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Thermally assisted quantum vortex tunneling in the Hall and dissipative regime
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Quantum vortex tunneling is studied for the case where the Hall and the dissipative dynamics are simulta-
neously present. For a given temperature, the magnetization relaxation rate is calculated as a function of the
external current and the quasiparticle scattering time. The relaxation rate is solved analytically at zero tem-
perature and obtained numerically at finite temperatures by the variational method. In moderately clean
samples, we have found that a minimum in the relaxation rate exists at zero temperature, which tends to
disappear with an increase in the temperature.
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[. INTRODUCTION ronment. Through an analytic diagonalization, he obtained
the dynamical magnetization relaxation rate at zero tempera-

The depinning properties of vortices in high-temperatureture as a function of the Hall and dissipative coefficients and
superconductor§HTSC'’s) have generated a good deal of found the minimum feature in the intermediate regime. Pre-
interest over the past decatizYeshurun and Malozemdff ~Vious works treated the problem only at zero temperature,
reported on the existence of a giant flux creep which ariseBut we extend it to finite temperature in this work. Based on
from the thermally activated motion of vortices from one the instanton approach, we have obtained numerical results
metastable state to a neighboring one. The probability fofor the relaxation rate at finite temperatures and its analytic
such a process is proportional to expd/kgT), whereU is ~ €xpression around the crossover temperature between ther-
the height of the energy barrier which depends on the pinmal activation and quantum tunneling. Using the functional
ning strength and the external currémtt an extremely low dependence of the relaxation rate on the Hall and dissipative
temperature the exponent diverges and the vortex can riepefficients at the crossover temperature, we have also ob-
longer move out of the pinning sites. Hence the dynamicafained an analytic expression of the relaxation rate at zero
magnetization relaxation rat®, defined askgT/U, is ex-  témperature. _ _
pected to vanish af=0. However, many experiments® This paper is organized as follows. In Sec. Il, we intro-
demonstrated that the relaxation rate does not disappear @¢ce the general formulation for the vortex tunneling rate in
sufficiently low temperatures, which leads to the existence othe presence of the Hall and the dissipative dynamics based
quantum tunneiing of vortices trapped in the pinning poten_on the instanton method, and discuss the Ohmic diSSipation
tial. formulated by Caldeira and Leggéttin Sec. IIl, we calcu-

In general, quantum vortex creep is well described by théate the magnetic relaxation rate by taking into account the
dynamics of two major forces: the Hall force and the dissi-Pinning potential barrier generated by impurities. Writing the
pative force. Within the collective pinning theory, Blatetr action and the corresponding classical equations in Fourier
al.'* considered quantum vortex tunneling for the case wherépace, we analytically calculate the relaxation rate as a func-
the dissipative term is dominant in the motion of vortices. Ontion of the external current and the Hall and the dissipative
the other hand, Feigel'maet al? proposed that Hall tunnel- Ccoefficients at zero temperature. We also discuss the mini-
ing is dominant in clean superconductors by estimating thénum of the relaxation rate in the intermediate regime. In
|0W_|ying level Spacing in the vortex core and the transportsec. IV, we numerica”y calculate the finite-temperature re-
relaxation time of the charge carriers. Many experimentalaxation rate based on the variational method. It is found that
results have been interpreted within the two frameworks. Rethe minimum in the relaxation rate tends to disappear with
cently, however, van Dalegt al® observed experimentally the increase in the temperature. We conclude in Sec. V.
that the vortex tunneling in HTSC’s may occur in an inter-
mediate regime between the purely dissipative tunneling and Il. BASIC FORMULATION
the superclean Hall tunneling. Feigel’'manal 2 and Morais
Smith et al*® studied the problem in the two regimes, but We consider the pancake vortex in thg plane with
they only obtained the qualitative results based on the scalingngthL . along thez axis. L is the collective pinning length
analysis of the action. The main difficulty of the problem is which can be expressed in terms of the mass anisotropy pa-
in the fact that there is the time nonlocality caused by thgameters2=m/M <1, the coherence length the depairing
dissipative dynamics. Recently, the present auffidreated  curremt densityj,, and the critical current density,: L.
the problem quantitatively by using the variational method=¢,£(jo/j.)"? within the weak collective pinning theoty.
and presented the numerical results for the magnetic relax-. is obtained by minimizing the energy density which in-
ation rate at zero temperature in the intermediate regimecludes the elastic energy of the vortex string, the energy gain
Later, Melikidzé® studied a similar problem by considering from the random pinning potential and the contribution from
the quadratic Hamiltonian of the vortex coupled to the envi-the Lorentz force. Thus each segment of the lengtlof the
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vortex is pinned by the collective action of all the defects 1 (=

within the collective pinning volum&/ = 2L ;. Ko(7)= Ef dwd(w)exp —o|7)). )
To study the quantum tunneling of the pancake vortex at a 0

finite temperature, we consider the path integral representa-

tion of the partition function given by I1l. QUANTUM TUNNELING OF A VORTEX

In order to study the motion of a vortex, we need to first
Z(ph)= j; Dlu(7)]exp(—Sg/h), @ analyze the structure of the model potentigli, ,u,). Since
) . ) the external currerjtalong they direction brings the system
where 8=1/kgT, and S is the Euclidean action. The path ihtg a metastable state by tilting the potential, the vortex has
sum includes all the periodic patig7) =u(7+ B#), where 5 chance to move out of the pinning potential. Let us define

uhis the ?&splacemgr'g v_ectlordof thhe vortelxdin thg plane. ; Ux as the critical position of the vortex at which the barrier
The Euclidean actioibe includes the Euclidean version o vanishes at the critical currept. In the limitj—j, Uy, and

the Lagrangian_g: _ _
j¢ satisfy

Bh
Se[U(T)]=JO drLelu(7)]. 2

N
Uy

PV

ou?

=0. (8)

Uy =y,

The tunneling ratd” in the semiclassical limit, with an ex- U=ty
ponential accuracy, is given by
Focexp[—SE‘“(T)/ﬁ]. 3) With V(uy ,uy)zvl?(ux Uy) — dojuy/c, Uy, and.jC are given

. by the relations pr/&Ux)ux:ux =d¢ojc/c  and
We studySE"(T) which gives the trajectory with the period !
Bh that minimizes the Euclidean actidf Considering the
situation where the inertia term is not relevant and the vorteXtor the pinning potential, we choose an appropriate model
dynamics is dominated by the Hall and the dissipative forcespotential describing a typical tunneling situatidrf(u, ,uy)
we write the Euclidean action as should exhibit a local minimum and should be connected via

((92Vp /aui)uxz u =0, whereg,=hc/2e is the flux quantum.

- duy
—|aEuy+V(ux,uy)

. (9

1
V(l-]x’uy)z EVO

J’_

a saddle to the free space along one directve® choose this

Bh direction as thex axis). A model potential satisfying the

Sg= fo drj Lc requirement is
2 3 2
1 ., .1 C Ue| " 2 [Ux]” (Uy
+> [ ZmE+y2) + = mew?| | xe— —u, Cle(ﬁ) _§C2(E) +(E
|2 2 Myw?
c, 2 where clzRZ\/2¢OjC/(CVOZ)|(<93V/(9u§)ux=uxi|1’2, Cy
Yk~ mkwiuy : 4 :R3|(a3V/0uf)ux:uxi|/(2VO), ande=1—j/j.<1. In Eq.

] o ) o (9), Vo andR are the height and range of the pinning poten-
wherea is the Hall coefficient and/(u,,uy) is the pinning 3 respectively, and for a typical weak pinning potential
potential per unit length which includes the Cont”bUt'O”Voz(¢0/4w)\xy)2andR(ag). ¢, ,are the dimensionless co-
from the Lorentz force. The last term of E@l) represents efficients of the order of 1 anlsix is the bulk-planar pen-
the dissipative environment of the vortex consisting of a sef ation depth. Y
of harmonic oscillators as formulated by Caldeira and

To consider the tunneling of a vortex in the two regimes,

16 iecinafi : -
Leggett. 4 'It;heheffect of ”I‘? dissipative environment is char-\ e jnvestigate the behavior of the Euclidean acfigq. (6)].
acterized by the spectral function In order to estimate the order of magnitude of each term in
c? the action and to simplify the calculation fer<1, we intro-
Jw)= T > K S(w— wy). (5)  duce the dimensionless variables
2 k mkwk
With the oscillators integrated out, the Euclidean action takes - _ 2C; b T 2¢; P VC1€Vo
the form leeR) 0 YT 3R Y T J2R%a, 7
—fﬁhd L —ia 2, 4y + Fd’ o
Se= o T|C P (U ty) 2) . " where ap= mfing andng is the number density of the elec-
trons in the condensate.
L _ 1N\ 2 _ 1N\ 2 Assuming the Ohmic dissipation where the frictional
XKo(7=7)L(ULT) = U(7)) "+ (Uy(m) = Uy( 7)) ]]' force acting on the vortex is linear to the vortex

5 velocity192° the spectral density become¥ w)= 7w,
©)  \Where 7= (m/2),(C¥m,w?) 8(w— w;) =const'® With this
where the nonlocal influence function is expressed as choice, we have the influence function
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Ui
Ko(71)= 202" (11
which leads to the Euclidean action
\/— 5/2
Sg= (LeaoR?) € p, (12)
2

where

1 1 1 1 w
lvp= f ?{_lal —Uy ZU§+2U§_€U>3(+ZWIJ_ dry

(1)— uym)]z]

[U (1) = Uy(1)°+celuy

13

|7' 7'1|
where A=phVyJec,/(V2aoR?). The dimensionless
Hall [=al/(J2a,)] and dissipation coefficients
[=n/(Lev2m2cieaq)] are given byP
1 (0007'r)2
- 14
1 \/§1+(w07r)2 (14
\/5 WoTr (15
n= . 15
" 2mere L+ (wor)?

Herew, is the level spacing of the quasiparticle bound state%

inside the vortex core ang.(=m/ne?p,,) is a quasiparticle

scattering time, whera is the number density of the charge —
carriers andn andp,, are their effective mass and resistivity,

respectively. As can be seen in E¢$4) and (15), the Hall
coefficiente is reduced from its pure valugfing due to the
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a finite temperature. A simple analysis shows thgtr) is

real ande(?) pure imaginary, so they can be expanded into
the Fourier series

U= > U, exgioyr), (18)

n=—o

u(n)=—i X v,exgio,r), (19)

n=—ow

wherew,=2mn/A (n=0, 1, 2. .
Egs.(16) and(17), we have

.). Substituting these into

272 o
— ajoy, 1
1+7T77 Wy t+t—————|u, == 2 Un,
( 1| n| 1+7TE77101|a)n| n 2 < Un+mUm
(20
iy,
vn=—%un, (22

1+ menCi|wn|

whereu_,=u, andv _,= —v, . Although Eq.(20) is a one-
dimensional problem with respect t@,, its solution be-
comes complicated by the presence of the nonlocal term aris-
ing from the cubic potential. For general,7, and €, we
have numerically solved Eq$20) and (21) via the varia-
ional method. The trial function for the variational method
as been taken by a combination of the analytic solutions in
the two extreme limits as follows. At zero temperature,

x(w)s are of the formw/smh(alww) in the Hall limit

(wor,—*) and explmplol) in the dissipative limit
(wo7,—0).}* so a natural choice for the trial function at

dissipative effect. Although Aet al. suggested that the Hall finite temperatures is

coefficient originates from the topological property and is

thus not renomalizet}, it seems that at least some aspects of PLw,

the experimental behavfdcan be understood on the basis of Up=————=—=—+paexp(— p4|wn|

the renomalization of the Hall coefficient. Therefore, it is sinf(p;wy)

meaningful to taker and  to be two parameters determined wherep;'s (i =1,2,3,4) are free parameters to be determined

by the magnitude ofvg7; . by the variational method. It turns out that the numerical
variational method with the trial function works very suc-

(22)

A. Action in the Fourier space cessfully.
When the Hall and the dissipative dynamics are simulta- U:éng the Fourier series in EqEL8) and (19), we write
neously present, the classical trajectoriesipndu, satisfy HD
_ _ ~ — 1 1
du, — u? © _ [du 1 = — Zut- 2
oy 2+ Uy — = — 771] drl(tx)_ _—0, 1 P An;_m { @1@nUntnt 5Un = 5Un
dT 2 —® 1 1— 7
1 - 5
dU _ % duy _gun _E Un+mUm +2 771|wn|(u —Crevy) |,
_|a’1 —+Uy 7]1016[ dTl ==0. (17) m=-
dr o dTl 7'1 T (23)

The substitutionr— — 7 in Egs. (16) and (17) shows the

invariance of the equations by taklng( 7') ux(r) and
y( )— y(T). We will keepc, in the ensuing equations,

although we will takec,; =1 for the numerical calculations.

Denotmgu(r) [u (), uy(r)] we haveu(T+A) u(r) at

which further reduces to

| A 1+« ; +— UZ.
HD™ 6 E ( 711| n| l+wenlcl|wn|> n
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FIG. 1. A¢ vs wo7, wherec; =1. Note that the crossover tem-  FIG. 2. The relaxation rat®(T)/Q, vs A near the crossover
peratures become independentedf the Hall regime (o7, — ).  temperature foe=0.1 andw,r, = 1, whereA .~ 7.6. The solid line
_ represents the analytical curve from E81), and the dotted line
B. Quantum relaxation near the crossover temperature with diamonds indicates the result of the numerical calculation.
and at zero temperature
At T., the crossover temperature between thermal activa- 272y 472 o
. - . . . _ 2 1 1 2
tion and quantum tunneling, the classical trajectories becomel HD_EA upt2| 1+ A + > usi |,
A(A + 27T 0167]1)

independent ofr, i.e., u,(7)=2 anduy(7)=0. WhenA(T)
is slightly greater tham\ [=A(T.)], we take only the first
Fourier harmonics for the solution because the next harmonyhich is reduced to
ics are smaller nedr:

1
— 2 lhp==Aug(3—u 31
ux(r)=u0+2u1cos<%7), (25) o= Aio(3~ o) 3D

by using Eqs(27) and (28).
— — [ e The action integration,p obtained by the numerical
UV(T):Zvls'n(Tﬁ' (28)  \ariational method around, and the one by Eq31) are
compared in Fig. 2. The two curves in the figure perfectly
Exploiting the fact that,’s are zero except fang anduy in join at the crossover period, which implies that our numeri-

Eq. (20), we obtain cal method gives the correct solution. The dynamical mag-
netization relaxation rat€) is given by Q=#%/Sg. In real
22y, 4772a§ experimentsQ is extracted from the magnetizatiov (t)
Up=1+ (27) =M [1-QIn(t/ty)].3 From Eq. (12), we have Q(T)/Qq

A 2 :
A(A+2m°cien,) =221y, WhereQo=(mnL R2¥) ! by takingc,=c,

=1. Then, at the crossover temperatufg, since lyp

1 _
u%: Ug— Eu(z) (28) —2AC/3, we have
. . : QT 342
Settingup=2 in Eq.(27) and solving forA=A., we have o~ A (32)
0 c
Am(al+ myicie) . .
A= . (290 InFig. 3,Q(T.)/Qy andQ(0)/Q, are plotted with respect to
¢ Jr?pi(1+cie)?+4aZ— myy(1—cqe) woT, . Itis interesting that the shape Qi(T.)/Q, for eache

is close to that 0fQ(0)/Q, at zero temperaturé. This fact
Using the relations in Eq$14) and(15), we plotA; against  can be understood by considering the following features of
wo, for different values of in Fig. 1. The maximal values the relaxation rate. Since the tunneling rités expected to
of the crossover periods are more pronounced in the limit obe almost temperature independent To T, and I'~exp
smallere, and A ’s converge to Za;(=+2) in the Hall (=U/kgT) for T=T., the crossover temperature is approxi-
regime and to Z27,(= V27w, /\/€) in the dissipative re- mately given by the relationship/(kgT)=Se(T=0)/%.
gime. The reduced action integration near the crossover tenind Q(0)=%/Sg(T=0)=(kgT.)/U=Q(T.). Hence we
perature can also be simply obtained by summing only obtain the analytic expression for the relaxation rate at zero
=0 andn=1 contributions temperature using Eq§29) and(32),

064515-4



THERMALLY ASSISTED QUANTUM VORTEX TUNNELING ... PHYSICAL REVIEW B66, 064515 (2002

3 1.1

11
ol 09}
g o
'\T) 100 1000 g 0.8}
= S
] g o7t
1}
06}
05}
8.01 0:1 1I 1I0 160 10I00 10000 0. 1 1 L L L L 1
b2 03 04 05 06 07 08 09 1
m,T, O,

FIG. 3. The relaxation rate evaluated at the crossover tempera- F|G, 4. The relaxation rate in the dissipative limit when
ture: Q(Tc)/Qo Vs wor, wheree=0.1(a), 0.01(b), and 0.00Xc).  =0.1 andA=10. The solid line represents the evaluation of Eq.
Inset: the relaxation rat®(0)/Q, at zero temperature wite  (35) and the diamonds are the numerical results from the varia-
=0.1(a), 0.01(b), and 0.001(c). tional method.

Q(0) 3 J(1+e)’+4(wor)’e—(1—e) +(wo7)?)]. In this caseQ(0) decreases with increase in

, (33 wgr,. Therefore, a minimum iQ(0) should exist in the
intermediate regime, which suggests the existence of the
strong pinning in the moderately clean samples.

Q 27 (wor)\e

by takingc,=1 and usingy,/ 7= w7, 7 €. Equation(33)
agrees with the result of Ref. 15 up to a numerical factor.
Since the analytic form fo@(0)/Q is known to be 5/6 in
the limit of w7, —,'* the correct prefactor of Eq33) is In the dissipative limit, we taker;— 0 in the action inte-
5/12 instead of 3/(2). Although Q(0)/Q, goes to infinity ~ gration of Eq.(24). The reduced action then becomes

as w7, —0 in Eq.(33), it actually does not diverge in that
limit, because, by including the inertia term not considered in — 2
this work, the approximate form of the classical action in the IHD:EAn;x (L+mmfog)ui=lp. (34)
limit becomesSg /% ~L .\m,Voée®?2, which is independent _ _ S

of wor,, wherem, is the inertia mass of a vorté¥>?3|n  Noting that u, in the dissipative limit is given byu,
general, the mass term is relatively small in the Hall and=UoeXp(—bjn)  where — up=4m*n /A  and b

C. Quantum relaxation in the dissipation regime

©

dissipative regime and can usually be neglected. =tanh *(27°7,/A),** we obtain the reduced action given by
In a moderately clean regime, for small valueseoéach 5

curve in Fig. 3 has a minimum arouney7, =1, which is lo=A, 1_l<l) (35)

interested. In fact, from Eq33) we can see that the position 3\ Te) [

of the minimum at zero temperature isy7,=(1+¢€)/(1 where A = 2727, and keTo=# S eVo/(2V272R2ag7y).

e T sy Wi ocauon o 9. e Telaation e using 559 s compared i
P gfhe one obtained from the numerical solution: the two curves

toward wg7,=1 at the same time. The existence of suchmatch uite well asymptotically in the region of smalj
minima can be understood by considering the followingvaluesq ymp y 9 Tr

qualitative features of the relaxation rates in the two regimes.
Sinceu,(w) is proportional toa;w/sinh(e;7w) in the Hall
limit,* the classical trajectories wiflw| <1/« contribute to

the Euclidean action mostly. From Eq4.2) and (24) the In the Hall limit we taken;—0 in Eq.(24), which leads
correction to the Hall actios{™ by the small dissipation is to the reduced action given by

given by (1+ 71 /a;) St~ (1+ Lwer)SE, which leads

to the relaxation rate given b®(0)~ wg7, /(1+ wo7;). SO

the relaxation rat€ decreases with a decreasedipr, from

o, which is also physically clear because the classical action o
increases by inclusion of the dissipation. In the opposite limitvhereu, satisfies

D. Quantum relaxation in the Hall regime

1 < —
IHD:EAn;x (1+addwdui=ly, (36)

the correction to the purely dissipative actiﬁo) by the L

ibuti i 21g(D) _
small H2aII cor!tnbunon is [1+(a1/n1) 1St ~wor[1 (1+a§;2n)un:_ E Upps U 37)
+(wgo7,)°], leading to the relaxation ra@(0)~ 1] wq7, (1 n=—c
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FIG. 6. The relaxation rat®(T)/Q, for e=0.01 againsiv,,
andA. In order to show the curve fd@(T.)/Qg, we have omitted
the purely thermal relaxation rate. See Fig. 8 for details.

Al

relaxation rate: forwg7, <1, the relaxation rate increases
with decreasingoy7, , whereas fowq7,>1 it increases with
increasingwy7, . The dependence d(T)/Qy on wqy; IS
shown in Fig. 8 for the different values of the period.

What is interesting is the behavior of the relaxation rate in
the intermediate region aby7, . We focus our attention on
the four different temperature regimes, as indicated in Fig.
8(b). If the temperature is sufficiently low so that> A(cm) ,
the line yields no intersection points, and there exists a quan-
tum relaxation in the whole regimes e, . If the tempera-

FIG. 5. Typical instanton solutions with different periods( )

(top) and —iuy(7) (bottom for e=0.1 andw,r,=1.0, where the
periods aree (a), 10 (b), 8 (c), and 7.617(d).

While the instanton solution can be obtained analytically in
the dissipative regime, the solution of E§7) can be found
numerically. We use Eq$16) and(17) rather than Eq(37)
and obtain the reduced differential equation

o ture is sufficiently high so tha’:<A(cH) , quantum relaxation
2 AU = o ly in the dissipati [ < I
205 —= —2u,+ui=0. (38) occurs only in the ISSIBa ive regimevgr, <(wq7,)pl- In
dr the temperature rangd (™ <A <A™ on the other hand,

quantum relaxation exists either in the Hall regime or in the
dissipative regime, and purely thermal relaxation occurs in

solution foruy in Eq. (38), and obtain the reduced actibR.  the crossover region between the two regimes. The values for

As in the case of the dissipative regime, we have found thag (m A (H) g49 o) can readily be computed from the
c »fic

the relaxation rate agrees with the one obtained from th%osition of the minimum and using E29) with c,=1:
variational procedure in the limit aby7, — . !

We then integrate fof,p with ;=0 in Eq.(13) using the

1

IV. DISCUSSION AT FINITE TEMPERATURE 09

We now consider the problem at the finite temperature in
the whole regime, i.e., when the Hall and dissipative dynam-

LCS are simultaneously present. The solutionsEg(rr) and 0.7 ¥
uy(7) in Egs.(18) and (19) are obtained through,’s and 06l \¥
v,'s of Egs.(20) and(21) which are numerically obtained by \&

3 05 ¥

the variational method. In Fig. 5, we shaw(7) anduy(7)

for various periods\ which exhibit the typical trend of the 04l I\

classical trajectories as the period is successively shortenet 0sle NS \
~“Ts N \\\\\\\\%____;

08|

Q(T)y/Q,

The peak-to-valley amplitudes of,(7) anduy(7) decrease NN X
as the period becomes shorter, and eventually become flat ¢ 02 Ej \x
T, i.e.,u,(7)=2 anduy(7) =0. We subsequently calculate o1l AL " \

the reduced actiofEq. (13)] via Eq. (24) and the corre- 10

sponding relaxation rate. The three-dimensional plot of A

Q(T)/Qo versuswy7, andA for e=0.01 is shown in Fig. 6. FIG. 7. The relaxation rat®(T)/Qq vs A for the different

We have also plotte®@(T)/Q, againstA for the different  values of wyr, when e=0.01. wyr, increases from the bottom
values ofwg7, in Fig. 7. As can be seen in the figurey, (wor,=1) and approaches. Inset: the case fowyr,<1. w7,
=1 is the boundary of the two different behaviors of thedecreases from the bottom.
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FIG. 8. (8 Q(T)/Qq Vs wqr, for different periods whene
=0.01. The periods are 30, 20, 15, and (f@m the bottony. The
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noted. As the temperature becomes lower, the quantum re-
laxation rate is more developed in the intermediate regime,
and at an extremely low temperature it has a minimum at
wqo7,~1. This feature is more pronounced for smakeand
larger A. Correspondingly, in such a regime the quantum
depinning of a vortex is expected to be smaller at lower
temperatures in the regime.

Before concluding, we illustrate our results with specific
numbers. In the experiment of Ref. 8, the relaxation rate is
Q(0)/Qy~2.3 (2.0) in the YBaCu;O,(BiSr,CaCyOg)
system. In this casepy7,~0.29 (0.37) for YBCO(BIS-
CCO which corresponds to the Hall angle®
=arctanfyn,)~16° (20°), which depends on the oxygen
content. The numbers imply that the samples are moderately
clean. However, the regime which was considered in Ref. 8
was wo7, <1, where the onset of the minimum just takes
place. In order to observe the minima, the experiment should
be extended to the regiany7,>1.

V. CONCLUSIONS

In conclusion, we have considered the quantum tunneling
of a vortex in the presence of the Hall and dissipative dy-
namics. We have derived an analytic expression for the re-
laxation rate at zero temperature and obtained numerical so-
lutions by a variational method at finite temperatures. The
relaxation rate is constant in the Hall limit and proportional
to 1/(wg7,) in the dissipative limit, and, consequently, a
minimum exists atwo7,=2(j./j)(1+y1—j/j.)—1. There-
fore, the strongest pinning is expected in the moderately

curve with the period of 30 is already very close to that of anclean sample at zero temperature. At finite temperatures, the
infinite period, which corresponds to zero temperature. The dotte@luamum relaxation rate tends to vanish in the intermediate

curve isQ(T,.)/Qq of Fig. 3. In the region above the dotted curve,
purely thermal relaxations exist along the horizontal lings. A
schematic diagram ol vs w7, with the lines of constant tem-
peratures. Four cases are consideréd A>A™ , (1) A=A,
(1) AM<A<A™  and (IV) A<AM. Note thatA{™=22.4,
Q(TC)/Q0:0189, and @OT,»)D:O.].O]..

AM=7(1+e)/2e, AM=\27, and @om)p=1el(1

—¢€). The corresponding relaxation rates are given by

QAM™)/Qy=6e/[ m(1+€)] and Q(A)/Qu=3/m. The
minimum of Q(T)/Qq in the intermediate regime is then

regime where both the Hall and dissipative terms contribute
to the dynamics of a vortex. At sufficiently low temperatures,
quantum vortex tunneling occurs in the whole regime and the
corresponding relaxation rate has a minimumagtr, ~1.
These features are expected to be observed in future experi-
ments.
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