PHYSICAL REVIEW B 66, 064505 (2002

Interlayer Josephson coupling for a gas of pancake vortices
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The dependence of the Josephson interlayer coupling in layered superconductors on the magridtis field
studied numerically in the limit of complete disorder of the positions of pancake vofpeesake gas We
find that the spatial averageos<p(F)> is proportional to 12, whereg is the gauge-invariant phase difference
between two layers. The implication of this result for the interpretation of the magnetoabsorption resonances
observed in layered superconductors is discussed.
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_Intgrlayer Josephson coupling is a very important characgne can, how to calculatécow(ﬂ} in this expression,
teristics of layered superconductors, which determines Man¥amely, whether a correct calculation really predicts the an-

of their static and dynamic properties. It is widely believedy;cyciotronic behavior observed experimentally. The present
that magnetoabsorption microwave resonances, which haved.y is an attempt to answer the second question.

been observed in Bi compounds and some other layered su- | ot s remind, how one can derive the anticyclotronic
perconductors, provide an excellent experimental probe
the interlayer Josephson coupling and its dependence on
magnetic field normal to the superconducting layésse

Refs. 1-6, and references thepeiithis belief is based on

&?ghavior from Eq(1). It was assumed that the phas(sf) is
a Gaussian random variable and therefore

where w, is the Josephson-plasma frequency at zero mag-

netic field,r=(x,y) is the in-plane coordinatep(F) is the
stationary gauge-invariant phase difference between neigh-

the assumption thatny magetoabsorption resonance is re- - ((p(F)Z)
lated to the Josephson plasma mdd®R with the fre- <cos<p(r))=exp< Y ) @)
guency
2_ 2 > ¢ +
wp= wp(CoSe(r)), (1) s + o
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boring layers, and---) denotes spatial averaging. If the a
magnetic field generates ideally straight vortices normal to Iy

the layers[Fig. 1(a)] one hase(r)=0, and the resonance r—’l

frequency does not depend on the magnetic field. But the i — >
phasep(r) is nonzero if there is a misalignment of the pan- — i'.'.'._!

cake vortices in neighboring layers due to thermal fluctua- ) S P

tions and disorder, Fig.(fh). This misalignment of pancakes — — —
was used to explain the power-law decrease of the resonance o i PR

frequency with increasing magnetic figlanticyclotronic be-
havion.

The connection of magnetoabsorption resonances with the
Josephson plasma mode is well justified at low magnetic
fields normal to the superconducting layers. But at high nor-
mal magnetic fieldgabove the phase-transition line of the
vortex mattey the JPR interpretation of magnetoabsorption c)
resonances is a controversial issue and was challenged by a
competing interpretation in terms of a vortex mode governed
by pinning (see discussion in Refs. 79116‘,Chara0te”5t'c FIG. 1. Vortices in a magnetic field normal to the layers. The
fe_ature of the _obse_rved mag”etoabS(?fP“O” resonances &hall black circles indicate pancake cores. The dashed lines are
high magnetic fields is the anticyclotronic behavior: the resoggsephson stringsa) Ideally straight vortex linesb) Vortex lines
nance frequency squared decreases with increasing magnefi bent due to thermal fluctuations and disorti@The wandering
field as 1H®, wherea was reported to be between 0.7 and 1. distancer,, is so large that the vortex lines are decoupled, and in
The questions to the JPR interpretation of the magnetoaliact the shown Josephson strings are not well defined, since one
sorption resonances &fi¢ can one use the expression Eb. may connect the pancakes in neighboring layers in many different
for the resonance frequency at high magnetic fields(@nd  ways.
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According to Kosheleet al,*® the disorder in the positions
of pancakegwandering of vortex linesresults in phase fluc-
tuations with

2

R re. N
(@()?)= J3in>

- 3
wherea= \®,/B is the intervortex distance,, is the aver-
age wandering lengtfsee Fig. 1, and\; is the Josephson
length. If the vortex line is disintegrated amg~a, then
{e(r)?)~In(\;/a), and Eq.(2) yields the anticyclotronic be-
havior, though one cannot find the value of the exporent y
within this simple approach. Also it is not clear whether one b)

can use Eq(2) when (¢(r)?) is of the order of unity or
much larger, since casdepends only o modulo 27, thus
the definition of any¢|> 7 is not unique. w

The aim of the present paper is to calculate numerically

<COS¢(F)> for a gas of pancake vortices. We define a “gas”of
pancakes as the state of vortex matter without any correlation
between pancake positions, both along the magnetic field >
normal to the layers and in the plane of the layers. The ques-

tion where a pancake gas exists on the phase diagram of the

vortex matter is beyond the scope of our article. Here we

address this gas state because one can derive the anticyclo-

tronic behavior from Eq(1) only for this state. Indeed, the

condition thatr,~a in Eq. (3) means that there is no corre-

lation between pancakes in neighboring lay@scoupling

or disintegration of vortex lingsAnd even when the pan-  FG. 2. Josephson string in a single large planar Josephson junc-
cakes form regular lattices in the layditsvo-dimensional  ton. (a) Side view on the junction(b) Lines of constant phase
(2D) pancake solifiwhich are randomly shifted with respect dgifferenceq(x,y) in the junction plane for a short Josephson string
to each other, the derivation of the anticyclotronic behaviofr <\ ;. The dotted line on the axis is a cut, where the phase
also fails. Namely, in the case of a 2D pancake solid(Bf. jumps by 2.

has to be modified. As was shown in Ref. (ke also Ref.

14), the Josephson lengiy, should be replaced by the int- ample, in the case of perfect alignment, the vortex and anti-
ervortex distance. This does no longer lead to a power-law vortex positions coincide, thus all vortices cancel and one
dependence ofcose(r)) on the magnetic field. Thus, the hase=0 everywhere, as it should be.

anticyclotronic behavior is expected only for a pancake gas At high fields the intervortex distan@e= y®/B is much

as defined above. Then, comparison of our calculation for théess than the Josephson length. If one neglects the
pancake gas with the observed power-law dependence dbsephson-coupling term1/\3 in Eq. (4), two pancakes in
magnetoabsorption resonances at high normal magnetibe neighboring layers, positioned at the poifs0) and
fields may check the reliability of the widely accepted inter-(0r,), generate the phase shown in Fig. 2:

pretation of these resonances based on the Josephson-plasma

mode. - y

Strictly speaking, in order to calculate the phase fluctua- ¢o(r)=arctart —arctag——. )
tions produced by disorder in pancake positions, we should v

solve the system of stationary sine-Gordon equations for that |arge distances = X2+ yZ>r,, (but not larger than ;)

phase differences across all interlayer spacings. Howevep, . E i A= —r v/r2 At distan >
one may expect to receive a correct physical picture of thg e phase, EQ(5), is ¢o(r) wy/T=. At distancesr >,

phenomenon by solving the simpler problem of a doublghe phasepo(F) is exponentially small. This phase distribu-

; ; ; i ds to a short Josephson string.
layer with only one fluctuating phase differenggx,y), tion correspon > )
which is described by the sine-Gordon equation Thus at larger, ¢o(r)” decreases as £/ and the contri-
bution of one Josephson string{@y(r)) is logarithmically

1 divergent with the system size. This means that we cannot
FSWP—V%:O- (49 neglect the Josephson coupling even in the limit-a. It is,
J however, reasonable to expect that the main outcome of a
Formally, the pancakes in the upper and lower layer may benore elaborate calculation based on the sine-Gordon equa-
considered as vortices and antivortices, respectively, praion would be a proper upper cutoff for the logarithmic di-
jected unto the,y plane, withe(x,y) now being the phase vergence. Thus one may hope that the effect of finifean
of this 2D arrangement of vortex-antivortex pairs. For ex-be simulated by choosing a finite size=\ ; of the consid-
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s/a=0.25, N =49 vortex-antivortex pairs
¥ 5

o
o

Pl
»~ |P /\

NP G

)
0 0.2 0.4 0.6
x/L

FIG. 3. Lines of equal phase for an infinite square superlattice of

vortex-antivortex pairs. The spacing of the contoursri$8=10°.
At the three bold lines the phase jumps fromr to + .

FIG. 4. Lines of equal phase for 49 vortex-antivortex pairs
shifted from ideal square lattice positions with spadirtgy random
displacements with varianc&a=0.25. The variance of the pair

ered area with a large number of vortex-antivortex pairSspacing isy2s. The contour spacing is/6. The jump of the phase
Indeed, usually a logarithmic divergence is not sensitive tdrom + 7 to — 7 may be chosen at the bold lines; the lines with

the method that provides the cutdffee also beloyw

The procedure of our numerical calculation is as follows.

We choose more or less random positions\ofortices and
N antivortices in a quadratic cell of the sizexL, so the
average distance of each typeais L/\/N. The phaser(x,y)

dots then showrp=57/6.

We used two types of boundary conditions at the border
of the squard. X L.
(a) We continue the basic square periodically but such that

of the wave function of this vortex arrangement is a solutionth® Vorticity changes sign in neighboring cells. This means,

of the Laplace equation, which follows from E@) in the
limit \ ;—o0:

<

N
z-7
(p(x,y)+27-rn:argH 'a
1 Z_Zi
N —\ —y2
=> arctaM—arctau, (6)
1 X=X x—x

where &/ ,y}) and 2,y?) are the positions of the vortices
and antivortices, respectively, azeé=x+iy, etc., are com-
plex numbers. Note that the phagds defined only modulo
21, expressed by the integarin Eq. (6), since in all physi-
cal expressions enter only cgsand sing. Below we need
the spatial averagéexdie(r)]).

each vortex in the basic square actually represents an ideal
superlattice of vortex-antivortex pairs of side lengfBL.
Similarly, each antivortex in the basic square means such a
lattice. This change of sign in neighboring cells cuts off the
long-range interaction of vortices and thus simulates the fi-
nite Josephson lengity~L. The phase of this superlattice is
shown in Fig. 3.

(b) We consider only one square and average the phase in
this finite area.

We find that both types of boundary conditions yield prac-
tically the same results, and the treatment of the vortices near
the boundaries is not crucial.This confirms our expectation
that the result should not be sensitive to how we cut off the
long-range interaction between strings. Therefore, if we
equateL to \j, our calculation is valid also for an infinite
system, in which the cutoff is provided by the Josephson

To simulate disorder, we start with a perfect square latticdength ;.
and then shift each vortex and each antivortex by a Gaussian Figures 4 to 6 show the lines of equal phase of arrange-

distributed random vector of mean square lengthway
from this ideal position. Whes=0 one hasp=0 since at

ments of 49 vortex-antivortex pairs with such periodic
boundary conditions for three values of the displacement am-

all ideal lattice positions a vortex and an antivortex canceplitude s s/a=0.25 (still well defined pairy s/a=0.5

each other. With increasing displacement amplitsdthe
phase fluctuations increase, and wiséa exceeds the value

~0.5, we find saturation to the limit of completely uncorre-

lated randomly positionedN vortices andN antivortices,
which may be called a vortex gas.

(nearly uncorrelated random positions of vortices and anti-
vorticeg, ands/a=1 (vortex-antivortex gas or plasma

In our simulations we calculate the following average.
Without Josephson coupling, the phase patig(r,y) can
be shifted by an arbitrary constant phagg because the
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FIG. 7. The spatial averagi(s)=|{exp(¢))|, Eq. (7), for lat-

0.1 0.2 0.

0.

N

% ] tices ofN vortiges andN antivortices shifte.d by rquom Qisplace-
A\ m m?m&\ ))l _ments_wnh variancs fr_om |de_al s_quare-latnce positions with spac-
0 0.2 0.4 0.6 0.8 1 ing a, i.e., the rms pair spacing |é§s. For N=25, 100, and 400.
x/L This phasep(x,y) is identical to the phase difference between two
layers withN point vortices randomly shifted with varianseaway
FIG. 5. As in Fig. 4 but fors/a=0.5. from an ideal lattice.

energy does not depend on this constant. However, the spa- )
tial average(cog e(x,y)—¢ol) entering Eq.(1), does depend f=(cod o(X,y)— o) mac=[{eXdie(x,V)D].  (7)
on this constanty,. The correct choice of this constant fol- ) ) )
lows from the Josephson coupling term in the free energy’,” our S|mglat|ons, this factqr depends on the degree of ran-
proportional to—)\jz(cospp(x,y)—(po]). This Josephson en- domness, i.e., on the amplitudeof our random displace-
ergy is minimized by choosing, such as to maximize MeNts, thus=f(s). ,
(code(xy)—g@gl). With this choice of ¢, one has Figure 7 shows the functiof(s) for a system ofN=25,
(siMe(xy)—ol)=0. The resulting maximum ofcoge(xy) 100, and 400 vortices and same number of antivortices, av-
—@o)) is equal to the length of the complex vector e_raged over an ensemble of 1000 to 4090 qllfferen_t realiza-
(exfig(xy)]). We thus define the factémwhich enters in Eq.  tlons. Obviously, one ha§(0)=1, and with increasing;,
(1), wg:wzf' as f(s) c_Iecreases monotonically. Feia=0.5 the functlorf(s_)

P practically saturates to a constant vafifer), corresponding
to completely uncorrelated vortices and antivortices.

The saturation valud () depends on the numbét of
vortex-antivortex pairs in our basic cell of sike<L. SincelL
has the meaning of the Josephson length different N
correspond to different ratioa/\ ;~a/L=N"2. Figure 8
showsf () as a function ofa/L. We find f () =ca/L with
the constant=0.55.

For small disorders~r,<a, both formulas, Eq¥2) and
(3) should be accurate enough if one replacgdy L in Eq.

(3). This is indeed confirmed by our numerical calculations.
But more interesting for us is the limit of completely random
positions s~r,>a, when anticyclotronic behavior is ex-
pected.

Our computations show that in this caéeose(r))max
=f(0)*1/\/N (Fig. 8. On the other hand, the number of
pancakeN=L?/a? in our cell is proportional to the mag-
netic field H=®,/a? wherea is the intervortex distance.

A ) W) [\ Thus our numerical calculation yields anticyclotronic power-
_‘P* &;—,\% \ law behaviorw?e 1/H® wi =125
, y =\ @ 0% with an exponentr= 1/2.> Note that
\ M@A ﬁ////‘ i this law was obtained for two types of boundary conditions.
0.2 0.4 /L 0.8 0.8 The independence of this law on the boundary conditions
indicates that modeling the Josephson lengiby a finite
FIG. 6. As in Fig. 4 but fors/a=1. system sizd_ is reasonable.
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02 - - - - - - given by the sum oN=L?/a? randomly distributed numbers
between+1 and —1. This average itself is also a random
quantity, with ensemble average zero, and with variance of
the order ofN~Y?=a/L. The average value of cgsvan-
ishes in this picture because there is no preferred phase in
this model. However, due to the finite Josephson coupling,
cose tends to a maximum value, as close to unity as pos-

sible. Shifting the phase distributiop(r) by a constant

phaseg,, we can maximize the value ¢tose(r)) up to a
value of the order of its variandé~Y?=a/L. This argument
reproduces our numerical result.

The calculated exponent=1/2 in the power-law depen-

dence(cose(r))<1/H® clearly differs from the exponent

. . . . . . deduced from the experiment with help of E@). Indeed,

0 005 01 015 02 025 03 035 the earlier experimental papers reporiedetween 0.7 and
1/N"2 1,22 while in recent paper an a=1 was observed. This

- _ discrepancy with our theoretical exponaent 1/2 indicates

FIG. 8. The spatial averagd~)=|(expl¢))| for a gas of ran- .

domly positioned%ortices ant?int%voﬁicegggg functi%n of the num:[hat the agrgement of the theory baged on @y with the

ber of pairs in the periodicity ceN=L2/a2~\%aZ. The linear fit ~ €XPerment is not so excellent as widely accepted, and the

showsf () = 0.55N2, nature of the magnetoabsorption resonances in high magnetic

fields normal to the layers requires further investigation. One

h btained lawf _1p Possible way to resolve this disagreement is related to the
H()l\;vever, the —obtained power lawf(>)<N""%  qisession whether and when Ea) is valid.”~%
«H~Y2doesnot result from the phase being a Gaussian

variable as suggested in Ref. 12. In fact, this law can be

L/a=3,4,6,8,12, 16, 24, 32

N = L%a? = 7»§/a2
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