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Pseudomomentum of a dipole in a two-dimensional system
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The energy of a two-dimensional neutral particle with a nonzero dipole moment aligned perpendicular to the
two-dimensional plane is not controlled by its two-dimensional pseudomomentum, but is a function of a
different vector, whereas the particle can gain only two-dimensional pseudomomentum through interaction
with the radiation field. A resonance has been found, whose existence derives directly from the above state-
ment.
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The total momentum of a neutral two-particle syste
whose particles interact through a translationally invari
potential is a constant of motion, and its components co
mute with each other. Under a static uniform magnetic fie
the system is invariant under the group of magnetic tran
tions, whose generators are the components of the pse
momentum

P3D52 i ~“11“2!1
e
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~A12A2!2
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@~r22r1!3B# ~1!

(\51, and indices 1 and 2 denote the negatively and p
tively charged particles!, all three components of which com
mute with each other.1,2 The pseudomomentum of a syste
in a magnetic field plays the same role as the momen
does in the absence of magnetic field. A remarkable exam
is absorption or emission of a photon by a system in a m
netic field. The interaction with the radiation field conserv
the sum of the photon momentum and pseudomomentum3

In a space of two dimensions, a neutral two-particle s
tem under a static magnetic field has a similar constan
motion, namely, the two-dimensional~2D! pseudomomen-
tum (P), which can be presented in the formP3D , with the
operatorsr1,2 and “1,2 projected on the two-dimensiona
space.4 Examples of such systems are the two-dimensio
hydrogen atom and the Mott exciton confined in a narr
semiconductor quantum well~QW! under a magnetic field
Other examples that are less obvious, but important
physical applications, are magnetic excitons or magnetop
mon modes, bound states of a hole in a filled Landau le
and one electron in an otherwise empty level, which are c
lective magnetoexcitations of an electronic system confi
in a QW.5 Owing to the finite extension of the electron wa
function in the direction perpendicular to the 2D plane, qu
siparticles in QW’s are, in fact, not two dimensional b
quasi-two-dimensional. This, however, does not affect th
properties as long as the electron and hole forming the q
siparticle move in the same 2D plane, and the gaps betw
dimensionally quantized QW subbands are very large
compared with the electron-hole binding energy. Hereaf
we shall always disregard the coupling between dimens
ally quantized QW subbands.

If the electron and hole move in two spatially separa
planes the system can be described in terms of a 2D dip
0163-1829/2002/66~7!/073306~4!/$20.00 66 0733
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i.e., a neutral 2D quasiparticle which has a constant nonz
dipole moment (d) along the axis of separation between t
2D planes~Fig. 1!. Such are Mott excitons in asymmetr
single and double QW’s, intersubband electron excitation
asymmetrically doped single and double QW’s, etc. Sim
larly to the case of a 3D dipole,6,7 one can prove that, unde
an external magnetic field, the vector

P5P2
1

c
@d3B# ~2!

should be treated as a 2D dipole pseudomomentum.8,9

Thus, the total 2D dipole pseudomomentum is compo
of two parts: the 2D pseudomomentumP and the part deter-
mined by the dipole moment of the 2D dipole,@d3B#. Even
so, owing to the lack of translational symmetry along t
direction perpendicular to the 2D plane, the radiation fie
can transfer to a 2D dipole only the 2D pseudomomentum10

but not the total 2D dipole pseudomomentumP. Therefore,
one can increase or decrease the 2D dipole pseudomo
tum with respect to the radiationally transferred 2D pseu
momentum by applying an appropriately oriented magne
field. If the resonance condition

P5
1

c
@d3B# ~3!

is met, the complete cancellation of the 2D dipole pseu
momentum should be observed. In a way, the 2D dipole
comes ‘‘frozen,’’ and this effect has no analogs in the tra
lationally invariant 3D and purely 2D cases. The situati
when the external magnetic field is attuned at a fixed
pseudomomentum~or the other way round, the 2D pseud
momentum is attuned at a fixed magnetic field! to satisfy Eq.
~3! can be considered as a new resonance, which can be
in determining the dipole moment of a 2D dipole.

It is instructive to relate the total pseudomomentum o
2D dipole, P, to the motion energy of the dipole,E(P).
SinceP is a vector sum ofP and (1/c)@d3B# the motion
energy should depend in a nontrivial way on the exter
magnetic field through the term (1/c)@d3B#. Consider a 2D
dipole moving with a 2D pseudomomentumP. The energy of
the 2D dipole isE(P). If the external magnetic field is ap
plied in such a way that the vector (1/c)@d3B#, is directed
©2002 The American Physical Society06-1
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alongP, one would observe a decrease in the 2D-dipole
ergy to the valueE„uPu2(1/c)u@d3B#u…; conversely, if
(1/c)@d3B# is directed opposite toP, one would observe an
increase in the energy toE„uPu1(1/c)u@d3B#u…. In general,
the variations of the motion energy of a 2D dipole under
external magnetic field should follow the variations in t
absolute value of the total 2D dipole pseudomomentumP:

E~P!5ES UP2
1

c
@d3B#U D . ~4!

It follows from Eq. ~4! that for an arbitraryP there must be
a magnetic field at which the motion energy of the 2D dip
is exactly zero, and this magnetic field satisfies Eq.~3!. Here
we present an experimental realization of a 2D dipole, a
demonstrate that, under an external magnetic field, the
tion energy of the 2D dipole behaves in accordance with
~4!.

The system studied in the experiment was an intersubb
electron charge-density excitation in an asymmetrica
doped single quantum well~Fig. 1!. The intersubband exci
tations consist of an electron in an otherwise empty exc

FIG. 1. A diagram illustrating the 2D dipoles under an exter
magnetic field: ideal dipoles~top! and an intersubband dipole in
quantum well~bottom!.
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subband interacting with a hole left behind in the electr
Fermi sea of the lower subband. The electron and hole
spatially separated in the direction perpendicular to the qu
tum well owing to the asymmetry of the confining potentia
Since the energy of interaction between the electron and
is usually much smaller than the intersubband energy g
the excitation can be considered as a well-defined
dipole.11

We used high-quality asymmetrically dope
Al0.3Ga0.7As\GaAs single QW heterostructures with a Q
width of 250 Å, a mobility of 1.53106 cm2/(V s), and
electron concentrations (ns) of 3.531011 and 6.8
31011 cm22. The studied QW sample was mounted in
optical cryostat with a horizontal split-coil superconducti
solenoid generating a magnetic field of 0 to 6 T at a b
temperature of 1.5 K. Through the inelastic light scatter
process, the in-plane momentum was transferred to the in
subband excitations, and the motion energy of the inters
band excitations was measured as a function of the in-p
momentum and the magnetic field. An important point is th
the intersubband excitations have large dispersions, there
a relatively small momentum of a photon from the visib
spectral band is able to bring about energy shifts which
be measured accurately. A more detailed description of
experimental technique was given elsewhere.12,13

First let us consider a simplified experiment with the ma
netic field applied along the 2D plane. In this case the
pseudomomentum reduces to the 2D momentum. When
2D momentum is zero, the energy of the studied inters
band excitation increases as a quadratic function of the m
netic field ~Fig. 2!. If we add a finite 2D momentum of 1
3105 cm21 directed along the vector (1/c)@d3B#, we ob-
serve a shift of the dispersion curve in the magnetic field
the magnetic field axis is expressed as (1/c)u@d3B#u, one
finds that the shift is equal to the 2D momentum,uPu. Here
the dipole momentd of the intersubband excitation is

l

FIG. 2. Motion energy of an intersubband charge density ex
tation atB'50 as a function of (1/c)@d3B# directed along the 2D
pseudomomentumP for two values ofuPu measured in the sampl
with ns53.531011 cm22.
6-2
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d52euz002z11un, ~5!

where n is the normal to the QW plane, andz002z11

5*dzc0* (z)zc0(z)2*dzc1* (z)zc1(z) is the average dis
tance between the electron and hole~see the diagram in Fig
1!. The functioncn(z) is the z component of the electron
wave function in then-th subband obtained as a se
consistent solution of the one-dimensional Schro¨dinger and
Poisson equations. In agreement with Eqs.~3! and ~4!, the
motion energy of the 2D dipole atP5(1/c)@d3B# is equal
to zero, whereas neitherP nor (1/c)@d3B# is zero.

To verify that the excitation energy depends on the vec
sum ofP and (1/c)@d3B#, the relative orientation betwee
P and (1/c)@d3B# at u(1/c)@d3B#u5uPu513105 cm21

was continuously changed, and the excitation energy
measured as function of the anglea between the directions
of P and (1/c)@d3B# ~Fig. 3!. The observed angle depen
dence is accurately described by the equation

E~P!5
1

2m*
S P2

1

c
@d3B# D 2

, ~6!

where m* is the effective mass of the excitation derive
from the graph in Fig. 2. Thus the motion of a 2D dipo
having a quadratic dispersion may be viewed as a motio
an electron with the mass of the dipole in an effective fi
with a vector potential of2e21@d3B#.

Now consider a 2D dipole under an external magne
field applied at an arbitrary angle with respect to the
plane. The motion energy of the dipole is a complex funct
of the total 2D pseudomomentum of the 2D dipole,P, due to
the perpendicular component of the magnetic field. The p
pendicular componentB' contributes through the vector po
tential in the vectorP; therefore, the dispersion relationE(P)
becomes different at differentB' . Here we chose the per
pendicular component 1.5 T at which the largest dispers
of the intersubband excitation under study is observe13

First let us turn the componentBuu of the magnetic field in
the 2D plane to zero, and analyze the motion energy of
excitation as function of the 2D pseudomomentum,E(P). At
the specific field under consideration,E(P) turns out to be a
linear function ofuPu,E(P)5buPu ~Fig. 4, open dots!. Now
let us fix the 2D pseudomomentumP at 13105 cm21 and
change the component of the magnetic field in the 2D pl

FIG. 3. Motion energy of an intersubband charge density e
tation atB'50 as a function of the angle between the directions
P and (1/c)@d3B#. The solid line is the curve calculated by Eq.~6!.
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in such a way that the vector (1/c)@d3B# is directed along
P. This means that we have changed only the term (1/c)@d
3B# in the dispersion relation:E„uP2(1/c)@d3B#u…. The
function E(P) has the same linear slope as the functi
E(P), and at the same time it is shifted along thex axis
through an increment of the 2D pseudomomentumuPu:

E~P!5bUS P2
1

c
@d3B# D U. ~7!

The motion energy equals zero atP5(1/c)@d3B#, as fol-
lows from Eqs.~3! and ~4!.

We verified the equation~4! for three different intersub-
band excitations in the case when the magnetic field lies
the 2D plane and for two excitations in the case when
magnetic field is directed at an arbitrary angle with respec
the 2D plane. The studied excitations differed in the quant
numbers characterizing their degrees of freedom associ
with internal motion and spin, but had the same dipole m
ment. In all experiments, the motion energy was found to
in agreement with Eq.~4!. Since Eq.~4! directly derives
from Eq.~2!, we concluded thatP is the principal vector that
governs the motion of a 2D dipole under external magne
field. Equation~3! follows straightforwardly.

From the experimental point of view, we want to emph
size the significance of resonance condition~3!. The exem-
plar 2D dipoles studied here possess a unique property:
motion energy can be directly measured as a function of
total 2D dipole pseudomomentum,E(P). In general, this is
not the case. A dipole can acquire a well-defined 2D pseu
momentumP, e.g., through absorption of a photon of know
energy and momentum, but neither its energy nor its to
pseudomomentumP can be measured accurately afterwar
The existence of resonance condition~3! implies merely that

i-
f

FIG. 4. Motion energy of an intersubband charge density ex
tation measured atB'51.5 T: as a function ofP at u1/c@d3B#u
50 ~open dots, left and top axes!, and as a function of (1/c)@d
3B# directed alongP at uPu513105 cm21 ~solid dots, right-hand
and lower axes!. The solid line is a linear fit ofE(P). The dashed
line is calculated by Eq.~7! with the same coefficient as in th
linear fit of E(P).
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one can always find an external magnetic field at which
dipole does not move, the condition which can be ea
satisfied in an experiment. As soon as such a magnetic
is found, one obtains the dipole momentum of the 2D dip
from the Eq.~3!.

To sum up, we have shown thatP is the principal vector
which governs the motion of a 2D-dipole under an exter
magnetic field. One can take the opportunity to transfer se
d
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rately parts ofP to a 2D dipole with a view to observing
resonance determined by Eq.~3! and measuring experimen
tally the dipole moment of a 2D dipole.
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