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Vortex interactions and thermally induced crossover from type-I to type-ll superconductivity
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We have computed the effective interaction between vortices in the Ginzburg-Landau model from large-
scale Monte Carlo simulations, taking thermal fluctuations of matter fields and gauge fields fully into account
close to the critical temperature. We find a change, in the form of what appears to be a crossover, from an
attractive to a repulsive effective vortex interactions in an intermediate range of Ginzburg-Landau parameters
xe[0.76,1]/\/2 upon increasing the temperature in the superconducting state. This corresponds to a thermally
induced crossover from type-I to type-Il superconductivity around a temperggy(e), which we map out in
the vicinity of the metal-to-superconductor transition. In order to see this crossover, it is essential to include
amplitude fluctuations of the matter field, in addition to phase-fluctuations and gauge-field fluctuations. We
present a simple physical picture of the crossover, and relate it to observations in Ta and Nb elemental
superconductors which have low-temperature values iof the relevant range.
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[. INTRODUCTION duality arguments, Kleinétobtained that the change from a
first- to second-order transition should occurxat0.8//2.
The nature of the phase transition in systems of a scaldafhe value ofk that separates a first-ordéliscontinuous
matter field coupled to a massless gauge field has a longansition from a second-ordécontinuoug one defines a
history in condensed-matter physics, dating at least back twicritical point? and will hereafter be denoted; . Note that
the introduction of the Ginzburg-Landa{(GL) theory of to obtain the above result, it is necessary to allow for ampli-
superconductivity. At the mean-field level, ignoring spatial tude fluctuations in the superconducting order parameter,
variations in gauge fields as well as matter fields leads to th&hich become important for small to intermediate values of
prediction of a second-order phase transition in the models, but are totally negligible in the extreme type-Il regime
with classical mean-field exponents for all values of the GLK>1.7 ) )
parameter. The first attempt to seriously consider the role . 1€ critical properties of a superconductor may be inves-
of fluctuations on the order of the metal-to-superconductoPgated at the phenomenological level by the GL model of a
transition was made by Halperin, Lubensky, and Maho complex scalar matter fielg¢ coupled to a fluctuating mass-

: : : ; ; less gauge fieldh. It is this feature of the gauge field that
found that ignoring matter-field fluctuations entirely, and e
treating gauge-field fluctuations exactly, resulted in a perm makes the GL model so difficult to access by the standard

nent first-order transition for all values &f since the gauge- atechnlques employing the renormalization gréupThe GL

. . . model ind spatial dimensions is defined by the functional
field fluctuations produced an extra tera-| ¢|° in the mat- P y

. . . ) . __integral
ter field sector of the theory in three spatial dimensions, g

where the complex matter field is denoted $yand repre-
sents the condensate order paraméterthe context of par- Z= f DAVDqSeXr{ - f ddx
ticle physics, Coleman and Weinb@gfudied the equivalent

problem of spontaneous symmetry breaking due to radiative o 12 4
corrections in the Abelian Higgs model in four space-time +m?@|*+ A o]
dimensions, finding the additional terdif‘ln(¢2/¢§), where

the real matter field is denoted and represents a scalar whereF,,=d,A,—d,A,, qis the charge coupling the con-
mesort!] Subsequently, Dasgupta and Halpefiound, using  densate matter fielgh to the fluctuating gauge field ,, \ is
duality arguments in conjunction with Monte Carlo simula- a self-coupling, andan? is a mass parameter which changes
tions, that when gauge-field fluctuations and phase fluctuesign at the mean-field critical temperature. When all dimen-
tions of the scalar matter field are taken into account, busionful quantities are expressed in powers of the scale repre-
amplitude fluctuations are ignored, the phase transition isented byg?, the GL model may be formulated in terms of
permanently second ordeBartholomef then reported re-  the two dimensionless parametgrs m?/g* andx=\/g?. In

sults from Monte Carlo simulations for the case when ampli-this casey is temperaturelike and drives the system through
tude fluctuations are also taken into account, concluding that phase transition, and= «? is the square of the Ginzburg-
the phase transition changes from first to second order at lzandau parameter. Depending on the valuexothe tran-
particular value of the GL parameter~0.4//2. As far as  sition is either first order fox<x;, or continuous for
this numerical value is concerned, note that the problem ok>X;.°~®

finding atricritical value «y; separating first- and second-  In a recent paper, we have determinedk,;=0.295
order transitions is extremely demanding even by presernt0.025. This corresponds to a tricritical value of the GL
day supercomputing standafdsee below. Using ingenious  parameter «,;=(0.76+0.04)/\/2, in rather remarkable

1F2+|(9+'A |2
2Futld,+igA,) ¢

} ) @
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agreement with the results of Ref. Bloreover in Ref. 7 it defined quantity, since it represents a crossover line. The
was also argued that this value of x eris the demarcation exception is aty=y.,X=Xyi, where k= kyi. Elaborate
value which separates type-l and -l superconductivity,calculations of vortex interactions have been carried 6t
rather than the classical mean-field valke= 1/y/2. The con-  but none of these approaches take thermal fluctuations into
nection can be made when one realizes thiicality at the — account. A recent overview of superconductors witklose
metal-to-superconductor transition requires that topologicalo 142 can be found in Ref. 21; also see Ref. 22.

defects of the matter field in the form of vortex loops are ~Superconductors witk~1/y2 were studied extensively
stable. On the other hand, there is a connection between crifid the 1960s and 19768 and in particular measurements on
cal exponents and geometric properties of a tangle of suci'® metals Ta and Nb demonstrated that the notiontefra

. . 3
vortex loopst* The fractal dimensiom,, of the vortex-loop ~ Perature independentalue of x, was incorrect® At the

tangle is connected to the anomalous scaling dimensipn time, this was explained with a mean-field theory involving
(Ref. 13 of the matter field in a field theory of the vortex- three GL parameter$. Thermal fluctuations, not addressed

loop gas, a theory dual to the original GL theBri? by the at the mean-field level, offer an alternative and above all
reIationD’ 45 =2 Since the anomalous scalin dimensionsimpler explanation for the observations of crossovers from
is connecHtedntq(; thé order parameter exporléruifgthe qual type-I to type-ll behavior in one and the same compound as

. ! _ the temperature is increased.
matter field by the relation 2= v(d— 2+ 7,4),"***it follows We have performed large scale Monte CaiC) simu-
that a collapse of the vortex-loop tangle implieg=d and

Y dinat g ” v s th lations on the lattice version of Eql), with two vortices
enfe,l[%a_o in |9at|vefotha |rst-;)r erlt\:ansmon. ||_||e st Ef} th enetrating the sample in tteedirection. By measuring the

spa Ila . |mens_|on|_o € ?fys gm. ow, _a Ct? apse o . interaction between these two vortices we have determined

tangle in turn implies an effective attraction between vorti-y '\ 2110 ofk, , in particular how this value is affected by

ces, or type-I behavior. On the other hand, a stable vorteXy,armal fluctuations close to the critical point.
loop tangle at the critical point, with fractal dimensi@ny
<d, implies first of all type-Il behavior, but alsg,>2-d
and 8>0, and hence a second-order transition.
The above assertion, that the tricritical value okepa- To perform simulations on Eq.l), we have defined a
rates first-order and second-order metal-to-superconductaliscrete version as follow:
transitions, and moreover also separates type-l and -Il behav-
iors when the system is on the phase-transition yig(&), is
in contrast to the conventional wisdom that type-I and type-I|
superconductivity is separated ky 0.5. Based on the above 1 5
I2zguments, we hav_e propos_ed the phz_ise dlagram shown_ in — g 2 E0[”_()()2__ 2 Re[ ¢* (x)€' 4™ y(x+1)]
g. 1 of Ref. 7, which contains a new line separating type-I XI<j Bs %
and -l superconductivity. The shape of this line was inferred
from the observation that far from the phase transition, X
mean-field estimates of the boundary between type-l and -l +'82§ ¥ (%) ‘MX)JFB_S ; [y 00 9(0]2. 2
should be precise, and hence this boundary should asymp- ¢
trce)tclj(lzjacllla%japproacl*x—o.S from below as the temperature is |, Eq. (2, a;()=agA(x) and a;;=a;(x) + a;(x+1)
It is the purpose of this paper to show directly, by com-
puting the effective thermally renormalized interaction be-
tween vortices via large-scale Monte Carlo simulations, that

Il. MODEL, SIMULATIONS AND RESULTS

z= f DaDyexp— S a,y]) S a,v]

—aj(x) - aj(x+j). Be and B, are related to the continuum
parameters andy and the lattice constart

this quantity changes from being repulsive to attractive in the Bezi, (3)
intermediate regimexe[0.76,1]/\2. Since the sign of the ag?

vortex interaction is the microscopic diagnostics, in terms of

vortex degrees of freedom, for distinguishing type-I super- 1 y  3.17591151+ 2x)

conductivity from type-Il superconductivity, the large-scale ~ B2=—5—| 6+ — — T

simulations we present in this paper confirm the above con- Pe Ba The

jectures and plausibility arguments of Ref. 7. 2
In an external field the GL model has classical solutions in _ (74+8x=8x)(In6f+0.09 ~ 1.1+ 4.& _
terms of Abrikosov flux tube¥ or Nielsen-Olesen 16m232
vortices'® and the concept of type-I versus type-Il supercon- 4
ductivity is based on the interaction between these vortices. “)
For type-I superconductors they attract each other, whereasote thatg, contains the effect of ultraviolet renormaliza-
for type-ll superconductors the interaction is repulsive.tion in the continuum limit when the lattice constant
Abrikosov*® showed that at thenean-fieldlevel type-l and  a—0."?°The mode[Eq. (2)] is defined on a numerical grid
type-Il superconductors are separateckat1/y2. We will  of size Ny X Ny XN, corresponding to ghysical size of
refer to the value ok separating type-I from type-Il behav- L, XL, XL,, with Li=N;a. All our simulations have been
ior at x;, , which we find varies withy. It is not a sharply on cubic systems witlBg=1.
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To impose an external magnetic fiéfiwe modify the

action[Eq. (2)] by changing the field energy along one stack )

of plaquettes located at,,y, in such a way that the action is
minimized for aq5(Xq,Yq,2) = —27n instead of zero, corre-
sponding to forcing a number af flux quanta through the
system. Hence the actid «, ¢;n], for n flux quanta forced

through the system, is given by

S[a’,lﬂyn]zs[a.lﬂ,o]‘l'; [ZWnalz(Xo,yo,Z)+2’7T2n2].
(5)

The second term in Eq5) corresponds to forcing a fluk g
through the lattice in the negatizedirection:

Xg,Y0,Z 2N
Mzazq[VXA(xo,yo,z)]zz—i.

q q ©

through the systermust be zerpi.e.,

> ai(xy,2)=0 Yz
X,y

Consequently, tha flux quanta of the total flux 2n/q must
return in the+z direction. This flux returns in a manner
specified by the dynamics of the thedfyand it is thisre-
sponsewhich is the topic of interest in the current paper.
The experimental situation corresponds to applying an e
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FIG. 1. The ensemble-averaged separatinbetween the two
. _ . vortices, as a function of system size. The two upper figures are
The crucial point is that, due to periodicity, the total flux jygicative of type-I behavior, whereas the two lower ones indicate

type-Il behavior.

changes character from being effectively attractive to being
effectively repulsive. In Sec. Il A we have fixat=2 and
studied the distance between the flux lines. In Sec. Il B we
have generalized to real and used this to calculate a free-
energy difference between states containing one and two vor-
tices. This is also a measure of the sign of the effective

ternal magnetic field, and then studying the superconduct- ave type-I or type-Il behavior.

ors magnetic response to this field; hence a suitable therm

dynamic description is based in terms of a potenfigH),
which is a function of thentensivefield variableH. In the
simulations we have fixed, which is analogous to fixing the
magnetic induction, and a description based onetktensive

related by a Legendre transformatihln principle the

simulations could also be performed in an ensemble with §V€€PS, W _
fixed magnetic field. Technically this would be achieved byformed for the four smallest system sizes.

adding the term

HL,27n/q

to the action in Eq(1). This would promoten to a dynamical
experimental situation. However, a change:n+1 would

acceptance rates, i.e., inefficient simulations.

for

cubic systems of

yortex interaction, and hence an indication of whether we

To obtain the results in Figs. 1, 2, and 5 we have per-
med simulations on

sizél

=8, 12, 16, 24, 32, and 48, witBs=1.00. All simulations
have been performed in the broken symmetry syatey.,
with particular emphasis on the valugs- —0.04, —0.10,

field variableB is more appropriate. The two approaches are~ 020, —0.30, and—0.40. For the two largest system sizes
the final datapoints are averages of approximately 10

hereas approximately’ I§eeps have been per-

The simulations leading to the results of Fig. 4 are quite
different. They are performed for the fixed system param-
etersN=24 andB;=1.00, and for each value of we have
performed from 2.5 10* to 2.5<10° MC sweeps through
the lattice. One sweep through the lattice consistq10f
variable of the theory, and be more in accordance with th@gonventional local Metropolis updates @f and A, and
combined with

)

For type-lI superconductors, superconductivity vanishes

for H>H_. For type-Il superconductorsflux line latticeis
formed atH= He,, which for smaller fields the magnetiza-

see Ref. 26.

action [Eq.(5)], we have determined theeffective

more precisely its squarexy,, where this interaction

: _ _ : global
require a global relaxation, and this would give very low gyerrelaxatio’ 28 of 4.

radial

updates of | ]|

A. Effective vortex interaction

We first clarify what is meant bgffective vortex interac-
tion in the sample vanishes due to the Meissner effect. Byion in this context. In the Ginzburg-Landau model at zero
fixing n one cannot study these effect directly; however, it istemperature, one may compute a pair potential between two
possible to determine a corresponding field strength mpm vortices which consists of an attractive part due to vortex-
core overlap, and a repulsive part due to circulation of super-
On the basis of simulations performed using the modifiecturrents(or magnetic fieldsoutside the vortex core. Ignor-
ing fluctuation effects, this furnishes an adequate way of
temperature-renormalized interaction between two vortexlistinguishing between type-lI and -1l behavior, by asking
lines, and searched for the value of the GL parameter, owhen the attractive core contribution dominates the magnetic
field contribution, or vice versa. By effective interaction, we
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A (X=0.25 Y="0.10) , 1B (X=0.30¥=030) which interact with the dimensionless potenti&ld). If we
) /w » make this assumption, the probability of finding the vortices
; e separated by a distanakin a system ofN® lattice points
6 \\ //”” 6 with periodic boundary conditionss given by
-10 oy -10
-V(d)
14 14 e Qn(d)
0 6 12 18 0 6 12 18 Py(d)= ————, 8
, ] M= —— ®
, A (x=040Y=0.10) , 1B (X=030Y=004 where Q(d) is the number of configurations with a trans-
| ] verse vortex-vortex distance df andZy is just a normaliza-
f e f i tion factor. Qy(d) can be calculated, either analytically in
0 % MU {Ht:; 0 [H THHH}H{ th Hi limit
| H{H o b Hm e continuum limit,
SE o |
2 2 N
0 8 16 24 32 0 8 16 24 32 2md d<—
d d 2

Qn(d)=
2N

(€)

FIG. 2. The effective interaction potential between vortices T N N N
V(d) as determined from E@8). Observe the difference in vertical 2 2arcco€m) } §<d<ﬁ'
scale, in the lower panel$ype Il) the interactions are much weaker
than in the upper panelgype ). The graphs correspond to the same o py simple geometric counting in the case of a lattice. In
points in (.y) as those in Fig. 1. the case of noninteracting vortices, i¥(d) =0, the expec-

i o i i tation value ofd is determined only by)(d), and we find
mean a thermally renormalized pair interaction which fully ihe numerical value

takes entropic contributions into account. At low tempera-

tures the effective interaction will revert back to the standard 1 (NZ

pair interaction described above, but will deviate as the tem- do=(d)= Z—f dd Qp(d)d~0.38N. (10
perature is raised, and this is particularly relevant as the criti- d/0o

cal temperature is approached, as we shall see below. We . _ _ )

also comment further on this in the Sec. Ill, where we elabo- 1h€ Separatiord, defined in Eq.(10) will be used to

rate on what we perceive to be a crossover between type§Stablish a numerical value gf,, . Namely, we can compute
and -1l behavior. the averaged distance between vortices at fixedryingy,

In our simulations. the value i has been fixed ta or vice versa. In the latter case, we will use the criterion that
— 2. This corresponds to the case of two field-induced vortif (d) €xceeds some valuel, wherec is some fraction, then
ces which move around in the system under the influence o€ have type-Il behavior; otherwise it is type-I behavior. The
their mutual effective interaction. During the simulations, weduantity(d) at fixedy will turn out to be an S-shaped curve
have measured the transverse positioiz) of these two S & function ofx, increasing from small values to large

vortices labeled by 1 and 2, and the average distance b¥@/U€s asx is increased. We interpret this as yet another
tween them: manifestation of the crossover from type-I to type-Il behav-

ior, and we have chosen to locate the crossover regjprat
1 the value ofk where the curves change most rapidly, which is
d= > It -r3(2). (7)  roughly wher{d)~dy/2. As we shall seésee Fig. 6, differ-
z 2 ent crossover criteria give consistent results. The quantity

- . Pn(d) can be estimated from histograms, and then we can
For type-l superconductors this distance should be mdeperllj—Se Eq.(8) to determine the pair potential. Depending on
dent of system size, whereas for type-Il superconductors Wﬁ/hethef we consider type-l or type-Ii supérconductors we
expect that this distance scales with the system size. Afiniteéxpect to see an attractive or a repulsive potential. Figure 2
size scaling ofd for various points in thex,y) phase dia- X

gram is shown in Fig. 1 shows the potential/(d) for the same points of the phase

In the part of phase diagram which we focus on, namely,dlagram as Fig. 1.

the region defined by the dotted line in Fig. 1 of Ref. 7, the

vortex lines are generally directed and almost straight, well- B. Free energy

defined line objects. This can be seen either by directly tak- |n Eq.(5) we have used to indicate an integer number of
ing snapshot pictures of the vortexline configurations of theflux tubes, but in principle there is no reason to limito
system, or by computing the mean-square fluctuationgnteger values, and we will usg «,,m] to denote a gen-
around a straight-line configuratiofir' (z)—r' (0)[?), for  eralization to reah. We have considered the free-energy dif-
one vortex line. This is in contrast to the situation in the ference between a state containing zero vortices,me-0
vicinity of the critical part ofy.(x) in Fig. 1 of Ref. 7, where and a state containing vortices. We cannot measure abso-
the vortex lines lose their line tension via a vortex-looplute values of the free energy, but by differentiaihg
blowout!2*3Consequently, we can consider the theory as an

effective theory for an interacting pair of straight vortex lines e F(M=Tre=S(m (11)
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FIG. 3. W(m) The straight line corresponds tar2N,N, which
according to Eq(13) should be satisfied fam integer.

with respect tom, and then integrating up to, we can cal-
culateAF(n)=F(n)—F(0),

AF(n)
L.q*

ZZWﬁgf dm
0

X

1
2m+ ']TT< E alz(xo,yo,z)> }

=W(m)

(12
To calculateAF, we have then variedn in steps of Am
=0.05, and performed the integration in E42) numeri-
cally. Using shift symmetries, it can be shot¥thatW(n) is
equal to

2n

W= Ny
xNy

13
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which means thaA T measures the relative free-energy dif-
ference between adding one vortex to the system and half of
that adding two vortices to the system. Intuitively it is there-
fore clear that it measures the sign of the vortex interactions,
and hence determines whether we are in the type-I or type-l|
regime.AT>0 signals attractive interactions, i.e., type-1 be-
havior, whereasAT<0 signals repulsive interactions, i.e.,
type-1l behavior. We have calculatedT by using Eqs(12)

and (14); the results are shown in Fig. 4. The main qualita-
tive result from these simulations is again thxaf(y) is a
declining function ofy. Note also thatk '=—AT, and
hence a positivA T clearly implies phase separation and the
instability of the vortex system, characteristic of type-l be-
havior. This is precisely what we see for snwalh Fig. 4.

Finite-size scaling ofd) and studies oAT differentiate
nicely between strongly type-l and type-Il superconductors,
but it is difficult to locate a value ok, (y) with any great
precision. Figure 5 show&)(x) for different values ofy,
along with a horizontal line ad,/2, whered, is the average
separation between vortices had they been noninteracting.
We have found thadly~0.38N in our simulations. We have,
rather arbitrarily, taken the interception of this horizontal line
with the curve(d)(x) asxy, .

The curves ofd)(x) do not get significantly sharper with
increasing system size, and there are no particular sharp fea-
tures in§ «,#,2] asx is increased beyond,, . Figure 6
shows the intercepts from Fig. 5. Due to the features in the
curves of Fig. 5, and how the results of Fig. 6 are obtained
from them, we tentatively conclude that the computed line of
Fig. 6, corresponding to the dashed line of Fig. 1 in Ref. 7, is
a crossoverand not a phase transition. However, we com-
ment further on this in the concluding section.

As already indicated, there is some arbitrariness in the
location ofxy, (y) in Fig. 6; however the four points labeled
by (IA, IB) and(llA, IIB) clearly are in the type-I and type-II
regimes, respectivly. This is demonstrated in Figs. 1 and 2.

Ill. DISCUSSION

and the behavior for intermediate real values is shown in Fig. From Figs. 1 and 2 we conclude that there is a crossover

3. Increasingn from 0 to 1 costs a free energyF (1), and
adding two vortices costs an amoukiE (2). Wewill always
have AF(2)>AF(1), but thequestion is whetheAF(2)
=2AF(1). We mayregardF(n+2)+F(n)—2F(n+1) as

line separating effective attractive vortex interactions from
effective repulsive ones, i.e., types | and Il. This line can
either be crossed by changirgi.e., IA— lIA, or by chang-
ing the temperature i.e., 1B 1IB in Fig. 6. This means that

the discrete second derivative of the free energy with respedbr x values in a suitable range, we can have in principle
to the particle number, which is nothing but the inverse comhave atemperature inducedrossover from type-I to type-I|
pressibilityK ~! of the vortex system. In the thermodynamic superconductivity. Finally, we note thaj, (y) deviates sig-
limit this quantity can never become negative. However, itsnificantly from the mean-field value of;;, =0.5.

vanishing signals the onset phase separationf the vortex

Deep in the type-l regime, we find clear evidenceabf

system, which we again interpret as a lack of stability of thetractive interactions. In the type-Il regime the repulsive in-

vortex-loop tangle, characteristic of type-1 behavior.
C. Vortex compressibility, separation, and crossover
We next define a quantith T by the relation

_AF(1) AF(2)
L 2L,

AT (14)

teractions appear to be weak, and the results are essentially
also consistent with tweandomly placedvortex lines, i.e.,

not interacting, but not consistent with an attractive force
between the vortices. Therefore, what the results unequivo-
cally show is that by fixing the material parameteand
varying the temperature like variabje the character of the
effective pair-potential is altered inside the superconducting
regime, significantly away from the critical line.
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FIG. 4. AT(x) for different values ofy. The attraction vanishes FIG. 6. The computed crossover liyg,(x) separating type-I
for x,,,<0.5, andxy, (y) is an increasing function df|. and Il superconductivity. The black circular filled points are given
by the intercepts betweeth/2 and the curves in Fig. 5. The four
A. Simulations points labeled by IA, 1B, IIA, and IIBare the ones that were con-

] ) ) ) ) ) sidered in detail in Figs. 1 and 2. The point markeds the tric-
The simulations withn=2, and the simulations with a ritical point in Fig. 1 of Ref. 7, see the discussion of finite-size

realme [0,2] are quite different, and we will discuss them in effects in Sec. Ill A. The solid line connecting the pointpigelya
turn. An important feature ofll the simulationsin the  guide to the eye. The computed line above corresponds to the dotted
present work islow dynamics line of Fig. 1 in Ref. 7 in the vicinity of Xy;,Yui)-

For then=2 simulation, where we have monitorddwe . ) . . . -
find that deep in the type-I regime the simulations are quité'oninteracting vortices. What_ makes the S|mulat!0ns_d|ff|_cult
straightforward, the vortices stay close together with onlylS that moving a vortex line in the transverse direction is a
small fluctuations, and a moderate number of sweeps is suglobal change, and thereby very slow. Time seriesl show
ficient to obtain good statistics. However, when we increas&haracteristic time scales of 16weeps, so long simulations
x toward x,, the effect isnot that d stabilizes at a higher ~10° sweeps over the lattice are required to obtain accept-
value; instead we obtain fluctuations between a type-I-likedble accuracy. A truly high-precision determination of
state where the two vortices are close together, and a typ&i(y) would surely benefit from a specialized algorithm for
lI-like state with large vortex-vortex separation. This picturethe MC updates.
persists a is increased into the type-Il regime, the only ~ To obtain good results one should take the>c limit.
difference is that the fraction of time spent in the type-I like The conclusions from the results of Fig. 1 are based on this
state decreases. In fact the results of Figs. 1 and 2 are in thigit, whereas those drawn from Figs. 2, 5, and 6 are based
type-Il region, quite close to what we would obtain from on the fixed system sizh=48. We have not performed a
systematic study of finite-size effects, but the curves in Fig. 5
do havesubject to finite-size effects in them. The trend is
that curves move to the right upon increasing system size,
this very likely explains the apparent discrepancy between
the tricritical point(where theN— c limit has been applied
and the remaining points in Fig. 6.

Note that Eq(1) is a continuum field theory, ang, (y)
is not a critical point; hence the continuum limgg— oo
should be taken. Our experience from the large-scale simu-
lations performed in Ref. 7 indicates th@t=1.00 provides

,,,,,,, . conditions in the simulations already quite close to the con-
S tinuum limit. We have therefore chosen to work wigy
i =1.00, and focused our efforts on considering large systems
and long simulations.

The Monte-Carlo computations &€ T have been even

0.2 0.25 0.3 0.35 04 0.45 0.5 more time consuming, because we have had to do the simu-

X lations for 41 different values ah. We have therefore lim-

FIG. 5. The ensemble-averaged distance between a pair of vofted ourselves to considering only the systelm=24,
tices, (d), as a function of the square of the Ginzburg-Landau pa-8¢= 1.00; for a discussion of finitdl / finite S effects, see
rameterx= «?2, for various values of the temperaturelike variaple Ref. 26. The relaxation time for these simulations has been
The horizontal line is adly/2. Increasingy amounts to increasing the  particularly long in the limitsn—1~ andm—2"1, and we
temperature. therefore have performed much longer simulations in these

Vortex separation
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limits than for intermediate values of. From Fig. 3 and Eq. simulations, and not the linearized London limit, it is in any

(13) it is seen thatW(m) is a quantity of order®(N~?) case a drastic simplification to view the effective interaction

whose finiteness originates in the difference between twdetween vortices as a simple pair potential.

O(1) quantities. Consequently, it is difficult to get numeri-  Finally, we note that, although our present simulations,
cally precise results. This has in particular been the case iwhich by necessity are on finite-sized systems, indicate that

the limitsm—1~ andm—2". the change from type-I to type-II behavior is a crossover, we
cannot rule out the possibility that it is elevated to a true
B. Crossover phase-transition in the thermodynamic limit. More work is

The physical bi h for the th | needed to clarify if this is indeed the case, but this will have
he physical picture that emerges for the thermal renory, 4 ait the next generation of massive parallell computers.
malization of the vortex interactions, is the following. At low Questions that need to be addressed in this context, are:

temperatures, for the values we consider, the System is in \ypa¢ s the order parameter of such a transition, and what
the type-I region with a fairly deep minimum in the effective symmetry, if any, is being broken

pair potential between vortices at short distances, leading to
an attractive interaction. At very short distances, we find a
steric repulsion on the scale of the lattice constants in the IV. CONCLUSION
system due to the large Coulomb barrier that must be over- ) o )
come to occupy a link with two or more elementary vortex We have considered the effective mtera@cﬂon bgtwe_en two
segments. This length scale represents the size of the vort¥®rtices in the full GL model, and how this effective inter-
core in the problem. Upon increasing the temperature to th@ction is influenced by thermal fluctuations. We have in-
vicinity of the line y.(x), we do not find large transverse Ccluded fluctuations in the gauge fields, as well as the phase
meanderings of the individual vortex lines as we move alongind amplitude fluctuations of the complex scalar matter field
each vortex line: rather the vortex lines are essentially’! the problem. We have found that the effective interaction
straight. Therefore, we believe that it it entropic repul- changes from being attractive to being repulsive,at. This
sion due to the bare steric repulsion in the problem, of thdn€ans a change from type-I to type-Il behavior. We have
type which it seems reasonable to invoke &rongly fluc- found tha_bq,u is below the standa_lrd quoted value; of 0.5, and
tuating elastic string@3that renormalizes the vortex inter- 'S @ function of the temperature-like paramegerhis means
actions in the way seen in Fig. 2. Rather, what appears that at the critical point, the value qf th_e GL parameter that
happen is that the vortex lines slosh back and forth in thééparates type-l from type-1 behavior is smaller thai21/
minimum of the effective potential well as essentially The linexy, (y) appears to be a crossover, and not a true
straight lines. Hence, to a larger and larger extent as temper@hase transition. The above seems to offer a simple explana-
ture is increased, they experience the hard wall in the intedion for the experimental observation that elemental Ta and
actions at small distances, and the weak attraction at larglP superconductors show a crossover from type-I to type-li
distances, effectively washing out the minimum in the potenfehavior as the temperature is increased towadsPrevi-
tial, thus making it effectively more repulsive. ous_explanatlons based_ on mean-fleld theones_ and not in-
This is also seen in our simulatiofisot shown in any of Volving thermal fluctuations requweq two additional tem-
the figures when we monitor the transverse meanderingPerature dependent-values to be definetf.
fluctuations of each vortex lind|r, (z)—r, (0)|?), as well
as the mean-square fluctuations of the intervortex distance,
(d?y—(d)?, whered is defined in Eq.(7). The former is
small deep in the superconducting regime, and remains small We acknowledge support from the Norwegian Research
as the liney.(x) in Fig. 1 of Ref. 7 is approached, while the Council via the High Performance Computing Program
latter increases dramatically as the dotted crossover line iS.M., J.H., A.S, and Grant Nos. 124106/41&.M., A.S)
crossed. It is precisely this fact which makes the simulationgnd 148825/432A.S.), and A.S. thanks E.H. Brandt for use-
extremely time consuming. One should, however, keep iful comments. J.H. also acknowledges support from NTNU
mind that, since we are considering the full GL theory in ourvia a university fellowship.
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