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Pseudomomentum of a dipole in a two-dimensional system
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The energy of a two-dimensional neutral particle with a nonzero dipole moment aligned perpendicular to the
two-dimensional plane is not controlled by its two-dimensional pseudomomentum, but is a function of a
different vector, whereas the particle can gain only two-dimensional pseudomomentum through interaction
with the radiation field. A resonance has been found, whose existence derives directly from the above state-
ment.
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The total momentum of a neutral two-particle systemi.e., a neutral 2D quasiparticle which has a constant nonzero
whose particles interact through a translationally invariantdipole moment ) along the axis of separation between the
potential is a constant of motion, and its components com2D planes(Fig. 1). Such are Mott excitons in asymmetric
mute with each other. Under a static uniform magnetic fieldsingle and double QW's, intersubband electron excitations in
the system is invariant under the group of magnetic translaasymmetrically doped single and double QW's, etc. Simi-
tions, whose generators are the components of the pseudialy to the case of a 3D dipofe’ one can prove that, under
momentum an external magnetic field, the vector

1
Pap=—i(V 1+ V) = (A= Ag) — [(r,~ 1) XB] (D =P [dxE] @

(=1, and indices 1 and 2 denote the negatively and posishould be treated as a 2D dipole pseudomomerittim.

tively charged particlgsall three components of which com- ~ Thus, the total 2D dipole pseudomomentum is composed
mute with each othér? The pseudomomentum of a system of two parts: the 2D pseudomomentirand the part deter-

in a magnetic field plays the same role as the momenturiined by the dipole moment of the 2D dipofelxX B]. Even
does in the absence of magnetic field. A remarkable examplg0, owing to the lack of translational symmetry along the
is absorption or emission of a photon by a system in a magdirection perpendicular to the 2D plane, the radiation field
netic field. The interaction with the radiation field conservescan transfer to a 2D dipole only the 2D pseudomomenftim,
the sum of the photon momentum and pseudomomentum. but not the total 2D dipole pseudomomentdiin Therefore,

In a space of two dimensions, a neutral two-particle sysone can increase or decrease the 2D dipole pseudomomen-
tem under a static magnetic field has a similar constant ofum with respect to the radiationally transferred 2D pseudo-
motion, namely, the two-dimension&D) pseudomomen- momentum by applying an appropriately oriented magnetic
tum (P), which can be presented in the foPgy, with the  field. If the resonance condition
operatorsr, , and V, , projected on the two-dimensional
space’ Examples of such systems are the two-dimensional
hydrogen atom and the Mott exciton confined in a narrow
semiconductor quantum welRQW) under a magnetic field.
Other examples that are less obvious, but important fois met, the complete cancellation of the 2D dipole pseudo-
physical applications, are magnetic excitons or magnetoplagnomentum should be observed. In a way, the 2D dipole be-
mon modes, bound states of a hole in a filled Landau levelgomes “frozen,” and this effect has no analogs in the trans-
and one electron in an otherwise empty level, which are coltationally invariant 3D and purely 2D cases. The situation
lective magnetoexcitations of an electronic system confinetvhen the external magnetic field is attuned at a fixed 2D
in a QW? Owing to the finite extension of the electron wave pseudomomenturtor the other way round, the 2D pseudo-
function in the direction perpendicular to the 2D plane, quamomentum is attuned at a fixed magnetic figtlsatisfy Eq.
siparticles in QW’s are, in fact, not two dimensional but (3) can be considered as a new resonance, which can be used
quasi-two-dimensional. This, however, does not affect theiin determining the dipole moment of a 2D dipole.
properties as long as the electron and hole forming the qua- It is instructive to relate the total pseudomomentum of a
siparticle move in the same 2D plane, and the gaps betwee?D dipole, 11, to the motion energy of the dipolé;(II).
dimensionally quantized QW subbands are very large aSincell is a vector sum oP and (1€)[dXB] the motion
compared with the electron-hole binding energy. Hereafterenergy should depend in a nontrivial way on the external
we shall always disregard the coupling between dimensionmagnetic field through the term @[ dx B]. Consider a 2D
ally quantized QW subbands. dipole moving with a 2D pseudomomentinThe energy of

If the electron and hole move in two spatially separatedhe 2D dipole isE(P). If the external magnetic field is ap-
planes the system can be described in terms of a 2D dipol@lied in such a way that the vector ¢}JdxB], is directed

1
P=_[dxB] 3)
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FIG. 2. Motion energy of an intersubband charge density exci-
tation atB, =0 as a function of (I)[d X B] directed along the 2D
pseudomomenturR for two values of|P| measured in the sample
with ng=3.5x 10'* cm 2.

subband interacting with a hole left behind in the electron
Fermi sea of the lower subband. The electron and hole are
spatially separated in the direction perpendicular to the quan-
tum well owing to the asymmetry of the confining potential.
Since the energy of interaction between the electron and hole
is usually much smaller than the intersubband energy gap,
the excitation can be considered as a well-defined 2D
dipole!

We used high-quality = asymmetrically  doped
Al Ga /AsS\GaAs single QW heterostructures with a QW
. . . . width of 250 A, a mobility of 1.510° cn?/(Vs), and
FIG. 1. A diagram illustrating the 2D dipoles under an externalelectron concentrations n{) of 3.5 101 and 6.8

magnetic field: ideal dipole€op) and an intersubband dipole in a %101 em 2. The studied QW sample was mounted in an
quantum well(bottom). . . . . . .
optical cryostat with a horizontal split-coil superconducting
solenoid generating a magnetic field of 0 to 6 T at a base
ergy 't e valeE( Pl (L[4 ] conversely 1 STPETBTe of LS K. Thouah he elaste lht scatering
(1/c)[dX B] is directed opposite t®, one would observe an P f In-p . .
subband excitations, and the motion energy of the intersub-

increase in the energy B(|P| + (1ic)|[dxB]]). In general, band excitations was measured as a function of the in-plane
the variations of the motion energy of a 2D dipole under AMhomentum and the magnetic field. An important point isahat
external magnetic field should follow the variations in the 9 ' p P

absolute value of the total 2D dinole pseudomomentilim the intersubband excitations have large dispersions, therefore
pole p a relatively small momentum of a photon from the visible

spectral band is able to bring about energy shifts which can
. (4)  be measured accurately. A more detailed description of the

experimental technique was given elsewhéré.
It follows from Eq. (4) that for an arbitraryP there must be First let us consider a simplified experiment with the mag-
a magnetic field at which the motion energy of the 2D dipolenetic field applied along the 2D plane. In this case the 2D
is exactly zero, and this magnetic field satisfies By. Here ~ pseudomomentum reduces to the 2D momentum. When the
we present an experimental realization of a 2D dipole, an@D momentum is zero, the energy of the studied intersub-
demonstrate that, under an external magnetic field, the mdsand excitation increases as a quadratic function of the mag-
tion energy of the 2D dipole behaves in accordance with Eqnetic field (Fig. 2). If we add a finite 2D momentum of 1
(4). x10° cm™! directed along the vector (@[dxB], we ob-

The system studied in the experiment was an intersubbangkerve a shift of the dispersion curve in the magnetic field. If
electron charge-density excitation in an asymmetricallythe magnetic field axis is expressed ascj|{[dxB]|, one
doped single quantum we(Fig. 1). The intersubband exci- finds that the shift is equal to the 2D momentuid|,. Here
tations consist of an electron in an otherwise empty excitedhe dipole moment of the intersubband excitation is

alongP, one would observe a decrease in the 2D-dipole en

E(I)=E

PldB
—E[X]
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FIG. 3. Motion energy of an intersubband charge density exci- % IPl=1x10°cm’]
tation atB, =0 as a function of the angle between the directions of ;
P and (1£)[dx B]. The solid line is the curve calculated by E6). 00 ilfi[ s 39
1 .
d=—e|zgo— 244N, (5) ;’[d xB] 10°cm™)
where n is the normal to the QW plane, anthy—2; FIG. 4. Motion energy of an intersubband charge density exci-

=Jdzy5 (2)zipo(2) — [ dzy1 (2)z4p1(2) s the average dis- tation measured @8, =1.5 T: as a function of at |1/c[dx B]|

tance between the electron and h(ﬂee the diagram in Flg =0 (open dots, left and top axesand as a function of (&)[d

1). The functiony,(z) is the z component of the electron xB] directed alondP at|P|=1x10° cm™* (solid dots, right-hand

wave function in then-th subband obtained as a self- and lower axes The solid line is a linear fit oE(P). The dashed

consistent solution of the one-dimensional Sclimger and line is calculated by Eq(7) with the same coefficient as in the

Poisson equations. In agreement with E(@.and (4), the linear fit of E(P).

motion energy of the 2D dipole &= (1/c)[dXB] is equal

to zero, whereas neith@ nor (1€)[dXB] is zero. in such a way that the vector €[ dx B] is directed along
To verify that the excitation energy depends on the vectop, This means that we have changed only the term)(&/

sum of P and (1¢£)[dXB], the relative orientation between X B] in the dispersion relationE(|P—(1/c)[d>< B]|) The

P and (1£)[dxB] at |[(1/c)[dXB]|=|P|=1x10°> cm"*  function E(IT) has the same linear slope as the function

was continuously changed, and the excitation energy wag(p), and at the same time it is shifted along theaxis

measured as function of the anglebetween the directions through an increment of the 2D pseudomomentn

of P and (1£)[dXB] (Fig. 3). The observed angle depen-

dence is accurately described by the equation

1
P—_[dxB]|. @)

E(ID)=8

2

1
P=cldxB]] . ®  The motion energy equals zero Rt (1/c)[dx B], as fol-

lows from Eqs.(3) and(4).

where m* is the effective mass of the excitation derived We verified the equatio¥) for three different intersub-
from the graph in Fig. 2. Thus the motion of a 2D dipole band excitations in the case when the magnetic field lies in
having a quadratic dispersion may be viewed as a motion athe 2D plane and for two excitations in the case when the
an electron with the mass of the dipole in an effective fieldmagnetic field is directed at an arbitrary angle with respect to
with a vector potential of-e~ {[dXx B]. the 2D plane. The studied excitations differed in the quantum

Now consider a 2D dipole under an external magnetimumbers characterizing their degrees of freedom associated
field applied at an arbitrary angle with respect to the 2Dwith internal motion and spin, but had the same dipole mo-
plane. The motion energy of the dipole is a complex functionment. In all experiments, the motion energy was found to be
of the total 2D pseudomomentum of the 2D dipdE,due to  in agreement with Eq(4). Since Eq.(4) directly derives
the perpendicular component of the magnetic field. The perfrom Eq.(2), we concluded thdl is the principal vector that
pendicular componer, contributes through the vector po- governs the motion of a 2D dipole under external magnetic
tential in the vectoP; therefore, the dispersion relati&{P) field. Equation(3) follows straightforwardly.
becomes different at differe®, . Here we chose the per- From the experimental point of view, we want to empha-
pendicular component 1.5 T at which the largest dispersiosize the significance of resonance conditi@h The exem-
of the intersubband excitation under study is obseied. plar 2D dipoles studied here possess a unique property: their
First let us turn the compone® of the magnetic field in motion energy can be directly measured as a function of the
the 2D plane to zero, and analyze the motion energy of théotal 2D dipole pseudomomentur(Il). In general, this is
excitation as function of the 2D pseudomoment®&(R). At not the case. A dipole can acquire a well-defined 2D pseudo-
the specific field under consideratida(P) turns out to be a momentumP, e.g., through absorption of a photon of known
linear function of|P|,E(P)=g|P| (Fig. 4, open dots Now  energy and momentum, but neither its energy nor its total
let us fix the 2D pseudomomentumhat 1X10° cm ! and  pseudomomenturll can be measured accurately afterwards.
change the component of the magnetic field in the 2D plan&he existence of resonance conditi@ implies merely that

E(ID) = !
2m*
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one can always find an external magnetic field at which theately parts offl to a 2D dipole with a view to observing a

dipole does not move, the condition which can be eaS“)fesonance determined by E(@_) and measuring experimen_

satisfied in an experiment. As soon as such a magnetic fielgyjly the dipole moment of a 2D dipole.

is found, one obtains the dipole momentum of the 2D dipole

from the Eq.(3). The authors gratefully acknowledge the financial support
To sum up, we have shown thHt is the principal vector by the Volkswagen Stiftung, Russian Fund for Fundamental
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