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Spin accumulation in quantum wires with strong Rashba spin-orbit coupling
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~Received 26 June 2002; published 29 August 2002!

We present analytical and numerical results for the effect of Rashba spin-orbit coupling on band structure,
transport, and interaction effects in quantum wires when the spin precession length is comparable to the wire
width. The situation with only the lowest spin-split subbands occupied is particularly interesting because
electrons close to Fermi points of the same chirality can have approximately parallel spins. We discuss
consequences for spin-dependent transport and effective Tomonaga-Luttinger descriptions of interactions in the
quantum wire.
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Spin-dependent transport phenomena are currently att
ing a lot of interest because of their potential for future el
tronic device applications.1 Basic design proposals for spin
controlled field-effect switches2,3 use the fact that electro
waves with opposite spin aquire different phase factors d
ing their propagation in the presence of Rashba spin-o
coupling4 ~RSOC!. The latter arises due to structural inve
sion asymmetry in quantum heterostructures5,6 where two-
dimensional~2D! electron systems are realized. The sing
electron Hamiltonian is then of the form7 H2D5H01Hso
where

H05
1

2m
~px

21py
2!, ~1a!

Hso5
\kso

m
~sx py2sy px!, ~1b!

with m denoting the effective electron mass.26 The possibility
to tune the strength of the RSOC, measured here in term
the characteristic wave vectorkso, by external gate voltage
has been demonstrated experimentally.8–10 As a manifesta-
tion of broken spin-rotational invariance, eigenstates ofH2D

which are labeled by a 2D wave vectorkW have their spin
pointing in the direction perpendicular tokW . Hence, no com-
mon spin quantization axis can be defined for eigenst
when spin-orbit coupling is present. Confining the 2D ele
trons further to form a quantum wire, one might naive
expect to again be able to define a global spin quantiza
axis, as the propagation direction of electrons in a 1D sys
is fixed. However, this turns out to be correct only for a tru
1D electron system with vanishing width. In real quantu
wires, such a situation is approximately realized when
spin-precession length2 p/kso is much larger than the wire
width. Another way to formulate this condition is to say th
the characteristic energy scaleDso5\2kso

2 /2m for RSOC is
small compared to the energy spacing of 1D subbands. F
quantum wire defined by a parabolic confining potent
e.g.,

V~x!5
m

2
v2 x2, ~2!

the latter would be\v. When spin-orbit coupling is no
small ~i.e., whenDso;\v for the case of parabolic confine
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ment!, hybridization of 1D subbands for opposite spins b
comes important, resulting in the deformation of electro
dispersion relations.11 The effect of this deformation on
transport properties has been the subject of rec
investigation,11 e.g., with respect to implications for th
modulation of spin-polarized conductances as a function
RSOC strength12 which is the principle of operation for spin
controlled field-effect devices.2,3

Here we present results for the detailed spin structure
electron states in a quantum wire, defined by the parab
confining potentialV(x) given in Eq.~2!, with strong RSOC
present. Contrary to previous13 assumptions that were un
critically adopted in the recent literature,14 we find that elec-
trons with large wave vectors in the lowest spin-split su
bands have essentially parallel spin. The spin state that ri
moving electrons converge toward is opposite to that for
movers. This counterintuitive result will be explained qua
tatively in the following paragraph, before presenting an
lytical and numerical results for electronic dispersion curv
and spin structure of eigenstates. A texturelike variation
spin densityacrossthe wire is identified. We then apply th
Landauer-Bu¨ttiker formalism15,16 to discuss spin-dependen
transport in hybrid systems of a wire with RSOC attached
leads wherekso50. Current turns out to be spin polarized
the wire but unpolarized in the leads. We elucidate the pe
liar current conversion at wire-lead interfaces that susta
this novel type of spin accumulation in the wire. Finall
consequences for the low-energy description of interac
wires in terms of Tomonaga-Luttinger-type models are d
cussed.

We start by considering basic features for eigenstate
the Hamiltonian H1D5H2D1V(x) which are 1D plane
waves in they coordinate with wave numberky but bound in
the x direction. At finite kso, spin degeneracy is preserve
only for eigenstates withky50; their energies are the shifte
harmonic-oscillator levelsEn

(0)5(\v/2)(2n11)2Dso. This
result is exact. To characterize states with finiteky , we re-
write H1D5Hpb1Hmix where

Hpb5
px

2

2m
1

mv2x2

2
1

\2ky
2

2m
1

\2ksoky

m
sx , ~3!

and Hmix52\ksosypx /m. Straightforward calculation
yields eigenstates ofHpb which are also eigenstates ofsx
©2002 The American Physical Society11-1
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with eigenvalue s561 and have energiesEns
(pb)(ky)

5(\v/2)(2n11)1(\2/2m)(ky1skso)
22Dso. The term

Hmix induces mixing between the shifted parabolic subba
Ens

(pb)(ky). To lowest order in perturbation theory, it results
a uniform shift of eigenenergies by2Dso and a small devia-
tion of spin quantization inx direction.17 Hence, forDso

!\v, eigenstates ofH1D have energiesEns
(pb)(ky)2Dso and

are, to a good approximation, eigenstates ofsx . WhenDso
becomes comparable to the subband splitting, anticross
occur between neighboring subbands withoppositespin in-
dexs. As a result, no common spin-quantization axis can
defined anymore for eigenstates within any subband.
enough from anticrossings, eigenstates ofH1D will essen-
tially be eigenstates ofHpb. In particular, their spins will be
approximately aligned in thex direction. In the lowest two
subbands, right movers with wave vectors larger than tha
the anticrossing point can then have approximately para
spin. The same is true for left movers whose asymptotic s
direction is opposite to that of right-movers.

In Fig. 1, we show as thick lines numerically calculat
spectra ofH1D for a large value of spin-orbit coupling. De
viation from parabolicity is clearly visible. Interestingly, it i
possible to obtain a good quantitative description of the lo
est spin-split subband by diagonalizingH1D in a truncated
Hilbert space which is spanned by the lowest and fi
excited spin-degenerate parabolic subbands of the Ha
tonianH01V(x). We call this thetwo-bandmodel and find
an approximate expression for the dispersion of the low
spin-split subband,

2E0g
(2b)

\v
521~kyl v!22A~12g2ksokyl v

2 !212~ksol v!2,

~4!

FIG. 1. Lowest and first-excited spin-split subbands of a qu
tum wire, defined by a parabolic confining potential with oscilla
length l v in a 2D electron system, with strong Rashba spin-or
coupling such thatkso l v50.9. Thick curves are results of the exa
numerical calculation, while thin curves are obtained using the
proximate two-band model which includes only spin-orbit-induc
mixing of the lowest two parabolic subbands. Evidently, this a
proximation gives reasonable results for the lowest spin-split s
band, even in the present case of a rather large spin-orbit cou
strength.
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where l v5A\/mv is the oscillator length of the paraboli
confinement andg56 a subband index that doesnot have
the meaning of a spin-quantization number. We show Eq.~4!
and the corresponding result for the first-excited subband
thin lines in Fig. 1. It is seen that the two-band model is qu
adequate for the lowest subbands, even for rather str
spin-orbit coupling.

Results shown in Fig. 2 confirm conclusions reached
our previous discussion of the spin structure of elect
eigenstates with RSOC present. Panel~a! shows the expec-
tation value of spin component in thex direction for eigen-
states ofH1D in the lowest and first excited spin-split sub
bands for the same value ofkso used in Fig. 1. Data in Figs
1 and 2 for the same subband are indicated by the same
type. For the lowest subbands, we also give, as thin lin
results obtained analytically within the two-band model. It
clearly seen that spins of eigenstates with large abso
value of wave number are approximately quantized in thx
direction, with the spin direction of left movers being opp
site to that of right movers.27 This fact is underscored by th
properties of the energy spectrum in a finite magnetic fielB
in the x direction which is shown in panel~b!. Clearly, the
Zeeman shift of states at large positive wave number is
posite to that for states with large negative wave numb
Shown as thin lines in the main figure of panel~a! are curves
obtained analytically within the two-band model whic
yields again reliable results for the lowest subbands.
therefore use it to calculate the variation of spin dens
sW(x)5F†(x)sW F(x) acrossthe wire. @The spinorF(x) de-
notes the transverse part of an eigenfunction ofH1D which,
in the presence of spin-orbit coupling, depends on wave v
tor.# It turns out that the densitysy(x) of spin components
parallel to the wire vanishes identically. Hence, only thex
and z components of the spin density are shown in Fig.
displaying an interesting texturelike variation with coord
natex whose structure reflects the mixing between subba
due toHmix . Note that theexpectation valuefor the z com-
ponent of spin vanishes for eigenstates ofH1D .

From the above it has become clear that, in general, s
quantum number isnot an appropriate way to characteriz
electron states in a quantum wire with strong RSOC. O
states with wave numberky far enough from anticrossing
points will asymptotically have their spin quantized in thex
direction. From considering Figs. 1 and 2, the following sp
cial situation can be envisioned which has rather counte
tuitive consequences. At low enough electron density s
that only states in the lowest spin-split subbands are oc
pied, states near the Fermi energy«F will be localized near
four Fermi points. When the electron density is not too lo
their spins are approximately quantized in thex direction. As
pointed out above, spins of states near Fermi points for r
movers are approximately spin down, opposite to the s
direction of left-moving states near«F . Assuming it to be
possible to selectively raise~lower! the electrochemical po
tential of right movers~left movers!, a spin-polarized curren
could be generated. Usually, creating a population of
movers and right movers with different electrochemical p
tentials is achieved by coupling the quantum wire adiab
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FIG. 2. Spin structure of electron states in a quantum wire with strong spin-orbit coupling.~a! Expectation value of spin projection ont
the x direction for electron states obtained in Fig. 1. Results of exact numerical calculation for the lowest spin-split subbands~main figure!
and first-excited spin-split subbands~inset! are given by thick curves. The effective two-band model reasonably approximates the be
of the lowest subband~thin lines in the main figure!. Right-moving electrons with large wave vectors asymptotically have parallel spin w
is opposite to that of left movers. The same can be observed in~b! where the spectrum in a finite magnetic fieldB pointing inx direction is
compared with that in zero field. Here dispersion curves are calculated within the two-band model for Zeeman energygmBB50.25\v ~thin
lines! and in zero magnetic field~thick lines!.
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cally to ideal contacts.15,16 However, the underlying assump
tion that excess electrons injected from the right~left!
reservoir will only be spin up~spin down! is not realistic
because, typically, RSOC will be absent in the contacts.
different nature of electron states in the wire and the le
will result in strong scattering at wire-lead interfaces. Simi
to the approach taken in Ref. 12, we model this situation
attaching semi-infinite leads withkso50 to the wire where
ksoÞ0. The transmission problem can be solved exactly
matching appropriateAnsätzefor wave functions in the wire

FIG. 3. Texturelike structure of spin density across the quan
wire, calculated within the two-band model for states indicated
black dots in Fig. 1, which have energy 0.75\v. ~a! Spatial varia-
tion of nonzero components of spin density for the state with lar
wave vector.~b! Same for the other state.~c! Visualization of spin
texture for the same state as~a!. Arrow length is proportional to
spin density.~d! Spin texture visualized for the same state as c
sidered in~b!.
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and the leads. The usual condition for ensuring current c
servation has to be modified because the group velocity
electrons in the quantum wire with RSOC reads18,19

vy5\~ky1ksosx!/m. ~5!

Despite the unusual spin structure at the four Fermi po
which is asymmetric with respect to right movers and l
movers, no spin-polarized current is generatedin the leads.
However, as is shown in Fig. 4, a process of current conv
sion occurs close to the interfaces in the wire that results
finite spin polarization of current in the wire. We have there-
fore found a unique type of spin accumulation that is not,
in the usual case,20 induced by ferromagnetic contacts. O
analysis shows that current conversion is enabled by sca
ing into evanescent modes of the wire because of the pec
form of the velocity operator~5!. A four-terminal measure-
ment with ferromagnetic contacts as weakly coupled volta
probes should enable experimental verification of spin ac
mulation in the wire.

Finally, we briefly remark on the effective low-energy d
scription of an interacting quantum wire with strong RSO
In the spirit of Tomonaga-Luttinger models21,22 for interact-
ing 1D systems, we linearize the single-electron energy sp
trum close to the four Fermi points. We explicitly avoid a
taching any spin labels. Rather, we define type-A~type-B!
right movers and left movers havingthe samevelocity vA
(vB). Typical electron-electron interactions give rise to
term H int5

1
2 * x,y

x8,y8
c†c(x,y)U(x2x8,y2y8)c†c(x8,y8) in

the electron Hamiltonian. In the low-energy, long-wa
length limit, we can writec(x,y)5(a5A,B

b5R,L
cab(y)FkFab

(x)
and assumeU to be long range on the scale of the wire wid
but short range on the scale of the wire length. It is import
to note that the present case differs from the usual one in
the transverse wave-function spinorsFkFab

(x) arenearly or-

thogonal. As a result, backscattering processes are stron
suppressed. Apart from this fact and the peculiar spin str
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FIG. 4. Transport in hybrid systems of a wire with strong Rashba spin-orbit coupling and ideal leads, calculated exactly u
Landauer–Bu¨ttiker formalism within the two–band model~inclusion of higher subbands leads only to small quantitative changes!. Panel a!
shows the spatial variation of current polarization in a semi-infinite wire (y.0) attached to an ideal lead (y,0). Conversion of incident
spin-up current is illustrated in the inset. HereI s↑ denotes the spin–s current in the wire when spin–↑ current is injected from the lead. A
finite spin polarization exists also in a finite wire with to semi-infinite leads attached@panel b!#. Here quantum interference gives rise
additional oscillatory structure. Parameters used in the calculation areEF51 \v andkso50.9l v
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ture of states near the four Fermi points, the present syste
identical, on a formal level, to a two-component23 or
Zeeman-split24 Tomonaga-Luttinger model. The response
an external magnetic field will, however, be special in t
present case. Postponing a detailed analysis to a later p
cation, we mention here only a few basic facts. When Fe
points are far enough away from anticrossings, a magn
field B applied in x direction will shift right movers~left
movers! to higher~lower! energies.@See Fig. 2~b!.# The Zee-
man term in bosonized form reads thenHZ

5(2DZ /A2p)*xPr , wherePr is canonically conjugate to
ett

tt
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the phase fieldur that is related, within the usual25 phase-
field formalism, to the total electron densityr tot

5(a5A,B
b5R,L

rab via A2/p]yu(y)5r tot(y). Approximate or-
thogonality of transverse parts of electron wave functio
enables spin-flip processes, in the long-wave-length lim
only between left-moving and right-moving branches of t
same type~A or B!. In general, any spin-flip process incurs
large momentum transfer.

This work was supported by the DFG Center for Fun
tional Nanostructures at the University of Karlsruhe.
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