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Effect of disorder on superconductivity in the boson-fermion model
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We study how a randomness of either boson or fermion site energies affects the superconducting phase of the
boson fermion model. We find that, contrary to what is expected fors-wave superconductors, the nonmagnetic
disorder is detrimental to thes-wave superconductivity. However, depending on which subsystem the disorder
is located, we can observe different channels being affected. Weak disorder of the fermion subsystem is mainly
responsible for the renormalization of the single-particle density of states, while disorder in the boson sub-
system leads directly to fluctuations of the strength of the effective pairing between fermions.
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I. INTRODUCTION

The boson fermion~BF! model is an example of a micro
scopic theory of nonconventional superconductivity. It d
scribes a mixture of itinerant electrons or holes~fermions!
which interact via charge exchange with a system of imm
bile local pairs~hard-core bosons!. Due to this interaction,
bosons acquire finite mass, and under proper circumsta
might undergo a Bose condensation transition while fer
ons simultaneously start to form a broken symmetry sup
conducting phase.

This model was introducedad hoc almost two decades
ago1 to describe the electron system coupled to the lat
vibrations in a crossover regime, between the adiabatic
antiadiabatic limits. Later it was formally derived from th
Hamiltonian of wide band electrons hybridized to t
strongly correlated narrow band electron system.2 Very
recently3 the same effective BF model was derived pure
from the two dimensional Hubbard model in the strong
teraction limit using the contractor renormalization meth
of Morningstar and Weinstein.4

Some authors have proposed it as a possible scenari
description of high temperature superconductivity~HTSC!.
The unconventional way of inducing the superconduct
phase in the BF model has been independently investig
in a number of papers.5–11 Moreover, this model reveals als
several unusual properties of the normal phase~for T.Tc)
with an appearance of the pseudogap being the most tr
parent among them.12–14 Apart from the eventual relevanc
of this model to HTSC there are attempts to apply the sa
type of picture for a description of the magnetically trapp
atoms of alkali metals.15

The important question which we want to address in t
paper is the following: what is the influence of disorder
superconductivity of the BF model? The convention
s-wave symmetry BCS-type superconductors are known
be rather weakly affected by paramagnetic impurities16—a
fact which is known as the ‘‘Anderson theorem.’’ Nonma
netic impurities have a remarkable detrimental effect on
perconductors with the anisotropic order parameters. M
netic impurities lead to pair-breaking effects which result in
strong reduction ofTc even in s-wave superconductors
Studying the effect of impurities on the superconductors
always been an established tool for an investigation of
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internal structure of the Cooper pairs.
Due to the nonconventional pairing mechanism~i.e., the

exchange of the hard-core bosons between fermion pair! it
is of a fundamental importance to see how nonmagnetic
purities~disorder! affect the isotropic superconducting pha
of the BF model. Previously, such a study was carried out
Robaszkiewicz and Pawłowski,17 who considered disorde
only in the boson subsystem. Using a method of configu
tional averaging for the free energy, the authors showe
strong detrimental effect of disorder on superconductiv
Apart from a reduction of the transition temperatureTc , they
also reported a remarkable change of a relative ratioD(T
50)/kBTc. In this paper we analyze the effect of disord
present in both fermion and boson subsystems using a di
ent method of the coherent potential approximation.

II. MODEL AND APPROACH

A. Hamiltonian of the disordered BF model

We consider the following Hamiltonian of the disordere
BF model:

HBF5 (
i , j ,s

t i j cis
† cj s1(

i
~« i2m!cis

† cis

1(
i

~DB1Ei22m!bi
†bi

1v(
i

~bi
†ci↓ci↑1bici↑

† ci↓
† !. ~1!

We use the standard notations for annihilation~creation! op-
erators of fermionci ,s (ci ,s

† ) with spin s and of the hard
core bosonbi (bi

†) at site i. Fermions interact with boson
via the charge-exchange interactionv, which is assumed to
be local. There are two ways in which disorder enters i
the consideration. Either~a! fermions are affected by it and
this is expressed by the random site energies« i , or ~b! hard-
core bosons via their random site energiesEi cause the dis-
order.

To proceed, we first apply the mean-field decoupling
the boson fermion interaction

bi
†ci↓ci↑.^bi&* ci↓ci↑1bi

†^ci↓ci↑&, ~2!
©2002 The American Physical Society17-1
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which is justified untilv is small enough in comparison t
the kinetic energy of fermions. After decoupling@Eq. ~2!# we
have to deal with the effective Hamiltonian composed of
separate fermion and boson contributionsH.HF1HB,2,9

HF5 (
i , j ,s

@ t i j 1d i j ~« i2m!#cis
† cj s

1(
i

~r i* ci↓ci↑1r ici↑
† ci↓

† !, ~3!

HB5(
i

@~DB1Ei22m!bi
†bi1xibi

†1xi* bi #, ~4!

wherexi5v^ci↓ci↑& andr i5v^bi&. The site dependence o
r i and xi indicates the disorder-induced amplitude fluctu
tions of the order parameters.

B. Boson part

For a given configuration of disorder we can exactly fi
the eigenvectors and eigenvalues corresponding to the la
site i using a suitable unitary transformation. Statistical e
pectation values of the number operatorbi

†bi and the param-
eterr i are given by2,9

^bi
†bi&5

1

2
2

DB1Ei22m

4g i
tanhS g i

kBTD , ~5!

r i52
vxi

2g i
tanhS g i

kBTD ~6!

whereg i5
1
2 A(DB1Ei22m)214uxi u2 and kB is the Boltz-

mann constant. Note that the site dependent fermion o
parameterxi enters the expression for the boson number
erator ~5! and the parameterr i @Eq. ~6!#. Disorder of any
subsystem is thus automatically transfered onto the o
one.

C. Fermion part

An analysis of the fermion part@Eq. ~3!# is more cumber-
some. To study it we use the Nambu representationC i

†

5(ci↑
† ,ci↓), C i5(C i

†)† and define the matrix Green’s func
tion G( i , j ;v)5^^C i ;C j

†&&v . The equation of motion for
this function reads

(
l

F ~v2« l1m!d i l 2t i l 2r i* d i l

2r id i l ~v1« l2m!d i l 1t i l
GG~ l , j ;v!

51d i j . ~7!

Using the matrix Green’s functionG0( i , j ;v) of a clean
system,

@G0~k;v!#215S v2«k1m 2r*

2r v1«k2m D , ~8!
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wherer5v(1/N)( i^r i& is a global order parameter~which
plays the role of the effective gap in the superconduct
fermion subsystem!, and defining the single site impurity po
tential Vl as

Vl5S « l 2r l*

2r l 2« l
D , ~9!

one can write down the following Dyson equation for th
Green’s functionG( i , j ;v):

G~ i , j ;v!5G0~ i , j ;v!1(
l

G0~ i ,l ;v!VlG~ l , j ;v!.

~10!

This Green’s function depends on the specific disorder c
figuration. In order to pass through one usually average
over the all possible configurations.

For carrying out the configurational averaging we use
method of the coherent potential approximation~CPA!. The
main idea of the CPA is to replace the random potentialVl by
some uniform coherent potentialS(v). Formally, the
Green’s function which satisfies Eq.~10!, with Vl replaced
by S(v), is then given~in the momentum coordinates! by

@GCPA~k;v!#215@G0~k;v!#212S~v!. ~11!

Configuration at sitei is defined by values of the random
energies« i , Ei—we shall symbolically denote it bya
[$« i ,Ei%. Any of possible configurationsa can occur with
some probability P($« i ,Ei%)[c(a), and of course these
probabilities are normalized as(ac(a)51.

A particle propagating through the medium characteriz
by the coherent potentialS(v) is thus, at sitei, scattered
with probabilityc(a) by the potentialVi

(a)2S(v). For a cho-
sen configurationa of the sitei the conditionally averaged
local Green’s function is given by

@G(a)~ i ,i ;v!#215@GCPA~ i ,i ;v!#212@Vi
(a)2S~v!#.

~12!

This Green’s functionG(a)( i ,i ;v) describes the system i
which all sites, except one indicated byi, are described by
the coherent potentialS(v). In the CPA one requires that th
average of the local Green’s function is the same as
Green’s function of the averaged system. This CPA condit
is identical to the following equation:18

(
a

c(a)G(a)~ i ,i ;v!5GCPA~ i ,i ;v!. ~13!

Equations~11!–~13! have to be solved self-consistently
yield the coherent potentialS(v). Physical quantities such
as the fermion concentrationnF[(1/N)( i ,s^cis

† cis& and the
superconducting order parameterx[(1/N)( ixi are to be cal-
culated from

nF52
2

pNE2`

` dv

ebv11
Im$G11

CPA~ i ,i ;v1 i01!%, ~14!
7-2
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x52v
1

pNE2`

` dv

ebv11
Im$G21

CPA~ i ,i ;v1 i01!%, ~15!

whereb51/kBT.
In Sec. III we discuss the changes of the superconduc

transition temperatureTc caused by disorder.

III. DISORDER IN A FERMION SUBSYSTEM

It is instructive to investigate the disorder separately
fermion and boson subsystems. Let us start with the ferm
disorder« i . We setEi50 for all lattice sites. For the random
fermion energies we choose« i5«0 with probability c and
« i50 with probability 12c. It is a bimodal-type disorder:

P~$« i%!5cd~« i2«0!1~12c!d~« i20!. ~16!

Here we shall be mainly interested in the superconduc
transition temperatureTc . In this limit19 the diagonal disor-
der affects mainly a diagonal part of the matrix Green’s fu
tion G. In fact, even for no disorder acting directly on
bosonic subsystem the boson order parameterr in Eq. ~6!
depends on the site index via fermion order parameterxi .
However, we expect thisinduceddisorder to be weak and
neglect it. This allows us to show how disorder, in a ferm
onic subsystem only, affectsTc .

The off-diagonal elements of the coherent potential v
ish. Due to the general symmetryS22( iv)52S11(2 iv)19

we can simplify the self-energy matrix to

S~ iv!5S S11~ iv! 0

0 2S11~2 iv!
D . ~17!

S11(v) can be found from the CPA equation~13! which, for
a normal phase, takes a well-known form18

12c

@S11~v!#211F~v!
1

c

@S11~v!2«0#211F~v!
50,

~18!

with F(v)5(1/N)(kG11
CPA(k,v). Equation ~18! should be

solved subject to a given dispersion relation«k and param-
etersc, «0.

Finally having calculatedS11(v), we can findnF and x
@Eqs. ~14! and ~15!# as well asnB, r @Eqs. ~5! and ~6!#. In
particular, the critical temperatureTc5(kBbc)

21 is given via

15v2
tanh@bc~DB22m!/2#

DB22m (
k
E

2`

`

dv1E
2`

`

dv2

3A~k,v1!A~k,v2!
tanh@bcv1/2#1tanh@bcv2/2#

2~v11v2!
,

~19!

where A(k,v)5(21/p)Im$G11
CPA(k,v1 i01)% denotes the

spectral function of the normal phase.
We choose for our study a case of weak boson ferm

interactionv50.1 ~in units of the initial fermion bandwidth!
and a total concentration of charge carriersntot[2nB1nF
06451
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51. Figure 1 shows howTc of a clean system depends on th
position of the boson level. There are three distinguisha
regimes2,8 of relative occupancy by bosons and fermion
Superconducting correlations are of course most vis
when the chemical potential is close toDB/2. We choose the
valueDB/2520.3 to be close to the optimal value of tran
sition temperature and to have comparable amount of fer
ons and bosons. For computations we use the t
dimensional square lattice dispersion—the van Ho
singularity is safely distant from the Fermi energy for t
above parameters.

In Fig. 2 we plot the transition temperatureTc , calculated
from Eq. ~19! against concentrationc for several values of
«0. With an increase of the concentrationc of scattering cen-
ters we notice a gradual reduction of the critical temperatu
This tendency can be understood by looking at the beha
of the fermion density of states at the Fermi energyg(«F).
Disorder is responsible for a renormalization of the lo
energy sector and these low-energy states are involve
forming the superconducting-type correlations. As shown
the bottom panel there is an additional effect coming fro
the rearrangement of occupationsnF and nB. With an in-
creasing concentrationc the fermion band is shifted towar
higher energies and the system is then mainly occupied
bosons@the so-called local pair~LP! limit #.

For negative values of«0 the disorder shows a stronge
influence onTc . On the one hand we again have a dire
effect of the renormalized density of states@seeg(«F) in the
middle panel of Fig. 3#. On the other hand, with an increas
of c for any negative value of«0 the fermion band and the
position of the chemical potential drift toward lower ene
gies. As a consequence the number of fermions increases
the number of bosons decreases. Effectively we thus

FIG. 1. Variation ofTc with respect to the boson energyDB for
a clean system withntot51. The bottom panel illustrates the con
centrations of fermions (nF) and bosons (nB) at T5Tc . Note the
three distinct regimes of: predominantly local pairs 2nB;ntot , co-
existing pairs and fermionsnF;2nB, and predominantly fermions
nF;ntot ~the so-called BCS limit!.
7-3
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proach the BCS limit where the transition temperature
minishes very fast ifDB/2 goes abovem ~check for example
the curves for«0520.4 and20.5). The strong disorder in
fermion subsystem makes the pairing mechanism alm
ineffective.

In Fig. 4 we plotTc versus~positive! «0 for several con-
centrationsc. Again, Tc roughly follows, variation of the
density of statesg(eF) which is shown in the bottom pane
As discussed above for large values of concentrationc and
large positive«0 the system is mainly filled by bosons~the
LP limit! so there is some finiteTc even whenm5DB/2 is far
below the fermion band, this is an artifact of the mean-fi
approximation.2,8 The behavior ofTc with respect to nega
tive values of«0 can be easily deduced from Fig. 3 so w
skip this illustration.

In summary we notice that a change of the transition te
peratureTc caused by weak disorder in a fermion system
controlled mainly by modification of the low-lying energ
states. This is in accord with the Anderson theorem for sp
singlet s-wave superconductors. However, additional infl
ence comes from redistribution of particle spectrum and th
relative occupancy and such effects are dominant for la
values of impurity concentrationc and for their large scatter
ing strengthu«0u. In this limit the boson-fermion exchang
becomes ineffective.

IV. DISORDER IN A BOSON SUBSYSTEM

Now we turn attention to a case when boson energ
are randomEiÞ0 and, for simplicity, assume no fermio

FIG. 2. Transition temperatureTc as a function of concentration
c of scattering centers with various positive values of«0 ~top
panel!. Density of states at the Fermi energyg(«F) ~middle panel!
and relative occupations by bosons and fermions~bottom panel! for
«050.5 atT5Tc .
06451
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FIG. 3. The same as in Fig. 2 except for negative values of«0

~top panel!. The middle and bottom panels correspond to«0

520.5.

FIG. 4. Transition temperatureTc as a function of the energy«0

of the scattering centers whose concentration isc ~top!. Density of
statesg(«F) for each of the concentrationsc ~bottom panel!. For
c51 and«0>0.2 the Fermi energy goes below the fermion ban
The system is then strictly in the LP limit of the BF model.
7-4
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EFFECT OF DISORDER ON SUPERCONDUCTIVITY IN . . . PHYSICAL REVIEW B66, 064517 ~2002!
disorder i.e.« i50 for all the lattice sites. Scattering potenti
~9! then reduces to

Vl5S 0 2 f l^cl↑
† cl↓

† &

2 f l^cl↓cl↑& 0
D , ~20!

with

f l5v2
tanh@bg l #

2g l
~21!

and

g l5AS DB1El

2
2m D 2

1uv^cl↓cl↑&u2. ~22!

This means that the fluctuating boson energy levelEl in-
duces fluctuations of the pairing strengthsf l in the fermion
subsystem. To some extent, this situation reminds the n
tive U Hubbard model20 for which the random local attrac
tion Ul,0 leads to the following scattering matrix:

Vl
(Hub)5S Ul^nl&/2 Ul^cl↑

† cl↓
† &

Ul^cl↓cl↑& Ul^nl&/2
D . ~23!

We see that in our case the role of a random pairing poten
Ul is played by2 f l given in Eq.~21!. There are two extreme
limits, as far as the effectiveness of the random boson en
DB1El is concerned.

~i! For small~on the scale of fermion-boson interactionv)
fluctuations ofEl , the effect of the disorder becomes neg
gible unless the chemical potential is pinned to the bo
level m5DB/2, when the amplitude of the pairing potential
controlled byf l;v2tanh@bxl#/2xl and is usually uniform ex-
cept at very low temperaturesb→` when f l;v2/xl .

~ii ! For large fluctuations of El one obtains f l
;v2tanh@(b/2)(DB1El22m)#/(DB1El22m).

To analyze effects of the disorder in boson subsystem
use a two-pole distributionP($El%)5 1

2 @d(El2E0)1d(El
1E0)#. The boson energy isDB6E0 with an equal probabil-
ity 0.5. Figure~5! shows a critical temperatureTc , calcu-
lated from Eq.~15!, as a function of energyE0 by which the
boson energy is split. The strong dependence ofTc on disor-
der is a combined effect of the density of states, the fluc
ating interactions, and the changes in concentration of ca
ers.

To estimate what influence comes only from the ren
malization of the effective pairing, in Fig. 6 we plot th
normalized transition temperature denoted byTc and the nor-
malized averaged̂f l& for the parameters given above~left
panel!, and for a fully symmetric case of the BF model~right
panel!. The transition temperatureTc

(BCS) is the BCS-type
estimate of the effect of changes in the effective pairing d
to disorder:

Tc~E0!}expS 21

g~«F!^ f l~E0!& D . ~24!

A general trend observed in Fig. 6 is that the average ef
tive interaction^ f l(E0)& decreases with increasing disorde
06451
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even though the bar fermion-boson interactionv remains
constant. This decreasing pairing interaction is the only f
tor responsible for a behavior ofTc versusE0 in the right
panel. We notice the absence of the BCS-like exponen
scaling which is due to unconventional pairing in the B
model.

FIG. 5. Transition temperatureTc ~top!, and the averaged pair
ing potential^ f l&5($El %

P($El%) f l ~middle!, together with the oc-
cupation of fermionsnF and bosonsnB at T5Tc ~bottom!.

FIG. 6. Normalized critical temperatureTc /Tc(E050) and the
normalized pairing potential^ f l&/^ f l(E050)& vs energyE0 . T(BCS)

shows the BCS-like relation between the critical temperature
pairing potential. The left panel refers tontot51, DB520.6 dis-
cussed above, and the right panel corresponds to the symmetric
of the BF modelDB50, ntot52 ~with half-filled boson and fer-
mion subsystems!.
7-5
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In the left panel, corresponding to the above studied c
DB520.6, ntot51, we notice a larger discrepancy betwe
the pairing amplitude andTc . With an increase ofE0 the
transition temperature is much more strongly reduced tha
the symmetric case. This effect has to be assigned to re
tributions of particle occupancies. At large values ofE0 we
have practically only hard-core boson particles in the syst
and they cannot induce superconductivity among fermi
whose fraction becomes very small.

In a previous study17 the authors used the same bimod
distribution of random boson energies. They found a stro
reduction ofTc nearE0;2v which agrees well with our data
shown in Fig. 6. Moreover, the authors reported that disor
affects the ratioDsc(T50)/kBTc which changes from 4.2
~for a clean system2,9! to the standard BCS result 3.52
largeE0. A simple explanation of this effect can be offere
The boson energy~which is split by 2E0) for sufficiently
largeE0 is partly in the LP limit~for Ei52E0) and partly in
the BCS limit ~if Ei51E0). The second limit contributes
with the standard BCS value ifuE0u is large enough~see,
e.g., Fig. 9 in Ref. 2!.

V. CONCLUSION

The randomness of the site energies of both fermions
bosons has a strong effect on superconducting phase o
BF model. Weak disorder in the fermion subsystem affe
the superconducting transition temperature mainly via res
ing the low-energy states which are involved in the the f
mation of the Cooper pairs. Therefore,Tc roughly follows
the density of states at the Fermi energy. For sufficien
large disorder«0 there appears some critical concentrationc
at whichTc may eventually drop to zero.

Disorder in the boson subsystem has a much finer in
ence on superconductivity. The randomness of boson e
gies is transformed directly into the randomness of the p
ing strength. Effectively physics of the disordered BF mo
hy

a
a
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becomes similar to that of the random negative-U Hubbard
model.20 Even the relatively small fluctuations of the boso
energies show up their strong detrimental effects on su
conductivity.

In a simple picture one can envision this situation as
random change between various regimes of supercondu
ity. Depending on a value ofEl the boson energyDB1El can
be either far below the Fermi energy~the LP limit!, or far
above the Fermi energy~the BCS limit!. Each of such ran-
dom configurations contributes with a different strength
superconducting correlations. On average, the supercond
ing transition temperatureTc strongly diminishes and practi
cally disappears if the amplitude of the randomly fluctuati
boson energiesuE0u is large enough.

In summary, our calculations show that disorder stron
affects thes-wave superconducting phase of the BF mod
This apparent contradiction with Anderson theorem can
understood because of a change of the effective pairing
teraction induced by disorder, and this effect is contrary
the Anderson’s main assumption.16

To compare our results with experimental data on h
temperature superconductors one has to consider thed-wave
superconducting order parameter. This type of symme
arises in a natural way according to a recent derivation of
BF model.4 The effect of disorder on such an anisotrop
superconducting phase of the BF model is outside the sc
of the present paper and will be discussed elsewhere.
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