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Thermally assisted quantum vortex tunneling in the Hall and dissipative regime
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Quantum vortex tunneling is studied for the case where the Hall and the dissipative dynamics are simulta-
neously present. For a given temperature, the magnetization relaxation rate is calculated as a function of the
external current and the quasiparticle scattering time. The relaxation rate is solved analytically at zero tem-
perature and obtained numerically at finite temperatures by the variational method. In moderately clean
samples, we have found that a minimum in the relaxation rate exists at zero temperature, which tends to
disappear with an increase in the temperature.
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I. INTRODUCTION

The depinning properties of vortices in high-temperat
superconductors~HTSC’s! have generated a good deal
interest over the past decade.1,2 Yeshurun and Malozemoff3

reported on the existence of a giant flux creep which ar
from the thermally activated motion of vortices from on
metastable state to a neighboring one. The probability
such a process is proportional to exp(2U/kBT), whereU is
the height of the energy barrier which depends on the p
ning strength and the external current.4 At an extremely low
temperature the exponent diverges and the vortex can
longer move out of the pinning sites. Hence the dynam
magnetization relaxation rateQ, defined askBT/U, is ex-
pected to vanish atT50. However, many experiments5–10

demonstrated that the relaxation rate does not disappe
sufficiently low temperatures, which leads to the existence
quantum tunneling of vortices trapped in the pinning pot
tial.

In general, quantum vortex creep is well described by
dynamics of two major forces: the Hall force and the dis
pative force. Within the collective pinning theory, Blatteret
al.11 considered quantum vortex tunneling for the case wh
the dissipative term is dominant in the motion of vortices.
the other hand, Feigel’manet al.12 proposed that Hall tunnel
ing is dominant in clean superconductors by estimating
low-lying level spacing in the vortex core and the transp
relaxation time of the charge carriers. Many experimen
results have been interpreted within the two frameworks.
cently, however, van Dalenet al.8 observed experimentally
that the vortex tunneling in HTSC’s may occur in an inte
mediate regime between the purely dissipative tunneling
the superclean Hall tunneling. Feigel’manet al.12 and Morais
Smith et al.13 studied the problem in the two regimes, b
they only obtained the qualitative results based on the sca
analysis of the action. The main difficulty of the problem
in the fact that there is the time nonlocality caused by
dissipative dynamics. Recently, the present authors14 treated
the problem quantitatively by using the variational meth
and presented the numerical results for the magnetic re
ation rate at zero temperature in the intermediate regi
Later, Melikidze15 studied a similar problem by considerin
the quadratic Hamiltonian of the vortex coupled to the en
0163-1829/2002/66~6!/064515~8!/$20.00 66 0645
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ronment. Through an analytic diagonalization, he obtain
the dynamical magnetization relaxation rate at zero temp
ture as a function of the Hall and dissipative coefficients a
found the minimum feature in the intermediate regime. P
vious works treated the problem only at zero temperatu
but we extend it to finite temperature in this work. Based
the instanton approach, we have obtained numerical res
for the relaxation rate at finite temperatures and its anal
expression around the crossover temperature between
mal activation and quantum tunneling. Using the function
dependence of the relaxation rate on the Hall and dissipa
coefficients at the crossover temperature, we have also
tained an analytic expression of the relaxation rate at z
temperature.

This paper is organized as follows. In Sec. II, we intr
duce the general formulation for the vortex tunneling rate
the presence of the Hall and the dissipative dynamics ba
on the instanton method, and discuss the Ohmic dissipa
formulated by Caldeira and Leggett.16 In Sec. III, we calcu-
late the magnetic relaxation rate by taking into account
pinning potential barrier generated by impurities. Writing t
action and the corresponding classical equations in Fou
space, we analytically calculate the relaxation rate as a fu
tion of the external current and the Hall and the dissipat
coefficients at zero temperature. We also discuss the m
mum of the relaxation rate in the intermediate regime.
Sec. IV, we numerically calculate the finite-temperature
laxation rate based on the variational method. It is found t
the minimum in the relaxation rate tends to disappear w
the increase in the temperature. We conclude in Sec. V.

II. BASIC FORMULATION

We consider the pancake vortex in thexy plane with
lengthLc along thez axis.Lc is the collective pinning length
which can be expressed in terms of the mass anisotropy
rameter«a

25m/M,1, the coherence lengthj, the depairing
curremt densityj 0, and the critical current densityj c : Lc
.«aj( j 0 / j c)

1/2 within the weak collective pinning theory.1

Lc is obtained by minimizing the energy density which i
cludes the elastic energy of the vortex string, the energy g
from the random pinning potential and the contribution fro
the Lorentz force. Thus each segment of the lengthLc of the
©2002 The American Physical Society15-1
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vortex is pinned by the collective action of all the defec
within the collective pinning volumeVc.j2Lc .

To study the quantum tunneling of the pancake vortex
finite temperature, we consider the path integral represe
tion of the partition function given by

Z~b\!5 R D@u~t!#exp~2SE /\!, ~1!

whereb51/kBT, and SE is the Euclidean action. The pat
sum includes all the periodic pathsu(t)5u(t1b\), where
u is the displacement vector of the vortex in thexy plane.
The Euclidean actionSE includes the Euclidean version o
the LagrangianLE :

SE@u~t!#5E
0

b\

dtLE@u~t!#. ~2!

The tunneling rateG in the semiclassical limit, with an ex
ponential accuracy, is given by17

G}exp@2SE
min~T!/\#. ~3!

We studySE
min(T) which gives the trajectory with the perio

b\ that minimizes the Euclidean action.18 Considering the
situation where the inertia term is not relevant and the vor
dynamics is dominated by the Hall and the dissipative forc
we write the Euclidean action as

SE5E
0

b\

dtH LcF2 ia
dux

dt
uy1V~ux ,uy!G

1(
k

F1

2
mk~ ẋk

21 ẏk
2!1

1

2
mkvk

2XS xk2
Ck

mkvk
2

uxD 2

1S yk2
Ck

mkvk
2

uyD 2CG J , ~4!

wherea is the Hall coefficient andV(ux ,uy) is the pinning
potential per unit length which includes the contributi
from the Lorentz force. The last term of Eq.~4! represents
the dissipative environment of the vortex consisting of a
of harmonic oscillators as formulated by Caldeira a
Leggett.16 The effect of the dissipative environment is cha
acterized by the spectral function

J~v!5
p

2 (
k

Ck
2

mkvk
d~v2vk!. ~5!

With the oscillators integrated out, the Euclidean action ta
the form

SE5E
0

b\

dtH LcF2 ia
dux

dt
uy1V~ux ,uy!G1

1

2E2`

`

dt8

3K0~t2t8!@~ux~t!2ux~t8!!21~uy~t!2uy~t8!!2#J ,

~6!

where the nonlocal influence function is expressed as
06451
a
ta-

x
s,

t

s

K0~t!5
1

2pE0

`

dvJ~v!exp~2vutu!. ~7!

III. QUANTUM TUNNELING OF A VORTEX

In order to study the motion of a vortex, we need to fi
analyze the structure of the model potentialV(ux ,uy). Since
the external currentj along they direction brings the system
into a metastable state by tilting the potential, the vortex
a chance to move out of the pinning potential. Let us defi
uxi

as the critical position of the vortex at which the barri

vanishes at the critical currentj c . In the limit j→ j c , uxi
and

j c satisfy

F ]V

]ux
G

ux5uxi

5F ]2V

]ux
2G

ux5uxi

50. ~8!

With V(ux ,uy)5Vp(ux ,uy)2f0 jux /c, uxi
and j c are given

by the relations (]Vp /]ux)ux5uxi
5f0 j c /c and

(]2Vp /]ux
2)ux5uxi

50, wheref05hc/2e is the flux quantum.

For the pinning potential, we choose an appropriate mo
potential describing a typical tunneling situation:Vp(ux ,uy)
should exhibit a local minimum and should be connected
a saddle to the free space along one direction~we choose this
direction as thex axis.!. A model potential satisfying the
requirement is

V~ux ,uy!.
1

2
V0Fc1eS ux

R D 2

2
2

3
c2S ux

R D 3

1S uy

R D 2G , ~9!

where c15R2A2f0 j c /(cV0
2)u(]3V/]ux

3)ux5uxi
u1/2, c2

5R3u(]3V/]ux
3)ux5uxi

u/(2V0), and e5A12 j / j c!1. In Eq.

~9!, V0 andR are the height and range of the pinning pote
tial, respectively, and for a typical weak pinning potent
V0.(f0/4plxy)

2 andR(>j). c1,2 are the dimensionless co
efficients of the order of 1 andlxy is the bulk-planar pen-
etration depth.

To consider the tunneling of a vortex in the two regime
we investigate the behavior of the Euclidean action@Eq. ~6!#.
In order to estimate the order of magnitude of each term
the action and to simplify the calculation fore!1, we intro-
duce the dimensionless variables

ūx5S 2c2

c1eRDux , ūy5S 2c2

c1
3/2e3/2R

D uy , t̄5S Ac1eV0

A2R2a0
D t,

~10!

wherea05p\ns and ns is the number density of the elec
trons in the condensate.

Assuming the Ohmic dissipation where the friction
force acting on the vortex is linear to the vorte
velocity,1,19,20 the spectral density becomesJ(v)5hv,
whereh5(p/2)( i(Ci

2/miv i
2)d(v2v i)5const.16 With this

choice, we have the influence function
5-2
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K0~t!5
h

2putu2
, ~11!

which leads to the Euclidean action

SE5S A2c1
5/2

4c2
2 D ~Lca0R2!e5/2I HD , ~12!

where

I HD5E
0

L

dt̄H 2 ia1

dūx

dt̄
ūy1

1

2
ūy

21
1

2
ūx

22
1

6
ūx

31
1

4
h1E

2`

`

dt̄1

3
@ ūx~ t̄ !2ūx~ t̄1!#21c1e@ ūy~ t̄ !2ūy~ t̄1!#2

u t̄2 t̄1u2 J , ~13!

where L5b\V0Aec1/(A2a0R2). The dimensionless
Hall @[a/(A2a0)# and dissipation coefficient
@[h/(LcA2p2c1ea0)# are given by20

a15
1

A2

~v0t r !
2

11~v0t r !
2 , ~14!

h15
A2

2pAc1e

v0t r

11~v0t r !
2 . ~15!

Herev0 is the level spacing of the quasiparticle bound sta
inside the vortex core andt r(5m/ne2rn) is a quasiparticle
scattering time, wheren is the number density of the charg
carriers andm andrn are their effective mass and resistivit
respectively. As can be seen in Eqs.~14! and ~15!, the Hall
coefficienta is reduced from its pure valuep\ns due to the
dissipative effect. Although Aoet al. suggested that the Ha
coefficient originates from the topological property and
thus not renomalized,21 it seems that at least some aspects
the experimental behavior8 can be understood on the basis
the renomalization of the Hall coefficient. Therefore, it
meaningful to takea andh to be two parameters determine
by the magnitude ofv0t r .

A. Action in the Fourier space

When the Hall and the dissipative dynamics are simu
neously present, the classical trajectories ofūx andūy satisfy

ia1

dūy

dt̄
1ūx2

ūx
2

2
2h1E

2`

`

dt̄1S dūx

dt̄1
D 1

t̄12 t̄
50, ~16!

2 ia1

dūx

dt̄
1ūy2h1c1eE

2`

`

dt̄1S dūy

dt̄1
D 1

t̄12 t̄
50. ~17!

The substitutiont̄→2 t̄ in Eqs. ~16! and ~17! shows the
invariance of the equations by takingūx(2 t̄)5ūx( t̄) and
ūy(2 t̄)52ūy( t̄). We will keepc1 in the ensuing equations
although we will takec151 for the numerical calculations
Denoting ū( t̄)[@ ūx( t̄),ūy( t̄)#, we haveū( t̄1L)5ū( t̄) at
06451
s

f

-

a finite temperature. A simple analysis shows thatūx( t̄) is
real andūy( t̄) pure imaginary, so they can be expanded in
the Fourier series

ūx~ t̄ !5 (
n52`

`

un exp~ i v̄nt̄ !, ~18!

ūy~ t̄ !52 i (
n52`

`

vn exp~ i v̄nt̄ !, ~19!

wherev̄n52pn/L ~n50, 1, 2 . . .!. Substituting these into
Eqs.~16! and ~17!, we have

S 11ph1uv̄nu1
a1

2v̄n
2

11peh1c1uv̄nu
D un5

1

2 (
m52`

`

un1mum ,

~20!

vn52
ia1v̄n

11peh1c1uv̄nu
un , ~21!

whereu2n5un andv2n52vn . Although Eq.~20! is a one-
dimensional problem with respect toun , its solution be-
comes complicated by the presence of the nonlocal term a
ing from the cubic potential. For generalv0t r and e, we
have numerically solved Eqs.~20! and ~21! via the varia-
tional method. The trial function for the variational metho
has been taken by a combination of the analytic solution
the two extreme limits as follows. At zero temperatu
ūx(v̄)’s are of the formv̄/sinh(a1pv̄) in the Hall limit
(v0t r→`) and exp(2ph1uv̄u) in the dissipative limit
(v0t r→0),14 so a natural choice for the trial function a
finite temperatures is

un5
p1v̄n

sinh~p2v̄n!
1p3exp~2p4uv̄nu!, ~22!

wherepi ’s ( i 51,2,3,4) are free parameters to be determin
by the variational method. It turns out that the numeric
variational method with the trial function works very su
cessfully.

Using the Fourier series in Eqs.~18! and ~19!, we write
I HD as

I HD5L (
n52`

` F2a1v̄nunvn1
1

2
un

22
1

2
vn

2

2
1

6
unS (

m52`

`

un1mumD 1
p

2
h1uv̄nu~un

22c1evn
2!G ,

~23!

which further reduces to

I HD5
1

6
L (

n52`

` S 11ph1uv̄nu1
a1

2v̄n
2

11peh1c1uv̄nu
D un

2 .

~24!
5-3
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B. Quantum relaxation near the crossover temperature
and at zero temperature

At Tc , the crossover temperature between thermal act
tion and quantum tunneling, the classical trajectories beco
independent oft̄, i.e., ūx( t̄)52 andūy( t̄)50. WhenL(T)
is slightly greater thanLc@[L(Tc)#, we take only the first
Fourier harmonics for the solution because the next harm
ics are smaller nearTc :

ūx~ t̄ !5u012u1cosS 2p

L
t̄ D , ~25!

ūy~ t̄ !52v1sinS 2p

L
t̄ D . ~26!

Exploiting the fact thatun’s are zero except foru0 andu1 in
Eq. ~20!, we obtain

u0511
2p2h1

L
1

4p2a1
2

L~L12p2c1eh1!
, ~27!

u1
25u02

1

2
u0

2 . ~28!

Settingu052 in Eq. ~27! and solving forL5Lc , we have

Lc5
4p~a1

21p2h1
2c1e!

Ap2h1
2~11c1e!214a1

22ph1~12c1e!
. ~29!

Using the relations in Eqs.~14! and~15!, we plotLc against
v0t r for different values ofe in Fig. 1. The maximal values
of the crossover periods are more pronounced in the limi
smallere, andLc’s converge to 2pa1(5A2p) in the Hall
regime and to 2p2h1(5A2pv0t r /Ae) in the dissipative re-
gime. The reduced action integration near the crossover t
perature can also be simply obtained by summing onlyn
50 andn51 contributions

FIG. 1. Lc vs v0t r wherec151. Note that the crossover tem
peratures become independent ofe in the Hall regime (v0t r→`).
06451
a-
e

n-

f

m-

I HD5
1

6
LFu0

212S 11
2p2h1

L
1

4p2a1
2

L~L12p2c1eh1!
D u1

2G ,

~30!

which is reduced to

I HD5
1

6
Lu0

2~32u0! ~31!

by using Eqs.~27! and ~28!.
The action integrationI HD obtained by the numerica

variational method aroundTc and the one by Eq.~31! are
compared in Fig. 2. The two curves in the figure perfec
join at the crossover period, which implies that our nume
cal method gives the correct solution. The dynamical m
netization relaxation rateQ is given by Q5\/SE . In real
experimentsQ is extracted from the magnetizationM (t)
5M0@12Q ln(t/t0)#.

3 From Eq. ~12!, we have Q(T)/Q0

52A2/I HD , whereQ05(pnsLcR
2e5/2)21 by takingc15c2

51. Then, at the crossover temperatureTc , since I HD
52Lc/3, we have

Q~Tc!

Q0
5

3A2

Lc
. ~32!

In Fig. 3,Q(Tc)/Q0 andQ(0)/Q0 are plotted with respect to
v0t r . It is interesting that the shape ofQ(Tc)/Q0 for eache
is close to that ofQ(0)/Q0 at zero temperature.14 This fact
can be understood by considering the following features
the relaxation rate. Since the tunneling rateG is expected to
be almost temperature independent forT<Tc and G;exp
(2U/kBT) for T>Tc , the crossover temperature is approx
mately given by the relationshipU/(kBTc).SE(T50)/\.
And Q(0)5\/SE(T50).(kBTc)/U5Q(Tc). Hence we
obtain the analytic expression for the relaxation rate at z
temperature using Eqs.~29! and ~32!,

FIG. 2. The relaxation rateQ(T)/Q0 vs L near the crossove
temperature fore50.1 andv0t r51, whereLc;7.6. The solid line
represents the analytical curve from Eq.~31!, and the dotted line
with diamonds indicates the result of the numerical calculation.
5-4
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Q~0!

Q0
.

3

2p

A~11e!214~v0t r !
2e2~12e!

~v0t r !Ae
, ~33!

by takingc151 and usinga1 /h15v0t rpAe. Equation~33!
agrees with the result of Ref. 15 up to a numerical fac
Since the analytic form forQ(0)/Q0 is known to be 5/6 in
the limit of v0t r→`,14 the correct prefactor of Eq.~33! is
5/12 instead of 3/(2p). Although Q(0)/Q0 goes to infinity
asv0t r→0 in Eq. ~33!, it actually does not diverge in tha
limit, because, by including the inertia term not considered
this work, the approximate form of the classical action in t
limit becomesSE /\;LcAmvV0je5/2, which is independen
of v0t r , wheremv is the inertia mass of a vortex.1,22,23 In
general, the mass term is relatively small in the Hall a
dissipative regime and can usually be neglected.

In a moderately clean regime, for small values ofe each
curve in Fig. 3 has a minimum aroundv0t r51, which is
interested. In fact, from Eq.~33! we can see that the positio
of the minimum at zero temperature isv0t r5(11e)/(1
2e). As e becomes smaller, i.e., asj→ j c , the minimum
becomes much more pronounced with its location mov
toward v0t r51 at the same time. The existence of su
minima can be understood by considering the followi
qualitative features of the relaxation rates in the two regim
Since ūx(v) is proportional toa1v/sinh(a1pv) in the Hall
limit,14 the classical trajectories withuvu&1/a1 contribute to
the Euclidean action mostly. From Eqs.~12! and ~24! the
correction to the Hall actionSE

(H) by the small dissipation is
given by (11h1 /a1)SE

(H);(111/v0t r)SE
(H) , which leads

to the relaxation rate given byQ(0);v0t r /(11v0t r). So
the relaxation rateQ decreases with a decrease inv0t r from
`, which is also physically clear because the classical ac
increases by inclusion of the dissipation. In the opposite li
the correction to the purely dissipative actionSE

(D) by the
small Hall contribution is @11(a1 /h1)2#SE

(D);v0t r@1
1(v0t r)

2#, leading to the relaxation rateQ(0);1/@v0t r„1

FIG. 3. The relaxation rate evaluated at the crossover temp
ture: Q(Tc)/Q0 vs v0t r wheree50.1 ~a!, 0.01 ~b!, and 0.001~c!.
Inset: the relaxation rateQ(0)/Q0 at zero temperature withe
50.1 ~a!, 0.01 ~b!, and 0.001~c!.
06451
r.

n
e

d

g

s.

n
it

1(v0t r)
2
…#. In this case,Q(0) decreases with increase

v0t r . Therefore, a minimum inQ(0) should exist in the
intermediate regime, which suggests the existence of
strong pinning in the moderately clean samples.

C. Quantum relaxation in the dissipation regime

In the dissipative limit, we takea1→0 in the action inte-
gration of Eq.~24!. The reduced action then becomes

I HD5
1

6
L (

n52`

`

~11ph1uv̄nu!un
2[I D . ~34!

Noting that un in the dissipative limit is given byun
5u0exp(2bunu) where u054p2h1 /L and b
5tanh21(2p2h1 /L),24 we obtain the reduced action given b

I D5LcF12
1

3 S T

Tc
D 2G , ~35!

whereLc52p2h1 and kBTc5\Ac1eV0 /(2A2p2R2a0h1).
In Fig. 4, the relaxation rate using Eq.~35! is compared with
the one obtained from the numerical solution: the two cur
match quite well asymptotically in the region of smallv0t r
values.

D. Quantum relaxation in the Hall regime

In the Hall limit we takeh1→0 in Eq. ~24!, which leads
to the reduced action given by

I HD5
1

6
L (

n52`

`

~11a1
2v̄n

2!un
2[I H , ~36!

whereun satisfies

~11a1
2v̄n

2!un5
1

2 (
n52`

`

un1mum . ~37!

a- FIG. 4. The relaxation rate in the dissipative limit whene
50.1 andL510. The solid line represents the evaluation of E
~35!, and the diamonds are the numerical results from the va
tional method.
5-5
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While the instanton solution can be obtained analytically
the dissipative regime, the solution of Eq.~37! can be found
numerically. We use Eqs.~16! and ~17! rather than Eq.~37!
and obtain the reduced differential equation

2a1
2 d2ūx

dt̄2
22ūx1ūx

250. ~38!

We then integrate forI HD with h150 in Eq. ~13! using the
solution forūx in Eq. ~38!, and obtain the reduced actionI H .
As in the case of the dissipative regime, we have found
the relaxation rate agrees with the one obtained from
variational procedure in the limit ofv0t r→`.

IV. DISCUSSION AT FINITE TEMPERATURE

We now consider the problem at the finite temperature
the whole regime, i.e., when the Hall and dissipative dyna
ics are simultaneously present. The solutions forūx(t) and
ūy(t) in Eqs. ~18! and ~19! are obtained throughun’s and
vn’s of Eqs.~20! and~21! which are numerically obtained b
the variational method. In Fig. 5, we showūx( t̄) and ūy( t̄)
for various periodsL which exhibit the typical trend of the
classical trajectories as the period is successively shorte
The peak-to-valley amplitudes ofūx( t̄) and ūy( t̄) decrease
as the period becomes shorter, and eventually become fl
Tc , i.e., ūx( t̄)52 andūy( t̄)50. We subsequently calculat
the reduced action@Eq. ~13!# via Eq. ~24! and the corre-
sponding relaxation rate. The three-dimensional plot
Q(T)/Q0 versusv0t r andL for e50.01 is shown in Fig. 6.
We have also plottedQ(T)/Q0 againstL for the different
values ofv0t r in Fig. 7. As can be seen in the figure,v0t r
51 is the boundary of the two different behaviors of t

FIG. 5. Typical instanton solutions with different periods:ūx( t̄)

~top! and 2 i ūy( t̄) ~bottom! for e50.1 andv0t r51.0, where the
periods arè ~a!, 10 ~b!, 8 ~c!, and 7.617~d!.
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n
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at

f

relaxation rate: forv0t r,1, the relaxation rate increase
with decreasingv0t r , whereas forv0t r.1 it increases with
increasingv0t r . The dependence ofQ(T)/Q0 on v0t r is
shown in Fig. 8 for the different values of the period.

What is interesting is the behavior of the relaxation rate
the intermediate region ofv0t r . We focus our attention on
the four different temperature regimes, as indicated in F
8~b!. If the temperature is sufficiently low so thatL.Lc

(m) ,
the line yields no intersection points, and there exists a qu
tum relaxation in the whole regimes ofv0t r . If the tempera-
ture is sufficiently high so thatL,Lc

(H) , quantum relaxation
occurs only in the dissipative regime@v0t r,(v0t r)D#. In
the temperature rangeLc

(H),L,Lc
(m) , on the other hand

quantum relaxation exists either in the Hall regime or in t
dissipative regime, and purely thermal relaxation occurs
the crossover region between the two regimes. The value
Lc

(m) , Lc
(H) , and (v0t r)D can readily be computed from th

position of the minimum and using Eq.~29! with c151:

FIG. 6. The relaxation rateQ(T)/Q0 for e50.01 againstv0t r

andL. In order to show the curve forQ(Tc)/Q0, we have omitted
the purely thermal relaxation rate. See Fig. 8 for details.

FIG. 7. The relaxation rateQ(T)/Q0 vs L for the different
values of v0t r when e50.01. v0t r increases from the bottom
(v0t r51) and approaches̀ . Inset: the case forv0t r<1. v0t r

decreases from the bottom.
5-6
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Lc
(m)5p(11e)/A2e, Lc

(H)5A2p, and (v0t r)D5Ae/(1
2e). The corresponding relaxation rates are given
Q(Lc

(m))/Q056Ae/@p(11e)# and Q(Lc
(H))/Q053/p. The

minimum of Q(T)/Q0 in the intermediate regime is the

FIG. 8. ~a! Q(T)/Q0 vs v0t r for different periods whene
50.01. The periods are 30, 20, 15, and 10~from the bottom!. The
curve with the period of 30 is already very close to that of
infinite period, which corresponds to zero temperature. The do
curve isQ(Tc)/Q0 of Fig. 3. In the region above the dotted curv
purely thermal relaxations exist along the horizontal lines.~b! A
schematic diagram ofLc vs v0t r with the lines of constant tem
peratures. Four cases are considered :~I! L.Lc

(m) , ~II ! L5Lc
(m) ,

~III ! Lc
(H),L,Lc

(m) , and ~IV ! L<Lc
(H) . Note thatLc

(m)522.4,
Q(Tc)/Q050.189, and (v0t r)D50.101.
nd

ys

,
.
.

06451
y

noted. As the temperature becomes lower, the quantum
laxation rate is more developed in the intermediate regi
and at an extremely low temperature it has a minimum
v0t r;1. This feature is more pronounced for smallere and
larger L. Correspondingly, in such a regime the quantu
depinning of a vortex is expected to be smaller at low
temperatures in the regime.

Before concluding, we illustrate our results with speci
numbers. In the experiment of Ref. 8, the relaxation rate
Q(0)/Q0;2.3 (2.0) in the YBa2Cu3O7(BiSr2CaCu2O8)
system. In this case,v0t r;0.29 (0.37) for YBCO~BiS-
CCO! which corresponds to the Hall angleQH
5arctan(v0tr);16° (20°), which depends on the oxyge
content. The numbers imply that the samples are modera
clean. However, the regime which was considered in Re
was v0t r&1, where the onset of the minimum just tak
place. In order to observe the minima, the experiment sho
be extended to the regionv0t r@1.

V. CONCLUSIONS

In conclusion, we have considered the quantum tunne
of a vortex in the presence of the Hall and dissipative
namics. We have derived an analytic expression for the
laxation rate at zero temperature and obtained numerica
lutions by a variational method at finite temperatures. T
relaxation rate is constant in the Hall limit and proportion
to 1/(v0t r) in the dissipative limit, and, consequently,
minimum exists atv0t r52( j c / j )(11A12 j / j c)21. There-
fore, the strongest pinning is expected in the modera
clean sample at zero temperature. At finite temperatures
quantum relaxation rate tends to vanish in the intermed
regime where both the Hall and dissipative terms contrib
to the dynamics of a vortex. At sufficiently low temperature
quantum vortex tunneling occurs in the whole regime and
corresponding relaxation rate has a minimum atv0t r;1.
These features are expected to be observed in future ex
ments.
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