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Effect of disorder on superconductivity in the boson-fermion model
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We study how a randomness of either boson or fermion site energies affects the superconducting phase of the
boson fermion model. We find that, contrary to what is expecteg-feave superconductors, the nonmagnetic
disorder is detrimental to thewave superconductivity. However, depending on which subsystem the disorder
is located, we can observe different channels being affected. Weak disorder of the fermion subsystem is mainly
responsible for the renormalization of the single-particle density of states, while disorder in the boson sub-
system leads directly to fluctuations of the strength of the effective pairing between fermions.
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[. INTRODUCTION internal structure of the Cooper pairs.
Due to the nonconventional pairing mechaniém., the

The boson fermioiBF) model is an example of a micro- exchange of the hard-core bosons between fermion)pairs
scopic theory of nonconventional superconductivity. It de-is of a fundamental importance to see how nonmagnetic im-
scribes a mixture of itinerant electrons or holésrmiong  purities(disordey affect the isotropic superconducting phase
which interact via charge exchange with a system of immo©f the BF model. Previously, such a study was carried out by
bile local pairs(hard-core bosonsDue to this interaction, Robaszkiewicz and Pawlowski,who considered disorder
bosons acquire finite mass, and under proper circumstanc@8ly in the boson subsystem. Using a method of configura-
might undergo a Bose condensation transition while fermitional averaging for the free energy, the authors showed a
ons simultaneously start to form a broken symmetry superstrong detrimental effect of disorder on superconductivity.
conducting phase. Apart from a reduction of the transition temperattige they

This model was introducedd hocalmost two decades also reported a remarkable change of a relative ragd
agd to describe the electron system coupled to the lattice=0)/kgTc. In this paper we analyze the effect of disorder
vibrations in a crossover regime, between the adiabatic an@resent in both fermion and boson subsystems using a differ-
antiadiabatic limits. Later it was formally derived from the ent method of the coherent potential approximation.
Hamiltonian of wide band electrons hybridized to the
strongly correlated narrow band electron systefdery Il. MODEL AND APPROACH
recently the same effective BF model was derived purely
from the two dimensional Hubbard model in the strong in-
teraction limit using the contractor renormalization method We consider the following Hamiltonian of the disordered
of Morningstar and Weinsteih. BF model:

Some authors have proposed it as a possible scenario for
description of high temperature superconductivitiTSC).
The unconventional way of inducing the superconducting
phase in the BF model has been independently investigated
in a number of papers.tt Moreover, this model reveals also
several unusual properties of the normal phdee T>T,)
with an appearan(;,ﬁ_ ?E the pseudogap being the most trans-

arent among thent™ =" Apart from the eventual relevance + t ot

gf this modelgto HTSC thrr-)zre are attempts to apply the same +UZ (bici Ciy +bici;Ciy). @
type of picture for a description of the magnetically trapped , o i
atoms of alkali metal&® We use the standard notations for annihilatioreation op-

The important question which we want to address in thiserators of fermiorc; , (cf,) with spin o and of the hard
paper is the following: what is the influence of disorder oncore bosorb; (bl) at sitei. Fermions interact with bosons
superconductivity of the BF model? The conventionalvia the charge-exchange interactionwhich is assumed to
swave symmetry BCS-type superconductors are known tde local. There are two ways in which disorder enters into
be rather weakly affected by paramagnetic impurifiesa  the consideration. Eithefg) fermions are affected by it and
fact which is known as the “Anderson theorem.” Nonmag- this is expressed by the random site energigsor (b) hard-
netic impurities have a remarkable detrimental effect on sucore bosons via their random site enerdigscause the dis-
perconductors with the anisotropic order parameters. Magerder.
netic impurities lead to pair-breaking effects which resultina To proceed, we first apply the mean-field decoupling for
strong reduction ofT. even in swave superconductors. the boson fermion interaction
Studying the effect of impurities on the superconductors has . N
always been an established tool for an investigation of the bjci| ciy=(b;j)* ¢; ci1 +bi(ci|Ciy), 2

A. Hamiltonian of the disordered BF model

HBF:HZ tijCiJrg—CjtT+2i (gi—m)c] Ciy
], 0

+2, (Ag+E—2u)bb;
I

0163-1829/2002/66)/0645176)/$20.00 66 064517-1 ©2002 The American Physical Society



T. DOMANSKI AND K. I. WYSOKINSKI PHYSICAL REVIEW B 66, 064517 (2002

which is justified untilv is small enough in comparison to wherep=uv(1/N)Z(p;) is a global order parametéwhich

the kinetic energy of fermions. After decouplifigqg. (2)]we  plays the role of the effective gap in the superconducting
have to deal with the effective Hamiltonian composed of thefermion subsysteimand defining the single site impurity po-
separate fermion and boson contributi¢tis: H™ +H?8 2° tential V| as

*
e TP
HF:_Z [tij+5ij(8i_ﬂ)]CiTnga VF( ) 9
ij,o —P &
N - one can write down the following Dyson equation for the
+§i: (pi Ci|CiytpiCiiCiy), (3 Green’s functionG(i,j; w):

P N 0 - 0(i |- .
HO=S, [(Ag+E—2ublbtxbl b, @ Gl(i,j;0)=G (I,j,w)-l—El Goi,1;0)VG(1,j;0).
. (10

wherex;=v(c; cj;) andp;=v(b;). The site dependence of This Green’s function depends on the specific disorder con-
pi andx; indicates the disorder-induced amplitude fluctua-figuration. In order to pass through one usually averages it
tions of the order parameters. over the all possible configurations.

For carrying out the configurational averaging we use a
method of the coherent potential approximati@PA). The
) ) ] ) ~main idea of the CPAis to replace the random poteitjdly

For a given configuration of disorder we can exactly findsome uniform coherent potentiat(w). Formally, the
the eigenvectors and eigenvalues corresponding to the lattiggreen’s function which satisfies EGLO), with V, replaced

site i using a suitable unitary transformation. Statistical ex-py ¥(), is then given(in the momentum coordinateby
pectation values of the number operdbébi and the param-

B. Boson part

eterp; are given by° [GCPAK; w)] 1=[Gk;w)] - 3(w). (11)
+ 1 Ag+E—2u Vi Configuration at site is defined by values of the random
(b; bi>:§—Ta KeT)’ ) energiese;, E—we shall symbolically denote it by

={g;,E;}. Any of possible configurationa can occur with
some probability P({g; ,E;})=c(®), and of course these
=~ Zhonn o 6)  probabilities are normalized &,c(¥=1.

Di ta (6) . ; . .

2y, kgT A particle propagating through the medium characterized
. by the coherent potentidl(w) is thus, at sitd, scattered

where y,=; V(Ag+E, _2"‘)2+4|).(i|2 andkg is the Boltz- 4, probabilityc(®) by the potentiaV{® — 3(w). For a cho-

mann constant. Note that the _sne dependent fermion ordesren configurationy of the sitei the conditionally averaged

parameter; enters the expression for the boson number OPjocal Green’s function is diven b

erator (5) and the parametes; [Eq. (6)]. Disorder of any 9 y

subsystem is thus automatically transfered onto the other [G@(i,i1w)] 1=[GCPA(] i.w)]fl_[v'(a)_z(w)]

one. 1 (A ] i .

UX; Yi

12

C. Fermion part This Green's functionG®)(i,i;w) describes the system in
) ) i which all sites, except one indicated byare described by
An analysis of the fermion pafEq. (3)] is more cumber-  hq coherent potenti@(w). In the CPA one requires that the
some. To study it we use the Nambu representaigh  ayerage of the local Green's function is the same as the
=(cf;.ci)), Wi=(¥))" and define the matrix Green’s func- Green’s function of the averaged system. This CPA condition
tion G(i,j;w)=((V, ;\If}}}w. The equation of motion for is identical to the following equatiotf
this function reads

c@G(i,i;0)=GPAi i w). 13
(0—g+up)d—t —pi 4y , % (.5iw) o) 13
> G(l,j;0)
l —pidi (w+e—pn)d+t; : .
Equationg11)—(13) have to be solved self-consistently to
=15 . (7)  yield the coherent potentid,(w). Physical quantities such

as the fermion concentratimfz(1/N)Ei,,,(c;rocm> and the
Using the matrix Green’s functio®’(i,j;w) of a clean  superconducting order parameter (1/N)=;x; are to be cal-
system, culated from

2 (= d
), (8) nf=—— | eBw(:llm{GflPA(i,i;w+i0+)}, (14)

o—gctp  —p*

G(k;w 1=(
[C(kiw)] o wte—p
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1 (» do

X=—v IM{GSPAGi;w+i0T)}, (15

m —webe4q

where 8= 1/kgT.

In Sec. lll we discuss the changes of the superconducting 901 -

transition temperaturé. caused by disorder.

Ill. DISORDER IN A FERMION SUBSYSTEM

It is instructive to investigate the disorder separately for
fermion and boson subsystems. Let us start with the fermion
disorderg; . We setE; =0 for all lattice sites. For the random

fermion energies we choosg= ¢y with probability ¢ and
£;=0 with probability 1-c. It is a bimodal-type disorder:

P({ei})=cd(ei—g0) +(1-c)d(g;—0). (16)

Here we shall be mainly interested in the superconducting

t19

transition temperatur&.. In this limit™ the diagonal disor-

der affects mainly a diagonal part of the matrix Green'’s func-
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FIG. 1. Variation ofT; with respect to the boson energy for

tion G. In fact, even for no disorder acting directly on a a clean system witi,,;=1. The bottom panel illustrates the con-

bosonic subsystem the boson order paramgter Eq. (6)
depends on the site index via fermion order parameter

centrations of fermionsnf) and bosonsr®) at T=T.. Note the
three distinct regimes of: predominantly local pairs2 n,,,, co-

However, we expect thimduceddisorder to be weak and existing pairs and fermions™~2n®, and predominantly fermions
neglect it. This allows us to show how disorder, in a fermi-nF~ny; (the so-called BCS limjt

onic subsystem only, affect; .

The off-diagonal elements of the coherent potential van—=1. Figure 1 shows hoW, of a clean system depends on the

ish. Due to the general symmetB, (iw)=—3 1;(—iw)®
we can simplify the self-energy matrix to
Su(io) 0

0 —Sp(—iw))

>.11(w) can be found from the CPA equati¢h3) which, for
a normal phase, takes a well-known fdfm

S(iw)= (17)

1-c N c
[E1(@)] '+ F(o) [S1(0)—&0] +F(w)

(18

with F(w)=(1/N)=,G5A(k,»). Equation(18) should be
solved subject to a given dispersion relatigpand param-
etersc, ¢g.

Finally having calculated ,;(w), we can findn™ and x
[Egs.(14) and (15)] as well asn®, p [Egs.(5) and(6)]. In
particular, the critical temperatufie.= (kg8.) ~* is given via

tan Ag—21)/2 ® o
1=p2 F[BZ(B_BZM M) ]; fﬁxdwljlwde

tant B.w1/2]+tant B.w,/2]
2(w1+ 0)2) !
(19

where A(k,») = (— 1/m)Im{GA(k,w+i0")} denotes the
spectral function of the normal phase.

XA(k,wl)A(k,wz)

position of the boson level. There are three distinguishable
regime$® of relative occupancy by bosons and fermions.
Superconducting correlations are of course most visible
when the chemical potential is closeAg/2. We choose the
value Ag/2=—0.3 to be close to the optimal value of tran-
sition temperature and to have comparable amount of fermi-
ons and bosons. For computations we use the two-
dimensional square lattice dispersion—the van Hove
singularity is safely distant from the Fermi energy for the
above parameters.

In Fig. 2 we plot the transition temperatufg, calculated
from Eg. (19) against concentration for several values of
go. With an increase of the concentrationf scattering cen-
ters we notice a gradual reduction of the critical temperature.
This tendency can be understood by looking at the behavior
of the fermion density of states at the Fermi enegdy).
Disorder is responsible for a renormalization of the low-
energy sector and these low-energy states are involved in
forming the superconducting-type correlations. As shown in
the bottom panel there is an additional effect coming from
the rearrangement of occupation§ and n®. With an in-
creasing concentration the fermion band is shifted toward
higher energies and the system is then mainly occupied by
bosongthe so-called local paifLP) limit].

For negative values of, the disorder shows a stronger
influence onT.. On the one hand we again have a direct
effect of the renormalized density of stafseeg(eg) in the
middle panel of Fig. 8 On the other hand, with an increase
of ¢ for any negative value of, the fermion band and the

We choose for our study a case of weak boson fermiorposition of the chemical potential drift toward lower ener-

interactionv = 0.1 (in units of the initial fermion bandwidbh
and a total concentration of charge carriefs;=2ng+ng

gies. As a consequence the number of fermions increases and
the number of bosons decreases. Effectively we thus ap-
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FIG. 2. Transition temperatufg, as a function of concentration FIG. 3. The same as in Fig. 2 except for negative values,of
c of scattering centers with various positive values sgf (top ~ (top panel. The middle and bottom panels correspond &g
pane). Density of states at the Fermi enemgfe) (middle panel =-0.5.

and relative occupations by bosons and fermigrugtom panelfor
g0=05 atT=T,.

proach the BCS limit where the transition temperature di-
minishes very fast i\g/2 goes above: (check for example
the curves foreg=—0.4 and—0.5). The strong disorder in
fermion subsystem makes the pairing mechanism almost 0.015 |-
ineffective.

In Fig. 4 we plotT. versus(positive) ¢, for several con- c
centrationsc. Again, T, roughly follows, variation of the 0.01
density of stateg(eg) which is shown in the bottom panel.
As discussed above for large values of concentrati@md
large positiveg, the system is mainly filled by bosorithe
LP limit) so there is some finit€, even whernu=Ag/2 is far
below the fermion band, this is an artifact of the mean-field
approximatior® The behavior ofT,. with respect to nega-
tive values ofgy can be easily deduced from Fig. 3 so we 0 1 1
skip this illustration.

In summary we notice that a change of the transition tem-
peratureT. caused by weak disorder in a fermion system is
controlled mainly by modification of the low-lying energy
states. This is in accord with the Anderson theorem for spin-
singlet swave superconductors. However, additional influ-
ence comes from redistribution of particle spectrum and their
relative occupancy and such effects are dominant for large
values of impurity concentrationand for their large scatter-
ing strength|egl. In this limit the boson-fermion exchange
becomes ineffective.

0.005

FIG. 4. Transition temperatufE, as a function of the energyy
IV. DISORDER IN A BOSON SUBSYSTEM of the scattering centers whose concentratioa ([p). Density of
statesg(eg) for each of the concentratiorts (bottom panel For
Now we turn attention to a case when boson energies=1 ande,=0.2 the Fermi energy goes below the fermion band.
are randomg;#0 and, for simplicity, assume no fermion The system is then strictly in the LP limit of the BF model.
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disorder i.e£;=0 for all the lattice sites. Scattering potential ~ 0-015
(9) then reduces to
0 ~fi(clicl) 0.01 -
V= NCirtry , (20) 01 -
—fi{ei e 0
with 0.005 -
tan

|=uz—;w7'] (21) :

Y 0

and 0.15

AB+E| > , 0.1

Y= 2 —p| Tt |U<C|lC|T>| . (22) 0.05

This means that the fluctuating boson energy lewglin- 0
duces fluctuations of the pairing strengthisn the fermion 0.8 -
subsystem. To some extent, this situation reminds the nega- ¢ -
tive U Hubbard modéP for which the random local attrac- 04 .
tion U;<0 leads to the following scattering matrix: 0'2 -
Tt _

VI(Hub):(U|<n|>/2 U|<C|¢Cu>). 23 0

Ul ey U(ny/2

We see that in our case the role of a random pairing potential £ 5 Transition temperaturg, (top), and the averaged pair-

L_J, _is played by— f, given i_n Eq.(21). There are two extreme ing potential(f)=3 ,P({E;})f, (middle), together with the oc-
limits, as far as the effectiveness of the random boson eNergy pation of fermionm; and bosons at T=T, (bottom
c :

Ag+E, is concerned.

(i) For small(on the scale of fermion-boson interactiof  gyen though the bar fermion-boson interactiorremains
fluctuations ofE, , the effect of the disorder becomes negli- ¢onstant. This decreasing pairing interaction is the only fac-
gible unless the chemical potential is pinned to the boson,, responsible for a behavior &f. versusE, in the right
level .= Ag/2, when the amplitude of the pairing potential is panel. We notice the absence of the BCS-like exponential
controlled byf,~v?tant{x/2x and is usually uniform ex-  scajing which is due to unconventional pairing in the BF

cept at very low temperaturgg— o when f;~v?/x,. model.
(i) For large fluctuations ofE, one obtains f,
~v2tanf(B2)(Ag+E,—2u) ]/ (Ag+E —2u). o

To analyze effects of the disorder in boson subsystem we
use a two-pole distributiorP({E,}) =3[ 8(E,—Eo) + 6(E,
+Eg)]. The boson energy g+ E, with an equal probabil-
ity 0.5. Figure(5) shows a critical temperaturg., calcu- 10
lated from Eq.(15), as a function of energl, by which the
boson energy is split. The strong dependencé&ofn disor-
der is a combined effect of the density of states, the fluctu- 1o
ating interactions, and the changes in concentration of carri-
ers.

To estimate what influence comes only from the renor-
malization of the effective pairing, in Fig. 6 we plot the
normalized transition temperature denotedTigyand the nor-
malized averagedf,) for the parameters given abovieft
pane), and for a fully symmetric case of the BF modeght 10
pane). The transition temperaturg®“9 is the BCS-type
estimate of the effect of changes in the effective pairing due
to disorder: FIG. 6. Normalized critical temperatui®&, /T,(Eq=0) and the

normalized pairing potentidlf,)/(f;(E;=0)) vs energyE,. T(ECI
-1 shows the BCS-like relation between the critical temperature and
Tc(Eo)“ex%m : (24) pairing potential. The left panel refers tg,;=1, Ag=—0.6 dis-
cussed above, and the right panel corresponds to the symmetric case
A general trend observed in Fig. 6 is that the average effecef the BF modelAg=0, n,,;=2 (with half-filled boson and fer-
tive interaction(f,(Eg)) decreases with increasing disorder, mion subsystens

4
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In the left panel, corresponding to the above studied casbecomes similar to that of the random negativé4dubbard
Ag=—0.6, ni,;=1, we notice a larger discrepancy betweenmodel?° Even the relatively small fluctuations of the boson
the pairing amplitude and .. With an increase oE, the  energies show up their strong detrimental effects on super-
transition temperature is much more strongly reduced than isonductivity.
the symmetric case. This effect has to be assigned to redis- In a simple picture one can envision this situation as a
tributions of particle occupancies. At large valuestsgfwe  random change between various regimes of superconductiv-
have practically only hard-core boson particles in the systemity. Depending on a value @, the boson energi s+ E| can
and they cannot induce superconductivity among fermionde either far below the Fermi energthe LP limit), or far
whose fraction becomes very small. above the Fermi energithe BCS limij. Each of such ran-

In a previous study the authors used the same bimodaldom configurations contributes with a different strength of

distribution of random boson energies. They found a stronguperconducting correlations. On average, the superconduct-
reduction ofT nearEy~2v which agrees well with our data ing transition temperatur€, strongly diminishes and practi-
shown in Fig. 6. Moreover, the authors reported that disordecally disappears if the amplitude of the randomly fluctuating
affects the ratioA,(T=0)/kgT, which changes from 4.2 boson energiefE,| is large enough.
(for a clean systefm) to the standard BCS result 3.52 at  In summary, our calculations show that disorder strongly
large E,. A simple explanation of this effect can be offered. affects thes-wave superconducting phase of the BF model.
The boson energywhich is split by ;) for sufficiently  This apparent contradiction with Anderson theorem can be
largeE, is partly in the LP limit(for E;= —E,) and partly in  understood because of a change of the effective pairing in-
the BCS limit (if E;=+E,). The second limit contributes teraction induced by disorder, and this effect is contrary to
with the standard BCS value |E,| is large enoughsee, the Anderson’s main assumptich.

e.g., Fig. 9 in Ref. 2 To compare our results with experimental data on high
temperature superconductors one has to consided-thave
V. CONCLUSION superconducting order parameter. This type of symmetry

_ _ . arises in a natural way according to a recent derivation of the
The randomness of the site energies of both fermions angrF model? The effect of disorder on such an anisotropic
bosons has a strong effect on superconducting phase of tR@pperconducting phase of the BF model is outside the scope

BF model. Weak disorder in the fermion subsystem affectsf the present paper and will be discussed elsewhere.
the superconducting transition temperature mainly via rescal-

ing the low-energy states which are involved in the the for-
mation of the Cooper pairs. Thereforg, roughly follows
the density of states at the Fermi energy. For sufficiently We would like to thank Julius Ranninger for helpful dis-
large disordek there appears some critical concentration cussions. This work was partly supported by the Polish State
at whichT; may eventually drop to zero. Committee for Scientific Research under Project No. 2P03B

Disorder in the boson subsystem has a much finer influ106 18. T.D. kindly acknowledges the hospitality of the Jo-
ence on superconductivity. The randomness of boson eneseph Fourier University and the Center de Recherches sur les
gies is transformed directly into the randomness of the pairTres Basses Temperatures in Grenoble, where part of this
ing strength. Effectively physics of the disordered BF modelstudy was done.
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