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Mesoscopic fluctuations of the density of states and conductivity in the middle of the band
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The mesoscopic fluctuations of the density of electronic states and of the conductivity of two- and three-
dimensional lattices with randomly distributed substitutional impurities are studied. Correlations of the levels
lying above(or below the Fermi surface, in addition to the correlations of the levels lying on opposite sides
of the Fermi surface, take place at half filling due to nesting. The Bragg reflections mediate to increase static
fluctuations of the conductivity in the middle of the band which change the distribution function of the
conductivity at half- filling.
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Recent studies of electronic level statistics in disordereqalculated in the Born approximationpg,=2/(ma)?tIn

systems have showr that the existence of repulsions be- emin{7,,1/€|}), and pgg=const- (2/7?t%%a3) |-t (at
tween levels in the metallic phase results in a realization o?dmt) with t and 7, being the tunneling integral for nearest-

the Wigner-Dyson statisticsEnergy levels in a sufficiently neighbor sites and the relaxation time for elastic impurity
dopedd>2 dimensional electron gas become uncorrelated icattering, respectively.

an insulator phase and the level distribution obeys Poisson By ysing the formula for the DOS,
statistics’ However, the overlapping of one-particle states
with different energies leads to level correlations which
change their distribution. (€)= LJ ﬂ{G (r,r';€)—Gr(r,r':e)
The model of free electrons moving in a field of randomly P 2mi) v VA R
distributed pointlike impurities has been mainly studied in
previous works. A small doping of a lattice usually leads towhich relatesp(e) to the retarded®g) and advancedG )
substitution of the host atoms and does not destroy the pergreen’s functionsR(e,e’) can be expressed as
odicity of the Bravais lattice. Our recent studies of weak
localization effects in two-dimension&2D) square lattices
and in three-dimensiondl3D) cubic lattics with substitu- R(G'E,):_(
tional impurities have revealed that Bragg reflectiéBR's)
due to commensurability of the electronic wavelengtand
a lattice spacinga strongly change the localization

)Zf drfdr’{(GA(r,r;e)GA

X(r',r';e" )y +(Gg(r,r;e)Gg(r',r’;e"))

27V Pog

picturel®~*2 The density of state$DOS) vanishes on the —(GR(r,1;€)GA(r,1";€"))
Fermi surface for noninteracting electrons in a 2D lattice and
it acquires a small dip on the Fermi surface of 3D simple —(Ga(r,r;€)Gg(r',r';e"))

cubic lattices with approaching half-filling:'* Nevertheless,
electron-electrond-e) interactions give a positive quantum
correction to the DO%? which compensates the Altshuler- . ) )
Aronov negative logarithmic corrections to the DOS of 2D Wherev is the “volume” ands is the factor of spin degen-
systems=>14 Therefore it is interesting to clarify how static €racy. Far from half-filling the correlatoR®A andAR in Eq.
fluctuations of physical parameters of 2D disordered lattice$2) give only contributions to the two-level correlation
with nested Fermi surfaces are changed by BR's as the haffunction” However, the existence of electron-hole symmetry
filling is approached. for _nested Fermi surfaces gives rise to consplerable contri-
In this paper we consider the effect of BR's on the levelPutions of theRRandAA correlators tdR(e,€’) in Eq. (2).
statistics and on conductivity fluctuations of 2D and 3D dis-The Fermi surface of é-dimensional lattice with the energy
ordered lattices with a half-filled band. A particular charac-spectrum ofe(p) =t={_;[1—cos@a)] becomes nested at
teristic of level spectra is the two-level correlation function half-filling, when ex=dt, which permits an electron-hole
symmetry,e(p+ Q) — e = —[ €(p) — €], with respect to the
1 nesting vector={=* w/a,w/a} for 2D and Q={=* m/a,
R(e,e')=—{(p(e)p(e))—(p(e))(p(e')}, (1)  +z/a,m/al for 3D lattices. New singular impurity blocks
Pod take place at half-filling with particle-hole symmetry, which
where (- --) means averaging over impurity realizations. are referred to as the-diffuson (D) and thew-Cooperon
pog is the DOS of thed-dimensional (=2,3) lattice (C,). The m-diffuson (w7-Cooperon has a dif-

—AREGR(r,r;€))REGR(r',r';€"))}, (2)
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FIG. 2. First-order additional corrections to the DOS correlator
R(e,€’) in the metallic regime due to BR’s frofa) w-diffuson and
(b) 7r-Cooperon blocks.

function (see Ref. 1B The electron passing the lo¢g.g., in
Fig. 1(@], which is formed on the trajectory due to multiple
scattering on impurities with small tilted angles, clockwise
and counterclockwise, reduces its transmission probability.
] ] ) ] ~ However, for a nested Fermi surface each act of impurity
FIG. 1. (a) Self-intersecting trajectory due to multiple scattering scattering is accompanied by BR’s with large ) scatter-
on impurities with small tilted angles; in theith act of scattering. ing angle[see Fig. 1b)], which strongly changes the weak-
(b) The same trajectory that is drawn (@ with the exception that localization picture of a’ free electron gas. It is worthwhile to
each scattering is accompanied by BR’s, resulting in angjesm. . . .
i . ; notice that the electron-hole symmetry effects in the 2D case
In both figures the magnitudes of the velocity vectors are chosen to . . ,
strongly differ from those in the 1D case, where BR’s act as
be the same. . S o
a destructive factor of localization and result in big effects
[like the Dyson singularity in the 1D DO&ef. 15] only in
fusion pole at largexQ momenta differencestotal mo-  the absence of forward scatterifgge,e.g., Ref. J6revers-
menta and small total energies of the electron and the holéng the backward scattering to a forward one.
(of two electrong®! The expression for the two-particle impurity block
As is known, an interference between the self-intersectin@ .(q,e+ €’) in the particle-particle channel due to umklapp
trajectories leads to weak localization of an electronic wavescatterings with the particle energiesande’ is given as®~*2

a)

O(ee’)

Cﬂ(q,6+€,):m 0(—66/)4' , (3)

2
(1—i7gle+ €|+ Y70) 2+ a(ql)z—l

where the phenomenological parameteiis introduced to lengthL of the system is larger than the elastic mean free
signify an inelastic processes rate. Thediffuson D ,(g,e  pathl and smaller than the localization length, the latter of
+€') is also expressed by E¢B) with the exception tha which is exponentially large. By considering the energy
will now be the momentum difference of a particle and ascales as the Thouless enefgy=%D/L? with diffusion co-
hole with the accuracy of the nesting vec@r Notice that  efficientD=v27,/d of a d-dimensional system and average
the “normal” Cooperon and diffuson blocks depend on thelevel spacingA=1/py4LY, it is possible to see thaE./A
difference of the energiesande’ instead of sum in Eq.3). =hpogDLY ?=[0o/(e?/h)]LY"%2=g is a dimensionless con-

New diagrams(see Fig. 2 appear at half-filling due to ductance. Sincg>1 for the metallic case, the diffusive sys-
BR’s which give contributions tdR(e,e’) in addition to  tem can be characterized by the conditibre E <%/ 7. By
those coming from normal scattering in a diffusive systemsumming up contributions of the diagrams in Fig. 2 the cor-
The study of the diffusive regime assumes that the linearelatorR(e,€’) is expressed as

(sA7)? 0(—e€’) O(ee’)
B eq 2(—ile—€'|+Dg?+ 2
0 as+vy)

R(e,e')= 7\, (4)

) 2
(1—iTole+ €|+ ymo)2+ a(ql)z—l
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where g?=3=9_,92 and q,=(27/aN,)n, with (—N,/2)  other and they attract at an energy differencéeof e’ | < y.
<n,=<(N,/2), andg is the Dyson index classifying the or- On the other hand, two levels with energjes-e€’|>y on
thogonal, unitary, and symplectic ensembles with-1,2, the same side of the Fermi surface attract each other and they
and 4, respectively.Far from half-filing where BR’s are repel for energiege+ €’|<y. Furthermore, the attraction of

suppressed, only the first term in the brackets of @y. two levels on the Fermi surfaces{ e’ =0) weakens with
contributes taR 2 approaching half-filling and the correlat®(0,0) reachs its

In the ergodic regimée=* €’|<E., only theq=0 term  3/4 value at half-filling. Notice that far from half-filling the

needs to be retained in the summation ogén Eq. (4). So levels lying only on the opposite sides of the Fermi surface
interact with each other. An additional interaction of the lev-

(sA)?2 0(— e€’) 0(e€’) els on the same side of the Fermi surface appears due to BR'’s
R(e,e')=— >R SIS T at half-filling.
B (e—€'+iy)® 4(ete' +iy) The correlator of two levels centered &t and €, and

averaged in an energy interval Bi<W, whereW=2dt is
which shows that two levels on the opposite sides of thehe bandwidth, can be obtained by integratiR(g, ') given
Fermi surface with energy differen¢e—€’|>y repel each by Eq.(4) over the energy intervas:

egtE/2 ¢
(3pe(E)Opur(EN= | de| 0"
0 0 eo—ER2 ep—ER2

_ s Y’[(e0— €0)’— (E+iy)?]
Br2p2, | [€—(E2+iy)2| ey~ (E/2+iv)?]

1 Ylleot )~ (E+ip)?]
47— (E2+iy) ) )~ (EI2+i%)?]

de'R(e,e")

] (|€ol,| €0l <E/2) 6)

g2 ,-{ E2
=— —Relfl-——————
Bmpaq (| ol +|egl +iy)?

1
X{O(—eoeé)—zﬁ(eoeé)] (|€ol,| €5 =E/2). (7

Far from half-filling the second contribution in the bracketsing to Eq. (8) the Dyson repulsion of levels for energies
of Egs. (6) and (7) vanishes. This case corresponds to theE/2<y<E turns to an attraction of levels for large energy
continuum modef.However, the fact that interactions of lev- distancesE>21y.

els lying on opposite sides of the Fermi surface do give con- For the diffusive limit, wherE>E_, summing over in
tributions to<5pE (E) 5pE (E)) has not been taken into ac- Eq.(4) can be replaced by integration. As a result we get the
count in Ref. 2. As is seen from Eq) and (7) the two-  following expressions for the DOS varianeSp. -o(E)1°):

level correlation function strongly depends on the center-of-

energy stripE even if e;=¢;. A logarithmical energy 5 _(\/E— 1)(1-1)s?
dependence of the varian@&pso(E)]z) takes place for a <[5pfo=°(E)] Jaif = 67 Bp2,
strip centered around the Fermi level:

3/2
ST

- (1-1)s?

252(1-f) E 47 Bpg,
<[5P50:0(E)]2>:’8Tp3d|n; (Ef2<y<E) 9)

E
(ETO)(E—) (d=2).

In thed=2 case linear contributions & to <[5p60:0(E)]2>
28’(1-f) E in Eq. (9) are completely canceled and the fluctuations are
- ———5In— (y<E/2), (8) : ;
Bmp2, 4y not as strong as in 3D systems. This seems to be connected
with the localized character of levels in 2D systems.
Far from half-filling when the Fermi surface is approxi-
wheref is the parameter characterizing the BRfs:1/4 at  mately spheric the variance of fluctuations in static conduc-
half-filling and f =0 far from commensurate points. Accord- tivity is designated by the diagrams given, e.g., in Fig. 4 of
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P, -0 PG, E-0 s?(e® Ec\2(de [ €
~o GZD:_ R f_f .
) g\% =) T\ o7
1 75
XE - + 0 5
7 | [Dg?—iel? 2,2 e
(1—ier) +a(q|) -1
(11
and
Gz_82 eZEczfde]c € ReS 1
AT B Pl LD rwrier?
(12)

where f(x) = (x cothx—1)/sint’x. The second term in the
brackets in Eq(11) comes from the diagrams given in Fig. 3
due tow scatterings. However, BR'’s give no contribution to
G>. According to the Thouless pictuf8only one-electron
states lying in an interval dE. centered on the Fermi level
give contributions to the conductivity. Contributions (Bf'p
from the levels correlated on the same side of the Fermi level
seem to cancel each other.

At small temperature3 <E, the coefficients<G3 and G,
do not depend on temperature:

G2=(s%p)(e¥mh)% by, Gp=(1+)G2, (13

whereby is a constant, which depends on the system dimen-
sion. In the case wheff>E, the values ofG} and G2
strongly differ from each other and depend on temperature:

Go=(s? p)(€*2mh)?ay(Ec/T)4 D2 (14)
FIG. 3. The diagrams which contribute to the conductivity vari-
ance due to BR’s. The diagrams denoted by primes differ from theand
presented ones through the direction of the electron lings(fje , 1
are symmetric tde), (f) with respect to the single-impurity line, and Go=3 (1+1)G, (d=3)=(1+f)(s?/p)
(9).(h) are obtained frondg),(h) by interchanging the straight and
dashed lines under single-impurity lines. Diagrams similaele-
(h") exist also in the Cooper channel which are produced from
(d,d).

ECI
T "maxE, !
whereay is some coefficiert As can be seen from Eqgl4)

and (15) the main contribution to the conductance variance
c%mes from fluctuations of the diffusion coefficient, which

X (e2[27h)? (d=2), (19

Ref. 2. These diagrams have been calculated also in Refs.
and 17,18 for continuum and isotropic systems. Other CON3 e intensified at half-filling.

tributions to the conductivity variance exist in the lattice Multiplication of the variance by the additional prefactor

model under consideration at the commensurate points du§ . f) means that umklapp scatterings of electrons on im-
to BIRS Wht')Ch. come fLom thz dlagramfsl given in F::?. 3. The rities change the distribution function &. In the lan-
total contributions to the conductance fluctuations due to norg, e of random matrix theory, an insulating phase of a dis-

mal and umklapp scatterings on impurities are ordered system can be prescribed by an ensembi¢>ol
diagonal matrices with random elements. The existence of
_2 2 off-diagonal terms inNXN matrices due to overlappin

(8GapGo) GD{5“753“+5““5BV}+G”5“E§W'(1O) statesgof different energies in diffusive systems traggfo?ms

the distribution function from a Poisson function to a

o ~Wigner-Dyson one. Scattering on the impurities with large

Here we followed the notation in Ref. 24, where the contri-momentum transfer gives additional contributions to the off-
butions from the diffusion coefficient and the DOS fluctua—diagona| matrix elements. Therefore, the change in the dis-
tions to the conductance varian¢éG,zdG,,) were de-  tripution function due to umklapp scattering is reasonable.
noted by the temperature-dependent coeffici@#sandG>,  Two-level correlations are sensitive to whether the levels at-
respectively. The expressions @3 and Gi can be pre- tract or repel each other and to the relative position of these
sented as levels, either on the same side or on the opposite sides of the
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Fermi surface. However, the conductance fluctuations seemliagram technigué to average over the randomness in a

not to be sensitive to the character of the level interactiongnetallic 2D system with a definite value of the chemical

and level positions; both attraction and repulsion give similarpptential, we negleqt the energy flu_ctuatipns at the qtomic
contributions to{ G ,38G,,,). This fact seems to be the rea- sites, since an elastic scattering off impurities is conslldered
son why Eqgs(8) and (9) for <[5P50(E)]2> and Egs.(13—  and thes-correlated white-noise potential WitlVe) =0 is

(15) contain the factof coming from BR’s in different way. Wed Qz,zgﬁﬁ (l:zatl[qulatlonsb FOIE’&’V'D(? detpe;mann bla?d
Starting from the fact that the statistical properties of en-. egner, th t?h a|_||ce '(I:tan' € su " i eth Into tv_vo slu a -t
ergy levels in disordered systems are determined by the syrﬁ'—ces' S0 that the tamilionian contains the matrix elements

metries of the Hamiltonian, Zimbauer has recentlyconnectlng only different sublattices and becomes purely off-

classified® all possible universality classes of random matrixd'agonal' The block off-diagonal Hamiltonian anticommutes

ensembles according to Cartan’s families of symmetricW'th the Pauli matrixos. .SUCh a kind 02f4symmetry IS com-
only referred to as chiral symmeti3** The one-particle

spaces. He showed in Ref. 20 that, apart from the three ex: . 4 .
b b reen’s functions of the model contain the chiral symmetry

isting Wigner-Dyson random matrix classes, there exist thre . ;
chiral symmetric classes and four Bogolyubov—de Genne&t the center of the band, which leads to an unusual behavior

classes. The subdivision in the different classes occurs due HJ the DOS and the conductivity as the middle of the band is

the time-reversalTR) or spin-rotationalSR) invariances. To approached. Therefore, the model studied in our paper cor-
clarify to what class of the universal random matrix en_responds_ to chiral symmetry in the presence of both TR and
sembles our model belongs, we start from the impuritySRO'nvart'a(';ce?'th fluctuati f the DOS and th d
Hamiltonian written by means of second quantization opera- ur study of the tiuctuations of the and the conduc-
tors g, (r) ag' Hy, =3, [dryt(fU. (1) i.(r). Here tance have been restricted to the case of noninteracting elec-
U (rST:E,V ff(r—mr15=21,r[v- er_rl)mlpv (rir|)j' ie " trons in a random potential. It is easy to show thaf at0

imp e imp a ’ e

an electron around the imounitv located at ditdeels” the interactions do not affect the numerical value of the universal
. Impurity o ; .. conductance fluctuations and of the DOS fluctuations to
potentialVq¢(r —r), which is the difference of the impurity

. . leading order in pel) 1 in the diffusive regime. This fact

W:\ent'?‘lvigp(r._r') e tbhel host atomh pot_entllzatlf(r—r,). has been explicitly confirmed in Ref. 25 for the 2D electron
1en the doping atoms belong to a chemical element grouBas model which is identified with our model far from half-

neighboring the one of the host atomg(r —r,) vanishes filling, where the effects of periodicity can be incorporated
atr=r,, and it d|f_fers from_ zero on t.he tail, since a t)_/pl(;al into the electron effective mass. At finite temperature, inter-
case of a perturblr_lg f'e'_d in a solid is _the eleCtrOStaﬂC_f'eldactions introduce a finite inelastic scattering rate, which cuts
around a charged impurity. By expandlng me)perators N off the diffusion poles of the impurity ladder blocks.
Himp Over the orthogonal \_Nanm_er funct!ons_(r—r,) as The recently fabricate€g-based novel field-effect tran-
¥o(1) =2nCn,(W(r —ry), the impurity Hamiltonian can be  gjior (FET) device&® allow one to control the band filling
written in . the §|te r_epresentat'onv Himp by changing the gate potential. A single crystal gf @ an
=25 (nm)tnmCn,oCm,o . Which contributes to the hopping be- g ator and has a band gap of approximately 2 eV. The
tween nearest-neighbor sites. The last form of the Hamily,ng filling, however, can be changed by either a chemical
tonian shows that the disorder studied in the problem COIMegoping” or by applying a gate potential in a FET structéfe.
sponds to off-diagonal disorder. It is worthwhile to poi_nt OUtHaIf-fiIIing is reached for three electron dopings peg,C
that another model of randomness—namely, diagongl,gecyle. Notice that the recent researches gyb@sed
disorder—describes the idealized situation of a binary diSOrEET structure are focused on the superconducting properties
deredd-dimensional substitutional alloy with varying values ¢ 4.c material, and therefore the single crystal of &
of the chemical potential. Diagonal disorder can be realized,,sen jn Ref. 26 to be ultraclean. The possibility of doping
also in 1D disordered systems, where the localization lengti,e ¢ ierites with substitutional impurities, while preserving
is comparable with the mean free patand leads to a varia- e periodicity of the Bravais lattice, will allow the observa-

tion of the chemical potential from site to site due to thejq, of the commensurability effects on the mesoscopic fluc-
absence of the diffusive regime. The exponentially 1arge, 4tions at half-filling in these devices.

value of the localization lengtloc,& 0.~ €Xple1), how-
ever, allows realization of the metallic regime fo& ¢, in The work was partially supported by ONR under Grant
2D weakly disordered systems. By applying the crossedNo. NO0014-01-1-0427.
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