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Vortex interactions and thermally induced crossover from type-I to type-II superconductivity

J. Hove,* S. Mo,† and A. Sudbø‡

Department of Physics, Norwegian University of Science and Technology, N-7491 Trondheim, Norway
~Received 13 February 2002; published 29 August 2002!

We have computed the effective interaction between vortices in the Ginzburg-Landau model from large-
scale Monte Carlo simulations, taking thermal fluctuations of matter fields and gauge fields fully into account
close to the critical temperature. We find a change, in the form of what appears to be a crossover, from an
attractive to a repulsive effective vortex interactions in an intermediate range of Ginzburg-Landau parameters
kP@0.76,1#/A2 upon increasing the temperature in the superconducting state. This corresponds to a thermally
induced crossover from type-I to type-II superconductivity around a temperatureTCr(k), which we map out in
the vicinity of the metal-to-superconductor transition. In order to see this crossover, it is essential to include
amplitude fluctuations of the matter field, in addition to phase-fluctuations and gauge-field fluctuations. We
present a simple physical picture of the crossover, and relate it to observations in Ta and Nb elemental
superconductors which have low-temperature values ofk in the relevant range.
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I. INTRODUCTION

The nature of the phase transition in systems of a sc
matter field coupled to a massless gauge field has a
history in condensed-matter physics, dating at least bac
the introduction of the Ginzburg-Landau~GL! theory of
superconductivity.1 At the mean-field level, ignoring spatia
variations in gauge fields as well as matter fields leads to
prediction of a second-order phase transition in the mo
with classical mean-field exponents for all values of the
parameterk. The first attempt to seriously consider the ro
of fluctuations on the order of the metal-to-superconduc
transition was made by Halperin, Lubensky, and Ma,2 who
found that ignoring matter-field fluctuations entirely, a
treating gauge-field fluctuations exactly, resulted in a perm
nent first-order transition for all values ofk, since the gauge
field fluctuations produced an extra term;2ufu3 in the mat-
ter field sector of the theory in three spatial dimensio
where the complex matter field is denoted byf and repre-
sents the condensate order parameter.@In the context of par-
ticle physics, Coleman and Weinberg3 studied the equivalen
problem of spontaneous symmetry breaking due to radia
corrections in the Abelian Higgs model in four space-tim
dimensions, finding the additional termf4ln(f2/f0

2), where
the real matter field is denotedf and represents a scala
meson.4# Subsequently, Dasgupta and Halperin5 found, using
duality arguments in conjunction with Monte Carlo simul
tions, that when gauge-field fluctuations and phase fluc
tions of the scalar matter field are taken into account,
amplitude fluctuations are ignored, the phase transition
permanently second order.5 Bartholomew6 then reported re-
sults from Monte Carlo simulations for the case when am
tude fluctuations are also taken into account, concluding
the phase transition changes from first to second order
particular value of the GL parameterk'0.4/A2. As far as
this numerical value is concerned, note that the problem
finding a tricritical value k tri separating first- and second
order transitions is extremely demanding even by pres
day supercomputing standards7 ~see below!. Using ingenious
0163-1829/2002/66~6!/064524~8!/$20.00 66 0645
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duality arguments, Kleinert8 obtained that the change from
first- to second-order transition should occur atk'0.8/A2.
The value ofk that separates a first-order~discontinuous!
transition from a second-order~continuous! one defines a
tricritical point,9 and will hereafter be denotedk tri . Note that
to obtain the above result, it is necessary to allow for am
tude fluctuations in the superconducting order parame
which become important for small to intermediate values
k, but are totally negligible in the extreme type-II regim
k@1.10

The critical properties of a superconductor may be inv
tigated at the phenomenological level by the GL model o
complex scalar matter fieldf coupled to a fluctuating mass
less gauge fieldA. It is this feature of the gauge field tha
makes the GL model so difficult to access by the stand
techniques employing the renormalization group.2,11 The GL
model in d spatial dimensions is defined by the function
integral

Z5E DAnDfexpF2E ddxF1

4
Fmn

2 1u~]n1 iqAn!fu2

1m2ufu21lufu4G G , ~1!

whereFmn5]mAn2]nAm , q is the charge coupling the con
densate matter fieldf to the fluctuating gauge fieldAm , l is
a self-coupling, andm2 is a mass parameter which chang
sign at the mean-field critical temperature. When all dime
sionful quantities are expressed in powers of the scale re
sented byq2, the GL model may be formulated in terms o
the two dimensionless parametersy5m2/q4 andx5l/q2. In
this case,y is temperaturelike and drives the system throu
a phase transition, andx5k2 is the square of the Ginzburg
Landau parameter. Depending on the value ofx, the tran-
sition is either first order forx,xtri , or continuous for
x.xtri .

6–8

In a recent paper,7 we have determinedxtri50.295
60.025. This corresponds to a tricritical value of the G
parameter k tri5(0.7660.04)/A2, in rather remarkable
©2002 The American Physical Society24-1
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agreement with the results of Ref. 8.Moreover in Ref. 7 it
was also argued that this value of x ork is the demarcation
value which separates type-I and -II superconductiv
rather than the classical mean-field valuek51/A2. The con-
nection can be made when one realizes thatcriticality at the
metal-to-superconductor transition requires that topolog
defects of the matter field in the form of vortex loops a
stable. On the other hand, there is a connection between
cal exponents and geometric properties of a tangle of s
vortex loops.14 The fractal dimensionDH of the vortex-loop
tangle is connected to the anomalous scaling dimensionhf

~Ref. 13! of the matter field in a field theory of the vortex
loop gas, a theory dual to the original GL theory12,13 by the
relationDH1hf52. Since the anomalous scaling dimensi
is connected to the order parameter exponentb of the dual
matter field by the relation 2b5n(d221hf),13,14it follows
that a collapse of the vortex-loop tangle impliesDH5d and
henceb50 indicative of a first-order transition. Hered is the
spatial dimension of the system. Now, a collapse of
tangle in turn implies an effective attraction between vo
ces, or type-I behavior. On the other hand, a stable vor
loop tangle at the critical point, with fractal dimensionDH
,d, implies first of all type-II behavior, but alsohf.22d
andb.0, and hence a second-order transition.

The above assertion, that the tricritical value ofk sepa-
rates first-order and second-order metal-to-supercondu
transitions, and moreover also separates type-I and -II be
iors when the system is on the phase-transition lineyc(x), is
in contrast to the conventional wisdom that type-I and type
superconductivity is separated byx50.5. Based on the abov
arguments, we have proposed the phase diagram show
Fig. 1 of Ref. 7, which contains a new line separating typ
and -II superconductivity. The shape of this line was inferr
from the observation that far from the phase transiti
mean-field estimates of the boundary between type-I and
should be precise, and hence this boundary should asy
totically approachx50.5 from below as the temperature
reduced.

It is the purpose of this paper to show directly, by co
puting the effective thermally renormalized interaction b
tween vortices via large-scale Monte Carlo simulations, t
this quantity changes from being repulsive to attractive in
intermediate regimekP@0.76,1#/A2. Since the sign of the
vortex interaction is the microscopic diagnostics, in terms
vortex degrees of freedom, for distinguishing type-I sup
conductivity from type-II superconductivity, the large-sca
simulations we present in this paper confirm the above c
jectures and plausibility arguments of Ref. 7.

In an external field the GL model has classical solutions
terms of Abrikosov flux tubes,15 or Nielsen-Olesen
vortices,16 and the concept of type-I versus type-II superco
ductivity is based on the interaction between these vortic
For type-I superconductors they attract each other, whe
for type-II superconductors the interaction is repulsiv
Abrikosov15 showed that at themean-fieldlevel type-I and
type-II superconductors are separated atk51/A2. We will
refer to the value ofk separating type-I from type-II behav
ior at k I/II , which we find varies withy. It is not a sharply
06452
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defined quantity, since it represents a crossover line.
exception is aty5yc ,x5xtri , where k I/II 5k tri . Elaborate
calculations of vortex interactions have been carried out,17–20

but none of these approaches take thermal fluctuations
account. A recent overview of superconductors withk close
to 1/A2 can be found in Ref. 21; also see Ref. 22.

Superconductors withk'1/A2 were studied extensively
in the 1960s and 1970s,21 and in particular measurements o
the metals Ta and Nb demonstrated that the notion of atem-
perature independentvalue of k I/II was incorrect.23 At the
time, this was explained with a mean-field theory involvin
three GL parameters.24 Thermal fluctuations, not addresse
at the mean-field level, offer an alternative and above
simpler explanation for the observations of crossovers fr
type-I to type-II behavior in one and the same compound
the temperature is increased.

We have performed large scale Monte Carlo~MC! simu-
lations on the lattice version of Eq.~1!, with two vortices
penetrating the sample in theẑ direction. By measuring the
interaction between these two vortices we have determi
the value ofk I/II , in particular how this value is affected b
thermal fluctuations close to the critical point.

II. MODEL, SIMULATIONS AND RESULTS

To perform simulations on Eq.~1!, we have defined a
discrete version as follows:26

Z5E DaDcexp~2S@a,c#!S@a,c#

5bG (
x,i , j

1

2
a i j ~x!22

2

bG
(
x, ı̂

Re@c* ~x!eia i (x)c~x1 ı̂ !#

1b2(
x

c* ~x!c~x!1
x

bG
3 (

x
@c* ~x!c~x!#2. ~2!

In Eq. ~2!, a i(x)5aqAi(x) and a i j 5a i(x)1a j (x1 ı̂ )
2a j (x)2a j (x1 ̂). bG andb2 are related to the continuum
parametersx andy and the lattice constanta:

bG5
1

aq2
, ~3!

b25
1

bG
F61

y

bG
2

2
3.1759115~112x!

2pbG

2
~2418x28x2!~ ln6bG10.09!21.114.6x

16p2bG
2 G .

~4!

Note thatb2 contains the effect of ultraviolet renormaliza
tion in the continuum limit when the lattice consta
a→0.7,25 The model@Eq. ~2!# is defined on a numerical grid
of size Nx3Ny3Nz , corresponding to aphysical size of
Lx3Ly3Lz , with Li5Nia. All our simulations have been
on cubic systems withbG51.
4-2
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VORTEX INTERACTIONS AND THERMALLY INDUCED . . . PHYSICAL REVIEW B66, 064524 ~2002!
To impose an external magnetic field,26 we modify the
action@Eq. ~2!# by changing the field energy along one sta
of plaquettes located atx0 ,y0 in such a way that the action i
minimized fora12(x0 ,y0 ,z)522pn instead of zero, corre
sponding to forcing a number ofn flux quanta through the
system. Hence the actionS@a,c;n#, for n flux quanta forced
through the system, is given by

S@a,c;n#5S@a,c;0#1(
z

@2pna12~x0 ,y0 ,z!12p2n2#.

~5!

The second term in Eq.~5! corresponds to forcing a fluxFB
through the lattice in the negativez direction:

a12~x0 ,y0 ,z!

q
5a2q@¹3A~x0 ,y0 ,z!#z52

2pn

q
. ~6!

The crucial point is that, due to periodicity, the total flu
through the systemmust be zero, i.e.,

(
x,y

a12~x,y,z!50 ;z.

Consequently, then flux quanta of the total flux 2pn/q must
return in the1z direction. This flux returns in a manne
specified by the dynamics of the theory,26 and it is thisre-
sponsewhich is the topic of interest in the current paper.

The experimental situation corresponds to applying an
ternal magnetic fieldH, and then studying the superconduc
ors magnetic response to this field; hence a suitable ther
dynamic description is based in terms of a potentialF(H),
which is a function of theintensivefield variableH. In the
simulations we have fixedn, which is analogous to fixing the
magnetic induction, and a description based on theextensive
field variableB is more appropriate. The two approaches
related by a Legendre transformation.26 In principle the
simulations could also be performed in an ensemble wit
fixed magnetic field. Technically this would be achieved
adding the term

HLz2pn/q

to the action in Eq.~1!. This would promoten to a dynamical
variable of the theory, and be more in accordance with
experimental situation. However, a changen→n61 would
require a global relaxation, and this would give very lo
acceptance rates, i.e., inefficient simulations.

For type-I superconductors, superconductivity vanis
for H.Hc . For type-II superconductors aflux line latticeis
formed atH5Hc1

, which for smaller fields the magnetiza
tion in the sample vanishes due to the Meissner effect.
fixing n one cannot study these effect directly; however, i
possible to determine a corresponding field strength fromn;
see Ref. 26.

On the basis of simulations performed using the modifi
action @Eq. ~5!#, we have determined theeffective
temperature-renormalized interaction between two vor
lines, and searched for the value of the GL parameter
more precisely its square,xI/II , where this interaction
06452
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changes character from being effectively attractive to be
effectively repulsive. In Sec. II A we have fixedn52 and
studied the distance between the flux lines. In Sec. II B
have generalized to realn, and used this to calculate a free
energy difference between states containing one and two
tices. This is also a measure of the sign of the effect
vortex interaction, and hence an indication of whether
have type-I or type-II behavior.

To obtain the results in Figs. 1, 2, and 5 we have p
formed simulations on cubic systems of sizeN
58, 12, 16, 24, 32, and 48, withbG51.00. All simulations
have been performed in the broken symmetry statey,yc ,
with particular emphasis on the valuesy520.04, 20.10,
20.20, 20.30, and20.40. For the two largest system siz
the final datapoints are averages of approximately6

sweeps, whereas approximately 105 sweeps have been pe
formed for the four smallest system sizes.

The simulations leading to the results of Fig. 4 are qu
different. They are performed for the fixed system para
etersN524 andbG51.00, and for each value ofm we have
performed from 2.53104 to 2.53105 MC sweeps through
the lattice. One sweep through the lattice consists of~1!
conventional local Metropolis updates ofc and A, and
~2! global radial updates of ucu combined with
overrelaxation27,28 of c.

A. Effective vortex interaction

We first clarify what is meant byeffective vortex interac-
tion in this context. In the Ginzburg-Landau model at ze
temperature, one may compute a pair potential between
vortices which consists of an attractive part due to vort
core overlap, and a repulsive part due to circulation of sup
currents~or magnetic fields! outside the vortex core. Ignor
ing fluctuation effects, this furnishes an adequate way
distinguishing between type-I and -II behavior, by aski
when the attractive core contribution dominates the magn
field contribution, or vice versa. By effective interaction, w

FIG. 1. The ensemble-averaged separation^d& between the two
vortices, as a function of system size. The two upper figures
indicative of type-I behavior, whereas the two lower ones indic
type-II behavior.
4-3
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J. HOVE, S. MO, AND A. SUDBØ PHYSICAL REVIEW B66, 064524 ~2002!
mean a thermally renormalized pair interaction which fu
takes entropic contributions into account. At low tempe
tures the effective interaction will revert back to the stand
pair interaction described above, but will deviate as the te
perature is raised, and this is particularly relevant as the c
cal temperature is approached, as we shall see below
also comment further on this in the Sec. III, where we ela
rate on what we perceive to be a crossover between ty
and -II behavior.

In our simulations, the value ofn has been fixed ton
52. This corresponds to the case of two field-induced vo
ces which move around in the system under the influenc
their mutual effective interaction. During the simulations, w
have measured the transverse positionr'(z) of these two
vortices labeled by 1 and 2, and the average distance
tween them:

d5
1

Nz
(

z
ur'

1 ~z!2r'
2 ~z!u. ~7!

For type-I superconductors this distance should be indep
dent of system size, whereas for type-II superconductors
expect that this distance scales with the system size. A fin
size scaling ofd for various points in the (x,y) phase dia-
gram is shown in Fig. 1.

In the part of phase diagram which we focus on, nam
the region defined by the dotted line in Fig. 1 of Ref. 7, t
vortex lines are generally directed and almost straight, w
defined line objects. This can be seen either by directly t
ing snapshot pictures of the vortexline configurations of
system, or by computing the mean-square fluctuati
around a straight-line configuration,^ur'

i (z)2r'
i (0)u2&, for

one vortex line. This is in contrast to the situation in th
vicinity of the critical part ofyc(x) in Fig. 1 of Ref. 7, where
the vortex lines lose their line tension via a vortex-lo
blowout.12,13Consequently, we can consider the theory as
effective theory for an interacting pair of straight vortex lin

FIG. 2. The effective interaction potential between vortic
V(d) as determined from Eq.~8!. Observe the difference in vertica
scale, in the lower panels~type II! the interactions are much weake
than in the upper panels~type I!. The graphs correspond to the sam
points in (x,y) as those in Fig. 1.
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which interact with the dimensionless potentialV(d). If we
make this assumption, the probability of finding the vortic
separated by a distanced in a system ofN3 lattice points
with periodic boundary conditions, is given by

PN~d!5
e2V(d)VN~d!

Zd
, ~8!

whereVN(d) is the number of configurations with a tran
verse vortex-vortex distance ofd, andZd is just a normaliza-
tion factor. VN(d) can be calculated, either analytically i
the continuum limit,

VN~d!55 2pd d,
N

2

2NFp2 22arccosS N

2dD G N

2
,d,

N

A2
,

~9!

or by simple geometric counting in the case of a lattice.
the case of noninteracting vortices, i.e.,V(d)50, the expec-
tation value ofd is determined only byVN(d), and we find
the numerical value

d0[^d&5
1

Zd
E

0

N/A2
dd VN~d!d'0.38N. ~10!

The separationd0 defined in Eq.~10! will be used to
establish a numerical value ofxI/II . Namely, we can compute
the averaged distance between vortices at fixedx varying y,
or vice versa. In the latter case, we will use the criterion t
if ^d& exceeds some valuecd0 wherec is some fraction, then
we have type-II behavior; otherwise it is type-I behavior. T
quantity^d& at fixedy will turn out to be an S-shaped curv
as a function ofx, increasing from small values to larg
values asx is increased. We interpret this as yet anoth
manifestation of the crossover from type-I to type-II beha
ior, and we have chosen to locate the crossover regionxI/II at
the value ofx where the curves change most rapidly, which
roughly when̂ d&'d0/2. As we shall see~see Fig. 6!, differ-
ent crossover criteria give consistent results. The quan
PN(d) can be estimated from histograms, and then we
use Eq.~8! to determine the pair potential. Depending o
whether we consider type-I or type-II superconductors
expect to see an attractive or a repulsive potential. Figur
shows the potentialV(d) for the same points of the phas
diagram as Fig. 1.

B. Free energy

In Eq. ~5! we have usedn to indicate an integer number o
flux tubes, but in principle there is no reason to limitn to
integer values, and we will useS@a,c,m# to denote a gen-
eralization to realn. We have considered the free-energy d
ference between a state containing zero vortices, i.e.,m50
and a state containingn vortices. We cannot measure abs
lute values of the free energy, but by differentiating26

e2F(m)5Tre2S(m) ~11!
4-4
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VORTEX INTERACTIONS AND THERMALLY INDUCED . . . PHYSICAL REVIEW B66, 064524 ~2002!
with respect tom, and then integrating up ton, we can cal-
culateDF(n)5F(n)2F(0),

~12!

To calculateDF, we have then variedm in steps ofDm
50.05, and performed the integration in Eq.~12! numeri-
cally. Using shift symmetries, it can be shown26 thatW(n) is
equal to

W~n!5
2n

NxNy
, ~13!

and the behavior for intermediate real values is shown in F
3. Increasingn from 0 to 1 costs a free energyDF(1), and
adding two vortices costs an amountDF(2). Wewill always
have DF(2).DF(1), but thequestion is whetherDF(2)
:2DF(1). We mayregardF(n12)1F(n)22F(n11) as
the discrete second derivative of the free energy with res
to the particle number, which is nothing but the inverse co
pressibilityK21 of the vortex system. In the thermodynam
limit this quantity can never become negative. However,
vanishing signals the onset ofphase separationof the vortex
system, which we again interpret as a lack of stability of
vortex-loop tangle, characteristic of type-I behavior.

C. Vortex compressibility, separation, and crossover

We next define a quantityDT by the relation

DT5
DF~1!

Lz
2

DF~2!

2Lz
, ~14!

FIG. 3. W(m) The straight line corresponds to 2m/NxNy which
according to Eq.~13! should be satisfied form integer.
06452
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which means thatDT measures the relative free-energy d
ference between adding one vortex to the system and ha
that adding two vortices to the system. Intuitively it is ther
fore clear that it measures the sign of the vortex interactio
and hence determines whether we are in the type-I or typ
regime.DT.0 signals attractive interactions, i.e., type-I b
havior, whereasDT<0 signals repulsive interactions, i.e
type-II behavior. We have calculatedDT by using Eqs.~12!
and ~14!; the results are shown in Fig. 4. The main quali
tive result from these simulations is again thatxI/II (y) is a
declining function ofy. Note also thatK2152DT, and
hence a positiveDT clearly implies phase separation and t
instability of the vortex system, characteristic of type-I b
havior. This is precisely what we see for smallx in Fig. 4.

Finite-size scaling of̂ d& and studies ofDT differentiate
nicely between strongly type-I and type-II superconducto
but it is difficult to locate a value ofxI/II (y) with any great
precision. Figure 5 showŝd&(x) for different values ofy,
along with a horizontal line atd0/2, whered0 is the average
separation between vortices had they been noninterac
We have found thatd0'0.38N in our simulations. We have
rather arbitrarily, taken the interception of this horizontal li
with the curve^d&(x) asxI/II .

The curves of̂ d&(x) do not get significantly sharper with
increasing system size, and there are no particular sharp
tures in S@a,c,2# as x is increased beyondxI/II . Figure 6
shows the intercepts from Fig. 5. Due to the features in
curves of Fig. 5, and how the results of Fig. 6 are obtain
from them, we tentatively conclude that the computed line
Fig. 6, corresponding to the dashed line of Fig. 1 in Ref. 7
a crossoverand not a phase transition. However, we com
ment further on this in the concluding section.

As already indicated, there is some arbitrariness in
location ofxI/II (y) in Fig. 6; however the four points labele
by ~IA, IB ! and~IIA, IIB ! clearly are in the type-I and type-I
regimes, respectivly. This is demonstrated in Figs. 1 and

III. DISCUSSION

From Figs. 1 and 2 we conclude that there is a crosso
line separating effective attractive vortex interactions fro
effective repulsive ones, i.e., types I and II. This line c
either be crossed by changingx, i.e., IA→ IIA, or by chang-
ing the temperature i.e., IB→ IIB in Fig. 6. This means that
for x values in a suitable range, we can have in princi
have atemperature inducedcrossover from type-I to type-II
superconductivity. Finally, we note thatxI/II (y) deviates sig-
nificantly from the mean-field value ofxI/II 50.5.

Deep in the type-I regime, we find clear evidence ofat-
tractive interactions. In the type-II regime the repulsive i
teractions appear to be weak, and the results are essen
also consistent with tworandomly placedvortex lines, i.e.,
not interacting, but not consistent with an attractive for
between the vortices. Therefore, what the results unequ
cally show is that by fixing the material parameterx and
varying the temperature like variabley, the character of the
effective pair-potential is altered inside the superconduct
regime, significantly away from the critical line.
4-5
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A. Simulations

The simulations withn52, and the simulations with a
realmP@0,2# are quite different, and we will discuss them
turn. An important feature ofall the simulations in the
present work isslow dynamics.

For then52 simulation, where we have monitoredd, we
find that deep in the type-I regime the simulations are qu
straightforward, the vortices stay close together with o
small fluctuations, and a moderate number of sweeps is
ficient to obtain good statistics. However, when we incre
x toward xI/II the effect isnot that d stabilizes at a highe
value; instead we obtain fluctuations between a type-I-
state where the two vortices are close together, and a t
II-like state with large vortex-vortex separation. This pictu
persists asx is increased into the type-II regime, the on
difference is that the fraction of time spent in the type-I li
state decreases. In fact the results of Figs. 1 and 2 are in
type-II region, quite close to what we would obtain fro

FIG. 4. DT(x) for different values ofy. The attraction vanishes
for xI/II ,0.5, andxI/II (y) is an increasing function ofuyu.

FIG. 5. The ensemble-averaged distance between a pair of
tices,^d&, as a function of the square of the Ginzburg-Landau
rameterx5k2, for various values of the temperaturelike variabley.
The horizontal line is atd0/2. Increasingy amounts to increasing th
temperature.
06452
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noninteracting vortices. What makes the simulations diffic
is that moving a vortex line in the transverse direction is
global change, and thereby very slow. Time series ofd show
characteristic time scales of 104 sweeps, so long simulation
;106 sweeps over the lattice are required to obtain acce
able accuracy. A truly high-precision determination
xI/II (y) would surely benefit from a specialized algorithm f
the MC updates.

To obtain good results one should take theN→` limit.
The conclusions from the results of Fig. 1 are based on
limit, whereas those drawn from Figs. 2, 5, and 6 are ba
on the fixed system sizeN548. We have not performed
systematic study of finite-size effects, but the curves in Fig
do havesubject to finite-size effects in them. The trend
that curves move to the right upon increasing system s
this very likely explains the apparent discrepancy betwe
the tricritical point~where theN→` limit has been applied!,
and the remaining points in Fig. 6.

Note that Eq.~1! is a continuum field theory, andxI/II (y)
is not a critical point; hence the continuum limitbG→`
should be taken. Our experience from the large-scale si
lations performed in Ref. 7 indicates thatbG51.00 provides
conditions in the simulations already quite close to the c
tinuum limit. We have therefore chosen to work withbG
51.00, and focused our efforts on considering large syste
and long simulations.

The Monte-Carlo computations ofDT have been even
more time consuming, because we have had to do the s
lations for 41 different values ofm. We have therefore lim-
ited ourselves to considering only the systemL524,
bG51.00; for a discussion of finiteN / finite bG effects, see
Ref. 26. The relaxation time for these simulations has b
particularly long in the limitsm→12 andm→221, and we
therefore have performed much longer simulations in th

r-
-

FIG. 6. The computed crossover lineyI/II (x) separating type-I
and II superconductivity. The black circular filled points are giv
by the intercepts betweend0/2 and the curves in Fig. 5. The fou
points labeled by IA, IB, IIA, and IIBare the ones that were co
sidered in detail in Figs. 1 and 2. The point markedT is the tric-
ritical point in Fig. 1 of Ref. 7, see the discussion of finite-si
effects in Sec. III A. The solid line connecting the points ispurelya
guide to the eye. The computed line above corresponds to the d
line of Fig. 1 in Ref. 7 in the vicinity of (xtri ,ytri).
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limits than for intermediate values ofm. From Fig. 3 and Eq.
~13! it is seen thatW(m) is a quantity of orderO(N22)
whose finiteness originates in the difference between
O(1) quantities. Consequently, it is difficult to get nume
cally precise results. This has in particular been the cas
the limits m→12 andm→22.

B. Crossover

The physical picture that emerges for the thermal ren
malization of the vortex interactions, is the following. At lo
temperatures, for thek values we consider, the system is
the type-I region with a fairly deep minimum in the effectiv
pair potential between vortices at short distances, leadin
an attractive interaction. At very short distances, we find
steric repulsion on the scale of the lattice constants in
system due to the large Coulomb barrier that must be o
come to occupy a link with two or more elementary vort
segments. This length scale represents the size of the vo
core in the problem. Upon increasing the temperature to
vicinity of the line yc(x), we do not find large transvers
meanderings of the individual vortex lines as we move alo
each vortex line; rather the vortex lines are essentia
straight. Therefore, we believe that it isnot entropic repul-
sion due to the bare steric repulsion in the problem, of
type which it seems reasonable to invoke forstrongly fluc-
tuating elastic strings29,30 that renormalizes the vortex inter
actions in the way seen in Fig. 2. Rather, what appear
happen is that the vortex lines slosh back and forth in
minimum of the effective potential well as essentia
straight lines. Hence, to a larger and larger extent as temp
ture is increased, they experience the hard wall in the in
actions at small distances, and the weak attraction at la
distances, effectively washing out the minimum in the pote
tial, thus making it effectively more repulsive.

This is also seen in our simulations~not shown in any of
the figures! when we monitor the transverse meanderi
fluctuations of each vortex line,^ur'(z)2r'(0)u2&, as well
as the mean-square fluctuations of the intervortex dista
^d2&2^d&2, where d is defined in Eq.~7!. The former is
small deep in the superconducting regime, and remains s
as the lineyc(x) in Fig. 1 of Ref. 7 is approached, while th
latter increases dramatically as the dotted crossover lin
crossed. It is precisely this fact which makes the simulatio
extremely time consuming. One should, however, keep
mind that, since we are considering the full GL theory in o
t
r
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simulations, and not the linearized London limit, it is in a
case a drastic simplification to view the effective interact
between vortices as a simple pair potential.

Finally, we note that, although our present simulatio
which by necessity are on finite-sized systems, indicate
the change from type-I to type-II behavior is a crossover,
cannot rule out the possibility that it is elevated to a tr
phase-transition in the thermodynamic limit. More work
needed to clarify if this is indeed the case, but this will ha
to await the next generation of massive parallell comput
Questions that need to be addressed in this context,
What is the order parameter of such a transition, and w
symmetry, if any, is being broken.

IV. CONCLUSION

We have considered the effective interaction between
vortices in the full GL model, and how this effective inte
action is influenced by thermal fluctuations. We have
cluded fluctuations in the gauge fields, as well as the ph
and amplitude fluctuations of the complex scalar matter fi
of the problem. We have found that the effective interact
changes from being attractive to being repulsive atxI/II . This
means a change from type-I to type-II behavior. We ha
found thatxI/II is below the standard quoted value of 0.5, a
is a function of the temperature-like parametery. This means
that at the critical point, the value of the GL parameter t
separates type-I from type-I behavior is smaller than 1/A2.
The line xI/II (y) appears to be a crossover, and not a t
phase transition. The above seems to offer a simple expl
tion for the experimental observation that elemental Ta
Nb superconductors show a crossover from type-I to typ
behavior as the temperature is increased towardsTc . Previ-
ous explanations based on mean-field theories and no
volving thermal fluctuations required two additional tem
perature dependentk-values to be defined.24
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