Charge-density wave and three-dimensional Fermi surface in 1T-TaSe₂ studied by photoemission **spectroscopy**

K. Horiba, K. Ono,* J. H. Oh, T. Kihara, S. Nakazono, and M. Oshima *Department of Applied Chemistry, University of Tokyo, Tokyo 113-8656, Japan*

O. Shiino

Data Storage Technology Center, TDK Corporation, Saku 385-0009, Japan

H. W. Yeom

Atomic Scale Surface Science Research Center and Department of Physics, Yonsei University, Seoul 120-749, Korea

A. Kakizaki

Institute for Solid State Physics, University of Tokyo, Kashiwa 277-8581, Japan

Y. Aiura

National Institute of Advanced Idustrial Science and Technology, Tsukuba 305-8568, Japan (Received 11 April 2002; revised manuscript received 3 June 2002; published 9 August 2002)

We have investigated the electronic structure of the commensurate charge-density-wave (CDW) phase for 17 -TaSe₂ by Ta 4f core-level and the angle-resolved photoemission. From the energy shifts of Ta 4f core levels due to a CDW formation, it is found that the CDW amplitude in the 1*T*-TaSe₂ is smaller than that in 1*T*-TaS₂ reported previously. The band dispersion along the normal to the two-dimensional layers indicates that 17 -TaSe₂ has a three-dimensional (3D) character in the Fermi surface compared with 17 -TaS₂, which has a two-dimensional Fermi surface. The 3D Fermi surface of 1*T*-TaSe₂ is thought to originate from the larger interaction between layers due to a large charge transfer between Ta 5*d* and Se 4*p* orbitals.

DOI: 10.1103/PhysRevB.66.073106 PACS number(s): 79.60.Bm, 71.20.-b

The layered transition metal dichalcogenides, $1T$ -TaS₂ and 17 -TaSe₂ have attracted much attention because of their various unique physical properties related to the formation of a charge density wave (CDW) .¹ Both materials have the same CdI₂-type structure with the space group D_{3d}^3 . Ta atoms form a hexagonal sheet and are sandwiched between sheets of hexagonally arranged chalcogen (Se and S) atoms as shown in Fig. $1(a)$. The bulk Brillouin zone and the highsymmetry line are also shown in Fig. $1(b)$. Although these two materials have very similar crystal structures, chemical structures and CDW superstructures, they exhibit drastically different physical properties. Figure $1(c)$ shows a temperature dependence of electric resistivity for 1T-TaSe₂ and 1*T*-TaS₂ single crystals measured by a standard four-probe method.² As shown in Fig. 1(c), $1T$ -TaS₂ shows two successive first-order transitions; incommensurate CDW (ICDW) to nearly commensurate CDW (NCCDW) transition at about 350 K and NCCDW to commensurate CDW (CCDW) transition at about 180 K. A metal-to-insulator transition occurs followed by NCCDW to CCDW transition. On the other hand, $1T$ -TaSe₂ shows an incommensurate CDW to CCDW transition at about 430 K and no drastic change of an electrical conductivity in the whole CCDW phase, and exhibits a metallic behavior.

In order to understand the physical properties, the electronic structures of 17 -TaS₂ have been intensively studied by various techniques, such as scanning tunneling spectroscopy $(STS),^{3,4}$ angle-resolved photoemission spectroscopy $(ARPES),$ ⁵⁻⁸ and angle-resolved inverse photoemission spectroscopy.⁹ It is found that an energy gap of about 200 meV is opened at the Fermi energy (E_F) in the CCDW phase. The formation of the correlation gap in the CCDW phase of $1T$ -TaS₂ is considered to be due to the Mott localization¹⁰. On the other hand, the electronic structures of 17 -TaSe₂ have also been investigated by STS (Refs. 11,12) and photoemission.¹³ In the STS study of $1T$ -TaSe₂, a finite density of state (DOS) exists at E_F in the CCDW phase,

FIG. 1. (a) The CdI₂-type crystal structure of $1T$ -TaS₂ and 1*T*-TaSe₂. Ta atoms form a hexagonal sheet and are sandwiched between sheets of hexagonally arranged chalcogen (Se and S) atoms. (b) Schematic diagram of the bulk Brillouin zone for the $CdI₂$ -type structure and the high-symmetry line. (c)Temperature dependence of resistivity for $1T$ -TaS₂ and $1T$ -TaSe₂. The resistivity is normalized with the resistivity in ICDW phase.

FIG. 2. (a) Schematic model of Ta atoms in the $\sqrt{13}\times\sqrt{13}$ "star of David'' CCDW superstructure. There are three Ta sites due to the difference in a charge population. (b) LEED pattern of the $\sqrt{13}$ $\times \sqrt{13}$ superstructure in 1*T*-TaSe₂. Dotted lines show 1×1 surface Brillouin zone of 17 -TaSe₂ and solid lines show the surface Brillouin zone for a $\sqrt{13} \times \sqrt{13}$ superstructure. The superlattice reflections due to CDW induced superstructure are observed in center of the $\sqrt{13}\times\sqrt{13}$ surface Brillouin zone.

indicating the metallic characteristics of $1T$ -TaSe₂. However, the detailed momentum-dependent electronic structure of $1T$ -TaSe₂ has been not understood yet.

In this report, we have investigated the electronic structure of the CCDW phase of $1T$ -TaSe₂ in detail from the CDW-induced core-level shift of Ta 4f and the valence band dispersion using ARPES. Single crystals of 17 -TaSe₂ were grown by the iodine transport method. Photoemission measurements were carried out using an angle-resolved photoemission spectrometer (VG Microtech; ARUPS10) at the BL-1C of the Photon Factory $(PF).$ ¹⁴ The samples were cleaved *in situ* in ultra high vacuum. The base pressure was in the order of 10^{-10} Torr. The sample orientation and the CDW-induced superstructure as well as the surface quality were monitored by low-energy electron diffraction (LEED). High-resolution core-level photoemission spectra of Ta 4*f* were taken at the photon energy of 80eV at room temperature (RT) and 20 K. ARPES was performed along the highsymmetry Γ -*A* direction of a 1*T*-TaSe₂ Brillouin zone, which is shown in Fig. $1(b)$. The band dispersions along the G-*A* direction were measured by changing the photon energy from 20 to 35 eV at the normal emission. The angular resolution of the photoemission measurements was about $\pm 2^{\circ}$. All the ARPES measurements were performed at RT and the total energy resolution was about 100 meV. High-resolution angle-resolved photoemission measurements along the Γ -A direction were also performed using another photoemision spectrometer (Gammadata Scienta SES100) at the normal incident monochromator beamline BL-20A of the PF. The measurements temperature was about 20 K and the total energy resolution and angular resolution were about 20 meV and about $\pm 0.2^{\circ}$, respectively.

In the CCDW phase of $1T$ -TaSe₂, Ta atoms are periodically displaced followed by the CDW formation and 13 Ta atoms form, the so-called ''star of David'' cluster as shown in Fig. 2(a).¹ This leads to a $\sqrt{13} \times \sqrt{13}$ CDW-induced supercell, which is rotated by 13.9° from the 1×1 unit cell. Figure $2(b)$ shows a LEED pattern of $1T$ -TaSe₂ at RT. Clear

FIG. 3. High-resolution photoemission spectra of Ta 4f core levels for $1T$ -TaSe₂ (a) at 20 K and (b) RT.

 $\sqrt{13}\times\sqrt{13}$ diffraction spots due to the CDW superstructure are observed, indicating the sample is in the well-developed CCDW phase.

In a $\sqrt{13}\times\sqrt{13}$ CDW superstructure of 1*T*-TaSe₂, as shown in Fig. $2(a)$, there are three different Ta sites, namely, site *A* with one atom, and sites *B* and *C* with six atoms each, due to the difference in local charge densities.^{15,16} At the site *A* and *B* with a larger local charge density, the screening effect of a photohole created by photoemission is stronger and the binding energy shifts toward the lower energy side.^{16,17} Figure 3 show the high-resolution photoemission spectra of Ta $4f$ core levels at 20 K (a) and at RT (b) . The spin-orbit-split doublet (ΔE_{SO} ~ 1.90 ± 0.10 eV) is split into a further triplet which corresponds to three different Ta sites *A*, *B*, and *C*. The peaks show asymmetric line shapes. We fitted the peaks using six Doniach-Sunjic line shapes¹⁸ and obtained the optimal fitting results. The parameters used for the optimal fitting are shown in Table I. The CDW-induced core-level shift of 1*T*-TaSe₂ ($\Delta E_{CDW} = E_B - E_C$) is 0.65 ± 0.01 eV, which is smaller than the corresponding shift of $17 - TaS_2$ of 0.70 ± 0.01 eV.^{16,17,19} The CDW-induced shift corresponds to the magnitude of the difference in electron density between site-*B* and site-*C* and is directly connected with the amplitude of CDW. It is suggested that the amplitude of CDW in $1T$ -TaSe₂ is slightly smaller than that in 1 T-TaS₂.

In $1T$ -TaS₂, a drastic temperature dependence of the spectral line-shape was observed due to a temperature-dependent growth of the CCDW domains. $6,19$ The metal-to-insulator transition of $1T$ -TaS₂ is closely related to the growth of the commensurate domains in the nearly commensurate phase,

TABLE I. Fitting parameters of six components for Ta 4f corelevel photoemission spectra.

Peak		A 1	B ₁	C ₁	A2	B ₂	C ₂
Binding energy (eV)		22.42	22.65	23.29	24.31	24.57	25.22
Gaussian width (eV) Lorenzian width (eV)	RT 20 K	0.29 0.24 0.04	0.29 0.24 0.04	0.29 0.24 0.04	0.29 0.24 0.11	0.29 0.24 0.11	0.29 0.24 0.11
Singularity	RT 20 K	0.79 0.59	0.20 0.17	0.16 0.13	0.79 0.59	0.20 0.17	0.16 0.13

as the temperature decreases. On the other hand, in $1T$ -TaSe₂, no drastic change in the spectral line shape of Ta 4f between RT and 20 K was observed, that is contrary to the previous report.²⁰ Compared with the ΔE_{CDW} from the spectra taken at RT and 20 K, there is no temperature dependence, indicating that the amplitude of CDW in $1T$ -TaSe₂ remains constant in the whole temperature range of CCDW phase.

Figure 4(a) shows the band dispersion along the Γ -*A* direction of the 1*T*-TaSe, Brillouin zone [Fig. 1(b)]. We have observed two flat bands at the binding energies of 0.2 eV and 0.8 eV (Fig. 4; open triangles). In addition, we have observed a band, which crosses E_F (Fig. 4; filled triangles) with a dispersion of about 300 meV. This band crosses the E_F at the photon energies of 22 ± 1 eV, $(k_{\perp} = -0.25 \pm 0.04 \text{ Å}^{-1})$, and 32 ± 1 eV ($k_{\perp} = 0.25\pm0.04$ Å⁻¹). The E_F crossing between the photon energies of 22 and 23 eV is more clearly observed in the high-resolution photoemission measurements shown in Fig. 4(b). The bottom of the band (Γ point, k_{\perp}) (50) is located at the photon energy of 27 eV. In contrast, it is observed very recently that $1T$ -TaS₂ has no such band with a noticeable dispersion along the k_{\perp} direction and no band crosses to E_F .⁸ It is thus concluded that 1*T*-TaSe₂ has a three-dimensional $(3D)$ Fermi surface, whereas $1T$ -TaS₂ has a two-dimensional (2D) Fermi surface.

Two flat bands shown with open triangles in Fig. $4(a)$ suggest that the bands incorporate the atomic displacement due to the formation of CDW. A tight-binding band calculation for the CDW phase of $1T$ -TaS₂ is reported by Smith *et al.*, ¹⁵ where the CCDW band structure is calculated by folding the non-CDW Ta 5*d* band structure toward Brillouin zone boundary of the $\sqrt{13} \times \sqrt{13}$ CCDW superlattice. There are three subbands along the high-symmetry direction, just below E_F , in the range from 0.23 to 0.67 eV, and in the range from 0.74 to 1.13 eV. At the Γ point, the calculation predict two peaks in the spectrum at the binding energies of about 0.4 and 0.8 eV. Since the non-CDW Ta 5*d* band structure in 1*T*-TaSe₂ is very similar to that in 1*T*-TaS₂, the calculation seems to be applied to that in $1T$ -TaSe₂. But we cannot apply this calculation to a band crossing to E_F shown with filled triangles in Fig. $4(a)$, because of the assumption in this calculation that there is no interlayer interactions.

Other band calculations for the non-CDW state of 17 -TaS₂ and 17 -TaSe₂ (Refs. 21,22) predicted that

FIG. 4. (a) Angle-resolved photoemission spectra along Γ -A direction. Three subband shown with open and filled triangles were observed. (b) High-resolution angle-resolved photoemission spectra along Γ -*A* direction. It is clearly observed that a band crosses to E_F between the photon energy of 22 and 23 eV.

1*T*-TaSe₂ has stronger interlayer interactions than $1T$ -TaS₂ and the Ta 5*d* band crosses E_F between the Γ point and the *A* point. Our ARPES results agree with the calculation and it is suggested that the strong interlayer interactions remain in the CCDW state of $1T$ -TaSe₂.

The 3D electronic structure in $1T$ -TaSe₂ is considered to be due to the larger *p*-*d* transfer interactions. Since the 4*p* orbital of the Se ion has a larger spatial extent compared with the 3*p* orbital of S ion, the *p*-*d* transfer interaction between chalcogen p orbital and Ta 5 d orbital in 1T-TaSe₂ becomes larger than that in $1T$ -TaS₂. This larger $p-d$ transfer interaction in 17 -TaSe₂ causes a larger interaction between layers and forms a 3D Fermi surface. In the case of $1T$ -TaS₂, the origin of the metal-to-insulator transition is considered to be due to the Ta 5*d* electrons that are localized in ''star of David'' clusters as a result of CDW. However, in the case of 1*T*-TaSe₂, because of the larger interlayer interactions, the electron localization is relatively weak exhibiting metallic character even at a low temperature.

In conclusion, we have observed the electronic structure of the CCDW phase of $1T$ -TaSe₂ by core-level photoemission spectroscopy and ARPES. The CDW splitting of Ta 4*f* core levels reveals that the CDW amplitude of $1T$ -TaSe₂ is slightly smaller than that of 17 -TaS₂. ARPES results along the Γ -A direction indicate that $1T$ -TaSe₂ has a 3D electronic structure compared with $1T$ -TaS₂. The 3D electronic structure observed in 17 -TaSe₂ originates from the larger transfer interaction between Ta 5*d* and Se 4*p* orbitals.

This work was done under Project No. 97S1-002 at Institute of Material Structure Science in KEK, and was partly supported by Grant in Aid for Scientific Research (Grant No. B2-13554012) from Ministry of Education, Culture, Sports, Science and Technology.

- *Author to whom all correspondence should be addressed. Electronic address: ono@sr.t.u-tokyo.ac.jp.
- ¹ J.A. Wilson, F.J. DiSalvo, and S. Mahasan, Adv. Phys. **24**, 117 $(1975).$
- ²Single crystals of 1*T*-TaSe₂ and 1*T*-TaS₂ used for resistivity measurements were grown by the iodine transport method.
- ³ J.-J. Kim, W. Yamaguchi, T. Hasegawa, and K. Kitazawa, Phys. Rev. Lett. **73**, 2103 (1994).
- ⁴ J.-J. Kim, C. Park, W. Yamaguchi, O. Shiino, K. Kitazawa, and T. Hasegawa, Phys. Rev. B 56, 15 573 (1997).
- ⁵B. Dardel, M. Grioni, D. Malterre, P. Weibel, and Y. Baer, Phys. Rev. B 45, 1462 (1992).
- 6F. Zwick, H. Berger, I. Vobornik, G. Margaritondo, L. Forro, C. Beeli, M. Onellion, G. Panaccione, A. Taleb-Ibrahimi, and M. Grioni, Phys. Rev. Lett. **81**, 1058 (1998).
- 7Th. Pillo, J. Hayoz, H. Berger, Grioni, L. Schlapbach, and P. Aebi, Phys. Rev. Lett. **83**, 3494 (1999).
- 8Th. Pillo, J. Hayoz, D. Naumovic, H. Berger, L. Gavioli, A. Taleb-Ibrahimi, L. Schlapbach, and P. Aebi, Phys. Rev. B **64**, 245105 (2001).
- 9R. Claessen, B. Burandt, H. Carstensen, and M. Skibowski, Phys. Rev. B 41, 8270 (1990).
- 10 E. Tosatti and P. Fazekas, J. Phys. (France) 37, C4-165 (1976).
- ¹¹ J.-J. Kim, W. Yamaguchi, T. Hasegawa, and K. Kitazawa, Phys. Rev. B 50, 4958 (1994).
- 12O. Shiino, T. Endo, W. Yamaguchi, H. Sugawara, K. Kitazawa, and T. Hasegawa, Appl. Phys. A: Mater. Sci. Process. **66**, S175 $(1998).$
- 13K. Horiba, K. Ono, H.W.Yeom.Y. Aiura, O. Shiino, J.H. Oh, S. Nakazono, T. Kihara, M. Oshima, and A. Kakizaki, Physica B **284-288**, 1665 (2000).
- 14K. Ono, J.H. Oh, K. Horiba, M. Mizuguchi, M. Oshima, T. Kiyokura, F. Maeda, Y. Watanabe, A. Kakizaki, T. Kikuchi, A. Yagishita, and H. Kato, Nucl. Instrum. Methods Phys. Res. A **467-** 468, 573 (2001).
- 15N.V. Smith, S.D. Kevan, and F.J. DiSalvo, J. Phys. C **18**, 3175 $(1985).$
- 16H.P. Hughes and J.A. Scarfe, J. Phys.: Condens. Matter **8**, 1457 $(1996).$
- 17 H.P. Hughes and J.A. Scarfe, Phys. Rev. Lett. **74**, 3069 (1995).
- 18 S. Doniach and M. Sanjic, J. Phys. C 3, 285 (1970) .
- 19R.A. Pollak, D. Eastman, F.J. Himpsel, P. Heimann, and B. Reihl, Phys. Rev. B 24, 7435 (1981).
- 20 H.P. Hughes and R.A. Pollak, Philos. Mag. 34, 1025 (1976).
- ²¹ L.F. Mattheiss Phys. Rev. B **8**, 3719 (1973).
- 22 A.M. Woolley and G. Wexler, J. Phys. C 10, 2601 (1977).