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dy2_,2 density-wave order and its role in the phase diagram of extended Hubbard models
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We show in a mean-field calculation that phase diagrams remarkably similar to those recently proposed for
the cuprates arise in simple microscopic models of interacting electrons near half-filling. The models are
extended Hubbard models with nearest-neighbor interaction and correlated hopping. The underdoped region of
the phase diagram featurdg 2 density-wave(DDW) order. In a certain regime of temperature and doping,
DDW order coexists with antiferromagnetic order. For larger doping, it coexistsdyitjr superconductivity.

While phase diagrams of this form are robust, they are not inevitable. For other reasonable values of the
coupling constants, drastically different phase diagrams are obtained. We comment on implications for the
cuprates.
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[. INTRODUCTION but one can hope that it will capture the broad features of the
phase diagram, such as its topology and the basic tempera-
The highT, cuprates exhibit peculiar behavior when un- ture scales. Deep within any phase, with-0 and far from
derdoped: the density of states is depleted at low energies, agy quantum phase transitions, the mean-field Hamiltonian
if some of the degrees of freedom of the system were devekhould be the correct Hamiltonian, although the parameters
oping a gap. This behavior, observed in optical conductivity, in it may need to be renormalized from their mean-field val-
NMR,? angle-resolved photoemissidng-axis tunneling?  ues. Thus it seems natural to simultaneously study the anti-
and specific-heat measuremehtswas dubbed the ferromagnetic(AF), dy22 -wave superconductingDSC),
“pseudogap.” The emergence of the pseudogap somewhand DDW order parameters in mean-field theory. The inter-
mimics the impoverishment of the low-energy excitationplay and possible coexistence of these orders should be
spectrum which accompanies the development,of> su-  qualitatively and semiquantitatively explained by mean-field
perconductivity and resembles, more generally, the type otheory. Phase transitions, quantum or thermal, may not be
gap formation which is concomitant with a large class ofaccurately described in their asymptotic limits, but the AF,
order parameters. However, it does not — at first glance —DDW, and DSC phases will, as will possible phases with
appear to be connected with the formation of an orderedoexisting AF, DDW, and DSC orders.
state. Consequently, it was initially believed that the However, there is an immediate problem faced by such a
pseudogap was a crossover phenomenon, and attempts pgeogram. What microscopic Hamiltonian should be used? In
describe it depended on various approximate methods dhe early days of higfi-. superconducters, it was hoped that
treating states with local, fluctuating order. the important physics of strong local repulsion and superex-
However, it was recently proposed that the pseudogaphange, which is present in the simplest models, such as the
stateis actually a broken-symmetry ordered state, and thaHubbard and-J models, would be sufficient to explain all of
the signatures of the order are subtle enough that the statke interesting physics of the cuprates. This appears not to be
was able to appear incognitol® In Ref. 8, the dy2y2  the case. Monte Carlo studies have not found superconduc-
density-wave(DDW) staté' was advanced as a candidate tivity in the Hubbard modet? while Monte Carlo calcula-
order. The realization that this is a realistic possibility has ledions,  exact diagonalization, and  density-matrix
to a re-examination of the experimental circumstances. Rerenormalization-groupDMRG) calculations give conflicting
cent elastic neutron-scattering experiments, which directly results for thet-J model’® DMRG studies found that the
probed the symmetries broken by DDW order — time rever-behavior ofn-leg ladders depends sensitively on the strength
sal and translation by one lattice spacing — appear to havef, for instance, second-neighbor hoppifigas have Monte
observed it? A number of other experiments were consistentCarlo studies! Indeed, some numerical results are sensi-
with the proposaf especially measurements of the superfluidtively dependent on boundary conditiofsyhich is a further
density as a function of doping. indication of the instability of many of these models to rela-
The experimental situation seems promising, which is aively small changes in the parameters. Furthermore, the
strong incentive to reconsider the theoretical state of affairsphysics of charge ordering is probably not correctly de-
If the pseudogap state is, indeed, an ordered state, then vgeribed by thé-J model without near-neighbdand possibly
should be able to study it within mean-field theory, as welong-rangé Coulomb repulsiont®=?! Indeed, it is also clear
would study the antiferromagnetic state, superconductindrom experiments that relatively small changes — such as
state, or any other ordered state. Mean-field theory is unthose associated with substituting Nd for 2ayhich is off
likely to explain the detailed shape of the phase boundarythe radar screen of theJ and Hubbard models — can radi-
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cally change at least some aspects of the behavior of thesehere
materials. In short, the detailed form of the underlying
Hamiltonian matters.

Fortunately, we are not completely in the dark about the
nature of the microscopic Hamiltonian. Local Coulomb re-
pulsion, both on site and near neighbor, is clearly an impor-
tant part of the physics. This is known from microscopic
calculations of the Hubbard parametdrand U, and also
from the fact that the undoped parent compounds are antifer-
romagnetic insulators. The other important clue — which
derives entirely from experiments — is that the cuprates su-
perconductivity. The correct microscopic modet model$  and
must supportd-wave superconductivity when doped away
from half-filling. If the Hubbard and-J models do not —
and it appears that they do not foilU small — then they
cannot describe the cuprates fully.

Our strategy will be to take a generalization of the Hub-
bard model which includes next-neighbor repulsion and,
most importantly, pair hoppingor correlated hopping The
pair-hopping term favors superconductivity. Even when it is
relatively small, it stabilizes the superconductivity in the
Hubbard model, as we will see. There is a variety of ways in
which such a term — or another term with a similar effect —
could arise, either from quantum chemig@$* or in the pas-
sage to an effective description such as the model; in
both cases, it is essentially a result of strong local Couloml?
repulsion, as superexchange is. In any event, it appears th&y
such physics is necessary to stabilize superconductivity, so
we will incorporate it in our model. We will find that such a
term also leads to DDW order.

Since the above-mentioned experiments indicate that th
order is antisymmetric with respect to the bilayer configura-
tion, we will study the bilayer model as well. As we will
show, the major reason why the antisymmetric configuratioj:
is favored over the symmetric one comes from interlaye
repulsive interactions. The role of interlayer hopping is more
subtle; in particular, it affects the doping range occupied b)fo
the DSC phase.

To summarize, we consider a model which is chosen s
that it incorporates the basic physics of strong local repulsi
and so that will have a phase diagram which includes an A
phase at half-filling and a DSC phase at some finite doping.
We find that it naturally supports DDW order. In mean-field
theory, we find a phase diagram in the temperature—dopin(?{
plane which resembles the experimental phase diagram
the cuprates, with the DDW phase boundary playing the role

Hyin=

PHYSICAL REVIEW B 66, 064508 (2002

—'fij<i2j> (cHTeM+H.c)

1t

t, 1t
L T (2 . 2
+ 16 Z (Ci+x+y,UCiU +Ci+X—y,UCi‘T

—eMte@ ML @y yt1524H.c),

io i+2x,0°10
(2
Him=U2i ni(?)nj(i‘)+v<iEj> nMni
—t. >, ci((ﬁ”c}?,)cj(p*ci(f‘,),. 3

(LD
=i’

In the formulas above;; is hopping witht;;=t for nearest

neighborsf;;=t’ for next-nearest neighbors, afg=0 oth-

erwise. The other parameters are the tunnetingthe on-

site repulsionU, the nearest-neighbor repulsid) and the

next-nearest-neighbor correlated hopping The indicesi

ndj correspond to a lattice site; to the spin, and\ to the
er.

The next-nearest-neighbor correlated hopping term is
physically kinetic, but since it is also quartic we are going to
treat it as interaction. It makes an electron hop frignto |

henj is vacated by an electron hopping itoThese two

ops are correlated by virtue of the Coulomb interaction be-
tween the electrons. The presence of this term in the cuprates
as been shown in band-structure calculatfdrn@orrelated
opping has been discussed in Refs. 24 and 26—-28 as a pos-
sible mechanism of superconductivity, but it has also been
undf® that it favors DDW order as well.

The tunneling term is momentum conserviig® We
gonsider a Cu@bilayer because the pseudogap is best char-
OIzfmterized in bilayer materials such as YBCO and Bi2212.

g To derive a mean-field theory, it is convenient to take the
Fourier transform of Eq(1) and regroup the terms. This task
ould be particularly simple if there were only one phase at
given set of parameters. For example, a DDW reduced
amiltonian would look like

of the experimental pseudogap onset line. This DDW line HDDW:_gDDWfk k,f(k)f(k’)cl((ﬁ)gv(,c(k’j,)cfﬁzjc(kﬂQ’U,,

continues into the DSC state, so that the underdoped super-
conducting state is characterized by both DSC and DDW

(4)

orders. At low doping, there is also a region of coexistencevhere f(k) = cosk,—cosk, (the lattice spacing has been set
between AF and DDW orders. We comment on the interpreto unit) and the DDW mean-field coupling constant is

tation of experimentsis-avis our findings.

IIl. MODEL HAMILTONIAN

gDDW: 8V+ 2410 . (53)

Similar values of the mean-field coupling constants can be

derived for other phases as well. Thus, for antiferromag-

We consider a bilayer lattice model
electrons?®

H=Hyint Hint, 1)
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gDSC: 12 - 8V, (SC)
¢ é\=dopw kf(k)C(k)l)é,gC(k}}), (99
In fact, the interaction part of the Hamiltonid&g. (3)] MA:gAFJ Vb, chr (9b)
can be further generalized to include th&erlayer Coulomb K
interactions
A= Gosc 1K1Y ©
’ ! k
Hp=U' > n®Mn(tD v > nMnto, (6)
! (D) We assume tha$, andM, are antisymmetric in the bi-
where\#\’. Then for the given interlayer configuration of layer index. Then the free energy of the system Is
the order parametefantisymmetric for AF and DDW phase IM|2 |2 |AJ2
and symmetric for the DSC phas¢he mean-field coupling f= + + + ka>o S1€et So€e,
constants become 9aF  Yoow  Opsc spspsa==1 Jy i
— / 1
9pow=8V+8V'+24t, (79 —,u—2TIn(2 cos){ﬁ[{f(k)A}er(sl{[ek+szekl]2
gAF:2U+2U,! (7b)

><[f(k)¢+53M]2}1/2—;02]”2]) : (10

Opsc=12t,—8V+8V'. (70
As we expand this expression for small values of the or-

For the opposite configuratiotsymmetric for AF and ey parameters, we can construct a Landau-Ginzburg theory,
DDW phase and antisymmetric for the DSC phabe con-

tributions ofU’ andV’ would be negative, which is the main ) 4

reason why such configurations have generally higher energy f(T)= fO(T)J“% ap|q)p| +Ep bp|q)p|

and are not observed. On the other hand, the fact that five

interaction terms produce only three phases means that we 5 5

can have the same phase diagrdowsresponding to a given + E Cpp’|q’p| |q’p’| ' 1D

set ofg,’s) for a range of values of the interaction constants. P7P

In the following Sec. Il we will assume that’=V’'=0, so  Wherep denotes the kind of the order paramei&F, DDW,

that each phase diagram will correspond to a unique set ¢if DSC phaspand®, is the order parameteM, ¢, or A,

U,V, andt,. respectively. Thea, coefficients cross zero at the transitions
The total Hamiltonian contains the reduced parts correso thata,=0 are the equations that determine critical tem-

sponding to these phases as well as the interactions betweparatureT,

the order parameters. However, since we exgesty to be

negative so that the corresponding order parameter is always 1 2 ka>o Kp(K), (12)

a,=——
zero, we will ignore the term corresponding to this phase. P Op spssemtl Kok,
The final form of the reduced Hamiltonian is Y
where
H =Je M) j cVE el 1 Sie—
red= | €l Cko Ck 9aF i KFQuotke G Gt K pe(K) = ——tan |S€c— ul ' (133
2| e 2T
— NeMT AT (A)
gDDWJ e N TRDCE Q. 0%k G G 0,0 Koow(K) = F(K)2K ae(K), (130)
_ )T () (V) f(k)2 S € —
gDSkak,f(k)f(k )e e e™, ®) Kos(K) = * m(l 16— K| (130
' 2|s €~ pl 21

where €y;1= €= €= — 2t(cosk,+cosk,) —4t'cosk,cosk,,

and €= €r01= €, = (£, 14)F(K)2. Here €,= €, + S;€,, . The b, coefficients are positive,

The standard  Hubbard-Stratonovich  mean-field-
theoretical treatment of E(8) is to assume the presence of b,= > ka>o Kp(k), (14)
a bosonic mean field, defined as an order parameter, neglect S1:82,83= 51 J g >k,
the fluctuations, find the eigenvalues of the Hamiltonian and here
finally, integrate out the fermion degrees of freedom to de
rive the free energy. (K)
We define the order parameters of DDW, AF, and DSC K’ (K)= 771T (159
Ae(K) -
phases as follows: 8| ey
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Kppw(K) = f(K)*Kax(k), (15b) 0.1
, f(k)*75(k)
KDSC( k) = _—3, (15(:)
8|si€— 1l 0.08
where
|51:k_ﬂ| |:k|/2T
nl(k):tanr( |~ = 2, (163 ooe
s |s1€— ul T
2T
, (k)_tanr( sie—ul) Isie—pl2T
2 - - — 2"
2T os |s1€c— u|
2T
(16b) 0.02
Finally, thec,,,, coefficients are
— " 0
CPP’_SLSZ‘%:il J':x;?Kpp’(k)’ 17 0 006 01 015 02 025 03
o doping
where
FIG. 1. Phase diagram for=0.5 eV, t'=-0.025 eV, t,
f(k)2 =0.05 eV, U=0.03 eV, V=0 eV, and t;~0.8x10 ° eV.
4ls; e u|* e given in eV.
Kbowpsc= f(k)ZK};F'DSC(k), (18b Mermin-Wagner-Coleman theorem, which states that a con-
tinuous symmetry cannot be broken spontaneously at finite
3f(k)? temperatures in two dimensions because of the effect of fluc-
Karoow(k) = W”l(k)- (180 tuations, the transition temperature is zero for a single bi-
€k

layer. The coupling between different bilaydwghich is not
included in our single-bilayer calculatipstabilizes the an-
tiferromagnetic phase with a transition temperature around
410 K. In lightly doped cuprates, the presence of impurities
causes a misalignment of locally ordered antiferromagnetic

The fact that aIIK;;p,>0 implies that the phases compete
with each other.

Ill. PHASE DIAGRAM

The mean-field phase diagram can be derived by minimiz- o
ing Eq. (10) at a fixed doping.

Since there is a large number of parameters in our model
there is substantial variety in the possible diagrams. One o
such diagram, generated with=0.5 eV, t'=—-0.025 eV,
t,=0.05 eV, gar=0.06 eV, gppw=0.02 eV, andgpsc AF
=0.01 eV, is shown in Fig. 1. The corresponding values of °%
the interaction constants at¢=0.03 eV, V=0 eV, and T
t.=0.8x10 3 eV. Note that for these values of the con-
stants,gcpw= —0.04 e\ 0, which is consistent with our ~ %04f
assumption that as,7) charge-density waveCDW) is not
energetically favorable.

Another diagram, shown in Fig. 2, was generated with  o.02

=05 eV, t'=0, t,=0.1 eV, gar=0.084 eV, gppw !

=0.038 eV, andgpsc=0.017 eV. The corresponding val- /—-S?\

ues of the interaction constants de=0.042 eV,V=1.7 0 - - ' L ' )

X104 eV, t,=1.5x 102 eV, andgcpy=—0.045 eV. oo o =R i - -
As we can see, in both diagrams the antiferromagnetic ping

transition temperature at half-filling is close to 1000 K. This  FIG. 2. Phase diagram fdr=0.5 eV,t'=0, t,=0.1 eV, U

should be understood as the scale at which two-dimensionat0.042 ev, V=1.7x10"% eV, and t,=1.5x10 % eV. (gar
antiferromagnetic correlations develop locally. Due to the=0.084 eV,gppw=0.038 eV, andypsc=0.017 eV)

DDW
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0.1 extend all the way to half-filling, but it is suppressed at low
doping by DDW and AF orders. In a more realistic calcula-
tion, superconductivity would be suppressed close to half-
filling by a no-double-occupancy constraint, i.e., by a strong
0.08 | local Coulomb repulsion. However, the DSC phase never
even makes it that close to half-filling because the DDW
phase intervenes.

An important feature common to both diagrams is the
0.08 |- existence of regions with two simultaneous kinds of order.
That is, there is a region with DDWAF order and a region

i with DDW+DSC order. The system is an insulator in the AF
state at half-filling, a metal in the DDW and DDWAF
004 - states, and a superconductor in the DSC and DENY8C

AF states.
All of the transitions are of second order at the mean-field
level because of the signs of thg, couplings between the
0.02 order parameters in the Ginzburg-Landau thedg. (11)].
The calculated dependence of the chemical poteptiah
the dopingx inside the DDW phase and in its proximity is
nonmonotonic. This is due to the rapid development of the
S & o3 Dic 0@ oEs o5 DDW gap, which causes the chemical potential to be lower
doping than in the normal state. The thermodynamic inequality

(9ul9x)t y=<0 implies that when this is violated, mean-field

FIG. 3. Phase diagram for=0.5 eV, t'=—-0.025 eV, t; theory should be corrected using Maxwell's construction,
=0.05 eV,U=0.05 eV,V=0 eV, andt,=3.3x10"% eV. (gar  Which signals that fluctuations drive the transitions first-order
=0.1 eV, gppw=0.008 eV, andypsc=0.004 eV)) as a function ofu. Consequently, we would expect the un-

derdoped side of the DSC phase to be characterized by a
C|uster57 thereby forming a Spin g|ass_ ThUS, if we interpreﬁma“er than eXpeCted chemical Shlft, as has been ObS%q'VGd.

our Ty as the scale of local two-dimensiot@d) antiferro- A first-order phase transition as a function of chemical po-
magnetic order, which could become 3D antiferromagnetidential is manifested as phase separation in a two-phase co-
order or spin glass order, then the phase diagrams of Figs. @Xistence region spanning a range of dopings when the dop-
and 2 are very reasonable, indeed. ing is held fixed instead. It has been argued that such phase
Similarly, our mean-field superconducting transition tem-Separation will be precluded by Coulomb interactions,
perature should be interpreted as the temperature for the offiereby leading to stripe formatidft*®
set of pairing. In a strictly 2D system, the rdalwould be at
a lower temperature, corresponding to the Kosterlitz-
Thouless transition. However, we expect the interlayer Jo-
sephson coupling to lead to 3D order. We have studied the phase diagram of a bilayer lattice
Experiments might lead us to expect that DDW ordermodel using mean-field theory. Since we have focused on
would occur in a range of doping between 0.07 and 0.19ordered phases, this should be a valid approximation. We
This range is smaller than one shown in Fig. 2 and a bifound that for certain ranges of the values of the interaction
larger than that shown in Fig. 1. The temperature scale foconstants the phase diagram agrees well with the experimen-
this phase on Fig. 1 is very reasonable; it is almost threeally observed phase diagram of YBCO if the “pseudogap”
times higher in Fig. 2. This change occurred primarily as as associated with DDW order. The diagram remains in quali-
result of the increased value @f. If we further increasé.to  tative agreement with the experimental data when the param-
1.9x10 2 eV, the DDW phase will begin to suppress the eters of our model vary by less than 20—30 % and becomes
AF phase and will expand up to half-filling at finite tempera- qualitatively different for larger variations. Clearly, such a
tures. In general, varying the interaction constants by lesphase diagram is reasonably robust, but is hardly inevitable.
that 20—30% does not change the phase diagram qualitdhis is reassuring because high-temperature superconductiv-
tively. However, larger variations lead to completely differ- ity is stable, but only appears in a special class of materials
ent classes of phase diagrams, such as those with the Ao the best of our current knowledge
phase suppressed or without a DDW phase at all. For ex- There are some systematic errors associated with mean-
ample, Fig. 3 shows the case when, due to the smaller valuéeld theory, on which we now comment. It underestimates
of the correlation hopping, both DDW and DSC phases disthe effect of fluctuations. Thus the Bletlemperature is very
appear and only the AF phase remains in the diagram. large in mean-field theory, while it should actually be zero in
The DSC phase occupies a doping range away from halfany strictly two-dimensional system. However, theeNem-
filling primarily as a result of band-structure effects associ-perature which we find should be regarded as the tempera-
ated with the bilayer splitting, i.e., due to nonvanishing in-ture below which a renormalized classical description is
terlayer hopping. In the absence of other orders, it wouldsalid3* The Neel temperature observed in experiments is as-

IV. CONCLUSION
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sociated with the crossover from two to three-dimensional. As we have seen, the very term which stabilizes supercon-
Mean-field theory also overestimates the coupling whichductivity also supports the development of DDW order. One
drives antiferromagnetism, which it takes to be essentldlly way of interpreting our results begins with the observation
For small U this is correct, but for large) it should be that the DDW order parameter, when combined with the real
replaced byd~t*/U. Indeed, the largé} limit is generally  and imaginary parts of the DSC order parameter form a trip-
somewhat problematic near half-filling since the Gutwiller et under a S(R) group of transformation&*If this pseu-
constraint is not enforced in mean-field theory. The.,2 dospin SW2) is a symmetry of the Hamiltonian, then DDW
symmetry of the DDW and DSC states lead one to the ermoang psc orders will be equally favored. Thus one can envi-
neous conclusion that they are completely unaffected byion that the important order-producing term in the Hamil-
largeU. This cannot, of course, really be true; clearly, mean-,ian is SW2) symmetric while small symmetry-breaking
field theory underestimates the tendency of the mg.mit terms drive the system into either the DDW or DSC states.
to push these ordered states away from half-filling. TheOur result shows that the pair hopping is of this form. Are all

seemingly small value of) taken in our calculation should . . :

. L . physically reasonable mechanisms digt.,» superconductiv-
be interpreted in light of these observations. Other mean: similarly invariant under pseudospin 2)? This is an
field treatments which incorporate strong local Coulomb re-ty y P P .

pulsion more prominently also found DDW order in a gen-Oper1 problem; we have_ an_swered in the affirmative for one
eralization of thet-J modeP? and in the Hubbard model with Particular class of Hamiltonians.
nearest-neighbor attractih.
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