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Spin glass versus superconductivity
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A superconductor with interacting paramagnetic impurities is considered. The impurities are coupled via the
Ruderman-Kittel-Kasuya-Yosida~RKKY ! interaction. At a temperatureTg , the system of magnetic impurities
forms a spin-glass state. We study the effect of the spin-spin interactions on the superconducting transition
point atT,Tg . We show that superconducting properties depend on the state of the spin system via spin-spin
autocorrelation functions. With the help of the Keldysh technique, a general nonequilibrium Gor’kov equation
is derived. Possible aging effects in the superconducting transition point are discussed. The equilibrium super-
conducting transition point is found explicitly and shown to be shifted towards higher temperatures and
impurity concentrations compared to the classical Abrikosov-Gor’kov curve. The corresponding shift of the
superconducting quantum critical point is quite small~about 10%!. A method of calculating spin-spin correla-
tion function is suggested. The method combines the ideas of random mean-field method and virial expansion.
We calculate analytically the first virial term for the spin-spin correlator for the quantum Heisenberg spin glass
with the RKKY interactions in the quasiequilibrium regime.

DOI: 10.1103/PhysRevB.66.064526 PACS number~s!: 74.25.2q, 74.62.2c, 75.10.Nr, 73.43.Nq
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I. INTRODUCTION

The theory of superconducting alloys with paramagne
impurities was developed long ago by Abrikosov a
Gor’kov.1 They have shown that the superconducting tran
tion temperature was suppressed by magnetic impurities
some critical impurity concentration, the transition tempe
ture was suppressed down to zero, which gives an exam
of a quantum critical point.2 The critical concentration can b
determined from the condition:tsTc052g/p, whereTc0 is
the superconducting transition temperature in a sample w
out impurities andts is the spin-flip scattering time, which i
inversely proportional to the concentration of magnetic i
puritiesns . Let us note that the effect of magnetic impuriti
on superconductivity is, in many aspects, similar to the o
of an external magnetic field.3

In the Abrikosov-Gor’kov model, the magnetic impuritie
did not interact. Indeed, in any real system, one cannot av
having interactions between the impurities. Friedel osci
tions in the electron density give rise to similar oscillatio
in the spin-spin coupling which is well known as Ruderma
Kittel-Kasuya-Yosida~RKKY ! interaction. The interaction
may change the nature of the transition both qualitatively
quantitively.

Interactions between impurities can significantly chan
the physical picture only if the typical energy of this intera
tion is of the order of temperature or higher. At a high te
perature, one can take into account only those impurity c
ters in which the typical distance between spins is sm
enough. The probability of having such a cluster contain
three or more spins is small. Thus, virial expansion~or clus-
ter expansion! coincides with the high-temperature expa
sion in the problem under discussion.4 The corresponding
expansion parameter isJ0ns/T, whereJ0 is the amplitude of
the RKKY interaction.

Let us note that constantJ0 and spin-flip scattering time
ts both follow from the same exchange Hamiltonian. Pa
0163-1829/2002/66~6!/064526~11!/$20.00 66 0645
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metrically, they are of the same order. However, due to
numerical smallness of the two-particle statistical weight
the three-dimensional case, the amplitude of the RKKY
teraction is numerically much smaller than the spin-flip sc
tering rate:J0tsns51/@4p2S(S11)#, whereS is the spin of
a magnetic impurity.

The high-temperature corrections to the Abrikosov a
Gor’kov’s result were derived in the paper of Larkin, Meln
kov, and Khmelnitskii.5 It was shown that the superconduc
ing transition temperature was higher in the presence of
spin-spin interactions compared to the noninteracting ca
However, the corresponding change was noticeable onl
extremely low temperatures due to the small numerical f
tor mentioned above. Thus, in a very wide range of tempe
tures, the Abrikosov-Gor’kov theory was quantitively co
rect. Let us mention that there have been a number
experiments in which deviations from the Abrikoso
Gor’kov picture were observed at low temperatures~see,
e.g., Ref. 6!.

Since the RKKY interaction is random in sign, it intro
duces a frustration into the spin system. It may result in
spin-glass transition at a low enough temperatureTg
;J0ns . This makes the physical picture much more puzz
compared to the high-temperature case. A wide-spread di
bution of energy barriers exists in the glassy phase. The t
cal time of classical and quantum tunneling is compara
with the observation time in real experiments. Thus, the s
of the system depends not only on the temperature and
ternal magnetic field, but also on the history. Moreover,
physical quantities slowly depend on time.7,8

In the present paper, we show that superconducting p
erties, transition temperatureTc in particular, depend on the
properties of the spin system. Thus, superconducting par
eters are expected to depend on the history and real tim
the spin system is in the aging regime.

Although the dynamical properties of the spin glass
have been the subject of extensive studies in the recent y
©2002 The American Physical Society26-1
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the theoretical understanding of the effect is far from be
impressive yet. However, it is clear that, in general, the
namics of a glassy system consists of two parts: one is a
quasiequilibrium dynamics and the other is a slow dynam
or aging. One can expect that in the system under cons
ation different superconducting parameters should acq
similar behavior.

Studying the out-of-equilibrium dynamics in a quantu
system requires using a nonequilibrium formalism such
quantum transport equation or Keldysh technique.9 The
Keldysh technique in superconductors was developed
Larkin and Ovchinnikov10 and by Feigel’manet al.11 In the
theory of quantum spin glasses, Keldysh formalism was
cently used by Kennettet al.12 In the theory of classical spin
glasses, Keldysh technique is replaced by so-called D
Peliti techniques,13 in which dynamics is generated via th
Langevin noise introduced in the stochastic equation of m
tion. This kind of technique was used by Ioffeet al. who
considered dynamics of a classical spin glass.14

Our paper is structured as follows. In Sec. II, which
necessarily quite technical, we derive general equations
the superconducting Green functions taking into accoun
possible nonequilibrium dynamics in the spin system. T
corresponding calculations are done with the help of
Keldysh technique. We reconsider the Abrikosov-Gor’k
theory, taking into account inelastic exchange electron s
tering on magnetic impurities. Technically speaking, imp
rity lines, i.e., spin-spin correlators, carry frequency in th
case. We show that all superconducting parameters, inc
ing the transition temperature, should depend on the pro
ties of the spin system via the spin-spin autocorrelation fu
tion. In a nonequilibrium state, the spin system is descri
with the help of three correlators~retarded, advanced, an
Keldysh!. In the quasiequilibrium case, these correlators
connected via the fluctuation-dissipation theorem. At the
of Sec. II, using analytical continuation on the discrete M
subara frequencies, we rederive a relatively simple equa
on the superconducting transition point in the quasiequi
rium case.

In Sec. III, we address the question of calculating sp
spin autocorrelation function in the spin-glass state. We p
pose a method which combines ideas of Thouless, Ander
and Palmer15 and virial expansion method. In the framewo
of this approximation, theN-spin problem is solved exactl
while the other spins are replaced by a mean value, wh
plays the role of a random mean field. A distribution functi
for the random mean field is derived analytically for the ca
of the three-dimensional Heisenberg model with the RKK
interactions. Let us note that despite the high-tempera
asymptotics developed in Ref. 5, in the glass phase, suc
expansion does not contain any small parameter. One
expect, however, that at large enoughN this expansion gives
a quantitively correct result. At lowN, we may expect to
derive qualitatively acceptable results and get some ins
into the complicated problem. To illustrate how the meth
works, we analytically derive the spin-spin autocorrelati
function in the first virial approximation.

In Sec. IV, we derive a correction to the superconduct
quantum critical point. We show that the shift of the Abrik
06452
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sov and Gor’kov’s result is quite small~the critical concen-
tration of magnetic impurities increases about 10% compa
to the noninteracting case!. We also discuss the back effect o
the superconductivity on the spin system. The phase diag
for the system under consideration is given.

In Sec. V, we study a nonequilibrium or aging dynami
in the superconducting transition point. We propose an
periment which should provide an explicit manifestation
the aging dynamics in the superconducting quantum crit
point. If an external magnetic field is switched off belowTg ,
the magnetization does not disappear immediately. Sp
magnetize the electrons and this effect leads to a stron
suppression of superconductivity compared to the case
arbitrarily oriented spins. The remanent magnetization lo
rithmically slowly decreases and drives the system towa
superconductivity.

II. NONEQUILIBRIUM GOR’KOV EQUATIONS

A. The model

The starting point for the problem is the followin
Abrikosov-Gor’kov Hamiltonian:

HAG5HBCS1HeS, ~1!

where the first term is the usual BCS Hamiltonian,

HBCS5E H ca
† S p2

2m
2«FDca2lca

†cb
†cbcaJ d3r ~2!

and the second one is the exchange interaction,

HeS5E H ca
†(

a
u~r2ra!~Sasab!cbJ d3r . ~3!

We neglect finite-size effects and consider the followi
form of the exchange potential:

u~r !5u0d~r !. ~4!

The effective spin-spin interactions are described by the
lowing Hamiltonian:

HSS5
1

2 (
aÞb

J~ra2rb!•Sa•Sb . ~5!

In Eq. ~5!, J(r ) is the RKKY interaction,

J~r !5J0

cos~2pFr !

r 3
. ~6!

The amplitude of this interaction reads

J05
mpF

4p3
u0

2 . ~7!

This quantity is connected with the spin-flip scattering tim
as follows.4,5

J0nsts5@4p2S~S11!#21. ~8!
6-2
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Let us emphasize that the number on the right-hand sid
Eq. ~8! is very small.

B. Keldysh Green functions

In order to find the superconducting transition point, w
should first derive Gor’kov’s equation for the Green fun
tions. To treat a possible nonequilibrium dynamics, we
the Keldysh technique. Below we recall the basic definitio
and notations.

The electron Green functions are defined as follows:

Ĝ.~1,2!52 i K S c↑~1!c↑
†~2! c↑~1!c↓~2!

2c↓
†~1!c↑

†~2! 2c↓
†~1!c↓~2!

D L ~9!

and

Ĝ,~1,2!5 i K S c↑
†~2!c↑~1! c↓~2!c↑~1!

2c↑
†~2!c↓

†~1! 2c↓~2!c↓
†~1!

D L .

~10!

Retarded, advanced, and Keldysh Green functions
then constructed in the following way:

ĜR~1,2!5u~ t12t2!@Ĝ.~1,2!2Ĝ,~1,2!#, ~11!

ĜA~1,2!52u~ t22t1!@Ĝ.~1,2!2Ĝ,~1,2!#, ~12!

and

ĜK~1,2!5Ĝ.~1,2!1Ĝ,~1,2!. ~13!

It is convenient to introduce a compact notation for the
34 matrix ~here we use the Larkin-Ovchinniko
representation10!,

Ǧ~1,2!5S ĜR~1,2! ĜK~1,2!

0 ĜA~1,2!
D . ~14!

The Green function satisfies the following matrix equatio

@Ǧ0
212Š#Ǧ51̌. ~15!

whereǦ0 is the Green function of a normal metal witho
impurities andŠ is the self-energy.

In the case under consideration, we have to find the s
energy associated with the scattering on magnetic impuri
In the leading approximation on the impurity concentratio
the self-energy has the form shown in Fig. 1, whereg ’s are
the vertex matrices~see below!. In this section, we will con-
sider the case of zero-field cooling, so that there is no re
anent magnetization in the spin system and no external m

FIG. 1. Electron self-energy in the leading approximation w
respect to the magnetic impurity concentration.g ’s are the vertex
matrices@see Eq.~21!# .
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netic field. In this case, we can average Green functions
over the spin degree of freedom. In the absence of the RK
interaction, the electron scattering on magnetic impurities
elastic in the Born approximation. If we switch on the inte
actions between spins, self-energyS becomes nonelastic an
in some sense analogous to the self-energy due to the
tron scattering off the phonons. As a result we obtain
following expression for the self-energy:

Šmn5
1

4tsS~S11!
gms

l ~t žǧt ž!srĈlhgrn
h , ~16!

where the Greek indices label matrix elements in
Keldysh space. The structure of the self-energy in
Nambu-Gor’kov space is determined by the product (t žǧt ž)
with

t ž5S 1̂ 0

0 21̂
D . ~17!

In Eq. ~16!, we have introduced quasiclassical Green fun
tion,

ǧ~ t1 ,t2!5
i

pE2`

`

djpǦ~p;t1 ,t2!,

where jp5vF~p2pF!, ~18!

and the following spin-spin correlators:

C.~ t1 ,t2!5C,~ t2 ,t1!52 i ^S~ t1!S~ t2!&. ~19!

The corresponding Keldysh matrix is defined as

Ĉ5S CK CR

CA 0 D , ~20!

with CR, CA, andCK defined via Eqs.~11!–~13!. Indeed, the
spin-spin correlators are proportional to the unit matrix in t
Nambu space. The vertex matrices has the following exp
form in the Larkin-Ovchinnikov representation:16

g15S 1 0

0 1D and g25S 0 1

1 0D . ~21!

C. Gor’kov equations

Since we are not interested in the momentum depende
of the Green function, it is convenient to integrate out t
corresponding redundant degree of freedom. Using Eq.~15!,
we obtain

E djp$@Ǧ0
212Š#Ǧ2Ǧ@Ǧ0

212Š#%50̌.

As a result, we obtain the following equation which involv
quasiclassical Green function only:10
6-3
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F ťz

]ǧ~ t1 ,t2!

]t1
1

]ǧ~ t1 ,t2!

]t2
ťzG2 i @Ď~ t1!ǧ~ t1 ,t2!

2ǧ~ t1 ,t2!Ď~ t2!#52 i @Š+ǧ2ǧ+Š#~ t1 ,t2!, ~22!

where symbol ‘‘+ ’’ means convolution with respect to th
time variable and order parameterD(t) is defined below@see
Eq. ~25!#.

Note that each element ofǧ is a 232 matrix in the
Nambu space,

ĝ5S a b1

2b2* 2a D , ~23!

wherea is the normal electron Green function andb is the
Gor’kov ~anomalous! function. In the absence of the extern
currents and/or magnetic field,b15b2. Note also that matrix
~14! is a matrix in the direct product of independent Keldy
~time reversal! and Nambu spaces. It is a question of co
vention how to construct this matrix. One can use either fo
~14! or another way,

ǧ5S â b̂

2b̂* 2â
D , ~24!

with â andb̂ being matrices in the Keldysh space. Since
are looking for the transition point, we should first deri
equation linear on the superconducting Green functionb̂.
Thus, form~24! is more convenient for our purposes. Usin
the notations introduced above, the order parameterD can be
written as

D~ t !5pulunbK~ t,t10!, ~25!

wheren is the density of states per spin at the Fermi surfa
In the matrix notations, the order parameter takes on
form

Ď~ t !5S 0 D~ t !

2D* ~ t ! 0 D . ~26!

In the Keldysh space,D̂ is proportional to the unit matrix
~we neglect superconducting fluctuations!.

To find the superconducting transition point we have fi
to extract the equation on the Gor’kov Green functionb.
After some algebra, we obtain

F ]

]t1
2

]

]t2
Gbmn~ t1 ,t2!1 i @D~ t1!1D~ t2!#amn~ t1 ,t2!

52
i

4tsS~S11!
$gms

l grd
h @asrClh+bdn

1bsrClh+adn#~ t1 ,t2!1@amd+Clhbsr

1bmd+Clhasr#~ t1 ,t2!gds
l grn

h %. ~27!

Although, the spin system may be out of the equilibriu
state, the electron system may be considered in equilibri
This yields
06452
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gK5gR+ f 2 f +gA,

where f is the Fermi distribution@ f («)5tanh(«/2T) in the
energy representation#.

Let us now separate slow and fast dynamics in the s
correlator by performing Wigner transformation,

Ĉ~v, t̄ !5 È`

d~ t12t2!Ĉ~ t12t2 , t̄ !e2 iv(t12t2). ~28!

In Eq. ~28!, parametert̄ 5(t11t2)/2 describes slow dynam
ics and, in some sense, is similar to the waiting time. Fr
Eqs. ~14!, ~16!, ~17!, ~20!, ~21!, ~24!, ~26!, and ~27!, we
obtain the following equations:

«bR~«!2FD~ t̄ !aR~«!1
1

4
D9~ t̄ !

]2aR~«!

]«2 1•••G
5

1

4tsS~S11!
E

2`

1`dv

2p
$CK~v!@aR~«!bR~«2v!

1bR~«!aR~«2v!#1CR~v!@aR~«!bK~«2v!

1bR~«!aK~«2v!#% ~29!

and

«bA~«!1FD~ t̄ !aA~«!1
1

4
D9~ t̄ !

]2aA~«!

]«2 1•••G
5

1

4tsS~S11!
E

2`

1`dv

2p
$CK~v!@aA~«!bA~«2v!

1bA~«!aA~«2v!#1CA~v!@aA~«!bK~«2v!

1bA~«!aK~«2v!#%. ~30!

Note, that all quantities in Eqs.~29!, ~30! weakly depend on
the ‘‘waiting time’’ t̄ .

The corresponding Keldysh function reads

bK~«!5@bR~«!2bA~«!#tanhF «

2TG . ~31!

Together with Eq.~25!, Eqs.~29!, ~30! form a closed equa-
tion system, which contains all the information about t
superconducting properties of the physical system under c
sideration. The spin system is completely described by
three functions:CR, CA, and CK. These functions are no
necessarily connected with each other in an out-
equilibrium state and depend upon the details of the state
history.

At the superconducting transition point the Green fun
tions reduce to the simple form of a normal metal and E
~29!, ~30! can be simplified with the aid of the following
relations:10

aR~«!52aA~«!51 ~32!

and, thus,
6-4
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aK~«!52 tanhF «

2TG . ~33!

D. Quasiequilibrium regime

Let us consider a regime when the dynamics of the s
glass state has two well separated time scales. The first o
‘‘waiting time’’ t̄ , which is comparable with the typical tim
of an experiment. At these time scales, large energy bar
change. The second typical time is\/Tg . At these time
scales, a quasiequilibrium state is reached within the la
energy barriers. Tunneling processes through the large b
ers are supposed to be very rare at such a time scale. In
approximation, the waiting time can be considered as an
dependent external parameter and equilibrium techniq
can be used. In this equilibrium regime the fluctuatio
dissipation theorem holds and it significantly simplifies t
calculation.

In the equilibrium, Keldysh, retarded, and advanced sp
spin correlators are not independent functions anymore. T

FIG. 2. Contour in the complex planev used to perform ana
lytical continuation on discrete Matsubara frequencies for«n.0.
ta
tio
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are connected via the fluctuation-dissipation theorem, wh
follows directly from the Gibbs’s distribution and in our lan
guage can be formulated as follows:

CK~v!5@CR~v!2CA~v!#cothF v

2TG22p id~v!

3F(
k

e2ek /TG21

(
ek5e j

u^kuSu j &u2e2ek /T, ~34!

whereuk& is a quantum state in the spin system andek is the
corresponding energy level. Note, that for spin correlato
the last ‘‘static’’ term in Eq.~34! does not vanish.

In the equilibrium, it is convenient to introduce Matsuba
Green functionsb(«n) anda(«n) which depend on the fer
mion frequency«n5p(2n11)T and the Matsubara spin
spin correlator,

C~vm!5E
0

1/T

dt^Tt@S~t!S~0!#&e2 ivmt, ~35!

where

S~t!5eHtS~0!e2Ht

andvm52pmT is the bosonic Matsubara frequency.
Using the contour shown in Fig. 2, one can perform a

lytical continuation on the discrete Matsubara frequencie17

To do this we first note that Keldysh spin-spin correla
consists of two different parts: one is proportional tod(v)
and the other, we denote it asC̃K, satisfies the relation
C̃K(v)5@CR(v)2CA(v)#coth@v/2T#. The former part
gives an elastic contribution to the self-energy. It is very ea
to treat this term, we just replaced(v) by delta symbol
(1/T)dvm 0 and the integral in Eq.~29! by a sum overvm .
The latter part is more complicated. As an example, let
consider the first and third terms in the right-hand side of E
~29!. After analytical continuation on discrete Matsubara fr
quencies«n.0, we get for these terms,
E
2`

` dv

2pH bR~ i«n2v!@C̃R~v!2C̃A~v!#cothF v

2TG 1C̃R~v!@bR~ i«n2v!2bA~ i«n2v!#tanhF i«n2v

2T G J
5 R

G1

dv

2p
C̃R~v!bA~ i«n2v!cothF v

2TG1 R
G2

dv

2p
C̃R~v!bR~ i«n2v!cothF v

2TG1 R
G3

dv

2p
C̃A~v!bR~ i«n2v!cothF v

2TG .

~36!
nd
-

ion
We have used Eqs.~32!, ~33! valid at the transition point and
also the relation tanh@(i«n2v)/2T#52coth@v/2T#. It is easy
to see that in Eq.~36! all C̃ and b functions involved are
analytical inside the contours of integration. Thus, the to
integral is determined by the poles of the cotangent func
only. As a result, the whole expression~36! can be rewritten
as a sum over the bosonic Matsubara frequencies,
l
n

2T(
vm

C̃~vm!b~«n2vm!.

A similar procedure can be employed for the second a
fourth terms in Eq.~29!. Summarizing, we recover the qua
siequilibrium equation on the superconducting transit
point,
6-5
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u«nub~«n!2D52
T

2tsS~S11!(vm

C~vm!

3$b~«n2vm!

1b~«n! sgn«nsgn~«n2vm!%. ~37!

Note that the equilibrium expression is the same in param
netic and spin-glass phases. However, the spin-spin auto
relation functions are different in these phases.

III. SPIN-SPIN AUTOCORRELATION FUNCTION

A. Random mean field

To find the superconducting transition point, we have
solve Eqs.~29!, ~30! or Eq.~37!, which requires knowing the
spin-spin autocorrelation function~s!. Calculation of this cor-
relator for the quantum Heisenberg spinglass is a very d
cult problem even in the quasiequilibrium case. To get so
insight into the problem under consideration, we propos
method of calculating this correlator which introduces t
concept of a random mean field. This idea is similar to
one used by Thouless, Anderson, and Palmer.15 We combine
the random mean-field method with the virial or cluster e
pansion@see, e.g., Ref. 5#.

Let us consider a spin in the mean field of the other sp
h5(aJabSa . The distribution function for this random mag
netic field can be naturally defined as follows:

P@h#5K dS h2(
a

JabSaD L
J,S

~38!

or, equivalently,

P@h#5E d3l

~2p!3 K expF2 i lS h2(
a

JabSaD G L
J,S

,

~39!

where the averaging over the random spin-spin interac
and over spin orientations is implied. For the RKKY inte
action ~6!, averaging means

^ f ~J!&J5:
1

VE d3rE
0

2pdf

2p
f S J0cosf

r 3 D , ~40!

where V is the volume of the system andf is an arbitrary
function.

From Eqs.~39!, ~40!, we obtain

P@h#5E d3l

~2p!3
ei lhK)

a
S 12

4p

3

J0

V
ulSau D L

S

. ~41!

Performing averaging over the spin orientations and eval
ing the corresponding elementary integral, we get the dis
bution function for the random mean field,

P@h#5
1

p2

a

~a21h2!2 , a5
2p

3
J0nsS, ~42!
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wherens is the concentration of magnetic impurities andS is
their spin.

Let us note that for a different model of spin-spin inte
actions the distribution function~38! would be different. For
example, if we start with the Gaussian distribution of sp
spin couplings in the Sherrington-Kirpatrick model, the d
tribution function of the mean field is necessarily Gauss
as well.

In the nonequilibrium case, the simple calculation p
sented above is not valid. The distribution function of t
mean field should depend on time and on the type of
nonequilibrium state. For example, if we study a nonequil
rium dynamics due to a slowly decaying remanent magn
zation, one should modify the definition of the distributio
function as follows:

P@h,t#5K dS h2(
a

JabSaD 3dS m~ t !2(
a

SaD L
J,S

,

~43!

wherem(t) is the remanent magnetization.

B. Virial expansion

Now, let us consider the following set of Hamiltonians

H15S•h, ~44!

H25J12S1•S21S1•h11S2•h2 , ~45!

. . . ,

H (k)5
1

2 (
a,b

k

8JabSa•Sb1(
a

Sa•ha , ~46!

where bothJ’s andh’s are random and distributed accordin
to Eq. ~40! and Eq.~42!, correspondingly.

In principle, one can calculate any quantity using Ham
tonians~44! ~one spin!, ~45! ~cluster of two spins!, etc. and
then average out the quantities of interest using Eq.~40! and
distribution ~42!. This procedure generates a series wh
can be called virial or cluster expansion. It is similar to t
virial expansion in the theory of liquids and gases. Let
also note that comparison with the Sherrington-Kirpatr
Ising model shows that the first virial term is equivalent
the replica symmetric solution of the model. After a simp
calculation one can obtain the equation for the Edwar
Anderson order parameter in the replica symmetric case.
well known that the corresponding solution is not stable. T
usual practice is to apply the mechanism of replica symme
breaking.7,8 However, replica technique hardly can lead
some explicit results especially in the dynamical problem
Moreover, it involves a procedure of analytical continuati
on replica indices. This procedure is usually poorly justifie
since, the behavior of functions to be analytically continu
is typically not known at large replica indices. It is not cle
whether the virial expansion can help to solve the underly
problems. Technically it is quite straightforward and phy
cally very transparent. Even though the expansion does
contain any small parameter at low temperatures, one can
6-6
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to calculate a quantity of interest up to some largeN ~number
of spins in the cluster! in order to sum up the series. Even
the series is not convergent, one can use Pade´-Borel tech-
nique to do the summation.

If we are interested in studying a system in a nonequi
rium regime, the Hamiltonian language described abov
not appropriate. One has to reformulate the problem us
the corresponding action on the Keldysh closed time con
and do the virial expansion within this formalism. This id
will be developed elsewhere.

C. Matsubara spin-spin correlator: Equilibrium case

To give an example of how this method works, let
calculate the spin-spin autocorrelation function in the fi
virial approximation. We will consider quasiequilibrium re
gime only. For the Matsubara correlator, we obtain

C~vm ,h!5F(
k

e2bekG21

(
k1 ,k2

u^k1uS~0!uk2&u2

3
ek2

2ek1

vm
2 1~ek2

2ek1
!2

@e2bek12e2bek2#. ~47!

For spinS51/2, in the first virial approximation, we get

C~vm ,h!5
1

4T
dvm , 01

h

vm
2 1h2tanhF h

2TG . ~48!

Note that for an arbitrary spin valueS, the tangent factor is
replaced by the corresponding Brillouin function. We have
average out quantity~48! with respect to the distribution
function ~42!,

C̄~vm!5E d3h P@h#C~vm ,h!. ~49!

Evaluating the corresponding integral, we obtain

C̄~vm!5
1

4T
dvm , 01dC~vm!, ~50!

where

dC~vm!54aiF res
z5 ia

1 res
z5 i uvmuGg~z!

1
2a

p F I ~a,vm!12a
]I ~a,vm!

]a G , ~51!

with

g~z!5
z3

~z21v2!~z21a2!2tanhF z

2TG
and

I ~a,vm!5
1

vm
2 2a2ReFcS 1

2
1

ivm

2pTD2cS 1

2
1

ia

2pTD G ,
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wherec(z) is the logarithmic derivative of the gamma fun
tion. At a low temperatureT!a;Tg , Eq. ~51! can be sim-
plified and we obtain the following zero-temperature resu

dC~v!5
2a

p

a22v21v2lnS v

a D 2

~v22a2!2
. ~52!

Let us emphasize the following property of correlato
~50! and ~52!:

lim
a→0

C̄~vm!5
1

T
S~S11!dvm0 , ~53!

which can be verified by a straightforward calculation. Th
property means that if we switch off the interactions betwe
the spins, the corresponding autocorrelation function tu
into the time-independent correlation function of a free sp

In the second virial approximation we should calcula
correlator ~47! using eigenfunctions of Hamiltonian~45!.
There are four quantum states possible in this case. Eve
zero temperature, finding the ground-state energy requ
solving spectral problem which turns out to be an equation
the fourth order. Moreover, we should average out correla
~47! over the random fields and coupling constant,

C̄~vm!5E d3h1d3h2P@h1#P@h2#^C~vm ;J,h1 ,h2!&J .

~54!

It is difficult to handle this analytically. Numerical work i
required in this case.

IV. SUPERCONDUCTING TRANSITION POINT

A. Quantum critical point. Equilibrium case

To find the superconducting transition point, we have
solve Eqs.~29!, ~30! or Eq. ~37! in the quasiequilibrium re-
gime. Let us first consider the latter case. At a finite tempe
ture, Eq.~37! is an infinite system of coupled equations co
responding to different Matsubara frequencies.
temperature goes to zero, the picture is simplified and
~37! turns into an integral equation,

F u«u1
1

ts
Gb~«!2D

52
1

2tsS~S11!
E

2`

` dv

2p
@ C̄~v!2S~S11!d~v!#

3@b~«1v!1b~«!sgn« sgn~«1v!#. ~55!

In the absence of spin-spin interactions the anomalous G
function b reads

b (0)~«!5
D

ts
211u«u

. ~56!

Using definition~25!, multiplying Eq. ~55! on b (0)(«), and
integrating it over«, we get
6-7
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1

pnulu
2E

2`

` d«

2p
b (0)~«!

52
1

2tsS~S11!
E

2`

` dv

2p
@ C̄~v!2S~S11!d~v!#

3E
2`

` d«

2pD
@b~«1v!

1b~«!sgn« sgn~v1«!#b (0)~«!. ~57!

As will be shown below, this equation can be solved us
the perturbation theory. Due to numerical reasons, the t
on the right-hand side can be treated as a small perturba
Thus, one can use expression~56! for the Green functions in
Eq. ~57!. In this case, the integral over« on the right-hand
side of Eq.~57! can be easily evaluated and we get the f
lowing expression for the integral:

2tsI ~vts!

52tsH 1

11uvuts
1

11uvuts

uvuts~11uvuts/2!
ln~11uvuts!J .

~58!

CorrelatorC̄ follows from Hamiltonian~6! and distribu-
tion function defined by relation~40!. There is only one di-
mensional parameter upon which it can depend:a;J0ns .
Thus, in the equilibrium, the correlator is bound to have
following form:

C̄~v!5
1

a
C̃S v

a D .

This statement is true both in the high-temperature and l
temperature regions. Let us make the following change
variables in the integral overv in Eq. ~57!: v →x5v/a.
Then, this equation can be rewritten as follows:

lnF p

2g
Tc0tsG

5
1

4pS~S11!
E

2`

`

dx@ C̃~x!2S~S11!d~x!#I ~sx!,

~59!

where functionI (x) is defined in Eq.~58! ands5ats . The
latter quantity is just a number. From, Eq.~7! and Eq.~42!,
we find

s5
1

6p~S11!
!1.

One can see that this number is very small. If, formally,
put s50, we will get zero on the right-hand side of Eq.~59!
@see also Eq.~53!# and recover the Abrikosov-Gor’kov for
mula for the quantum critical point,

Tc0ts0
(AG)5

2g

p
'1.13.
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If we keeps finite, the right-hand side term in Eq.~59! will
give a correction to the quantum critical point due to t
spin-spin interactions. For example, we can use correl
~52! calculated in the preceding section. Evaluating the c
responding integral numerically we get correction to t
critical concentration of magnetic impurities concentration

dns0
(1)

ns0
(AG)

50.073.

Similarly, we can obtain the shift corresponding to the s
ond virial approximation~54!. This has been done numer
cally. The corresponding result is

dns0
(2)

ns0
(AG)

50.085.

We see that these corrections are quite small. This small
is connected with the parameterTgts present in the theory
and should exist in any order of the virial expansion. Th
we conclude that the shift of the Abrikosov-Gor’kov qua
tum critical point is about 10%.

B. Equilibrium phase diagram

Another interesting question which is worth discussing
the effect of the superconductivity on the effective spin-s
interactions. This questions has been addressed long ag
Abrikosov.18 Recently it was revisited by Aristovet al.19 The
effective spin-spin coupling is determined by the followin
expression:

J~r !52u0
2T(

«n

@ ua~«n ,r !u21ub~«n ,r !u2#, ~60!

wherea(«n ,r ) andb(«n ,r ) are Green functions in the rea
space. A straightforward calculation yields the followin
form of the effective RKKY interaction below the superco
ducting transition point:

J~r !5FJ0

cos~2kFr !

r 3
1

1

r 2 JAFGe22r /j, ~61!

wherej5vF /D and the antiferromagnetic contributionJAF
}D/eF is quite small.

At the transition line,j5` andD50, so we recover the
usual RKKY formula. However, well below the transition th
interaction becomes screened. This fact has a very trans
ent physical explanation. The RKKY interactions appear d
to the fact that a spin polarizes the normal electrons aro
it. The Friedel’s oscillations in the electron density lead
the Ruderman-Kittel oscillations in the spin-spin coupling.
a superconductor, the spins are not polarized in the gro
state. Thus at the distances larger than Cooper pair sizej, the
indirect spin-spin coupling must be suppressed.

In the absence of superconductivity, we expect the sp
glass state to survive even at very low concentrations
magnetic impurities ifT50. In a superconductor, the spin
glass state should disappear at
6-8
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ns;j23;S Tc0

vF
D 3

.

We see that not only spin-spin interactions change the su
conducting phase diagram, superconductivity in turn s
presses magnetic ordering at low temperatures and spin
centrations.

Combining these results with the ones obtained in
previous sections, we can plot the phase diagram for
physical system under consideration~see Fig. 3!. Let us note
that the high-temperature asymptotics5 matches the low-
temperature one at a temperatureT* '2J0ns , which is ap-
proximately the temperature of the spin-glass transition.

V. AGING IN THE SUPERCONDUCTING QUANTUM
CRITICAL POINT

Let us study the following experiment. Consider a sup
conductor at a low temperature with the concentration
magnetic impuritiesns,ns0, where ns0 is the equilibrium
critical concentration found in the preceding section. No
let us switch on a large magnetic field. This field polariz
the magnetic impurities and electrons and destroys super
ductivity. Then, we switch off the magnetic field. The ele
tron system equilibrates very quickly. However, in the s
tem of magnetic impurities, one finds a remane
magnetization which decays very slowly with time. Th
magnetization acts on the electrons as an external mag
field, which affects only the spin degree of freedom but n
the orbital one. In some sense the effect due to the rema
magnetization on the electron system is equivalent to
effect of an external magnetic field applied parallel to a tw
dimensional superconducting sample. This leads to the
ther suppression of superconductivity. Thus, even after
external magnetic field is switched off, the superconductiv
may be absent in such an experiment due to the aging ef
in the system of magnetic impurities.

To get some qualitative insight into the nonequilibriu
case, let us consider a small enough remanent magnetiz
and neglect corrections to the Abrikosov-Gor’kov form
the spin-spin correlator. In this case, we obtain the follow
set of equations which describes the superconducting tra
tion and determines the order parameter:

FIG. 3. Schematic phase diagram for a superconductor with
teracting magnetic impurities. The dashed curve is the Abrikos
Gor’kov transition line.
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1

ts
a~«!b~«!, ~62!

wherea(«) andb(«) are superconducting Green function
subject to the following constraint:

a2~«!1ub~«!u251 ~63!

and the order parameter is defined as usual,

D5pnuluT(
«n

b~«n!. ~64!

In Eq. ~62!, we have introduced the splitting of the Ferm
surface due to the remanent magnetization,

dm5u0m~ t !, ~65!

whereu0 is the integral over the exchange potential@see Eq.
~3!# and m(t)5ns^S& is the remanent magnetization whic
slowly depends on time. Let us note that uponm(t) all su-
perconducting quantities in Eq.~62! acquire similar slow
time dependence.

From Eqs.~62!–~64!, it follows that for large enough val-
ues of remanent magnetizationdm;ts

21 , the superconduct-
ing transition becomes of the first order. The order param
jumps from the zero value up to a finite value. Let us co
sider smaller values of the magnetization and find the co
sponding second-order superconducting transition po
From Eqs.~62!–~64!, we get

15pnuluTc(
«

1

u«u2 i ~dm! sgn«1ts
21

. ~66!

At zero temperature, the corresponding integral can be ea
evaluated and we get

15 lnF p

2g

Tc0

Adm21ts
22G .

Finally, we obtain the following time-dependent critical co
centration:

ns~ t !5Ans0
2 2c m2~ t !, ~67!

where constantc has the form

c5F p

S~S11!

1

mpFu0
G2

. ~68!

The dynamics of the remanent magnetization in the sp
glass state can be usually well fitted via the followin
formula:20

m~ t !5m02v ln t.

Wherem0 is of the order of the remanent magnetization ju
after the magnetic field is turned off and quantityv is called
magnetic viscosity. Thus, the superconducting critical po
is slowly flowing towards its equilibrium value,

-
-
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ns~ t !5ns02
c

2
@m02v ln t#2. ~69!

We see that after some time, which can be macroscopic
large, the superconductivity should appear again.

Let us note that nonequilibrium effects at the superc
ducting transition point do not necessarily have to be c
nected with the dynamics of remanent magnetization. A
other possible experiment could be done as follows. Le
consider a superconductor with the concentration of m
netic impurities such asns0

(AG),ns,ns0, where againns0
(AG) is

the Abrikosov-Gor’kov critical concentration at zero tem
perature andns0 is the real critical concentration at zero tem
perature with the account of interactions. Consider la
enough initial temperature so that no superconductivity
present at the beginning. Then, let us cool a down sam
very quickly at zero field. One should expect that superc
ductivity appears only some time after the sample w
cooled down, due to the slow relaxation processes in the
subsystem.

VI. CONCLUSION

We have considered a superconductor with interac
magnetic impurities. The central result of this paper is
dependence of the superconducting properties in such a
tem upon the spin-spin autocorrelation function. At low te
peratures, one can expect to observe aging effects in
superconducting transition point. The limiting manifestati
of the aging would be the observation of the spontane
appearance of superconductivity after some macrosc
waiting time due to a slow change in the remanent magn
zation in the spin subsystem.

In the equilibrium, we predict that the Abrikosov an
Gor’kov’s critical line shifts towards higher temperatur
and impurity concentrations due to the spin-spin interactio
Let us note that the high-temperature expansion diverge
T→0 and, formally, predicts very large shift of the critic
an
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point. The two asymptotics match at a temperatureT*
'2J0ns . This gives a good estimate for the temperature
the spin-glass transitionTg . At T5Tg , a crossover from the
high-temperature~paramagnetic! asymptotics to the low-
temperature~spin glass! one takes place. We have shown th
the actual shift of the superconducting transition due to
RKKY interactions is small at any temperatures. This is co
nected with the small parameterTgts which exists in the
theory.

Let us also mention that our calculations are valid only
temperaturesT@TK , whereTK is the Kondo temperature. In
this case we can neglect higher-order processes in the
tron scattering off the impurities. AtT;TK the magnetic
impurities become screened, which presumably should l
to the further enhancement of superconductivity.

Let us note that some deviations from the Abrikoso
Gor’kov curve have been observed experimentally.6 The
measurements showed some increase in the critical con
tration at low temperatures. Except the effects discusse
the present paper, this increase can also be connected
the phenomena similar to the ones discussed in Refs. 21
Namely, optimal fluctuations in the distribution of magne
impurities may lead to the formation of superconducting
lands coupled via the Josephson effect. This effect may
lead to some increase in the critical concentration. Howe
we do not expect this increase to be very large due to
suppression of the Josephson coupling by quan
fluctuations.22 To identify which effect is dominant at low
temperatures, additional experiments are highly desired
either case, we expect that some interesting nonequilibr
phenomena~hysteresis, aging, etc.! should reveal themselve
at low temperatures.
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Buzdin, M.L. Kulić, and S.V. Panjukov, Adv. Phys.34, 175
~1985!.

20F. Holtzberg, J. I. Tholence, and R. Tournier, inAmorphous Mag-
06452
netism II, edited by R.A. Levy and R. Hasegawa~Plenum Press,
New York, 1977!; R. Omari, J.J. Pre´jean, and J. Souletie, J
Phys.~Paris! 45, 1809~1984!.

21F. Zhou and B. Spivak, Phys. Rev. Lett.74, 2800~1995!.
22V.M. Galitski and A.I. Larkin, Phys. Rev. Lett.87, 087001

~2001!.
6-11


