L3
2

5\2l (l 11) with l 50,1,2, . . . , and L2
25\2l 2 with l

50,61,62, . . . @the negative values ofl are accounted for
by the choiceB l

(2)52 in Eqs.~6! and~7!#. In solving Eq.~8!
we impose as a boundary condition thatF l ,k

(D)(r ) tend asymp-
totically to the free solution@i.e., the one which is obtained
by settingV(r )50# except for a phase shift.

The form of Eq.~6! ensures that the relationg↑↑(0)50 is
satisfied, since all functionsF l ,k

(D)(r ) vanish at the origin for
l Þ0. The cusp condition ong↑↓(r ) readsdlng↑↓(r)/drur50
51/aB in D53 anddlng↑↓(r)/drur5052/aB in D52: follow-
ing the argument given by Kimball,11 it will be satisfied if
V(r ) tends to the bare Coulomb potential forr→0. It is also
easily seen14 that the Hartree-Fock results forg↑↑(r ) and
g↑↓(r ) are recovered ifV(r ) is set to zero in Eq.~8!. Given
a general scattering potentialV(r ), there is no guarantee tha
the charge neutrality condition

nE dDr @g~r !21#521 ~9!

is satisfied. We have numerical evidence that Eq.~9! is ful-
filled for our choice ofV(r ) ~see Sec. II A!. The accuracy
with which this happens depends in practice on the num
cal solution of Eq.~8! and thus on the number of angula
momentum states that are included in Eqs.~4! and ~5!.16

Before proceeding to present our choice for the poten
V(r ) in Eq. ~8!, we report the expressions for the probabili
function p(k) introduced in Eq.~3!. Using the momentum
distributionn(k)5u(kF2k) for the free Fermi gas, one ob
tains

p0~k!524
k2

kF
3

236
k3

kF
4

112
k5

kF
6

~10!

in D53 ~Ref. 14! and
0-2
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p0~k!5
16k

p kF
2 FarccosS k

kF
D2

k

kF
A12

k2

kF
2G ~11!

in D52 ~Ref. 15!. We have also evaluatedp(k) for interact-
ing electrons using QMC data on the momentum distribut
from the work of Ortiz and Ballone8 in 3D and of Conti17 in
2D. However, this led to only small changes in the pair d
tribution functions reported in Sec. III with the help of Eq
~10! and ~11!.

A. Hartree potential and self-consistency

Overhauser’s proposal10 for calculatingg(0) in the 3D
case was to approximateV(r ) by the electrical potential of a
model consisting of an electron at the origin and a neutra
ing sphere of uniformly distributed charge with radiusr saB
5(4 pn/3)21/3. Gauss’s law ensures thatV(r ) vanishes out-
side the sphere, and an approximate solution of the scatte
problem could be obtained by an iterative procedure. In
work of Gori-Giorgi and Perdew14 the same model forV(r )
was adopted to evaluateg(r ), but a full solution of the
Schrödinger equation~8! was achieved. In the 2D case wit
e2/r interaction, on the other hand, the potential outsid
uniformly charged disk of radiusr saB5(pn)21/2 with an
electron at its center does not vanish, since the electr
force field extends outside the plane in which the electr
are moving. A more refined model is therefore necessary13

Here we approximateV(r ) in Eq. ~8! by the Hartree po-
tential due to the whole distribution of electrical charge a
evaluate it with the help of Poisson’s equation. More p
cisely, in the 3D caseV(r ) is taken to satisfy the equation

D rV~r !524 pe2@d~r !1n~g~r !21!#, ~12!

where D r is the radial Laplace operator. The appropria
Poisson equation for the Hartree potentialVH(r ,z) in the 2D
case, withr the radial distance in the electron plane andz the
vertical distance from the plane, is

S D r1
d2

dz2D VH~r ,z!524pe2@d~r !1n~g~r !21!#d~z!

~13!

and what is needed isV(r )5VH(r ,0). Evidently, by solving
Eq. ~8! in conjunction with Eq.~12! or Eq. ~13! we obtain a
self-consistent determination of the effective potential and
the radial distribution function.

The solution of Eq.~12! and Eq.~13! is easily obtained by
introducing Fourier transforms. We define the structure f
tor S(k) through the relation

S~k!511nE dDr @g~r !21# exp~2 ik•r !. ~14!

It is then easily seen that the Fourier transform ofV(r )

@Ṽ(k), say# is given by

Ṽ~k!5v~k!S~k!, ~15!
07511
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where v(k)54pe2/k2 in D53 and v(k)52 pe2/k in D
52. To prove Eq.~15! in the 2D case, we notice that th
Fourier transform ofVH(r ,z) from Eq. ~13! is

ṼH~k,kz!5
4pe2

k21kz
2

S~k!, ~16!

so that

ṼH~k,z![E dkz

2p
eikzzṼH~k,kz!5

2pe2

k
e2kuzuS~k! ~17!

and Ṽ(k)5ṼH(k,z50)52pe2S(k)/k.
Let us examine the asymptotic behaviors of the effect

potentialṼ(k) given in Eq.~15!. At large momenta the struc
ture factorS(k) tends to unity, so thatṼ(k)→v(k) andV(r )
tends to the bare Coulomb potential in the limitr→0. As
already remarked, this property ensures that the cusp co
tion ong(r ) is satisfied. In the limitk→0, on the other hand
charge neutrality ensures the validity of the plasmon s
rule, which may be written in the form

lim
k→0

S~k!5«k /\vpl , ~18!

where«k5\2k2/2m andvpl is the leading term in the plas
mon dispersion relation, given byvpl5(4 pne2/m)1/2 in 3D
and byvpl5(2pne2k/m)1/2 in 2D. Therefore,

lim
k→0

Ṽ~k!5\vpl/2n ~19!

in both dimensionalities. That is, the Fourier transform of o
choice for the effective scattering potential tends in the lo
wavelength limit to a constant inD53 and to zero with a
k1/2 law in D52.

B. s-wave scattering length

We complete this discussion by showing how thes-wave
scattering lengthasc(r s) can be evaluated from the numeric
solution of the electron-electron scattering problem. T
s-wave phase shiftd0(k) is introduced through the large
distance behavior of the two-particle scattering state withl
50 at fixed momentumk,

F0,k
(D)~r !;cosFkr2~D21!

p

4
1d0~k!G . ~20!

From d0(k) the scattering length is obtained by the requi
ment that the wave function outside the range of the poten
should vanish atr 5asc. In D53 this yields from Eq.~20!
the well-known relation

asc~r s!52 lim
k→0

d0~k!

k
. ~21!

A simple analytical expression forasc(r s) in the 3D electron
gas is available from the work of Overhauser:10
0-3
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asc~r s!5r saB

r s/10

113r s/8
. ~22!

The introduction of the concepts of effective range a
scattering length is much more delicate inD52. In the work
of Verhaaret al.18 the H-H atomic scattering problem wa
analyzed in detail. The most appropriate form of the ou
wave function in 2D is

F0,k
(2)~r !;exp@ id0~k!# cos@d0~k!#$J0~kr !

2tan@d0~k!# N0~kr !%, ~23!

in terms of the Bessel functionsJ0(x) andN0(x). The rela-
tion between scattering length and phase shift thus
tan@d0(k)#5J0(kasc)/N0(kasc), taking at low energy a form
which is the same as for the scattering of two hard sphere
radiusasc,

cot@d0~k!#5~2/p! @g1 ln~kasc/2!#1o~k2!, ~24!

whereg is Euler’s constant,g50.577 215 665 . . . . In Sec.
III we determine the scattering length for the 2D electron g
by fitting the expression in Eq.~24! to the phase shift ob
tained from the asymptotic behavior of the two-electr
wave function as a function ofk at low energy. An analytica
expression forasc in the strong-coupling limit has been give
by Polini et al.13

III. NUMERICAL RESULTS

We report in Figs. 1–5 our numerical results for the p
distribution functions and for the self-consistent scatter
potential. Starting with the 3D system, Fig. 1 shows the sp
averagedg(r ) at r s510, in comparison with the QMC dat
reported by Ortizet al.8 The results obtained by Gori-Giorg

FIG. 1. The pair distribution function in a 3D electron gas
r s510, as a function ofr /(r saB). The results of the self-consisten
Hartree approximation~solid line! are compared with QMC data
@crosses, from Ortizet al. ~Ref. 8!# and with the results of calcula
tions by Gori-Giorgi and Perdew~Ref. 14! ~dotted line!.
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and Perdew14 within the same theoretical scheme, but wi
Overhauser’s choice for the effective potentialV(r ), are also
shown in Fig. 1. It is seen from the figure that both choic
of V(r ) yield excellent agreement with the QMC data for t
short-range part of the electron-electron correlations, up
r /(r saB)'1. However, the self-consistent calculation bas
on the use of the Hartree potential becomes definitely su
rior at large distance, where~at this intermediate value of th
coupling strength! it continues to be in excellent agreeme
with the data. The Hartree potential at self-consistency
shown in Fig. 2, for both the 3D and 2D cases. We may a
remark that the cusp condition is satisfied by our numer
results in both cases.

With further increase in the coupling strength the p
distribution function from the QMC work starts developing
first-neighbor peak, and this behavior is not reproduc

t

FIG. 2. Self-consistent scattering potentialV(r ) in the Hartree
approximation~in units of\2kF

2/m), as a function ofr /(r saB) in 3D
~top! and in 2D~bottom!. The Overhauser potential in 3D~Ref. 10!
at r s510 and the result of the work of Poliniet al. ~Ref. 13! in 2D
at r s55 are reported for comparison~dotted lines!.
0-4
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FIG. 3. The pair distribution function in a 2D
electron gas atr s51 andr s55, as a function of
r /(r saB). The results of the self-consistent Ha
tree approximation~solid line! are compared with
QMC data @crosses, from Tanatar and Ceperle
~Ref. 9!#.
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. 6
quantitatively by the theory. This is illustrated in Fig. 3 f
the electron gas inD52. As is well known, the reduction in
dimensionality enhances the role of the electron-electron
relations: this is also clear from comparing the scatter
potentials in the two panels in Fig. 2. While in 2D the se
consistent theory remains quite accurate at moderate
pling strength as is shown by the comparison with the QM
data of Tanatar and Ceperley9 at r s51 in the left-hand pane
in Fig. 3, quantitative differences from the QMC data a
seen to arise atr s55 ~right-hand panel in Fig. 3!.

The other aspect of the theory that needs testing conc
the quality of its predictions in regard to the spin-resolv
pair distribution functions. This point is examined in Fig.
for the 3D system atr s55 and 10, using the QMC data o
Ortiz et al. as analyzed by Gori-Giorgiet al.8 The discrepan-
cies between theory and simulation are reasonably sma
these values of the coupling strength. It is evident from
figure that these discrepancies largely cancel out in tak
07511
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the spin avarage, but will be magnified when one calcula
the difference distribution functiongd(r ). Similar theoretical
results are shown in Fig. 5 for the 2D system.

Finally, in Figs. 6 and 7 we report our results for th
s-wave scattering length as a function of coupling stren
r s . For the 3D system the simple analytical formula obtain
by Overhauser10 and reported in Eq.~22! is seen in the top
panel in Fig. 6 to give a very good account of our resu
Results for the 2D electron gas at moderate coupling stren
are shown in the bottom panel in Fig. 6, while Fig. 7 sho
how they have been obtained by fitting the expression~24! to
our numerical results for the phase shift ins wave as a func-
tion of momentum at low momenta. It may be remarked t
the magnitude ofd0(k) in the present electron-electron sca
tering in 2D is smaller than that in the H-H scattering pro
lem studied by Verhaaret al.18 by a factor of about 2. This
yields, however, huge differences in the magnitude of
scattering length. Our results in the bottom panel in Fig
n

ee
FIG. 4. The spin-resolved pair distributio
functions in a 3D electron gas atr s55 and r s

510. The results of the self-consistent Hartr
approximation~solid lines! are compared with
the QMC data@crosses, from Gori-Giorgiet al.
~Ref. 8!#.
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FIG. 5. The spin-resolved pair distributio
functions in a 2D electron gas atr s51 and r s

55, from the self-consistent Hartree approxim
tion.
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should thus be regarded as being very sensitive to the de
of the theory and hence as having limited quantitative va

IV. EXTENSION TO INHOMOGENEOUS SYSTEMS

In this section we briefly indicate how the approach th
we have presented in Sec. II could be extended to deal
the pair distribution function in an inhomogeneous elect
system, subject to an external scalar potentialVext(r ).

The electron-electron correlations are described in suc
system by an inhomogeneous pair distribution functi
g(r ,r 8), say. The exchange and correlation energy functio
is given by

Exc5
1

2 E dDrE dDr 8 n~r !n~r 8! @ ḡ~r ,r 8!21# v~ ur2r 8u!,

~25!

where n(r ) is the inhomogeneous electron density a
ḡ(r ,r 8) is obtained fromg(r ,r 8) by an integration over the
coupling strength at fixedn(r ) ~see, for instance, the book b
Dreizler and Gross4!. The calculation ofg(r ,r 8) by means of
a two-electron scattering problem remains in this cas
genuine two-body problem. It requires for each spin st
solution of the equation

F2
\2

2m
~D r1

1D r2
!1Vext~r1 ,r2!1V~r1 ,r2!GFe12

~r1 ,r2!

5e12Fe12
~r1 ,r2!, ~26!

where D r is the Laplace operator,Vext(r1 ,r2)5Vext(r1)
1Vext(r2), and V(r1 ,r2) is the effective electron-electro
potential. The Hartree approximation on the effective pot
tial, leading to
07511
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V~r1 ,r2!5v~ ur12r2u!1E dDr 8 @n~r 8! g~r1 ,r 8!

2nb~r 8!# v~ ur 82r2u!, ~27!

provides an approximate self-consistent closure of the pr
lem transcending the usual LDA or other approaches
appeal to the exchange-correlation hole of the homogene
electron gas. In the previous equation~27!, nb(r 8) is the
density of the background.

Finally, a relation betweeng(r ,r 8) and the two-electron
scattering statesFe12

(r ,r 8) is needed. This relation can i

general be written in the following form:

gss8~r ,r 8!5 (
e12 , occup.

Ge12

ss8 uFe12
~r ,r 8!u2, ~28!

where the sum runs over all the occupied levelse12. The

appropriate degeneracy factorGe12

ss8 for the eigenvaluee12 is

zero in the cases5s8, if Fe12
(r ,r 8) is symmetric under the

exchanger↔r 8.
For building the exchange and correlation energy fu

tional in Eq.~25!, one needs to calculate the pair distributio
function at each given coupling strengthl by repeating the
procedure outlined above withv(ur12r2u)5l/ur12r2u. The
density profilen(r ) is needed at full coupling strength an
requires to be obtained by a parallel DFT procedure. The
distribution function at full strength is, in itself, a very inte
esting quantity.
0-6
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As an example of application of such scheme, we wo
like to mention the problem of a finite number of electro
confined in a quantum dot.19 In this case the eigenvaluese12
are discrete and the summation procedure reported in
~28! corresponds to filling the lowest energy states with
the available electrons.

Another problem of interest is represented by a system
electrons confined in a quantum well in cases where the e
tron dynamics is important also in the growth direction
that the confinement cannot be handled by a simple reduc
to 2D. Compared to the previous example, the summa
procedure is in this case more involved. The difficulty com
from the fact that the motion in the transverse direction
free, and this implies that for each subband in the grow
direction there is a dispersion in the transverse direction
sociated with the in-plane momentum. Examples of su

FIG. 6. Thes-wave scattering length as a function ofr s , in units
of the Bohr radius. Top panel: the result of the self-consistent H
tree approximation for the 3D electron gas~solid line! is compared
with the analytical result of Overhauser~Ref. 10! in Eq. ~22!
~dashed line!. Bottom panel: results from the self-consistent Hartr
approximation for the 2D electron gas.
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physical systems, which are in a sense intermediate betw
3D and 2D, have been discussed for instance by Ullrich
Vignale20 and by Luinet al.21

More generally, the possibility of testing theories of th
exchange-correlation hole and of the exchange-correla
energy density in strongly inhomogenous electronic syste
is opening up through novel applications of variational QM
methods.22

V. SUMMARY

In this work we have proposed an extension of Overha
er’s model for the electron-electron correlations in the
electron gas on the basis of a self-consistent Hartree app
mation for the electron-electron scattering potential. We h
confirmed that the model is quite accurately describing
short-range part of the exchange-correlation hole, as alre
demonstrated by Gori-Giorgi and Perdew,14 and shown that it
can be usefully extended to cover the full range of interel
tronic separation over an appreciable range of values of
coupling strength. As already noted in Sec. III, the accura
of the present Hartree approximation is limited to the ran
of values of r s below the development of a first-neighbo
peak in the pair distribution function. We have also sho
that the original proposal of Overhauser yields a very ac
rate analytical formula for the electron-electron scatter
length and indicated how this approach could be extende
deal with the exchange-correlation hole in an inhomo
neous electron gas, leading perhaps to more accurate des
tions of the exchange-correlation energy functional.

We have examined the usefulness of this approach in
scribing the exchange-correlation hole in the 2D electron
and the spin-resolved pair distribution functions in the 3

r-

FIG. 7. Thes-wave phase shift in the 2D electron gas at vario
values of r s , as a function of reduced momentumk/kF at low
momenta. Solid lines: from the numerical solution of the se
consistent Hartree approximation. Dashed lines: from Eq.~24! with
the values of the scattering length shown in the right-hand pane
Fig. 6.
0-7



ti
of
d
lel
pi
re
or
ha
y
ri

n
a

en

th

d to

ing
or-
ela-

ge-
ll

e

B. DAVOUDI, M. POLINI, R. ASGARI, AND M. P. TOSI PHYSICAL REVIEW B66, 075110 ~2002!
electron gas. As may be expected, the Hartree approxima
is quantitatively useful in 2D over a more limited range
coupling strength and has more limited accuracy in regar
the splitting of the exchange-correlation hole into its paral
and antiparallel-spin components. With regard to these s
resolved pair functions, however, we feel that it is quite
markable that a Hartree approximation should already w
as well as it does in our calculations. We may hope t
major changes will not be needed to explicitly include man
body exchange corrections in the electron-electron scatte
potential.

We have also given some attention to the determinatio
the electron-electron scattering length in the 2D electron g
As is generally true for 2D systems, the logarithmic dep
dence of thes-wave phase shift onkasc at very low energy
makes this problem a very delicate one. We have shown
ga
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the proposal made by Verhaaret al.18 in the context of an
atom-atom scattering process is just as useful in regar
electron-electron scattering.

We are currently examining how the Hartree scatter
potential may be supplemented by explicit inclusion of c
rections accounting for many-body exchange and corr
tions, with the main aims of~i! improving the quantitative
account of the spin-resolved components of the exchan
correlation hole and~ii ! studying how a first-neighbor she
emerges with increasing coupling strength.
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