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Origin of peak-dip-hump structure in the in-plane optical conductivity of the high-TC cuprates:
Role of antiferromagnetic spin fluctuations of short-range order
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An improved U~1! slave-boson approach is applied to study the optical conductivity of the two-dimensional
systems of antiferromagnetically correlated electrons over a wide range of hole doping and temperature.
Interplay between the spin and charge degrees of freedom is discussed to explain the origin of the peak-dip-
hump structure in the in-plane conductivity of high-TC cuprates. The role of spin fluctuations of short-range
order~spin singlet pair! is investigated. It is shown that the spin fluctuations of the short-range order can cause
the midinfrared hump, by exhibiting a linear increase of the hump frequency with the antiferromagnetic
Heisenberg coupling strength.
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High-TC superconductors are the systems of strongly c
related electrons which show two dimensionality in cha
transport. Various levels of the gauge theoretic slave-bo
approach to thet-J Hamiltonian have been proposed to stu
high-TC superconductivity.1–7 Recently we proposed a
SU~2! slave-boson theory6 which incorporated coupling be
tween the charge and spin degrees of freedom into
Heisenberg term. The predicted phase diagram showe
arch-shaped bose condensation line in agreement with ob
vation. Using an improved U~1! slave-boson theory over ou
earlier one,7 in this paper we study the cause of peak-d
hump structures of observed optical conductivity.8–12Various
theories have been proposed to explain the cause of the p
dip-hump structure in the optical conductivity.13–15However,
most studies have been made to a limited range of hole d
ing and temperature, based on empirical parameters ded
from measurements such as the inelastic neutron scatte
~INS! and the angle-resolved photoemission spectrosc
~ARPES! data.

Using the nearly antiferromagnetic Fermi-liquid theo
Stojković and Pines13 reported a study of normal-state op
cal conductivity for optimally doped and overdoped system
They showed that the highly anisotropic scattering rate
different regions of the Brillouin zone leads to an avera
relaxation rate of the marginal Fermi-liquid form. Their com
puted optical conductivity agreed well with experimen
data for the normal state of an optimally doped sample.
ing the spin-fermion model16,17 and spin susceptibility pa
rameters obtained from INS and nuclear magnetic resona
Munzar, Bernhard, and Cardona14 calculated the in-plane op
tical conductivity of optimally doped YBa2Cu3O72d. Their
study showed a good agreement with the observed peak
hump structure at optimal doping. From the computed s
energy they showed that the hump originates from the
quasiparticles and the Drude peak originates from the c
quasiparticles. Haslinger, Chubukov, and Abanov15 reported
optical conductivitiess(v) of optimally doped cuprates in
the normal state by allowing coupling between the spin f
mions and the bosonic spin fluctuations. They found that
width of the peak in the spectral functionAk(v) scales lin-
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early withv in both hot and cold spots in the Brillouin zon
and s(v) is inversely linear inv up to very high frequen-
cies.

Various studies have been limited to a restricted range
hole doping and temperature, relying on empirical para
eters deduced from INS and ARPES. It is thus of great in
est to resort to a theory that depends least on empirical
rameters, and fits for a wide range both of hole dop
~including the important region of underdoping! and tem-
perature~encompassing the pseudogap phase and the su
conducting phase!. For this cause we use an improved slav
boson theory of thet-J Hamiltonian6 that we developed
recently.

Here we briefly discuss the slave-boson theory to disc
the coupling between the spin and charge degrees
freedom.6 The t-J Hamiltonian in the presence of the exte
nal electromagnetic fieldA is written as

H52t(
^ i , j &

~eiAi j c̃is
† c̃ j s1H.c.!

1J(
^ i , j &

S Si•Sj2
1

4
ninj D2m(

i ,s
cis

† cis , ~1!

with Si5
1
2 (abcia

† sabcib . Here Ai j is the external electro-

magnetic vector potential,c̃is ( c̃is
† ) is the electron annihila-

tion ~creation! operator at each site, andsab is the Pauli spin
matrix. Rewriting the electron operator as a composite
spinon~f! and holon~b! operators,cis5 f isbi

† with the single
occupancy constraint,bi

†bi1(s f is
† f is51, we obtain the par-

tition function

Z5E DfDbDlexpS 2E
0

b

dtLD , ~2!

with L5( i ,s f is* ]t f is1( ibi* ]tbi1Ht-J where Ht-J is the
U~1! slave-boson representation of the abovet-J Hamil-
tonian @Eq. ~1!#,
©2002 The American Physical Society20-1
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Ht-J52t(
^ i , j &

~eiAi j f is
† f j sbj

†bi1c.c.!

2
J

2 (
^ i , j &

bibjbj
†bi

†~ f i↓
† f j↑

† 2 f i↑
† f j↓

† !~ f j↑ f i↓2 f j↓ f i↑!

2m(
i ,s

f is
† f is1 i(

i
l i~ f is

† f is1bi
†bi21!. ~3!

This Hamiltonian can readily be derived from the SU~2!
theory.6

From the Hubbard-Stratonovich transformations invo
ing hopping, spinon pairing and holon pairing orders w
obtain the partition function

Z5E DfDbDxDD fDDbDlexpS 2E
0

b

dtLe f fD , ~4!

with Le f f5L f1L b1L0 being the Lagrangian, where

L f5(
i ,s

f i ,s
† ]t f i ,s2

J~12d!2

4 (
^ i , j &

$x i j f i ,s
† f j ,s1H.c.%

2
J~12d!2

2 (
^ i , j &

$D i j
f ~ f i ,↓ f j ,↑2 f i ,↑ f j ,↓!1H.c.%

for the spinon sector,

L b5(
i

bi
†]tbi2t(

^ i , j &
$eiAi j x i j bi

†bj1H.c.%

2
J

2 (
^ i , j &

uD i j
f u2$D i j

b bi
†bj

†1H.c.%

for the holon sector, and

L 05J~12d!2(
^ i , j &

H UD i j
f U21

1

4 Ux i jU21
1

4
ni J

1
J

2 (
^ i , j &

uD i j
f u2uD i j

b u2.

Here x, D f , and Db are the hopping, spinon pairing, an
holon pairing order parameters, respectively.

We obtain the optical conductivitys(v) and the current
response functionP(v) of an isotropic two-dimensional me
diun in the external electric fieldE(v) by evaluating the
second derivative of the free energy with respect to the
ternal vector potentialA,

s~v!5
]Jx~v!

]Ex~v!
U

Ex50

52
1

iv

]2F

]Ax
2U

Ax50

5
Pxx~v!

iv
, ~5!

where Jx is the induced current in thex direction, F
52kBT ln Z is the free energy, andPxx52]2F/]Ax

2uAx50 is
the current response function in thex direction. The total
response functionP5PP1PD is the sum of the paramag
netic response function given by the current-current corr
tion function PP(r 82r ,t82t)5^ j x(r 8,t8) j x(r ,t)&
06452
-

x-

-

2^jx(r8,t8)&^jx(r,t)&, with the current operator j x(r ,t)
5 i t @cr 1x,s

† (t)cr ,s(t)2cr ,s
† (t)cr 1x,s(t)# and the diamag-

netic response function associated with the average kin
energy,PD5^Kxx&5^2t( i ,s(ci ,s

† ci 1x,s1H.c.)&.18

The phase difference per unit lattice spacing associa
with the hopping order parameterx i j 5ux i j ueai j defines the
gauge field,ai j 5] i j u5u i2u j . The gauge fluctuations allow
the back-flow condition in association with an interplay b
tween the charge and spin degrees of freedom origina
from the effective kinetic-energy term of thet-J Hamil-
tonian. The effects of spin degrees of freedom are manife
through the antiferromagnetic spin fluctuations which app
in the Heisenberg exchange-coupling term. The antifer
magnetic spin fluctuations of short-range order~spin singlet
pair! occur through the presence of correlations between
jacent electron spins. We consider both the amplitude fl
tuations of the spinon pairing~spin singlet! order parameter
uD f u and the gauge-field fluctuations. We first integrate o
the spinon and holon fields and take the saddle-point va
with respect to the holon pairing order parameter, spin
pairing order parameter phase, the amplitude of hopping
der parameter, and the Lagrangian multiplier fields in E
~4!. We then obtain

F@A#52kBT ln E DfDbDxDD fDDbDl

3expS 2E
0

b

dt~L f1L b1L0! D
'2kBT ln E DaDuD f u~e2b(F f [a,uD f u] 1Fb[A,a,uD f u]

3eF0[ uD f u]) !, ~6!

where F f52kBT ln *Df exp(2*0
bdtL f) is the spinon free

energy,Fb52kBT ln *Db exp(2*0
bdtL b) is the holon free

energy, andF052kBT ln exp(2*0
bdtL0). The external elec-

tromagnetic field couples only to the holon field but not
the spinon field.

Considering the gauge and antiferromagnetic spin fluct
tions up to second order we obtain the current response f
tion

P5
P fPb

P f1Pb
1

S PaD
b 2

PaD
b 1PaD

f

Pb1P f
PbD 2

2
~PaD

b 1PaD
f !2

Pb1P f
2~PDD

0 1PDD
b 1PDD

f !

,

~7!

whereP f (Pb) is the spinon~holon! response function as
sociated with the gauge fielda (a and A), PXY

f

52]2F f /]X]Y (PXY
b 52]2Fb/]X]Y) is the spinon~holon!

response function associated with both the gauge fields
the spinon pairing field, andPDD

0 is the response function
associated with the spinon pairing field. It is shown that
first term represents the Ioffe-Larkin rule19 for the current
response function contributed only from the gauge field fl
0-2
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tuations, and the second term represents that from the
fluctuations. Each contribution comes from the coupling
tween the charge and spin degrees of freedom, as manife
by Eq. ~7!. Because of the allowance of the gauge fluctu
tions in Eq. ~6!, the back-flow condition is automaticall
satisfied in Eq.~7!, that is, the sum of the spinon and holo
current vanishes. This can be easily seen from

^ j f1 jb&52
b

ZE DaDuD f ue2b(F f [a,uD f u] 1Fb[A,a,uD f u] 1F0[ uD f u])

3S dF f@a,uD f u#
da

1
dFb@A,a,uD f u#

da D
5

1

ZE DaDuD f u
d

da
e2b(F f [a,uD f u] 1Fb[A,a,uD f u] 1F0[ uD f u])

50. ~8!

It is noted that the amplitude fluctuation of the spinon pair
order parameter does not interfere with the back-flow con
tion.

The response functionP f (Pb) is contributed to from
both the paramagnetic and diamagnetic parts. The param
netic response function is obtained from the curre
current correlation functionsPxx

f (P)5^ j x
f (r 8,t8) j x

f (r ,t)&
2^ j x

f (r 8,t8)&^ j x
f (r ,t)& for the spinon and Pxx

b (P)
5^ j x

b(r 8,t8) j x
b(r ,t)&2^ j x

b(r 8,t8)&^ j x
b(r ,t)& for the holon, and

the diamagnetic response function involves the average
netic energy of the spinon ~holon!. PaD

f (PaD
b )

is given by the correlations between the spinon~holon!
current and the anomalous spinon~holon! pairing,
PaD

f 5^ j x
f (r 8,t8)D f(r ,t)&2^ j x

f (r 8,t8)&^D f(r ,t)& @PaD
b

5^ j x
b(r 8,t8)Db(r ,t)&2^ j x

b(r 8,t8)&^Db(r ,t)&# with
D f(r ,t);( l@e2 i t f r ,↓(t) f r 1 l ,↑(t)1H.c.# and Db(r ,t)
;( l@br(t)br 1 l(t)1H.c.#. Here l represents neares
neighbor sites around locationr andt56p/2 @1(2) for x
~y! direction# is a phase to represent the spinon pairing
d-wave symmetry.PDD represents correlations between pa
ing currents; PDD

f 5^D f(r 8,t8)D f(r ,t)&2^D f(r 8,t8)&
3^D f(r ,t)& for the spinon pairs and PDD

b

5^Db(r 8,t8)Db(r ,t)&2^Db(r 8,t8)&^Db(r ,t)& for the holon
pairs.

Figure 1 shows computed optical conductivities from t
U~1! slave-bosont-J Hamiltonian@Eq. ~3!# with J50.3t for
the underdoped (d50.05), optimally doped (d50.07) and
overdoped (d50.1) regions.Tc andT* represent the super
conducting temperature and the pseudogap temperature
spectively. Compared to the present U~1! result of optimal
doping, the SU~2! slave-boson theory6 predicted a more re
alistic value of optimal doping close tod'0.15, by yielding
a phase diagram showing an arch-shaped bose condens
temperature, in better agreement with observation. To av
complexity, we resort to the simpler case of U~1!, as our
prime interest lies in the investigations of the role of sp
fluctuations and the coupling between the charge and
degrees of freedom on the formation of peak-dip-hu
structures. The accurate SU~2! theory will not alter the phys-
ics of the peak-dip-hump structure formation. Although n
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shown here for other values ofJ we find qualitative agree-
ments with experiments, in that the peak-dip-hump structu
are well predicted belowT* and TC . In Fig. 2 the hump
peak position is seen to remain nearly constant with
variation of hole doping and temperature belowT* but not
so aboveTC . In general, the predicted hump position ten
to shift to a lower frequency with increasing hole concent

FIG. 1. Computed optical conductivities as a function of te
perature ford50.05~under doped!, d50.07~optimally doped!, and
d50.1 ~over doped! cases with the antiferromagnetic Heinsenbe
coupling strength ofJ50.3 for all cases.
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tion and with temperature, showing a gradual disappeara
of the hump. A trend of rapid drop in a high-frequency r
gion is seen to be unrealistic. In order to find the role of s
fluctuations, we neglected the second term in Eq.~7!. The
hump structure~dotted line in Fig. 3! completely disap-
peared, clearly indicating that spin-spin correlations or s
fluctuations associated with the spin singlet excitations
responsible for the hump formation in the optical conduct
ity ~Fig. 3!. For an additional analysis of spin fluctuation, w
computed the optical conductivity using the Lanczos ex
diagonalization method for a two-hole doped 434 lattice by
introducing various Heisenberg antiferromagnetic coupl
strengthsJ. Despite the finite-size effects, an irregular b
gross feature of the peak-dip-hump structure is still p
dicted, indicating that the hump is originated from the sp
spin correlations. A linear increase in the hump position w
J is predicted. From both the slave-boson and Lanczos
culations we note that the peak locations of the hump
sensitive to the variation of the antiferromagnetic coupl
strengthJ, by showing a linear increase. Further, as me

FIG. 2. Temperature dependence of hump position as a func
of antiferromagnetic couplingJ and hole concentration.

FIG. 3. The total optical conductivity~solid line! vs a partial one
~dotted line! contributed only from the first term and thus from th
neglect of the spin fluctuation~second! term in Eq.~7!.
06452
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tioned above, the neglect of the spin fluctuations@the second
term in Eq.~7!# led to a sudden disappearance of the hu
structure.

Although not shown here, using the present U~1! slave-
boson theory the predicted spectral functions around
(p,0) point in the momentum space also showed the pe
dip-hump structure consistent with the ARPES data. T
incoherent background or the hump around the (p,0) point
was found to occur as a result of the antiferromagnetic s
fluctuations, having a feature common with the hump str
ture of the optical conductivity. Thus we conclude from the
multifaceted studies that the spin-spin correlations or
spin fluctuations involved with electrons around the (p,0)
point in the momentum space are definitely the prime ca
of the hump structures belowT* andTC .

In our earlier slave-boson approach6 of the t-J Hamil-
tonian not only the spin degree of freedom but also
charge degree of freedom is introduced into the slave-bo
representaion of the Heisenberg term,J(^ i , j &(Si•Sj
21/4ninj ). This is obvious from the expression of theninj
term here, which represents the charge degree of freed
Thus the spin and charge degrees of freedom are well m
fested in both the hopping and Heisenberg terms in thet-J
Hamiltonian. This resulted in the arch-shapedTc curve in the
phase diagram,6 the trend of which is consistent with obse
vation. We would like to note that using one of the Ginzbu
Landau theories20–22 of spin-charge separated supercondu
tivity, Rodriguez22 reported an arch-shapedTc line. However
there exists no further report on the test of this theory
predict observations such as optical conductivity, inelas
neutron scattering, and angle-resolved photemission s
troscopy. One of our main objective here was to test
validity of our recently proposed theory6 by making a com-
parison with observations. In this study we computed
optical conductivity for high-Tc cuprates based on the slav
boson representation of thet-J Hamiltonian with the on-site
slave-boson constraint(s f is

† f is1bi
†bi51 in a mean-field

level. Thed-wave symmetry and the back-flow condition a
satisfied in the U~1! slave-boson representation@Eq. ~7!# of
the optical conductivity. Falcket al.23 reported measure
ments of the polarized midinfrared-reflectivity spectrum a
its temperature dependence for lightly oxygen-dop
La2Cu O41x single crystals. They conjectured that th
0.13-eV absorption band is attributed to the photoionizat
of polaronic impurities~photoexcitation of localized hole
from impurities!. On the other hand, we find from a rigorou
study of thet-J Hamiltonian that the antiferromagnetic fluc
tuations of short range cause the hump structure~midinfrared
band! in high-Tc cuprates.

In the present study, by paying attention to a wide ran
of both hole doping~underdoping, optimal doping, an
overdoping! and temperature (T,TC , TC,T,T* , and
T* ,T) with no empirical parameters obtained from me
surements, we examined the optical conductivity as a fu
tion of frequency for the two-dimensional systems
strongly correlated electrons. Allowing the coupling betwe
the spin and charge degrees of freedom as manifested in
~7!, the peak-dip-hump structures are predicted in agreem
with observations. It is shown that the antiferromagnetic s

n
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fluctuations of short range associated with the spin sin
pair excitations are important in yielding the observed hu
structure, and that the hump position linearly increases w
the antiferromagnetic Heisenberg coupling strength.
though not plotted, the peak-dip-hump structure was p
dicted to persist in the region ofJ/t50.1–0.4, by showing a
propensity of hump height increment with increasingJ/t.
This again indicates that the effects of spin-spin correlati
~fluctuations! of short range are important for the formatio
of the hump structure. In general, the predicted peak-d
hump structures are in qualitative agreement with obse
tions, particularly in the temperature ranges ofT,TC and
TC,T,T* for the underdoped case. It is shown that t
Jp

hy

ld
rt,

L

ow

06452
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spin fluctuations of the shortest possible antiferromagn
correlation length~that is, the spin singlet pair! alone can
cause the formation of the hump structure. However, con
erations of both the antiferromagnetic spin fluctuations
correlation lengths larger than the spin singlet pair and
direct-channel single-spin fluctuations at high energies m
be needed to remedy quantitative discrepancies in the r
drops of optical conductivity at temperatures aboveT* and
at frequencies beyond the peak location of the hump.
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