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dx2Ày2 density-wave order and its role in the phase diagram of extended Hubbard models

Chetan Nayak
Department of Physics and Astronomy, University of California, Los Angeles, California 90095-1547

Eugene Pivovarov
Department of Physics, California Institute of Technology, Pasadena, California 91125

~Received 8 April 2002; published 13 August 2002!

We show in a mean-field calculation that phase diagrams remarkably similar to those recently proposed for
the cuprates arise in simple microscopic models of interacting electrons near half-filling. The models are
extended Hubbard models with nearest-neighbor interaction and correlated hopping. The underdoped region of
the phase diagram featuresdx22y2 density-wave~DDW! order. In a certain regime of temperature and doping,
DDW order coexists with antiferromagnetic order. For larger doping, it coexists withdx2-y2 superconductivity.
While phase diagrams of this form are robust, they are not inevitable. For other reasonable values of the
coupling constants, drastically different phase diagrams are obtained. We comment on implications for the
cuprates.
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I. INTRODUCTION

The high-Tc cuprates exhibit peculiar behavior when u
derdoped: the density of states is depleted at low energie
if some of the degrees of freedom of the system were de
oping a gap. This behavior, observed in optical conductivi1

NMR,2 angle-resolved photoemission,3 c-axis tunneling,4

and specific-heat measurements,5 was dubbed the
‘‘pseudogap.’’ The emergence of the pseudogap somew
mimics the impoverishment of the low-energy excitati
spectrum which accompanies the development ofdx2-y2 su-
perconductivity and resembles, more generally, the type
gap formation which is concomitant with a large class
order parameters. However, it does not — at first glance
appear to be connected with the formation of an orde
state. Consequently, it was initially believed that t
pseudogap was a crossover phenomenon, and attemp
describe it depended on various approximate methods
treating states with local, fluctuating order.6,7

However, it was recently proposed that the pseudo
state is actually a broken-symmetry ordered state, and t
the signatures of the order are subtle enough that the
was able to appear incognito.8–10 In Ref. 8, the dx2-y2

density-wave~DDW! state11 was advanced as a candida
order. The realization that this is a realistic possibility has
to a re-examination of the experimental circumstances.
cent elastic neutron-scattering experiments, which direc
probed the symmetries broken by DDW order — time rev
sal and translation by one lattice spacing — appear to h
observed it.12 A number of other experiments were consiste
with the proposal,8 especially measurements of the superflu
density as a function of doping.13

The experimental situation seems promising, which i
strong incentive to reconsider the theoretical state of affa
If the pseudogap state is, indeed, an ordered state, the
should be able to study it within mean-field theory, as
would study the antiferromagnetic state, superconduc
state, or any other ordered state. Mean-field theory is
likely to explain the detailed shape of the phase bound
0163-1829/2002/66~6!/064508~7!/$20.00 66 0645
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but one can hope that it will capture the broad features of
phase diagram, such as its topology and the basic temp
ture scales. Deep within any phase, withT→0 and far from
any quantum phase transitions, the mean-field Hamilton
should be the correct Hamiltonian, although the parame
in it may need to be renormalized from their mean-field v
ues. Thus it seems natural to simultaneously study the a
ferromagnetic~AF!, dx2-y2 -wave superconducting~DSC!,
and DDW order parameters in mean-field theory. The in
play and possible coexistence of these orders should
qualitatively and semiquantitatively explained by mean-fie
theory. Phase transitions, quantum or thermal, may not
accurately described in their asymptotic limits, but the A
DDW, and DSC phases will, as will possible phases w
coexisting AF, DDW, and DSC orders.

However, there is an immediate problem faced by suc
program. What microscopic Hamiltonian should be used?
the early days of high-Tc superconducters, it was hoped th
the important physics of strong local repulsion and super
change, which is present in the simplest models, such as
Hubbard andt-J models, would be sufficient to explain all o
the interesting physics of the cuprates. This appears not t
the case. Monte Carlo studies have not found supercon
tivity in the Hubbard model,14 while Monte Carlo calcula-
tions, exact diagonalization, and density-mat
renormalization-group~DMRG! calculations give conflicting
results for thet-J model.15 DMRG studies found that the
behavior ofn-leg ladders depends sensitively on the stren
of, for instance, second-neighbor hopping,16 as have Monte
Carlo studies.17 Indeed, some numerical results are sen
tively dependent on boundary conditions,18 which is a further
indication of the instability of many of these models to re
tively small changes in the parameters. Furthermore,
physics of charge ordering is probably not correctly d
scribed by thet-J model without near-neighbor~and possibly
long-range! Coulomb repulsion.19–21 Indeed, it is also clear
from experiments that relatively small changes — such
those associated with substituting Nd for La,22 which is off
the radar screen of thet-J and Hubbard models — can rad
©2002 The American Physical Society08-1
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cally change at least some aspects of the behavior of t
materials. In short, the detailed form of the underlyi
Hamiltonian matters.

Fortunately, we are not completely in the dark about
nature of the microscopic Hamiltonian. Local Coulomb r
pulsion, both on site and near neighbor, is clearly an imp
tant part of the physics. This is known from microscop
calculations of the Hubbard parameterst and U, and also
from the fact that the undoped parent compounds are ant
romagnetic insulators. The other important clue — wh
derives entirely from experiments — is that the cuprates
perconductivity. The correct microscopic model~or models!
must supportd-wave superconductivity when doped aw
from half-filling. If the Hubbard andt-J models do not —
and it appears that they do not fort/U small — then they
cannot describe the cuprates fully.

Our strategy will be to take a generalization of the Hu
bard model which includes next-neighbor repulsion a
most importantly, pair hopping~or correlated hopping!. The
pair-hopping term favors superconductivity. Even when it
relatively small, it stabilizes the superconductivity in th
Hubbard model, as we will see. There is a variety of ways
which such a term — or another term with a similar effect
could arise, either from quantum chemistry23,24or in the pas-
sage to an effective description such as thet-J model; in
both cases, it is essentially a result of strong local Coulo
repulsion, as superexchange is. In any event, it appears
such physics is necessary to stabilize superconductivity
we will incorporate it in our model. We will find that such
term also leads to DDW order.

Since the above-mentioned experiments indicate that
order is antisymmetric with respect to the bilayer configu
tion, we will study the bilayer model as well. As we wi
show, the major reason why the antisymmetric configurat
is favored over the symmetric one comes from interla
repulsive interactions. The role of interlayer hopping is mo
subtle; in particular, it affects the doping range occupied
the DSC phase.

To summarize, we consider a model which is chosen
that it incorporates the basic physics of strong local repuls
andso that will have a phase diagram which includes an
phase at half-filling and a DSC phase at some finite dop
We find that it naturally supports DDW order. In mean-fie
theory, we find a phase diagram in the temperature-dop
plane which resembles the experimental phase diagram
the cuprates, with the DDW phase boundary playing the r
of the experimental pseudogap onset line. This DDW l
continues into the DSC state, so that the underdoped su
conducting state is characterized by both DSC and DD
orders. At low doping, there is also a region of coexisten
between AF and DDW orders. We comment on the interp
tation of experimentsvis-à-vis our findings.

II. MODEL HAMILTONIAN

We consider a bilayer lattice model of interactin
electrons,25

H5Hkin1Hint , ~1!
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where

Hkin52t i j (
^ i , j &

~cis
(l)†cj s

(l)1H.c.!

1
t'
16 (

i
~ci 1 x̂1 ŷ,s

(1)†
cis

(2)1ci 1 x̂2 ŷ,s
(1)†

cis
(2)

2cis
(1)†cis

(2)2ci 12x̂,s
(1)†

cis
(2)1x→y11→21H.c.!,

~2!

and

Hint5U(
i

ni↑
(l)nj↓

(l)1V(
^ i , j &

ni
(l)nj

(l)

2tc (
^ i , j &,^ i 8, j &

iÞ i 8

cis
(l)†cj s

(l)cj s
(l)†ci 8s

(l) . ~3!

In the formulas abovet i j is hopping witht i j 5t for nearest
neighbors,t i j 5t8 for next-nearest neighbors, andt i j 50 oth-
erwise. The other parameters are the tunnelingt' , the on-
site repulsionU, the nearest-neighbor repulsionV, and the
next-nearest-neighbor correlated hoppingtc . The indicesi
and j correspond to a lattice site,s to the spin, andl to the
layer.

The next-nearest-neighbor correlated hopping term
physically kinetic, but since it is also quartic we are going
treat it as interaction. It makes an electron hop fromi 8 to j
when j is vacated by an electron hopping toi. These two
hops are correlated by virtue of the Coulomb interaction
tween the electrons. The presence of this term in the cupr
has been shown in band-structure calculations.23 Correlated
hopping has been discussed in Refs. 24 and 26–28 as a
sible mechanism of superconductivity, but it has also be
found25 that it favors DDW order as well.

The tunneling term is momentum conserving.27,29 We
consider a CuO2 bilayer because the pseudogap is best ch
acterized in bilayer materials such as YBCO and Bi2212

To derive a mean-field theory, it is convenient to take t
Fourier transform of Eq.~1! and regroup the terms. This tas
would be particularly simple if there were only one phase
a given set of parameters. For example, a DDW redu
Hamiltonian would look like

HDDW52gDDWE
k,k8

f ~k! f ~k8!ck1Q,s
(l)† cks

(l)ck8s8
(l)† ck81Q,s8

(l) ,

~4!

where f (k)5coskx2cosky ~the lattice spacing has been s
to unit! and the DDW mean-field coupling constant is

gDDW58V124tc . ~5a!

Similar values of the mean-field coupling constants can
derived for other phases as well. Thus, for antiferrom
nesm, d-wave superconductivity, and the (p,p) charge-
density wave we derive

gAF52U, ~5b!
8-2
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dx22y2 DENSITY-WAVE ORDER AND ITS ROLE IN . . . PHYSICAL REVIEW B 66, 064508 ~2002!
gDSC512tc28V, ~5c!

gCDW516V124tc22U. ~5d!

In fact, the interaction part of the Hamiltonian@Eq. ~3!#
can be further generalized to include theinterlayerCoulomb
interactions

Hint8 5U8(
i

ni
(l)nj

(l8)1V8(
^ i , j &

ni
(l)nj

(l8) , ~6!

wherelÞl8. Then for the given interlayer configuration o
the order parameters~antisymmetric for AF and DDW phas
and symmetric for the DSC phase!, the mean-field coupling
constants become

gDDW58V18V8124tc , ~7a!

gAF52U12U8, ~7b!

gDSC512tc28V18V8. ~7c!

For the opposite configuration~symmetric for AF and
DDW phase and antisymmetric for the DSC phase! the con-
tributions ofU8 andV8 would be negative, which is the mai
reason why such configurations have generally higher en
and are not observed. On the other hand, the fact that
interaction terms produce only three phases means tha
can have the same phase diagrams~corresponding to a given
set ofgp’s! for a range of values of the interaction constan
In the following Sec. III we will assume thatU85V850, so
that each phase diagram will correspond to a unique se
U,V, andtc .

The total Hamiltonian contains the reduced parts co
sponding to these phases as well as the interactions bet
the order parameters. However, since we expectgCDW to be
negative so that the corresponding order parameter is alw
zero, we will ignore the term corresponding to this pha
The final form of the reduced Hamiltonian is

Hred5E
k
ekll8cks

(l)†cks
(l8)2gAFE

k,k8
ck1Q,s

(l)† cks
(l)ck8s8

(l)† ck81Q,s8
(l)

2gDDWE
k,k8

f ~k! f ~k8!ck1Q,s
(l)† cks

(l)ck8s8
(l)† ck81Q,s8

(l)

2gDSCE
k,k8

f ~k! f ~k8!ck↑
(l)†c2k↓

(l)†ck8↑
(l) c2k8↓

(l) , ~8!

where ek115ek225ek522t(coskx1cosky)24t8coskxcosky ,
andek125ek215ek'5(t'/4) f (k)2.

The standard Hubbard-Stratonovich mean-fie
theoretical treatment of Eq.~8! is to assume the presence
a bosonic mean field, defined as an order parameter, ne
the fluctuations, find the eigenvalues of the Hamiltonian a
finally, integrate out the fermion degrees of freedom to
rive the free energy.

We define the order parameters of DDW, AF, and D
phases as follows:
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fl5gDDWE
k
f ~k!ck1Q,s

(l)† cks
(l) , ~9a!

Ml5gAFE
k
ck1Q,s

(l)† cks
(l) , ~9b!

Dl5gDSCE
k
f ~k!ck↑

(l)†c2k↓
(l)† . ~9c!

We assume thatfl and Ml are antisymmetric in the bi-
layer index. Then the free energy of the system is

f 5
uM u2

gAF
1

ufu2

gDDW
1

uDu2

gDSC
1 (

s1 ,s2 ,s3561
Ekx.0

ky.kx

Fs1ek1s2ek'

2m22T lnS 2 coshH 1

2T
†$ f ~k!D%21~s1$@ek1s2ek'#2

3@ f ~k!f1s3M #2%1/22m!2
‡

1/2J D G . ~10!

As we expand this expression for small values of the
der parameters, we can construct a Landau-Ginzburg the

f ~T!5 f 0~T!1(
p

apuFpu21(
p

bpuFpu4

1 (
pÞp8

cpp8uFpu2uFp8u
2, ~11!

wherep denotes the kind of the order parameter~AF, DDW,
or DSC phase! andFp is the order parameter (M , f, or D,
respectively!. Theap coefficients cross zero at the transitio
so thatap50 are the equations that determine critical te
peratureTc ,

ap5
1

gp
2 (

s1 ,s2 ,s3561
Ekx.0

ky.kx

Kp~k!, ~12!

where

KAF~k!5
1

2u ēku
tanhS us1ēk2mu

2T
D , ~13a!

KDDW~k!5 f ~k!2KAF~k!, ~13b!

KDSC~k!5
f ~k!2

2us1ēk2mu
tanhS us1ēk2mu

2T
D . ~13c!

Here ēk5ek1s2ek' . Thebp coefficients are positive,

bp5 (
s1 ,s2 ,s3561

Ekx.0
ky.kx

Kp8~k!, ~14!

where

KAF8 ~k!5
h1~k!

8u ēku3
, ~15a!
8-3
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CHETAN NAYAK AND EUGENE PIVOVAROV PHYSICAL REVIEW B 66, 064508 ~2002!
KDDW8 ~k!5 f ~k!4KAF8 ~k!, ~15b!

KDSC8 ~k!5
f ~k!4h2~k!

8us1ēk2mu3
, ~15c!

where

h1~k!5tanhS us1ēk2mu
2T

D 2
u ēku/2T

coshS us1ēk2mu
2T

D 2 , ~16a!

h2~k!5tanhS us1ēk2mu
2T

D 2
us1ēk2mu/2T

coshS us1ēk2mu
2T

D 2 .

~16b!

Finally, thecpp8 coefficients are

cpp85 (
s1 ,s2 ,s3561

Ekx.0
ky.kx

Kpp8
9 ~k!, ~17!

where

KAF,DSC9 ~k!5
f ~k!2

4us1ēk2mu2u ēku
h2~k!, ~18a!

KDDW,DSC9 5 f ~k!2KAF,DSC9 ~k!, ~18b!

KAF,DDW9 ~k!5
3 f ~k!2

4u ēku3
h1~k!. ~18c!

The fact that allKpp8
9 .0 implies that the phases compe

with each other.

III. PHASE DIAGRAM

The mean-field phase diagram can be derived by minim
ing Eq. ~10! at a fixed doping.

Since there is a large number of parameters in our mo
there is substantial variety in the possible diagrams. O
such diagram, generated witht50.5 eV, t8520.025 eV,
t'50.05 eV, gAF50.06 eV, gDDW50.02 eV, andgDSC
50.01 eV, is shown in Fig. 1. The corresponding values
the interaction constants areU.0.03 eV, V50 eV, and
tc.0.831023 eV. Note that for these values of the co
stants,gCDW520.04 eV,0, which is consistent with ou
assumption that a (p,p) charge-density wave~CDW! is not
energetically favorable.

Another diagram, shown in Fig. 2, was generated witt
50.5 eV, t850, t'50.1 eV, gAF50.084 eV, gDDW
50.038 eV, andgDSC50.017 eV. The corresponding va
ues of the interaction constants areU.0.042 eV, V.1.7
31024 eV, tc.1.531023 eV, andgCDW.20.045 eV.

As we can see, in both diagrams the antiferromagn
transition temperature at half-filling is close to 1000 K. Th
should be understood as the scale at which two-dimensi
antiferromagnetic correlations develop locally. Due to t
06450
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Mermin-Wagner-Coleman theorem, which states that a c
tinuous symmetry cannot be broken spontaneously at fi
temperatures in two dimensions because of the effect of fl
tuations, the transition temperature is zero for a single
layer. The coupling between different bilayers~which is not
included in our single-bilayer calculation! stabilizes the an-
tiferromagnetic phase with a transition temperature aro
410 K. In lightly doped cuprates, the presence of impurit
causes a misalignment of locally ordered antiferromagn

FIG. 1. Phase diagram fort50.5 eV, t8520.025 eV, t'
50.05 eV, U.0.03 eV, V50 eV, and tc.0.831023 eV.
(gAF50.06 eV, gDDW50.02 eV, and gDSC50.01 eV.! T is
given in eV.

FIG. 2. Phase diagram fort50.5 eV, t850, t'50.1 eV, U
.0.042 eV, V.1.731024 eV, and tc.1.531023 eV. (gAF

50.084 eV,gDDW50.038 eV, andgDSC50.017 eV.!
8-4
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dx22y2 DENSITY-WAVE ORDER AND ITS ROLE IN . . . PHYSICAL REVIEW B 66, 064508 ~2002!
clusters, thereby forming a spin glass. Thus, if we interp
our TN as the scale of local two-dimensional~2d! antiferro-
magnetic order, which could become 3D antiferromagne
order or spin glass order, then the phase diagrams of Fig
and 2 are very reasonable, indeed.

Similarly, our mean-field superconducting transition te
perature should be interpreted as the temperature for the
set of pairing. In a strictly 2D system, the realTc would be at
a lower temperature, corresponding to the Kosterl
Thouless transition. However, we expect the interlayer
sephson coupling to lead to 3D order.

Experiments might lead us to expect that DDW ord
would occur in a range of doping between 0.07 and 0.
This range is smaller than one shown in Fig. 2 and a
larger than that shown in Fig. 1. The temperature scale
this phase on Fig. 1 is very reasonable; it is almost th
times higher in Fig. 2. This change occurred primarily a
result of the increased value oftc . If we further increasetc to
1.931023 eV, the DDW phase will begin to suppress th
AF phase and will expand up to half-filling at finite temper
tures. In general, varying the interaction constants by
that 20–30 % does not change the phase diagram qua
tively. However, larger variations lead to completely diffe
ent classes of phase diagrams, such as those with the
phase suppressed or without a DDW phase at all. For
ample, Fig. 3 shows the case when, due to the smaller v
of the correlation hopping, both DDW and DSC phases d
appear and only the AF phase remains in the diagram.

The DSC phase occupies a doping range away from h
filling primarily as a result of band-structure effects asso
ated with the bilayer splitting, i.e., due to nonvanishing
terlayer hopping. In the absence of other orders, it wo

FIG. 3. Phase diagram fort50.5 eV, t8520.025 eV, t'
50.05 eV, U50.05 eV, V50 eV, andtc.3.331024 eV. (gAF

50.1 eV, gDDW50.008 eV, andgDSC50.004 eV).!
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extend all the way to half-filling, but it is suppressed at lo
doping by DDW and AF orders. In a more realistic calcu
tion, superconductivity would be suppressed close to h
filling by a no-double-occupancy constraint, i.e., by a stro
local Coulomb repulsion. However, the DSC phase ne
even makes it that close to half-filling because the DD
phase intervenes.

An important feature common to both diagrams is t
existence of regions with two simultaneous kinds of ord
That is, there is a region with DDW1AF order and a region
with DDW1DSC order. The system is an insulator in the A
state at half-filling, a metal in the DDW and DDW1AF
states, and a superconductor in the DSC and DDW1DSC
states.

All of the transitions are of second order at the mean-fi
level because of the signs of thecpp8 couplings between the
order parameters in the Ginzburg-Landau theory@Eq. ~11!#.

The calculated dependence of the chemical potentialm on
the dopingx inside the DDW phase and in its proximity i
nonmonotonic. This is due to the rapid development of
DDW gap, which causes the chemical potential to be low
than in the normal state. The thermodynamic inequa
(]m/]x)T,V<0 implies that when this is violated, mean-fie
theory should be corrected using Maxwell’s constructio
which signals that fluctuations drive the transitions first-ord
as a function ofm. Consequently, we would expect the u
derdoped side of the DSC phase to be characterized b
smaller than expected chemical shift, as has been observ30

A first-order phase transition as a function of chemical p
tential is manifested as phase separation in a two-phase
existence region spanning a range of dopings when the d
ing is held fixed instead. It has been argued that such ph
separation will be precluded by Coulomb interaction
thereby leading to stripe formation.19,20

IV. CONCLUSION

We have studied the phase diagram of a bilayer lat
model using mean-field theory. Since we have focused
ordered phases, this should be a valid approximation.
found that for certain ranges of the values of the interact
constants the phase diagram agrees well with the experim
tally observed phase diagram of YBCO if the ‘‘pseudoga
is associated with DDW order. The diagram remains in qu
tative agreement with the experimental data when the par
eters of our model vary by less than 20–30 % and beco
qualitatively different for larger variations. Clearly, such
phase diagram is reasonably robust, but is hardly inevita
This is reassuring because high-temperature supercondu
ity is stable, but only appears in a special class of mater
~to the best of our current knowledge!.

There are some systematic errors associated with m
field theory, on which we now comment. It underestima
the effect of fluctuations. Thus the Ne´el temperature is very
large in mean-field theory, while it should actually be zero
any strictly two-dimensional system. However, the Ne´el tem-
perature which we find should be regarded as the temp
ture below which a renormalized classical description
valid.31 The Néel temperature observed in experiments is
8-5
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CHETAN NAYAK AND EUGENE PIVOVAROV PHYSICAL REVIEW B 66, 064508 ~2002!
sociated with the crossover from two to three-dimension
Mean-field theory also overestimates the coupling wh
drives antiferromagnetism, which it takes to be essentiallyU.
For small U this is correct, but for largeU it should be
replaced byJ;t2/U. Indeed, the large-U limit is generally
somewhat problematic near half-filling since the Gutwil
constraint is not enforced in mean-field theory. Thedx2-y2

symmetry of the DDW and DSC states lead one to the e
neous conclusion that they are completely unaffected
largeU. This cannot, of course, really be true; clearly, mea
field theory underestimates the tendency of the large-U limit
to push these ordered states away from half-filling. T
seemingly small value ofU taken in our calculation should
be interpreted in light of these observations. Other me
field treatments which incorporate strong local Coulomb
pulsion more prominently also found DDW order in a ge
eralization of thet-J model32 and in the Hubbard model with
nearest-neighbor attraction.33

We find that the scale associated with superconductivit
largely determined by the strength of correlated hopping
the moment, this is ratherad hoc, but we had little choice bu
to introduce some term of this sort in order to have a ph
diagram which includes superconductivity. It is possible t
the superexchange couplingJ plays a more important role
than we have accorded it in settingTc , but superexchange i
beyond a mean-field treatment.
k
Re
.
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As we have seen, the very term which stabilizes superc
ductivity also supports the development of DDW order. O
way of interpreting our results begins with the observat
that the DDW order parameter, when combined with the r
and imaginary parts of the DSC order parameter form a t
let under a SU~2! group of transformations.25,34 If this pseu-
dospin SU~2! is a symmetry of the Hamiltonian, then DDW
and DSC orders will be equally favored. Thus one can en
sion that the important order-producing term in the Ham
tonian is SU~2! symmetric while small symmetry-breakin
terms drive the system into either the DDW or DSC stat
Our result shows that the pair hopping is of this form. Are
physically reasonable mechanisms fordx2-y2 superconductiv-
ity similarly invariant under pseudospin SU~2!? This is an
open problem; we have answered in the affirmative for o
particular class of Hamiltonians.
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