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A superconductor with interacting paramagnetic impurities is considered. The impurities are coupled via the
Ruderman-Kittel-Kasuya-Yosid@&KKY ) interaction. At a temperaturg,, the system of magnetic impurities
forms a spin-glass state. We study the effect of the spin-spin interactions on the superconducting transition
point atT<Ty. We show that superconducting properties depend on the state of the spin system via spin-spin
autocorrelation functions. With the help of the Keldysh technique, a general nonequilibrium Gor’kov equation
is derived. Possible aging effects in the superconducting transition point are discussed. The equilibrium super-
conducting transition point is found explicity and shown to be shifted towards higher temperatures and
impurity concentrations compared to the classical Abrikosov-Gor’kov curve. The corresponding shift of the
superconducting quantum critical point is quite sntabout 10%. A method of calculating spin-spin correla-
tion function is suggested. The method combines the ideas of random mean-field method and virial expansion.
We calculate analytically the first virial term for the spin-spin correlator for the quantum Heisenberg spin glass
with the RKKY interactions in the quasiequilibrium regime.
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I. INTRODUCTION metrically, they are of the same order. However, due to the
numerical smallness of the two-particle statistical weight in
The theory of superconducting alloys with paramagnetiche three-dimensional case, the amplitude of the RKKY in-
impurities was developed long ago by Abrikosov andteraction is numerically much smaller than the spin-flip scat-
Gor’kov.! They have shown that the superconducting transitering rate:Jrsns= 1/[472S(S+ 1)], whereSis the spin of
tion temperature was suppressed by magnetic impurities. A4 magnetic impurity.
some critical impurity concentration, the transition tempera- The high-temperature corrections to the Abrikosov and
ture was suppressed down to zero, which gives an exampl8or’kov’s result were derived in the paper of Larkin, Melni-
of a quantum critical point.The critical concentration can be kov, and Khmelnitskif, It was shown that the superconduct-
determined from the condition:T.o=2v/m, whereTy is  ing transition temperature was higher in the presence of the
the superconducting transition temperature in a sample withspin-spin interactions compared to the noninteracting case.
out impurities andr is the spin-flip scattering time, which is However, the corresponding change was noticeable only at
inversely proportional to the concentration of magnetic im-extremely low temperatures due to the small numerical fac-
puritiesng. Let us note that the effect of magnetic impurities tor mentioned above. Thus, in a very wide range of tempera-
on superconductivity is, in many aspects, similar to the ondures, the Abrikosov-Gor’kov theory was quantitively cor-
of an external magnetic fiefd. rect. Let us mention that there have been a number of
In the Abrikosov-Gor’kov model, the magnetic impurities experiments in which deviations from the Abrikosov-
did not interact. Indeed, in any real system, one cannot avoiGor’kov picture were observed at low temperatufsse,
having interactions between the impurities. Friedel oscilla€.g., Ref. 6.
tions in the electron density give rise to similar oscillations Since the RKKY interaction is random in sign, it intro-
in the spin-spin coupling which is well known as Ruderman-duces a frustration into the spin system. It may result in a
Kittel-Kasuya-Yosida(RKKY) interaction. The interaction spin-glass transition at a low enough temperatdrg
may change the nature of the transition both qualitatively and-Jgng. This makes the physical picture much more puzzled
quantitively. compared to the high-temperature case. A wide-spread distri-
Interactions between impurities can significantly changebution of energy barriers exists in the glassy phase. The typi-
the physical picture only if the typical energy of this interac- cal time of classical and quantum tunneling is comparable
tion is of the order of temperature or higher. At a high tem-with the observation time in real experiments. Thus, the state
perature, one can take into account only those impurity clusef the system depends not only on the temperature and ex-
ters in which the typical distance between spins is smalternal magnetic field, but also on the history. Moreover, all
enough. The probability of having such a cluster containingphysical quantities slowly depend on tirh.
three or more spins is small. Thus, virial expansionclus- In the present paper, we show that superconducting prop-
ter expansion coincides with the high-temperature expan- erties, transition temperatufie. in particular, depend on the
sion in the problem under discussidhe corresponding properties of the spin system. Thus, superconducting param-
expansion parameter &ng/ T, wherelJ, is the amplitude of eters are expected to depend on the history and real time if
the RKKY interaction. the spin system is in the aging regime.
Let us note that constadt and spin-flip scattering time Although the dynamical properties of the spin glasses
75 both follow from the same exchange Hamiltonian. Para-have been the subject of extensive studies in the recent years,
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the theoretical understanding of the effect is far from beingsov and Gor’kov’s result is quite smdlhe critical concen-
impressive yet. However, it is clear that, in general, the dy-tration of magnetic impurities increases about 10% compared
namics of a glassy system consists of two parts: one is a fa# the noninteracting casé/Ne also discuss the back effect of
quasiequilibrium dynamics and the other is a slow dynamicéhe superconductivity on the spin system. The phase diagram
or aging. One can expect that in the system under considefor the system under consideration is given.
ation different superconducting parameters should acquire In Sec. V, we study a nonequilibrium or aging dynamics
similar behavior. in the superconducting transition point. We propose an ex-
Studying the out-of-equilibrium dynamics in a quantum Periment which should provide an explicit manifestation of
system requires using a nonequilibrium formalism such ad1® 29ing dynamics in the superconducting quantum critical
quantum transport equation or Keldysh techniughe point. If an e_xternal magnetic fle_ld is swﬁc_hed off. beldyy, .
Keldysh technique in superconductors was developed b{'® magnetization does not disappear immediately. Spins
Larkin and Ovchinniko¥ and by Feigel'maret al! In the magnetize the electrons and.thls effect leads to a stronger
theory of quantum spin glasses, Keldysh formalism was reSUPPression of superconductivity compared to the case of
cently used by Kennettt al 2 In the theory of classical spin qrbltrarlly oriented spins. The remanent magnetization loga-
glasses, Keldysh technique is replaced by so-called Doifithmically slowly decreases and drives the system towards

Peliti technique<? in which dynamics is generated via the SUPerconductivity.

Langevin noise introduced in the stochastic equation of mo-

tion. This kind of technique was used by lofé al. who [1. NONEQUILIBRIUM GOR’KOV EQUATIONS
considered dy_namics of a classical spin gféss. o A. The model

Our paper is structured as follows. In Sec. Il, which is
necessarily quite technical, we derive general equations on The starting point for the problem is the following
the superconducting Green functions taking into account &brikosov-Gor’kov Hamiltonian:
possible nonequilibrium dynamics in the spin system. The
corresponding calculations are done with the help of the Hac=Hpcst Hes: (1)
Keldysh technique. We reconsider the Abrikosov-Gorkovy here the first term is the usual BCS Hamiltonian,
theory, taking into account inelastic exchange electron scat-
tering on magnetic impurities. Technically speaking, impu-
rity lines, i.e., spin-spin correlators, carry frequency in this HBCS=J {zp
case. We show that all superconducting parameters, includ-
ing the transition temperature, should depend on the propegnd the second one is the exchange interaction,
ties of the spin system via the spin-spin autocorrelation func-
tion. In a nonequilibrium state, the spin system is described + 3
with the help of three correlator@etarded, advanced, and Hes= [‘ﬁaé U(r=ra)(Sagap) ‘ﬂﬂ]d r. ©)
Keldysh. In the quasiequilibrium case, these correlators are
connected via the fluctuation-dissipation theorem. At the endVe neglect finite-size effects and consider the following
of Sec. Il, using analytical continuation on the discrete Mat-form of the exchange potential:
subara frequencies, we rederive a relatively simple equation
on the superconducting transition point in the quasiequilib- u(r)=uga(r). (4)
rium case.

In Sec. lll, we address the question of calculating spin
spin autocorrelation function in the spin-glass state. We pro
pose a method which combines ideas of Thouless, Anderson, 1
and Palmél5 and V|_r|aI expansion method._ In the framework HSSZE E Jra—rp)-S Sy (5)
of this approximation, thé\-spin problem is solved exactly a#b
while the other spins are replaced by a mean value, which . . .
plays the role of aprandom m(gan field.yA distribution functionIn Eq. (5), J(r) is the RKKY interaction,
for the random mean field is derived analytically for the case
of the three-dimensional Heisenberg model with the RKKY Ir)=3q cos{ZpFr). ®)
interactions. Let us note that despite the high-temperature r3
asymptotics developed in Ref. 5, in the glass phase, such an . o )
expansion does not contain any small parameter. One cale amplitude of this interaction reads
expect, however, that at large enoudlthis expansion gives
a quantitively correct result. At lovN, we may expect to _mpe ,
derive qualitatively acceptable results and get some insight ‘]O_ﬁuo'
into the complicated problem. To illustrate how the method
works, we analytically derive the spin-spin autocorrelationThis quantity is connected with the spin-flip scattering time
function in the first virial approximation. as follows?*®

In Sec. IV, we derive a correction to the superconducting
guantum critical point. We show that the shift of the Abriko- JonsTs=[4m?S(S+1)] L. (8)

2
Z(p——sF)wa—szﬂLwﬁwa]dsr @)

2m

_The effective spin-spin interactions are described by the fol-
lowing Hamiltonian:

)
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RN netic field. In this case, we can average Green functions out

St,) Vst over thg spin degree of freedom_. In the absenqe pf the_RKKY

Z —_— interaction, the electron scattering on magnetic impurities is
7 Gy 7 elastic in the Born approximation. If we switch on the inter-

) ) o ~actions between spins, self-eneybecomes nonelastic and
FIG. 1. Electron se_lf-e_nerg;_/ in the Ieadln_g approximation with i, some sense analogous to the self-energy due to the elec-
respect to the magnetic impurity concentratiors are the vertex 4o scattering off the phonons. As a result we obtain the

matrices{see Eq/(21)] . following expression for the self-energy:

Let us emphasize that the number on the right-hand side of
Eq. (8) is very small.

— N TN ~
Z'LLV_4TSS(S+ 1) ’y,uo'( ngTZ)UpC)\n')’ZV, (16

B. Keldysh Green functions A . .
where the Greek indices label matrix elements in the

In order to find the superconducting transition point, weKeldysh space. The structure of the self-energy in the

should first derive Gor'kov's equation for the Green func- Nampu-Gor'kov space is determined by the produgt,)

tions. To treat a possible nonequilibrium dynamics, we usgyith

the Keldysh technique. Below we recall the basic definitions

and notations. i 0
The electron Green functions are defined as follows: ;Z:( A) ' 17)

0 -1
In Eq. (16), we have introduced quasiclassical Green func-
tion,

é>(12)__i<< DY) P(DYy(2) )>
’ —yl(yl2) —9{(1)y(2)

and

V21w (@9(D) >> Bt - | e St

G=(1,2=i
(42 '<(—w$(2>wl<1) — (291

where  £,=ve(P—Pr), (18

Retarded, advanced, and Keldysh Green functions argng the following spin-spin correlators:
then constructed in the following way:

C7(t1,t)=C~(tp,t)=—i(S(t) (ty)). (19

The corresponding Keldysh matrix is defined as

GR(1,2=0(t,—t,)[G7(1,2-G=(1,2)], (12)

GA1,2=—6(t,—t)[G7(1,2-G=<(1,2], (12
. [cKk CR
and c::<CA 0), (20)
GK(1,2=67(1,2+G~(1,2). (13)

It is convenient to introduce a compact notation for the 4
X4 matrix (here we use

with CR, CA, andCK defined via Eqs(11)—(13). Indeed, the
X o spin-spin correlators are proportional to the unit matrix in the
the  Larkin-Ovchinnikov \jampy space. The vertex matrices has the following explicit

representatiof), form in the Larkin-Ovchinnikov representatioh:
. GR(12 G 12
G(1,29= n : (14) (10 and 42— 0 1 2
8%(1,2 7=lo 1 Y=\, ol

The Green function satisfies the following matrix equation:

[éal—i]é= i (15 . C.'Gor kov eq.uatlons
Since we are not interested in the momentum dependence

where G, is the Green function of a normal metal without of the Green function, it is convenient to integrate out the

impurities ands is the self-energy. corresp(_)nding redundant degree of freedom. Using(Ex),

In the case under consideration, we have to find the selfe obtain

energy associated with the scattering on magnetic impurities.

In the leading approximation on the impurity concentration,

the self-energy has the form shown in Fig. 1, whete are

the vertex matricessee below. In this section, we will con-

sider the case of zero-field cooling, so that there is no remAs a result, we obtain the following equation which involves

anent magnetization in the spin system and no external magasiclassical Green function onf:

| deiis -18-616,-51-0.
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L 90(tyty)  ag(ty ty). L gt=gfef—fogh,
P B A dat) | R |
wheref is the Fermi distributior] f(¢) =tanhg/2T) in the

v < - energy representatign
~0(t1, 1) A(t)]= —i[2eg = 0o (11 1), (22) Leq[yus Fr)1ow sepad:ate slow and fast dynamics in the spin
where symbol ¢” means convolution with respect to the correlator by performing Wigner transformation,
time variable and order parametg(t) is defined belowWsee
Eqg. (25)].

Note that each element (ﬁ is a 2X2 matrix in the
Nambu space,

é(ﬁht—):f d(ty—t)Cty—tp,t)e @7 (28)

In Eq. (28), parametelt_z(tl+t2)/2 describes slow dynam-
-~ @ B1 5 ics and, in some sense, is similar to the waiting time. From
9= -5 —al’ 23 Egs. (14), (16), (17), (20), (212), (24), (26), and (27), we

) ) obtain the following equations:
where« is the normal electron Green function agds the

Gor’kov (anomalousfunction. In the absence of the external _ 1 daRe)

currents and/or magnetic fiel8; = 3,. Note also that matrix eBR(e)—|A(t)aR(e)+ ZA”(I) oz T

(14) is a matrix in the direct product of independent Keldysh e

(time reversagl and Nambu spaces. It is a question of con- 1 +odw

vention how to construct this matrix. One can use either form 1,557 1) >—{CK(w)[a"(e) B~ w)
7S(S+1) ) 27

(14) or another way,
- 3 +B%(e)a"(e— )]+ CR(w)[a®(e) B (e — w)
o o
g=( - A» (24 +AR(e)a (e~ w)]} (29
_ﬁ —a

- N and
with « and 8 being matrices in the Keldysh space. Since we

are looking for the transition point, we should first derive o 1 _ 32al(s)
equation linear on the superconducting Green funcifon ef(e)+| A(t)a(e)+ 24" ge2 T
Thus, form(24) is more convenient for our purposes. Using
the notations introduced above, the order paramktean be 1 tedo A A
written as =S5 . 5 1C N (w)[a"(e)B (e~ w)
A(t)=m|\vB (t,t+0), (25) +BAe)aP(e— w) ]+ CAw)[a™(e) B (e — w)
wherev is the density of states per spin at the Fermi surface. +BAe)aK(e— )]} (30)
In the matrix notations, the order parameter takes on the
form Note, that all quanlities in Eq$29), (30) weakly depend on
0 A(t) the “waiting time” t.
X(t)= The corresponding Keldysh function reads
A(t) (26)
—A*(t) O
In the Keldysh spaceA is proportional to the unit matrix ,BK(s)z[,BR(s)—BA(s)]tam‘{;—T . (31
(we neglect superconducting fluctuatipns

To find the superconducting transition point we have first-l-0 ether with Eq(25). Eas.(29). (30) form a closed equa-
to extract the equation on the Gor’kov Green functién g with Eq(25), Egs. (29), (30) au

) tion system, which contains all the information about the
After some algebra, we obtain superconducting properties of the physical system under con-
sideration. The spin system is completely described by the
Bty t) Fi[A(t) +A(ty)]a,,(ty,ty) three functions:CR, C#, and CK. These functions are not
necessarily connected with each other in an out-of-
i equilibrium state and depend upon the details of the state and

a
at, oty

== —{’y}\(r'ynb‘[arr C)\ OB&V hiStOfy.
47S(S+1) TR o At the superconducting transition point the Green func-
+B,,Cres ]ty t) +[a,Cy, By tions reduce to the simple form of a normal metal and Egs.
BaiCrraal(ty to) +Laus Crybo, (29), (30) can be simplified with the aid of the following
+ BM&OC)\ nao'p](tl 1t2) 7}507;71/}- (27) relations:!'o
Although, the spin system may be out of the equilibrium aR(e)=—aPe)=1 (32)
state, the electron system may be considered in equilibrium.
This yields and, thus,
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Imw @ are connected via the fluctuation-dissipation theorem, which

follows directly from the Gibbs's distribution and in our lan-
I guage can be formulated as follows:
w=i€, o
K — R _CA | i
1_,2/ \ C™w)=[C(w)—C (w)]COt)’{ZT} 27i 6(w)
Rew

-1
*Ek/T
Ek: e

> [kIsli)l?e =T, (34)
€= EJ'
where|k) is a quantum state in the spin system apds the

I3 corresponding energy level. Note, that for spin correlators,
the last “static” term in Eq.(34) does not vanish.

In the equilibrium, it is convenient to introduce Matsubara
Green functiong3(e,) and a(e,)) which depend on the fer-

FIG. 2. Contour in the complex plane used to perform ana- M'ON frequencye,=m(2n+1)T and the Matsubara spin-
lytical continuation on discrete Matsubara frequenciessfpr 0. spin correlator,

X

T )
. 33 Clom= | AT IS(DSO))e ', (39

K(g)=2 tanh —
@ i&)= 2T

where
D. Quasiequilibrium regime

S(r)=e""S(0)e 7"
dw,=27mT is the bosonic Matsubara frequency.
Using the contour shown in Fig. 2, one can perform ana-
tical continuation on the discrete Matsubara frequenties.

Let us consider a regime when the dynamics of the spin
glass state has two well separated time scales. The first one?

“waiting time” t, which is comparable with the typical time
of an experiment. At these time scales, large energy barriel; 4q this we first note that Keldysh spin-spin correlator

change. The second typical time #/Ty. At these ime  .,ngists of two different parts: one is proportionaldw)
scales, a quasiequilibrium state is reached within the large L =K L :
energy barriers. Tunneling processes through the large barrf—nd the other, we denote it 4", satisfies the relation
ers are supposed to be very rare at such a time scale. In tHis (@) =[C¥(@) — C*(w)]cotw/2T]. The former part
approximation, the waiting time can be considered as an ingives an elastic contribution to the self-energy. Itis very easy
dependent external parameter and equilibrium techniquel® treat this term, we just replac&w) by delta symbol
can be used. In this equilibrium regime the fluctuation-(1/T)é,, o and the integral in Eq(29) by a sum ovefwy,.
dissipation theorem holds and it significantly simplifies theThe latter part is more complicated. As an example, let us
calculation. consider the first and third terms in the right-hand side of Eq.

In the equilibrium, Keldysh, retarded, and advanced spin{29). After analytical continuation on discrete Matsubara fre-
spin correlators are not independent functions anymore. Theguenciess,,>0, we get for these terms,

ieg—w

+ER(w)[BR(i8n—w)—BA(isn—w)]tan"{ oT

w

fiog_:( BR(i en— w)[CR(w) _EA(w)]COt)'{ =

]

4 isg—:"CA(w)ﬁR(isn—w)cot)’{%}.

(36)

do do
- ﬁlﬁcR(w)ﬁA(isn—w)cotl'{% + ﬁZ%CR(w),BR(isn—w)cot)'{%

We have used Eg$32), (33) valid at the transition point and -

also the relation tarilie,— w)/2T]=—coth w/2T]. It is easy 2T Clwm) Blen— o).

to see that in Eq(36) all C and 8 functions involved are om

analytical inside the contours of integration. Thus, the tota/A similar procedure can be employed for the second and
integral is determined by the poles of the cotangent functiorfourth terms in Eq(29). Summarizing, we recover the qua-
only. As a result, the whole expressi@6) can be rewritten siequilibrium equation on the superconducting transition
as a sum over the bosonic Matsubara frequencies, point,
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T whereng is the concentration of magnetic impurities e®i$
|8n|:8(8n)_A:_m2 Clwm) their spin.
S “m Let us note that for a different model of spin-spin inter-
X{B(en— om) actions the distribution functio(88) would be different. For

example, if we start with the Gaussian distribution of spin-
+B(en) sgne,sgn(e,—om)}. (37 spin couplings in the Sherrington-Kirpatrick model, the dis-

I Lo . tribution function of the mean field is necessarily Gaussian
Note that the equilibrium expression is the same in paramag, " o

netic and spin-glass phases. However, the spin-spin autocor- | - . ,

relation functions are different in these phases. n the none_qwhbnum_ case, th_e s_lmp_le calcul_anon pre-
sented above is not valid. The distribution function of the

mean field should depend on time and on the type of the

nonequilibrium state. For example, if we study a nonequilib-

A. Random mean field rium dynamics due to a slowly decaying remanent magneti-

. ) . ) zation, one should modify the definition of the distribution
To find the superconducting transition point, we have tof;nction as follows:

solve Egs(29), (30) or Eq.(37), which requires knowing the
spin-spin autocorrelation functi¢s). Calculation of this cor-
relator for the quantum Heisenberg spinglass is a very diffi- P[h-t]:< 5( h_Ea JabSa m(t)—é Sa)> ,
cult problem even in the quasiequilibrium case. To get some 3.8
insight into the problem under consideration, we propose a (43)
method of calculating this correlator which introduces thewherem(t) is the remanent magnetization.

concept of a random mean field. This idea is similar to the
one used by Thouless, Anderson, and Paffheve combine
the random mean-field method with the virial or cluster ex- . . -
pansion[see, e.g., Ref. 5 Now, let us consider the following set of Hamiltonians:

Let us consider a spin in the mean field of the other spins

[ll. SPIN-SPIN AUTOCORRELATION FUNCTION

X 0

B. Virial expansion

=S-h 44
h=13,J.pS,. The distribution function for this random mag- Hi=Sh, 4
netic field can be naturally defined as follows: Hy=31,5,-Sp+Sy-hy+S,-hy, (45)

P[h]:<6 h—2 Jabsa)> (38) S
a 38
. 18
or, equivalently, HO=3 2 JaSe S+ 2 Saha, (46)
d®A . where bothl)’'s andh’s are random and distributed according
P[h]_f (27)3<9X{_')‘( h_é Jabsa)DJ < to Eqg. (40) and Eq.(42), correspondingly.
(39) In principle, one can calculate any quantity using Hamil-

tonians(44) (one spin, (45) (cluster of two sping etc. and
where the averaging over the random spin-spin interactiothen average out the quantities of interest using(&@). and
and over spin orientations is implied. For the RKKY inter- distribution (42). This procedure generates a series which

action (6), averaging means can be called virial or cluster expansion. It is similar to the
virial expansion in the theory of liquids and gases. Let us

1 2rd¢p [ JpcOSeh also note that comparison with the Sherrington-Kirpatrick

(f(J)>J=3vf d3rfo pp & | (40 Ising model shows that the first virial term is equivalent to

the replica symmetric solution of the model. After a simple
whereV is the volume of the system arfdis an arbitrary ~ Calculation one can obtain the equation for the Edwards-
function. Anderson order parameter in the replica symmetric case. Itis
From Egs.(39), (40), we obtain well known that the corresponding solution is not stable. The
usual practice is to apply the mechanism of replica symmetry
4m 3, breaking”® However, replica technique hardly can lead to
1— — _|)\sa|)> . (4D some explicit results especially in the dynamical problems.
3V S Moreover, it involves a procedure of analytical continuation
] ] o ) on replica indices. This procedure is usually poorly justified,
Performing averaging over the spin orientations and evaluakijnce, the behavior of functions to be analytically continued
ing the corresponding elementary integral, we get the distris typjcally not known at large replica indices. It is not clear
bution function for the random mean field, whether the virial expansion can help to solve the underlying
problems. Technically it is quite straightforward and physi-
JonS (42) cally very transparent. Even though the expansion does not
s contain any small parameter at low temperatures, one can try

a3\
P[h]:JWelhh<]‘;[

2
a=—

1 a
PLN= 2 @z 3

064526-6



SPIN GLASS VERSUS SUPERCONDUCTIVITY PHYSICAL REVIEW B6, 064526 (2002
to calculate a quantity of interest up to some lakgg@umber  where(z) is the logarithmic derivative of the gamma func-
of spins in the clustgrin order to sum up the series. Even if tion. At a low temperaturd <a~T,, Eq.(51) can be sim-
the series is not convergent, one can use fBatel tech- plified and we obtain the foIIowmg zero-temperature result:
nigue to do the summation.
. . . . . 2

If we are interested in studying a system in a nonequilib- 2 o o |O
rium regime, the Hamiltonian language described above is — 2a amottoe '”(5)
not appropriate. One has to reformulate the problem using oC(w)=— N : (52
the corresponding action on the Keldysh closed time contour (w"—a%)
and do the virial expansion within this formalism. This idea

will be developed elsewhere.

C. Matsubara spin-spin correlator: Equilibrium case

To give an example of how this method works, let us
calculate the spin-spin autocorrelation function in the first
virial approximation. We will consider quasiequilibrium re-

gime only. For the Matsubara correlator, we obtain

-1
C<wm,h>={22 e Pl > [(ky|S(0)|ky)|?
k ky.ka

sz_ €y
[e Pe—e Py, (47)

wnt (e, €’
For spinS=1/2, in the first virial approximation, we get

h

1 h
C(wny,h)= ﬁéwm' ot Wtani‘{z_r

(48)

Note that for an arbitrary spin valug the tangent factor is

Let us emphasize the following property of correlators
(50) and (52):

lim C(wy,) =
a—0

S5+ 115, 0. (53

which can be verified by a straightforward calculation. This
property means that if we switch off the interactions between
the spins, the corresponding autocorrelation function turns
into the time-independent correlation function of a free spin.

In the second virial approximation we should calculate
correlator (47) using eigenfunctions of Hamiltonia5).
There are four quantum states possible in this case. Even at
zero temperature, finding the ground-state energy requires
solving spectral problem which turns out to be an equation of
the fourth order. Moreover, we should average out correlator
(47) over the random fields and coupling constant,

Clam) = [ huGhoPINLPINKC L0 ..
(54)
It is difficult to handle this analytically. Numerical work is

replaced by the corresponding Brillouin function. We have torequired in this case.

average out quantity48) with respect to the distribution

function (42),

Ziwm)=J~d%1PUﬂcummhy (49)

Evaluating the corresponding integral, we obtain

Clom)= 770, 0% Clw), (50
where
5_C(wm)=4ai res+ res |g(z)
z=ia  z=i|lwy|
2a dl(a,
+——K&ww+2a—L:ﬂq, (51)
fa
with
B z z
9= v ar e aT
and

! ) R w<l+iwm) w(l_{_ ia
aon)=—7>Re| |5+ 5—=|—¢|l5+ 5=
™ wh—a? 2 27T 2 27T

IV. SUPERCONDUCTING TRANSITION POINT

A. Quantum critical point. Equilibrium case

To find the superconducting transition point, we have to
solve Egs.(29), (30) or Eq.(37) in the quasiequilibrium re-
gime. Let us first consider the latter case. At a finite tempera-
ture, Eq.(37) is an infinite system of coupled equations cor-
responding to different Matsubara frequencies. As
temperature goes to zero, the picture is simplified and Eq.
(37) turns into an integral equation,

e |+ ,3(8) A
= mj [C(w) S(S+1)6(w)]
X[B(e+ w)+ B(e)sgne sgn(e + w)]. (55

In the absence of spin-spin interactions the anomalous Green
function B reads

A

BO(e)=——. (56)
Ts +|8|

Using definition(25), multiplying Eq. (55) on B(%(¢), and

integrating it overs, we get
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1 » de o If we keepo finite, the right-hand side term in E¢9) will
W—f EB( )(e) give a correction to the quantum critical point due to the
o spin-spin interactions. For example, we can use correlator
1 © da — (52) calculated in the preceding section. Evaluating the cor-
=~ o-aarr | 7C0w)=S(St+1)d(w)] responding integral numerically we get correction to the
27,S(S+1) ) 2 o : > " .
critical concentration of magnetic impurities concentration,
J‘“ de W
*) LaaalBlete) on
0.073.
n(éG)
+B(e)sgne sgn(w+¢)]8(¢). (57) °

. Similarly, we can obtain the shift corresponding to the sec-

the perturbation theory. Due to numerical reasons, the tergrﬁgﬁyvll[ﬁé igFrg)sxpl)?r?(tjli?gs)ri)éu-ll-thig has been done numeri-

on the right-hand side can be treated as a small perturbation.

Thus, one can use expressi@®) for the Green functions in sn@
Eq. (57). In this case, the integral over on the right-hand 0 _0.085
side of Eq.(57) can be easily evaluated and we get the fol- ng’gG>

lowing expression for the integral: ) , i
We see that these corrections are quite small. This smallness

27l (wTs) is connected with the paramet&y7s present in the theory
and should exist in any order of the virial expansion. Thus,

1 1+|w|7s we conclude that the shift of the Abrikosov-Gor’kov quan-

=2 + In(1+ . " L
7s 1+|w|1s  |o|7(1+]|w|742) (1+]of7) tum critical point is about 10%.
(58)
- B. Equilibrium phase diagram

~ Correlator(C follows from Hamiltonian(6) and distribu- Another interesting question which is worth discussing is
tion function defined by relatiod0). There is only one di-  the effect of the superconductivity on the effective spin-spin
mensional parameter upon which it can depead:Jons. interactions. This questions has been addressed long ago by
Thus, in the equilibrium, the correlator is bound to have theaprikosov!® Recently it was revisited by Aristost al*® The
following form: effective spin-spin coupling is determined by the following

B 1o expression:
Clw)==|—].
aia 2 2 2
. _ | _ I =2u§T [|a(en,n|*+[B(en.1)4, (60
This statement is true both in the high-temperature and low- en

temperature regions. Let us make the following change of . .
variables in the integral oves in Eq. (57): @ —x=wl/a, wherea(s,,r) andB(e,,r) are Green functions in the real

Then. this equation can be rewritten as follows: space. A straightforward calculation yields the following
k d ' form of the effective RKKY interaction below the supercon-

- ducting transition point:
In| =— T
2 cO’s
4 cog2ker) 1 e
1 o J(r)= JOr—3+r_2JAF e ', (61)
me_de[C(X)—S(S‘F 1)8(x) ]l (ox), . . o
whereé=vg/A and the antiferromagnetic contributidng
(59  xAlep is quite small.
where functionl (x) is defined in Eq(58) ando=ars. The At the transition line£= andA=0, so we recover the
latter quantity is just a number. From, E@) and Eq.(42) usual RKKY formula. However, well below the transition the
we find ' ’ interaction becomes screened. This fact has a very transpar-
ent physical explanation. The RKKY interactions appear due
1 to the fact that a spin polarizes the normal electrons around
o= m<1. it. The Friedel’s oscillations in the electron density lead to

the Ruderman-Kittel oscillations in the spin-spin coupling. In
One can see that this number is very small. If, formally, wea superconductor, the spins are not polarized in the ground
put o=0, we will get zero on the right-hand side of E§9)  state. Thus at the distances larger than Cooper paigésihe
[see also Eq(53)] and recover the Abrikosov-Gor’kov for- indirect spin-spin coupling must be suppressed.

mula for the quantum critical point, In the absence of superconductivity, we expect the spin-
glass state to survive even at very low concentrations of
T (AG)_27~ magnetic impurities ifT=0. In a superconductor, the spin-
0T =—~=~1.13. .
T glass state should disappear at
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Te

Normal Metal [s—ié,u],B(s)=Aa(s)—Tia(s)ﬂ(s), (62)

Teo

............ High-T expansion

wherea(e) and B(e) are superconducting Green functions

subject to the following constraint:
Superconductor ™)
Low-T expansion

a’(e)+|B(e)|?=1 (63

P ¢ o
aramagne n and the order parameter is defined as usual,
S

Spin glass
0 §_3 Nso

. . " A=mv|]\[TX Blen). (64)
FIG. 3. Schematic phase diagram for a superconductor with in- en

teracting magnetic impurities. The dashed curve is the Abrikosov- . _ .
Gor'kov transition line. In Eq. (62), we have introduced the splitting of the Fermi

surface due to the remanent magnetization,
_ TcO 3
nS~§ 3~(_

Uk

Su=uom(t), (65

whereug is the integral over the exchange potenfige Eqg.

) . , (3)] and m(t)=ny(S) is the remanent magnetization which
We see that not only spin-spin interactions change the SUPELiowly depends on time. Let us note that upuft) all su-

conducting phase diagram, superconductivity in turn SUpperconducting quantities in Eq62) acquire similar slow
presses magnetic ordering at low temperatures and spin cofj,o dependence
centrations. ' :
o . , . From Eqs.(62)—(64), it follows that for large enough val-
Combining these results with the ones obtained in the .o remqan(enz é]a;netizatieﬁm~r‘l thegsuperco%duct-
. . : s
pLewiou? sef[:urcr)]ns,nc;/w: cann iglort ;&i pf';?seadllagt:]ramn f(t)r thfﬁg transition becomes of the first order. The order parameter
thtsfha; sgis r?-teri eerat%c;es ase ?n to??qmgfchese tﬁ: IgvS- jumps from the zero value up to a finite value. Let us con-
9 P ymp sider smaller values of the magnetization and find the corre-

temperattulretﬁnet at a te{nperitirhréwz\.]onsl, Wht'Ch |s_t'ap- sponding second-order superconducting transition point.
proximately the temperature of the spin-glass transition. - - Eqs.(62—(64), we get

1=mv|\ [T ! (66)
=TV .
- le|—i(6u) sgne+ 75t

V. AGING IN THE SUPERCONDUCTING QUANTUM
CRITICAL POINT

t zero temperature, the corresponding integral can be easily

Let us study the following experiment. Consider a super-ﬁ
evaluated and we get

conductor at a low temperature with the concentration o
magnetic impuritiesng<ngy, whereng, is the equilibrium
critical concentration found in the preceding section. Now,
let us switch on a large magnetic field. This field polarizes —inl .~ #
9 g p 1=In

the magnetic impurities and electrons and destroys supercon- 2y \Sul+ TS_Z
ductivity. Then, we switch off the magnetic field. The elec- _. ) ) ) »
tron system equilibrates very quickly. However, in the Sys_Fmally,_we obtain the following time-dependent critical con-
tem of magnetic impurities, one finds a remanentcentration:
magnetization which decays very slowly with time. This 5
magnetization acts on the electrons as an external magnetic ns(t)=vng—c nr(t), (67)
field, w_hlch affects only the spin degree of freedom but no\/vhere constant has the form
the orbital one. In some sense the effect due to the remanent
magnetization on the electron system is equivalent to the
effect of an external magnetic field applied parallel to a two- c=
dimensional superconducting sample. This leads to the fur-
ther suppression of superconductivity. Thus, even after th§pe gynamics of the remanent magnetization in the spin-
external magnetic field is swnchgd off, the supercon_ductlvny lass state can be usually well fitted via the following
may be absent in such an experiment due to the aging effec%rmma_zo
in the system of magnetic impurities.

To get some qualitative insight into the nonequilibrium m(t)=my—v Int.
case, let us consider a small enough remanent magnetization
and neglect corrections to the Abrikosov-Gor’kov form of Wheremy is of the order of the remanent magnetization just
the spin-spin correlator. In this case, we obtain the followingafter the magnetic field is turned off and quantitys called
set of equations which describes the superconducting transiragnetic viscosity. Thus, the superconducting critical point
tion and determines the order parameter: is slowly flowing towards its equilibrium value,

T 1 2

S(S+1) mpgug (68)

064526-9



V. M. GALITSKI AND A. I. LARKIN PHYSICAL REVIEW B 66, 064526 (2002

C point. The two asymptotics match at a temperatlit
Ns()=nso— 5[Mo—v Int]?. (69  ~2J,n. This gives a good estimate for the temperature of
the spin-glass transitiohy. At T=T,, a crossover from the
We see that after some time, which can be macroscopicalliiigh-temperature(paramagnetic asymptotics to the low-
large, the superconductivity should appear again. temperaturéspin glasgone takes place. We have shown that
Let us note that nonequilibrium effects at the superconthe actual shift of the superconducting transition due to the
ducting transition point do not necessarily have to be CONRKKY interactions is small at any temperatures. This is con-
nected with the dynamics of remanent magnetization. Annected with the small paramet@ts which exists in the
other possible experiment could be done as follows. Let usheory.
consider a superconductor with the concentration of mag- Let us also mention that our calculations are valid only for
netic impurities such as{y® <ny<ng, where agaim$%® is  temperature¥> T, whereTy is the Kondo temperature. In
the Abrikosov-Gor’kov critical concentration at zero tem- this case we can neglect higher-order processes in the elec-
perature andhg, is the real critical concentration at zero tem- tron scattering off the impurities. AT~Tx the magnetic
perature with the account of interactions. Consider largémpurities become screened, which presumably should lead
enough initial temperature so that no superconductivity igo the further enhancement of superconductivity.
present at the beginning. Then, let us cool a down sample Let us note that some deviations from the Abrikosov-
very quickly at zero field. One should expect that superconGor’kov curve have been observed experimentalljhe
ductivity appears only some time after the sample wasneasurements showed some increase in the critical concen-
cooled down, due to the slow relaxation processes in the spiration at low temperatures. Except the effects discussed in
subsystem. the present paper, this increase can also be connected with
the phenomena similar to the ones discussed in Refs. 21,22,
VI. CONCLUSION Namely, optimal fluctuations in the distribution of magnetic
. o . impurities may lead to the formation of superconducting is-
We have considered a superconductor with interactingands coupled via the Josephson effect. This effect may also
magnetic impurities. The central result of this paper is thgead to some increase in the critical concentration. However,
dependence of the superconducting properties in such a s¥gw= do not expect this increase to be very large due to the
tem upon the spin-spin autocorrelation function. At low tem'suppression of the Josephson coupling by quantum
peratures, one can expect to observe aging effects in thg,cryations?? To identify which effect is dominant at low
superconducting transition point. Thg limiting ma”ifeStatiOntemperatures, additional experiments are highly desired. In
of the aging would be the observation of the spontaneousjiher case, we expect that some interesting nonequilibrium

appearance of superconductivity after some macroscopishenomendghysteresis, aging, elcshould reveal themselves
waiting time due to a slow change in the remanent magnetiz; |6,y temperatures.

zation in the spin subsystem.
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