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Interlayer Josephson coupling for a gas of pancake vortices
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The dependence of the Josephson interlayer coupling in layered superconductors on the magnetic fieldH is
studied numerically in the limit of complete disorder of the positions of pancake vortices~pancake gas!. We

find that the spatial average^cosw(rW)& is proportional to 1/H1/2, wherew is the gauge-invariant phase difference
between two layers. The implication of this result for the interpretation of the magnetoabsorption resonances
observed in layered superconductors is discussed.
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Interlayer Josephson coupling is a very important char
teristics of layered superconductors, which determines m
of their static and dynamic properties. It is widely believ
that magnetoabsorption microwave resonances, which h
been observed in Bi compounds and some other layered
perconductors, provide an excellent experimental probe
the interlayer Josephson coupling and its dependence on
magnetic field normal to the superconducting layers~see
Refs. 1–6, and references therein!. This belief is based on
the assumption thatany magetoabsorption resonance is r
lated to the Josephson plasma mode~JPR! with the fre-
quency

v0
25vp

2^cosw~rW !&, ~1!

wherevp is the Josephson-plasma frequency at zero m
netic field, rW5(x,y) is the in-plane coordinate,w(rW) is the
stationary gauge-invariant phase difference between ne
boring layers, and̂ •••& denotes spatial averaging. If th
magnetic field generates ideally straight vortices norma
the layers@Fig. 1~a!# one hasw(rW)50, and the resonanc
frequency does not depend on the magnetic field. But
phasew(rW) is nonzero if there is a misalignment of the pa
cake vortices in neighboring layers due to thermal fluct
tions and disorder, Fig. 1~b!. This misalignment of pancake
was used to explain the power-law decrease of the reson
frequency with increasing magnetic field~anticyclotronic be-
havior!.

The connection of magnetoabsorption resonances with
Josephson plasma mode is well justified at low magn
fields normal to the superconducting layers. But at high n
mal magnetic fields~above the phase-transition line of th
vortex matter! the JPR interpretation of magnetoabsorpti
resonances is a controversial issue and was challenged
competing interpretation in terms of a vortex mode govern
by pinning ~see discussion in Refs. 7–11!. A characteristic
feature of the observed magnetoabsorption resonance
high magnetic fields is the anticyclotronic behavior: the re
nance frequency squared decreases with increasing mag
field as 1/Ha, wherea was reported to be between 0.7 and
The questions to the JPR interpretation of the magneto
sorption resonances are~i! can one use the expression Eq.~1!
for the resonance frequency at high magnetic fields and~ii ! if
0163-1829/2002/66~6!/064505~5!/$20.00 66 0645
c-
ny

ve
u-

of
the

-

g-

h-

o

e

-

ce

he
ic
r-

y a
d

at
-

etic
.
b-

one can, how to calculatêcosw(rW)& in this expression,
namely, whether a correct calculation really predicts the
ticyclotronic behavior observed experimentally. The pres
work is an attempt to answer the second question.

Let us remind, how one can derive the anticyclotron
behavior from Eq.~1!. It was assumed that the phasew(rW) is
a Gaussian random variable and therefore12

^cosw~rW !&5expS 2
^w~rW !2&

2
D . ~2!

FIG. 1. Vortices in a magnetic field normal to the layers. T
small black circles indicate pancake cores. The dashed lines
Josephson strings.~a! Ideally straight vortex lines.~b! Vortex lines
are bent due to thermal fluctuations and disorder.~c! The wandering
distancer w is so large that the vortex lines are decoupled, and
fact the shown Josephson strings are not well defined, since
may connect the pancakes in neighboring layers in many diffe
ways.
©2002 The American Physical Society05-1
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According to Koshelevet al.,13 the disorder in the position
of pancakes~wandering of vortex lines! results in phase fluc
tuations with

^w~rW !2&'
r w

2

a2ln
lJ

r w
, ~3!

wherea5AF0 /B is the intervortex distance,r w is the aver-
age wandering length~see Fig. 1!, andlJ is the Josephson
length. If the vortex line is disintegrated andr w;a, then

^w(rW)2&; ln(lJ /a), and Eq.~2! yields the anticyclotronic be
havior, though one cannot find the value of the exponena
within this simple approach. Also it is not clear whether o
can use Eq.~2! when ^w(rW)2& is of the order of unity or
much larger, since cosw depends only onw modulo 2p, thus
the definition of anyuwu.p is not unique.

The aim of the present paper is to calculate numeric

^cosw(rW)& for a gas of pancake vortices. We define a ‘‘gas’’
pancakes as the state of vortex matter without any correla
between pancake positions, both along the magnetic fi
normal to the layers and in the plane of the layers. The qu
tion where a pancake gas exists on the phase diagram o
vortex matter is beyond the scope of our article. Here
address this gas state because one can derive the antic
tronic behavior from Eq.~1! only for this state. Indeed, th
condition thatr w;a in Eq. ~3! means that there is no corre
lation between pancakes in neighboring layers~decoupling
or disintegration of vortex lines!. And even when the pan
cakes form regular lattices in the layers@two-dimensional
~2D! pancake solid# which are randomly shifted with respe
to each other, the derivation of the anticyclotronic behav
also fails. Namely, in the case of a 2D pancake solid Eq.~3!
has to be modified. As was shown in Ref. 11~see also Ref.
14!, the Josephson lengthlJ should be replaced by the in
ervortex distancea. This does no longer lead to a power-la
dependence of̂cosw(rW)& on the magnetic field. Thus, th
anticyclotronic behavior is expected only for a pancake
as defined above. Then, comparison of our calculation for
pancake gas with the observed power-law dependenc
magnetoabsorption resonances at high normal magn
fields may check the reliability of the widely accepted inte
pretation of these resonances based on the Josephson-p
mode.

Strictly speaking, in order to calculate the phase fluct
tions produced by disorder in pancake positions, we sho
solve the system of stationary sine-Gordon equations for
phase differences across all interlayer spacings. Howe
one may expect to receive a correct physical picture of
phenomenon by solving the simpler problem of a dou
layer with only one fluctuating phase differencew(x,y),
which is described by the sine-Gordon equation

1

lJ
2sinw2¹2w50. ~4!

Formally, the pancakes in the upper and lower layer may
considered as vortices and antivortices, respectively,
jected unto thex,y plane, withw(x,y) now being the phase
of this 2D arrangement of vortex-antivortex pairs. For e
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ample, in the case of perfect alignment, the vortex and a
vortex positions coincide, thus all vortices cancel and o
hasw50 everywhere, as it should be.

At high fields the intervortex distancea5AF0 /B is much
less than the Josephson lengthlJ . If one neglects the
Josephson-coupling term}1/lJ

2 in Eq. ~4!, two pancakes in
the neighboring layers, positioned at the points~0,0! and
(0,r w), generate the phasew shown in Fig. 2:

w0~rW !5arctan
y

x
2arctan

y

x2r w
. ~5!

At large distancesr 5Ax21y2@r w ~but not larger thanlJ)
the phase, Eq.~5!, is w0(rW)52r wy/r 2. At distancesr @lJ

the phasew0(rW) is exponentially small. This phase distribu
tion corresponds to a short Josephson string.

Thus at larger, w0(r )2 decreases as 1/r 2, and the contri-
bution of one Josephson string to^w0(r )2& is logarithmically
divergent with the system size. This means that we can
neglect the Josephson coupling even in the limitlJ@a. It is,
however, reasonable to expect that the main outcome
more elaborate calculation based on the sine-Gordon e
tion would be a proper upper cutoff for the logarithmic d
vergence. Thus one may hope that the effect of finitelJ can
be simulated by choosing a finite sizeL'lJ of the consid-

FIG. 2. Josephson string in a single large planar Josephson j
tion. ~a! Side view on the junction.~b! Lines of constant phase
differencew(x,y) in the junction plane for a short Josephson stri
r w!lJ . The dotted line on thex axis is a cut, where the phas
jumps by 2p.
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ered area with a large number of vortex-antivortex pa
Indeed, usually a logarithmic divergence is not sensitive
the method that provides the cutoff~see also below!.

The procedure of our numerical calculation is as follow
We choose more or less random positions ofN vortices and
N antivortices in a quadratic cell of the sizeL3L, so the
average distance of each type isa5L/AN. The phasew(x,y)
of the wave function of this vortex arrangement is a solut
of the Laplace equation, which follows from Eq.~4! in the
limit lJ→`:

w~x,y!12pn5arg)
1

N z2zi
v

z2zi
a

5(
1

N Farctan
y2yi

v

x2xi
v 2arctan

y2yi
a

x2xi
aG , ~6!

where (xi
v ,yi

v) and (xi
a ,yi

a) are the positions of the vortice
and antivortices, respectively, andz5x1 iy , etc., are com-
plex numbers. Note that the phasew is defined only modulo
2p, expressed by the integern in Eq. ~6!, since in all physi-
cal expressions enter only cosw and sinw. Below we need
the spatial averagêexp@iw(rW)#&.

To simulate disorder, we start with a perfect square lat
and then shift each vortex and each antivortex by a Gaus
distributed random vector of mean square lengths away
from this ideal position. Whens50 one hasw50 since at
all ideal lattice positions a vortex and an antivortex can
each other. With increasing displacement amplitudes the
phase fluctuations increase, and whens/a exceeds the value
'0.5, we find saturation to the limit of completely uncorr
lated randomly positionedN vortices andN antivortices,
which may be called a vortex gas.

FIG. 3. Lines of equal phase for an infinite square superlattic
vortex-antivortex pairs. The spacing of the contours isp/18[10°.
At the three bold lines the phase jumps from2p to 1p.
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We used two types of boundary conditions at the bor
of the squareL3L.

~a! We continue the basic square periodically but such t
the vorticity changes sign in neighboring cells. This mea
each vortex in the basic square actually represents an i
superlattice of vortex-antivortex pairs of side lengthA2L.
Similarly, each antivortex in the basic square means suc
lattice. This change of sign in neighboring cells cuts off t
long-range interaction of vortices and thus simulates the
nite Josephson lengthlJ'L. The phase of this superlattice
shown in Fig. 3.

~b! We consider only one square and average the phas
this finite area.

We find that both types of boundary conditions yield pra
tically the same results, and the treatment of the vortices n
the boundaries is not crucial.This confirms our expectat
that the result should not be sensitive to how we cut off
long-range interaction between strings. Therefore, if
equateL to lJ , our calculation is valid also for an infinite
system, in which the cutoff is provided by the Josephs
lengthlJ .

Figures 4 to 6 show the lines of equal phase of arran
ments of 49 vortex-antivortex pairs with such period
boundary conditions for three values of the displacement
plitude s: s/a50.25 ~still well defined pairs!, s/a50.5
~nearly uncorrelated random positions of vortices and a
vortices!, ands/a51 ~vortex-antivortex gas or plasma!.

In our simulations we calculate the following averag
Without Josephson coupling, the phase patternw(x,y) can
be shifted by an arbitrary constant phasew0 because the

f
FIG. 4. Lines of equal phasew for 49 vortex-antivortex pairs

shifted from ideal square lattice positions with spacinga by random
displacements with variances/a50.25. The variance of the pai
spacing isA2s. The contour spacing isp/6. The jump of the phase
from 1p to 2p may be chosen at the bold lines; the lines w
dots then shownw55p/6.
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energy does not depend on this constant. However, the
tial averagê cos@w(x,y)2w0#& entering Eq.~1!, does depend
on this constantw0. The correct choice of this constant fo
lows from the Josephson coupling term in the free ene
proportional to2lJ

22^cos@w(x,y)2w0#&. This Josephson en
ergy is minimized by choosingw0 such as to maximize
^cos@w(x,y)2w0#&. With this choice of w0 one has
^sin@w(x,y)2w0#&50. The resulting maximum of̂cos@w(x,y)
2w0#& is equal to the length of the complex vect
^exp@iw(x,y)#&. We thus define the factorf which enters in Eq.
~1!, v0

25vp
2 f , as

FIG. 5. As in Fig. 4 but fors/a50.5.

FIG. 6. As in Fig. 4 but fors/a51.
06450
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f 5^cos@w~x,y!2w0#&max5u^exp@ iw~x,y!#&u. ~7!

In our simulations, this factor depends on the degree of r
domness, i.e., on the amplitudes of our random displace-
ments, thusf 5 f (s).

Figure 7 shows the functionf (s) for a system ofN525,
100, and 400 vortices and same number of antivortices,
eraged over an ensemble of 1000 to 4000 different real
tions. Obviously, one hasf (0)51, and with increasings,
f (s) decreases monotonically. Fors/a>0.5 the functionf (s)
practically saturates to a constant valuef (`), corresponding
to completely uncorrelated vortices and antivortices.

The saturation valuef (`) depends on the numberN of
vortex-antivortex pairs in our basic cell of sizeL3L. SinceL
has the meaning of the Josephson lengthlJ , different N
correspond to different ratiosa/lJ'a/L5N21/2. Figure 8
showsf (`) as a function ofa/L. We find f (`)5ca/L with
the constantc50.55.

For small disorder,s'r w!a, both formulas, Eqs.~2! and
~3! should be accurate enough if one replaceslJ by L in Eq.
~3!. This is indeed confirmed by our numerical calculation
But more interesting for us is the limit of completely rando
positions s'r w@a, when anticyclotronic behavior is ex
pected.

Our computations show that in this case^cosw(rW)&max

5f(`)}1/AN ~Fig. 8!. On the other hand, the number o
pancakesN5L2/a2 in our cell is proportional to the mag
netic field H5F0 /a2, wherea is the intervortex distance
Thus our numerical calculation yields anticyclotronic powe
law behaviorv0

2}1/Ha with an exponenta51/2.15 Note that
this law was obtained for two types of boundary condition
The independence of this law on the boundary conditio
indicates that modeling the Josephson lengthlJ by a finite
system sizeL is reasonable.

FIG. 7. The spatial averagef (s)5u^exp(iw)&u, Eq. ~7!, for lat-
tices of N vortices andN antivortices shifted by random displace
ments with variances from ideal square-lattice positions with spa
ing a, i.e., the rms pair spacing isA2s. For N525, 100, and 400.
This phasew(x,y) is identical to the phase difference between tw
layers withN point vortices randomly shifted with variances away
from an ideal lattice.
5-4
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However, the obtained power lawf (`)}N21/2

}H21/2doesnot result from the phasew being a Gaussian
variable as suggested in Ref. 12. In fact, this law can
obtained from the following heuristic picture. Since cosw
varies between values of order61 over the intervortex dis-
tancea, the correlation length for the fluctuating cosw is a.
Therefore, the average of cosw in the areaL2 is roughly

FIG. 8. The spatial averagef (`)5u^exp(iw)&u for a gas of ran-
domly positioned vortices and antivortices as a function of the nu
ber of pairs in the periodicity cellN5L2/a2'lJ

2/a2. The linear fit
showsf (`)50.55/N1/2.
on
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.
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given by the sum ofN5L2/a2 randomly distributed number
between11 and21. This average itself is also a rando
quantity, with ensemble average zero, and with variance
the order ofN21/25a/L. The average value of cosw van-
ishes in this picture because there is no preferred phas
this model. However, due to the finite Josephson coupli
cosw tends to a maximum value, as close to unity as p
sible. Shifting the phase distributionw(rW) by a constant
phasew0, we can maximize the value of^cosw(rW)& up to a
value of the order of its varianceN21/25a/L. This argument
reproduces our numerical result.

The calculated exponenta51/2 in the power-law depen
dence^cosw(rW)&}1/Ha clearly differs from the exponenta
deduced from the experiment with help of Eq.~1!. Indeed,
the earlier experimental papers reporteda between 0.7 and
1,1,2 while in recent papers5,6 an a51 was observed. This
discrepancy with our theoretical exponenta51/2 indicates
that the agreement of the theory based on Eq.~1! with the
experiment is not so excellent as widely accepted, and
nature of the magnetoabsorption resonances in high mag
fields normal to the layers requires further investigation. O
possible way to resolve this disagreement is related to
discussion whether and when Eq.~1! is valid.7–11
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