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Mesoscopic fluctuations of the density of states and conductivity in the middle of the band
for disordered lattices

E. P. Nakhmedov,1,2 V. N. Prigodin,3 and E. Şaşıog̃lu4
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The mesoscopic fluctuations of the density of electronic states and of the conductivity of two- and three-
dimensional lattices with randomly distributed substitutional impurities are studied. Correlations of the levels
lying above~or below! the Fermi surface, in addition to the correlations of the levels lying on opposite sides
of the Fermi surface, take place at half filling due to nesting. The Bragg reflections mediate to increase static
fluctuations of the conductivity in the middle of the band which change the distribution function of the
conductivity at half- filling.
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Recent studies of electronic level statistics in disorde
systems have shown1–7 that the existence of repulsions b
tween levels in the metallic phase results in a realization
the Wigner-Dyson statistics.8 Energy levels in a sufficiently
dopedd.2 dimensional electron gas become uncorrelate
an insulator phase and the level distribution obeys Pois
statistics.9 However, the overlapping of one-particle stat
with different energies leads to level correlations whi
change their distribution.

The model of free electrons moving in a field of random
distributed pointlike impurities has been mainly studied
previous works. A small doping of a lattice usually leads
substitution of the host atoms and does not destroy the p
odicity of the Bravais lattice. Our recent studies of we
localization effects in two-dimensional~2D! square lattices
and in three-dimensional~3D! cubic lattics with substitu-
tional impurities have revealed that Bragg reflections~BR’s!
due to commensurability of the electronic wavelengthl and
a lattice spacing a strongly change the localizatio
picture.10–12 The density of states~DOS! vanishes on the
Fermi surface for noninteracting electrons in a 2D lattice a
it acquires a small dip on the Fermi surface of 3D sim
cubic lattices with approaching half-filling.10,11Nevertheless,
electron-electron (e-e) interactions give a positive quantum
correction to the DOS,12 which compensates the Altshule
Aronov negative logarithmic corrections to the DOS of 2
systems.13,14 Therefore it is interesting to clarify how stati
fluctuations of physical parameters of 2D disordered latti
with nested Fermi surfaces are changed by BR’s as the h
filling is approached.

In this paper we consider the effect of BR’s on the lev
statistics and on conductivity fluctuations of 2D and 3D d
ordered lattices with a half-filled band. A particular chara
teristic of level spectra is the two-level correlation functio

R~e,e8!5
1

rod
2 $^r~e!r~e8!&2^r~e!&^r~e8!&%, ~1!

where ^•••& means averaging over impurity realization
r0d is the DOS of thed-dimensional (d52,3) lattice
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calculated in the Born approximation:r0252/(pa)2t ln
(eFmin$t0,1/ueu%), and r035const2(2/p2t3/2a3)Aueu2t ~at
ueu't) with t andt0 being the tunneling integral for neares
neighbor sites and the relaxation time for elastic impur
scattering, respectively.

By using the formula for the DOS,

r~e!5
1

2p i E dr

v
$GA~r ,r 8;e!2GR~r ,r 8;e!%,

which relatesr(e) to the retarded (GR) and advanced (GA)
Green’s functions,R(e,e8) can be expressed as

R~e,e8!52S s

2pvrod
D 2E drE dr 8$^GA~r ,r ;e!GA

3~r 8,r 8;e8!&1^GR~r ,r ;e!GR~r 8,r 8;e8!&

2^GR~r ,r ;e!GA~r 8,r 8;e8!&

2^GA~r ,r ;e!GR~r 8,r 8;e8!&

24Rê GR~r ,r ;e!&Rê GR~r 8,r 8;e8!&%, ~2!

wherev is the ‘‘volume’’ ands is the factor of spin degen
eracy. Far from half-filling the correlatorsRA andAR in Eq.
~2! give only contributions to the two-level correlatio
function.2 However, the existence of electron-hole symme
for nested Fermi surfaces gives rise to considerable co
butions of theRR andAA correlators toR(e,e8) in Eq. ~2!.
The Fermi surface of ad-dimensional lattice with the energ
spectrum ofe(p)5t( i 51

d @12cos(pia)# becomes nested a
half-filling, when eF5dt, which permits an electron-hole
symmetry,e(p1Q)2eF52@e(p)2eF#, with respect to the
nesting vectorsQ5$6p/a,p/a% for 2D and Q5$6p/a,
6p/a,p/a% for 3D lattices. New singular impurity blocks
take place at half-filling with particle-hole symmetry, whic
are referred to as thep-diffuson (Dp) and thep-Cooperon
(Cp). The p-diffuson (p-Cooperon! has a dif-
©2002 The American Physical Society06-1
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fusion pole at large}Q momenta differences~total mo-
menta! and small total energies of the electron and the h
~of two electrons!.10,11

As is known, an interference between the self-intersec
trajectories leads to weak localization of an electronic wa

FIG. 1. ~a! Self-intersecting trajectory due to multiple scatteri
on impurities with small tilted anglesa i in the i th act of scattering.
~b! The same trajectory that is drawn in~a! with the exception that
each scattering is accompanied by BR’s, resulting in anglesa i1p.
In both figures the magnitudes of the velocity vectors are chose
be the same.
a
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m
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function ~see Ref. 13!. The electron passing the loop@e.g., in
Fig. 1~a!#, which is formed on the trajectory due to multip
scattering on impurities with small tilted angles, clockwi
and counterclockwise, reduces its transmission probabi
However, for a nested Fermi surface each act of impu
scattering is accompanied by BR’s with large (;p) scatter-
ing angle@see Fig. 1~b!#, which strongly changes the weak
localization picture of a free electron gas. It is worthwhile
notice that the electron-hole symmetry effects in the 2D c
strongly differ from those in the 1D case, where BR’s act
a destructive factor of localization and result in big effec
@like the Dyson singularity in the 1D DOS~Ref. 15!# only in
the absence of forward scattering~see,e.g., Ref. 16!, revers-
ing the backward scattering to a forward one.

The expression for the two-particle impurity bloc
Cp(q,e1e8) in the particle-particle channel due to umklap
scatterings with the particle energiese ande8 is given as10–12

to

FIG. 2. First-order additional corrections to the DOS correla
R(e,e8) in the metallic regime due to BR’s from~a! p-diffuson and
~b! p-Cooperon blocks.
Cp~q,e1e8!5
1

2pr0dt0 H u~2ee8!1
u~ee8!

~12 i t0ue1e8u1gt0!21
2

d
~ql !221J , ~3!
ree
of
gy

e

-
-

or-
where the phenomenological parameterg is introduced to
signify an inelastic processes rate. Thep-diffuson Dp(q,e
1e8) is also expressed by Eq.~3! with the exception thatq
will now be the momentum difference of a particle and
hole with the accuracy of the nesting vectorQ. Notice that
the ‘‘normal’’ Cooperon and diffuson blocks depend on t
difference of the energiese ande8 instead of sum in Eq.~3!.

New diagrams~see Fig. 2! appear at half-filling due to
BR’s which give contributions toR(e,e8) in addition to
those coming from normal scattering in a diffusive syste
The study of the diffusive regime assumes that the lin
.
r

length L of the system is larger than the elastic mean f
path l and smaller than the localization length, the latter
which is exponentially large. By considering the ener
scales as the Thouless energyEc5\D/L2 with diffusion co-
efficient D5vF

2t0 /d of a d-dimensional system and averag
level spacingD51/r0dLd, it is possible to see thatEc /D
5\r0dDLd225@s/(e2/\)#Ld225g is a dimensionless con
ductance. Sinceg.1 for the metallic case, the diffusive sys
tem can be characterized by the conditionD!Ec!\/t0. By
summing up contributions of the diagrams in Fig. 2 the c
relatorR(e,e8) is expressed as
R~e,e8!5
~sDt0!2

bp2
Re(

q H u~2ee8!

t0
2~2 i ue2e8u1Dq21g!2

2
u~ee8!

F ~12 i t0ue1e8u1gt0!21
2

d
~ql !221G2J , ~4!
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where q25(a51
d qa

2 and qa5(2p/aNa)na with (2Na/2)
,na<(Na/2), andb is the Dyson index classifying the or
thogonal, unitary, and symplectic ensembles withb51,2,
and 4, respectively.8 Far from half-filling where BR’s are
suppressed, only the first term in the brackets of Eq.~4!
contributes toR.2

In the ergodic regimeue6e8u!Ec , only the q50 term
needs to be retained in the summation overq in Eq. ~4!. So

R~e,e8!52
~sD!2

bp2
ReH u~2ee8!

~e2e81 ig!2
2

u~ee8!

4~e1e81 ig!2J ,

~5!

which shows that two levels on the opposite sides of
Fermi surface with energy differenceue2e8u.g repel each
ts
th
-
on
-

-o

-

07510
e

other and they attract at an energy difference ofue2e8u,g.
On the other hand, two levels with energiesue1e8u.g on
the same side of the Fermi surface attract each other and
repel for energiesue1e8u,g. Furthermore, the attraction o
two levels on the Fermi surface (e5e850) weakens with
approaching half-filling and the correlatorR(0,0) reachs its
3/4 value at half-filling. Notice that far from half-filling the
levels lying only on the opposite sides of the Fermi surfa
interact with each other. An additional interaction of the le
els on the same side of the Fermi surface appears due to
at half-filling.

The correlator of two levels centered ate0 and e08 and
averaged in an energy interval ofE<W, whereW52dt is
the bandwidth, can be obtained by integratingR(e,e8) given
by Eq. ~4! over the energy intervalE:
^dre0
~E!dre

08
~E!&5E

e02E/2

e01E/2

deE
e082E/2

e081E/2
de8R~e,e8!

5
s2

bp2r0d
2

ReH ln
g2@~e02e08!22~E1 ig!2#

@e0
22~E/21 ig!2#@e08

22~E/21 ig!2#

2
1

4
ln

g2@~e01e08!22~E1 ig!2#

@e0
22~E/21 ig!2#@e08

22~E/21 ig!2#
J ~ ue0u,ue08u<E/2! ~6!

5
s2

bp2r0d
2

Re lnF12
E2

~ ue0u1ue08u1 ig!2G
3H u~2e0e08!2

1

4
u~e0e08!J ~ ue0u,ue08u>E/2!. ~7!
s
y
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Far from half-filling the second contribution in the bracke
of Eqs. ~6! and ~7! vanishes. This case corresponds to
continuum model.2 However, the fact that interactions of lev
els lying on opposite sides of the Fermi surface do give c
tributions to^dre0

(E)dre
08
(E)& has not been taken into ac

count in Ref. 2. As is seen from Eqs.~6! and ~7! the two-
level correlation function strongly depends on the center
energy strip E even if e05e08 . A logarithmical energy
dependence of the variance^@dre0

(E)#2& takes place for a
strip centered around the Fermi level:

^@dre050~E!#2&5
2s2~12 f !

bp2r0d
2

ln
E

g
~E/2,g,E!

52
2s2~12 f !

bp2r0d
2

ln
E

4g
~g,E/2!, ~8!

where f is the parameter characterizing the BR’s:f 51/4 at
half-filling and f 50 far from commensurate points. Accord
e

-

f-

ing to Eq. ~8! the Dyson repulsion of levels for energie
E/2,g,E turns to an attraction of levels for large energ
distancesE.2g.

For the diffusive limit, whenE@Ec , summing overq in
Eq. ~4! can be replaced by integration. As a result we get
following expressions for the DOS variance^@dre050(E)#2&:

^@dre050~E!#2&di f5
~A221!~12 f !s2

6p3br03
2 S E

Ec
D 3/2

~d53!

52
~12 f !s2

4p3br02
2 ~Et0!S E

Ec
D ~d52!.

~9!

In thed52 case linear contributions inE to ^@dre050(E)#2&
in Eq. ~9! are completely canceled and the fluctuations
not as strong as in 3D systems. This seems to be conne
with the localized character of levels in 2D systems.

Far from half-filling when the Fermi surface is approx
mately spheric the variance of fluctuations in static cond
tivity is designated by the diagrams given, e.g., in Fig. 4
6-3
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Ref. 2. These diagrams have been calculated also in Re
and 17,18 for continuum and isotropic systems. Other c
tributions to the conductivity variance exist in the latti
model under consideration at the commensurate points
to BR’s which come from the diagrams given in Fig. 3. T
total contributions to the conductance fluctuations due to n
mal and umklapp scatterings on impurities are

^dGabdGgm&5GD
2 $dagdbm1damdbg%1Gr

2dabdgm .
~10!

Here we followed the notation in Ref. 24, where the con
butions from the diffusion coefficient and the DOS fluctu
tions to the conductance variance^dGabdGgm& were de-
noted by the temperature-dependent coefficientsGD

2 andGr
2 ,

respectively. The expressions forGD
2 and Gr

2 can be pre-
sented as

FIG. 3. The diagrams which contribute to the conductivity va
ance due to BR’s. The diagrams denoted by primes differ from

presented ones through the direction of the electron lines. (e˜),( f̃)
are symmetric to~e!, ~f! with respect to the single-impurity line, an

(g̃),(h̃) are obtained from~g!,~h! by interchanging the straight an
dashed lines under single-impurity lines. Diagrams similar to~e!–
(h̃8) exist also in the Cooper channel which are produced fr
~d,d’!.
07510
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-
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GD
2 5

s2

b S e2

\

Ec

p D 2E de

2T
f S e

2TD
3(

q H 1

uDq22 i eu2
1

t0
2

U~12 i et0!21
2

d
~ql !221U2J

~11!

and

Gr
25

s2

b S e2

\

Ec

p D 2E de

2T
f S e

2TDRe(
q

1

~Dq22 i e!2
,

~12!

where f (x)5(x cothx21)/sinh2x. The second term in the
brackets in Eq.~11! comes from the diagrams given in Fig.
due top scatterings. However, BR’s give no contribution
Gr

2 . According to the Thouless picture,19 only one-electron
states lying in an interval ofEc centered on the Fermi leve
give contributions to the conductivity. Contributions toGr

2

from the levels correlated on the same side of the Fermi le
seem to cancel each other.

At small temperaturesT!Ec the coefficientsGD
2 andGr

2

do not depend on temperature:

Gr
25~s2/b!~e2/p3\!2bd , GD

2 5~11 f !Gr
2 , ~13!

wherebd is a constant, which depends on the system dim
sion. In the case whenT@Ec the values ofGD

2 and Gr
2

strongly differ from each other and depend on temperatu

Gr
25~s2/b!~e2/2p\!2ad~Ec /T!(42d)/2 ~14!

and

GD
2 5

1

2
~11 f !Gr ~d53!5~11 f !~s2/b!

3~e2/2p\!2
Ec

T
ln

T

max$Ec ,g%
~d52!, ~15!

wheread is some coefficient.2 As can be seen from Eqs.~14!
and ~15! the main contribution to the conductance varian
comes from fluctuations of the diffusion coefficient, whic
are intensified at half-filling.

Multiplication of the variance by the additional prefact
(11 f ) means that umklapp scatterings of electrons on
purities change the distribution function ofG. In the lan-
guage of random matrix theory, an insulating phase of a
ordered system can be prescribed by an ensemble ofN3N
diagonal matrices with random elements. The existence
off-diagonal terms inN3N matrices due to overlapping
states of different energies in diffusive systems transfor
the distribution function from a Poisson function to
Wigner-Dyson one. Scattering on the impurities with lar
momentum transfer gives additional contributions to the o
diagonal matrix elements. Therefore, the change in the
tribution function due to umklapp scattering is reasonab
Two-level correlations are sensitive to whether the levels
tract or repel each other and to the relative position of th
levels, either on the same side or on the opposite sides o

e
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Fermi surface. However, the conductance fluctuations s
not to be sensitive to the character of the level interacti
and level positions; both attraction and repulsion give sim
contributions tô dGabdGgm&. This fact seems to be the rea
son why Eqs.~8! and ~9! for ^@dre0

(E)#2& and Eqs.~13!–
~15! contain the factorf coming from BR’s in different way.

Starting from the fact that the statistical properties of e
ergy levels in disordered systems are determined by the s
metries of the Hamiltonian, Zirnbauer has recen
classified20 all possible universality classes of random mat
ensembles according to Cartan’s families of symme
spaces. He showed in Ref. 20 that, apart from the three
isting Wigner-Dyson random matrix classes, there exist th
chiral symmetric classes and four Bogolyubov–de Gen
classes. The subdivision in the different classes occurs du
the time-reversal~TR! or spin-rotational~SR! invariances. To
clarify to what class of the universal random matrix e
sembles our model belongs, we start from the impu
Hamiltonian written by means of second quantization ope
tors cs(r ) as21 Himp5(s*drcs

†(r )Uimp(r )cs(r ). Here,
Uimp(r )5( lVe f f(r2r l)5( l@Vimp(r2r l)2Va(r2r l)#; i.e.,
an electron around the impurity located at sitel ‘‘feels’’ the
potentialVe f f(r2r l), which is the difference of the impurity
potentialVimp(r2r l) and the host atom potentialVa(r2r l).
When the doping atoms belong to a chemical element gr
neighboring the one of the host atoms,Ve f f(r2r l) vanishes
at r5r l , and it differs from zero on the tail, since a typic
case of a perturbing field in a solid is the electrostatic fi
around a charged impurity. By expanding thec operators in
Himp over the orthogonal Wannier functionsw(r2r l) as
cs(r )5(ncn,sw(r2r l), the impurity Hamiltonian can be
written in the ‘‘site’’ representation, Himp

5(s,^n,m&tn,mcn,s
† cm,s , which contributes to the hopping be

tween nearest-neighbor sites. The last form of the Ham
tonian shows that the disorder studied in the problem co
sponds to off-diagonal disorder. It is worthwhile to point o
that another model of randomness—namely, diago
disorder—describes the idealized situation of a binary dis
deredd-dimensional substitutional alloy with varying value
of the chemical potential. Diagonal disorder can be reali
also in 1D disordered systems, where the localization len
is comparable with the mean free pathl and leads to a varia
tion of the chemical potential from site to site due to t
absence of the diffusive regime. The exponentially la
value of the localization lengthj loc ,j loc; lexp(eFt0), how-
ever, allows realization of the metallic regime forL<j loc in
2D weakly disordered systems. By applying the cross
07510
m
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diagram technique21 to average over the randomness in
metallic 2D system with a definite value of the chemic
potential, we neglect the energy fluctuations at the ato
sites, since an elastic scattering off impurities is conside
and thed-correlated white-noise potential witĥVe f f&50 is
used in the calculations. Following Oppermann a
Wegner,22,23 the lattice can be subdivided into two subla
tices, so that the Hamiltonian contains the matrix eleme
connecting only different sublattices and becomes purely
diagonal. The block off-diagonal Hamiltonian anticommut
with the Pauli matrixs3. Such a kind of symmetry is com
monly referred to as chiral symmetry.20,24 The one-particle
Green’s functions of the model contain the chiral symme
at the center of the band, which leads to an unusual beha
of the DOS and the conductivity as the middle of the band
approached. Therefore, the model studied in our paper
responds to chiral symmetry in the presence of both TR
SR invariances.

Our study of the fluctuations of the DOS and the cond
tance have been restricted to the case of noninteracting e
trons in a random potential. It is easy to show that atT50
interactions do not affect the numerical value of the univer
conductance fluctuations and of the DOS fluctuations
leading order in (pFl )21 in the diffusive regime. This fact
has been explicitly confirmed in Ref. 25 for the 2D electr
gas model which is identified with our model far from ha
filling, where the effects of periodicity can be incorporat
into the electron effective mass. At finite temperature, int
actions introduce a finite inelastic scattering rate, which c
off the diffusion poles of the impurity ladder blocks.

The recently fabricatedC60-based novel field-effect tran
sistor ~FET! devices26 allow one to control the band filling
by changing the gate potential. A single crystal of C60 is an
insulator and has a band gap of approximately 2 eV. T
band filling, however, can be changed by either a chem
doping27 or by applying a gate potential in a FET structure26

Half-filling is reached for three electron dopings per C60
molecule. Notice that the recent researches on C60-based
FET structure are focused on the superconducting prope
of this material, and therefore the single crystal of C60 is
chosen in Ref. 26 to be ultraclean. The possibility of dop
the fullerites with substitutional impurities, while preservin
the periodicity of the Bravais lattice, will allow the observ
tion of the commensurability effects on the mesoscopic fl
tuations at half-filling in these devices.

The work was partially supported by ONR under Gra
No. N00014-01-1-0427.
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