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Extended droplet theory for aging in short-range spin glasses and a numerical examination
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We analyze isothermal aging of a four-dimensional Edwards-Anderson model in detail by Monte Carlo
simulations. We analyze the data in the view of an extended version of the droplet theory proposed recently
which is based on the original droplet theory plus conjectures on the anomalously soft droplets in the presence
of domain walls. We found that the scaling laws including some fundamental predictions of the original droplet
theory explain our results well. The results of our simulation strongly suggest the separation of the breaking of
the time translational invariance and the fluctuation dissipation theorem in agreement with our scenario.
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I. INTRODUCTION ance(TTI) and FDT separates asymptotically at large length
(time) scales: the breaking point of TTI converges to the
Spin glasses exhibit characteristic slow dynamics belovequilibrium EA order parameteyz, while that of FDT con-
the spin-glasgSG) transition temperatur&.. Recently ag- verges to the new dynamical order parametgsmaller than
ing phenomena, which have been known for a long time ingg,. We will find that ygc= xp SO that our scenario also
glassy systemshas attracted renewed interest both in ex-suggestsyrc> xea-
perimental and theoretical studi®s. A major theoretical Both the original droplet theoty and our refined
progress was the development of the dynamical mean-fieldcenarid® predict scaling laws for the time-dependent quan-
theories(MFT) of spin glasses and related systéhidost tities measured in aging such as the magnetic autocorrelation
remarkably it found that the field coold&C) susceptibility  function and the dynamical susceptibilities in terms of a
Xrc is larger than the equilibrium susceptibilige, whichis  time-dependent length scalg(t) which presumably grows
related to the Edwards-AndersdBA) order parameteqg, extremely slowly in a logarithmic fashion due to thermally
by the fluctuation dissipation theoreffDT) askgT xyga=1 activated processes. By now it is well understood that length
—(ea- This finding corresponds to the well known experi- scale that can be explored in practice is very much limited
mental observatiohthat ygc is larger than the zero field not only in numerical simulationstypically 1—10 lattice
cooled (ZFC) susceptibility yzrc. In addition, many new spacingsbut also in real experimentgypically ~ 100 lattice
view points for the glassy dynamics were discovered subsespacings The latter implies one must seriously take care
quently such as the concept of effective temperatite. possible preasymptotic behaviors to elucidate the desired
However, the MFT does not provide insights into what will asymptotic behavior associated with the putafive0 glassy
become important in realistic finite dimensional systemsfixed point. To cope with such a complicated situation still in
Most seriously, thermally activated nucleation processes controlled way, we examine the scaling theory by Monte
which are presumably important in finite dimensional glassyCarlo simulations in two strokes.
systems cannot be captured at the mean-field level. First, we examine the growth law of the dynamical length
Recently we proposed a refined scendrfor the isother- ~ scaleL(t) itself by directly measuring the spatial coherence
mal aging based on the droplet theory for spin glas$es. using two real replicas. As realized in recent studie&’the
We conjectured that the original idea of effective stiffness ofproblem of crossover from critical to activated dynamics is
droplets in the presence of frozen-in domain wall, introducedhe central issue here. Second, we examine the scaling prop-
by Fisher and HusE, can be extended to take into accounterties of the time-dependent quantities of our interest by pa-
anomalously soft droplet excitations which are as large asametrizing the times using the data of the time-dependent
frozen-in extended defects, i.e., domain walls. This conjectength scale obtained by the separate simulation. The original
ture is partly motivated by the results of recent active studiesiroplet theory and our extended version provide some useful
of spin-glass models & =0'® which revealed existence of information of finite length correction terms to the
anomalous low-energy and large scale excitations. Thasymptotic limit L—c. The two-strokes(or parametrig
anomalously soft droplets allow emergence of a new dystrategy of the present paper, which is already employed par-
namical order parametey, and the dynamical susceptibility tially in the previous studie¥?*~?*allows us to cope with
Xxp associated with the former by FCKETxp=1—qp. The  the mixture preasymptotic behaviors of different origins in a
dynamical order parametep, is expected to bemallerthan  controlled way and far more advantages than usual ap-
the equilibrium EA order paramet@e, which means that proaches which try to examine the scaling laws in one stroke
the dynamical susceptibilityp is larger than the equilib- directly as a function of times blindly with many uncon-
rium susceptibilityyga . Consequently, our scenario implies trolled fitting parameters.
a novel feature that breaking of the time translational invari- In this paper we present a detailed study on the isothermal
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aging by Monte Carlo(MC) simulations on a four- mated the critical temperature to be 2.0’he critical expo-
dimensional4D) EA Ising SG model. While the model sys- nentv of the diverging coherence length is also obtained as
tem in 4D is somewhat nonrealistic, the advantage of study»~0.9—1.0.2°-2” Another important exponent associated
ing the 4D Ising EA model is that important equilibrium with T=0 glassy fixed point is the stiffness exponeht
properties concerning both the critical phenomen@igand  whose value is also obtained around 0.7 by MC simul&tion
some essential scaling properties associated withTth® and ground state calculatiéhWe note that the value of
glassy fixed point, both of which will turn out to provide ~0.7 in 4D is significantly larger than that of 3D Ising EA
extremely useful information to study off-equilibrium dy- model 6;5~0.22° This fact allows us to analyze the
namics, are far better known in 4D than in three dimensionsisymptotic behaviors rather easily than 3D case, which is
(3D). In oder to take care of the critical fluctuations, we will one of our main reasons for investigating the 4D EA model.
use the well established information provided by the previ- The simulation method is a standard single-spin-flip MC
ous studies. Furthermore the value of stiffness expoflest method using the two-sublattice dynamics with heat-bath
found to be considerably larger than that of 3D which im-transition probability. We define one Monte Carlo step
plies easier access to low-temperature properties in 4D thafMCS) as N spin trials. We also use the multispin coding
in 3D within limited length scales. Indeed, a recent analysigechnique, which simulates 32 different systems indepen-
of defect free-energy in 4D could clarify the anticipated dently at the same time on a 32-bit computer. The system
crossover from critical regime to low-temperature reg?ﬁ]e. sizes studied ark=8, 16, 24, and 32 af.. BelowT., we
In our analysis we employ the values of these parameters angdainly studyL =24 systems, anél =32 in order to check
fix them so that we are left with a few free parameters in ouffinite-size effects. There is no significant difference between
scaling analysis. data ofL=24 and 32 at least within our time window (10
The present paper is organized as follows. In the nexmcCs).
section we introduce our model system studied. In Sec. lll,
we introduce the two time quantities used in this paper and
summarize some of their basic properties for the convenience
of later sections. In Sec. IV we explain our extended droplet Experimentally, isothermal aging of spin glasses is inves-
scaling theory? in a more self-contained and comprehensivetigated by observing response of the system to an applied
manner recalling also the fundamental results of the originaéxternal magnetic field. In the present paper, we study dy-
droplet theory*~'°In Sec. V we examine the growth law of namical dc linear magnetic susceptibilities and their conju-
the dynamical length.(t) by MC simulations. In Secs. VI gate magneti¢spin autocorrelation function during isother-
and VII, we examine time-dependent physical quantities bynal aging by Monte Carlo simulations. In the present
MC simulations and perform scaling analysis using thesection, we introduce the two time quantities and summarize
growth lawL (t) obtained in Sec. V. A part of the results was some basic properties.
already reported in Ref. 17. Finally in Sec. VIII, we present To mimic the experimental protocol of isothermal aging,

IIl. TWO-TIME QUANTITIES

some discussions and conclude this paper. we consider that the configuration of the system is com-
pletely random at timé=0 and then start to relax in touch
Il. MODEL AND SIMULATION METHOD with a heat bath at temperatufewhich is lower than the

critical temperaturd .. Thus cooling rate is infinitely fast.
We study the 4D Ising EA SG model, defined by the There are two standard protocols used in dc magnetization
Hamiltonian measurements. In the so-called zero field cooliigC) pro-
cedure, the system first evolves for a waiting titgevithout
an applied magnetic field then a small probing magnetic field
H:_% JijSiSJ_hzi S 1) of strengthh is switched on. The growth of the induced
magnetization is measured afterwards. In the measurement of

where the sum runs over pairs of nearest-neighbor sites. Isiri§je so-called thermoremanent magnetizatibRM), the sys-

variables are defined on a hypercubic lattice with periodidem evolves under the applied magnetic field of strerigth

boundary conditions in all directions. The interactions arefor the waiting timet,, and then the field is cut off. The

quenched random variables drawn with equal probabilitydecay of the magnetization induced during the waiting time

among=J with J>0. We will useJ as the energy unit. The IS measured afterwards. In our simulations, we measure the

last term in the Hamiltonian represents the Zeeman energjnear susceptibility at timeé>t,, as

with h being the strength of the external uniform magnetic

field. In this representation, the magnetic fididhas the (.t ):£<M(t)> ©

dimension of energy so that we will also measure it in the XEWZNTh

unit of J. In the simulations, we ude;T/J for the tempera- ) o ]

ture scale and we set the Boltzmann constagt1 for w_here M(_t) is the total magnetization measured at time

simplicity. vv_lth N being the number of spins. The total magnetization is
It has been well established that a SG phase transitioflivén by sum

does occur at a finite temperature with strong ordering,

namely, a finite amplitude of SG order parameter in the or- _

dered phase. Recent extensive MC studi#shave esti- M(® 2 S, &
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where S (t) is the Ising spin variable at sifeat timet after ~ We call the latter field coole@~C) susceptibility because it is

the quench. Correspondingly, we measure the magnetimore or less similar to what is called FC susceptibility as we

(spin autocorrelation function discuss below. Second, it is natural to assume weak long
term memory®

1 1
Clttw) = G (MOMtW)) =5 Z (Si(DSi(tw)). (@) lim x1ru(t,ty,) =0 (11)
t—o
The last equation holds for our model with no ferromagneticfor any large but finite,, . The latter simply means that TRM
or antiferromagnetic bias so that the sum of the cross termshould relax down to zero for any large but finite waiting
of i #] vanishes as YN—0 in the thermodynamic limiN  time t,, during which the magnetic field is applied. Then we
— oo, Furthermore in our Ising model, the spins are normal{ind using above assumptions in the sum r(@g

ized S°=1 which yields , .
lim xzec(t,ty) = M xzec(1,0) = X (12

t—oo t—oo

1
Cth=y 2, (sm?H=1 ®) for any large but finitet,, .
Let us explain why we call Eq10) the FC susceptibility.
for anyt. Usually the FC magnetization is measured by cooling down
In the above equationg, - -) means to take an average the temperature with a certain cooling rate from abdye
over different realizations of initial conditions, thermal down to a target temperatufiebelow T, with the magnetic
noises and realization of random exchange couplings of théield h being applied. Suppose that it takes timedo cool
system. However, the above quantities are presumably selffown the temperaturétypically of order 30 secand the
averaging for thermodynamically large systels»oo. target temperature is reached at titre0. Then the linear

If linear response holds, the dynamical linear susceptibili-susceptibility measured in this protocol can be expressed as
ties measured in the ZFC and TRM procedure can be written

0
as MFC(t)/hzji dtR(t,t') + xzrc(1,0). (13)

t
XTRM(tatW):J’ "dUR(t,t), (6)  The above expression is formally valid as long as the linear
0 response holds. Note that the response function in the first
: term is defined with respect to the particular schedule of the
_ , , temperature changes. The contribution of the first term de-
tty)= dt'R(t,t 7 L
Xzrc(btw) J; (), @ creases with timé because of the weak long term memaory
. o . property (11). Thus in the limitt—o the susceptibility
whereR(t,t") is the magnetic linear response function. Them (t)/h converges to the FC susceptibility of our definition
latter is defined as in Eq. (10), lim, ..M g(t)/h=lim . xzrc(t,0)= xgc. The
approach to the limit may well be slow. Experimental obser-
L (M) ) vations (see, for instance, Fig. 13 of Ref) 8how that the
R(t,t")= N lim N ' ®) correction term to the asymptotic limit relaxes slowly but the
sh—o oh(t’) . . .
amplitude is very small such that it can be made much less

infinitesimal probing pulse fieldh(t’) applied only at time  tal time window. _ _
t'(<t). From these, it follows that the sum of the two sus- _ In the present paper, we do not discuss the possible effects
ceptibilities of finite cooling rates and assume the idealized temperature

quenche=0. In this idealized situation, the first term in Eq.
t (13) is absent and the TRM becomes equivalent to the so-
szc(t,tw)JFXTRm(t,tw):f dt'R(t,t")=xzrc(t,00 (90  called isothermal remanent magnetizatitRM).
0 Another interesting limit is to considey,—oc first with

becomes independent of the waiting titgeand only a func-  fixed time separatior=t—t,,. In this limit, one expects to
tion of the total timet elapsed after the temperature find equilibrium (stationary response
uench®3° One can use this sum rule as a criterion to check :

I?nearity of measuremenfs®3! Xed 7)= M xzec( 7+ tw, tw), (14)
Let us briefly discuss the implication of the sum ri% ) _ _ N
combined with the following very mild assumptions. First, Which only depends on the time separationThe equilib-

the ZFC linear susceptibility li;_oxzrc(t,ty) increases rium susceptibilityxea is defined as

with t but saturates since it is bounded from above. Let us

W

ty

=i . 1
define in particular the limit XEA TT:CXQC‘(T) (19
Xec=lim xz£(1,0). (10) The last static susceptibilityg, is more or less close to what
t—o is called the ZFC magnetizatiddivided byh).
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A very important issue is then whether the two susceptiC=C(r+t,,t,). First let us note that lim...Ce(7) = ea
bilities xea andxec are the same or different. As we noted in jmplies the time translational invariand@Tl) is strongly
the Introduction this is intimately related with the fundamen-p,oken at B<C<(ga, i.e., the two time quantities cannot be
tal experimental observation in spin-glass systémamely, g function of only the time separation in this regime. Con-
Xrc™> Xzrc- One of the most remarkable finding of the dy- cerning the integral FDT violatio(23), it becomes a func-
namical mean-field theofyis that indeed an inequality tion of C, i.e., lim.__..I(t,t,)=1(C). In conventional cases

Yec> Xea (16) I(.q.EA<C<.1)=O while I(O<C§qEA)>O being a non-
trivial function of C by the dynamical MFT(Refs. 8 and 3B

holds with xgc defined in Eq.(10) and xga defined in Eq.  and 1(0<C<0qga)=0ea—C in  usual coarsening

(15). The difference is due to anomalous contribution of thesystemgfl‘36 On the other hand, our scenéﬁosuggests

slowly relaxing, aging part of the response functi®ft,t’). 1(gp<C<1)=0 andl (0<C<(qp)=0qp— C. Hereqp is the

On the other hand, the conventional droplet th&iYwas  new dynamical order parameter which is smaller thag.

understoodi to predict xrc= xea, i.€., N0 anomaly. As we Thus the breaking points of TTI and FDT take place sepa-

explain later in Sec. IV D, our extended droplet thédmyre-  rately atqe, andqp , respectively, in our scenario while both

dicts Eq.(16) with xrc being identified with the dynamical of them take place simultaneously @t in the dynamical

susceptibilityxp associated with the noble dynamical order MFT and usual coarsening systefis>°

parameteqp(<gga) askgTxp=1—0p-

Another important issue is to what extent FDT holds in

aging systems. In our present context FDT reads IV. THEORETICAL BACKGROUND

In this section we discuss our extended droplet theory

R(t,t)= i(gt,C(t,t/) (17) sketched in Ref. 12 concerning isothermal aging which will
kgT be our basis to analyze the data of Monte Carlo simulations

in later sections. As we noted in the introduction, we pay a
special attention to the idea of so-called effective stiffness of
droplet excitations in the presence of domain walls which are
_ present as extended defects during isothermal aging. For

FDT 1-C(ttw) =ksTxzec(t,tw)- (18 clarity, we will try to present this section in a self-contained

Since thismusthold precisely in equilibrium, the equilibrium fashion including summaries of the results of the original

limit of ZFC linear susceptibility14) must be related to that droplet theory**> which are almost fully included in our

where C(t,t") is the autocorrelation function. It becomes
after integration over timgﬂwdt’ ce

of the spin autocorrelation function as scenario. To simplify notations, we consider systemdNof
Ising spinsS=*+1 (i=1,... N) in ad-dimensional space
Txed T)=1-Ced 1), (19 coupled by short-ranged interactions of energy sdaléth
where random signs with no ferromagnetic or antiferromagnetic
bias.
Ced )= lim C(7+1y,t,), (20
w2 A. Basics
static limit 7—o, Eq. (19) becomes the static FDT theory'* It assumes that thermodynamic states (ising)
Tveam1— 21 spin-glass phases consist of a pair of pure states of an infinite
Bl Xea™ 1~ CEa, (1) system which are related by global spin inversion. At low but
whereqg, is the static EA order parameter defined as finite temperature in the spin-glass phase, an equilibrium
_ state can be considered_as made of a ground statd, say
Qea= lim Cef 7). (22) its global spin inversiod”, plus thermally activated droplet

excitations of various sizes taking place on toplaf In
Except for the ideal equilibrium limit, FDTL8) is not guar-  Ssimple systems such as ferromagnets droplet excitations exist
anteed in general. However, it was realized recently by Dearjut play a rather limited rol&* An essential finding of the
Cugliandolo, and Kurchan that possible amplitude of the vio-original droplet theor}?*“is that the temperature ganger-

lation of the FDT(18) ously irrelevantin spin-glass phases because of strong im-
pacts of thermally activated droplets.
I(t,t,)=1—-C(t,t,,) —KgTxzec(t,ty) (23 A droplet at a given length scale is supposed to be a

compact cluster of spins with a volunid with d being the
dimension of the space and a surface volunfe with d;
being the(fracta) surface dimension. The typical value of its
n%f<citation gapF P with respect to the ground state is sup-
posed to scales as

is bounded from above by the entropy production FafEhe
bound implies even for very slowly relaxing systems in
which entropy production rate becomes small, the D3
should hold between spontaneous thermal fluctuations a
linear responses at least for short enough time scales

Let us consider asymptotic limtt,— o of the two time ) )
quantities with fixed value of the autocorrelation function FPP~Y(L/Lo)’, (24)
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where the exponemi>0 is the stiffness exponeny, is the
stiffness constant, and, is a microscopic length scale. The
excitation gap is, however, broadly distributed with the typi-
cal value given above. The probability distribution of the
free-energy gap is expected to follow a universal scaling
form

p(FLAF =p(F_IFYP)dF_/F}P (25

with nonvanishing amplitude at the origin

p(0)>0 (26)

which allows marginal droplets. This proper}0)>0 al-

lows dangerously active droplets which will respond to arbi-
trarily weak perturbations so that they play extremely impor-
tant roles as the Goldstone modes: they dominate

spontaneous thermal fluctuations and linear responses.  temperature dynamics associated with The0 glassy fixed

Dynamically, the excitation of such a pluster of spins ispoint (28) should occur only at larger time scales beyond a
supposed to happen only by thermal activated process. Th&tain crossover time> 7o(T).

FIG. 1. Schematic picture of length scale.

typical_ value of free-energy barri@p to flip the cluster of The crossover lengthy(T) would be determined by a
spins is supposed to scale as comparison between free-energy barrier and thermal energy
BYP~A(L/Lo)Y, (27) keT~A(T)[Lo(T)/15]%, (3D

whereA is a characteristic free-energy scale of the barrierswhere the characteristic free-energy scaAlgl) behaves as
The Arrhenius law implies that a droplet of length scaleA(T)=J|1—T/TJ*” nearT,..'® It leads to the temperature

L(1), dependence df o(T),

k

T Ly — Uy)q _ -
L(t)w(%ln(t/%) Lo(T)=lo(TIH W1 T/T "%, (32)

: (28

which is essentially equivalent to ER9). The correspond-

can be activated within a time scaletoHere 7, is a certain ~ INg crossover timeo(T) is given by
unit time scale for the activated processes. Let us call this

— z
time-dependent length scale as the dynamical length scale. 7o(T) =to[ Lo(T)/lo]" (33)
We obtain the singular part of the crossover timeTat
B. Crossover from critical to low temperature regime 7o(T)~|1—T/T¢ "%, as expected from a critical scaling

In practice, it is necessary to take into account of criticalthe.ow' Cons_equently, the scaling formula of the 9r9Wth law
which describes the whole crossover from the critical dy-

fluctuations nearT.. Even atT<T_., the length scales . . :
shorter than the coherence length of the critical fluctuation namics att<7,(T) and the activated dynamics & o(T)

is given by
6=~ Lol 1= T/Td 29 L(t)/Lo(T)=L[t/7o(T)], (34)
should be dominated by critical fluctuations. Asymptotic low
temperature properties should appear only at larger lengtyhere
scales. 1z <1
Correspondingly, we expect two typical stages in the dy- T~ X (x<1), (35)

namical length scalke(t) as shown in Fig. 1. One is a critical InY(x) (x>1).
dynamics associated with critical slowing down in time
range 7o(T)>t>t,, whereL(t) follows a power law with

the dynamical critical exponemt

One should note that the crossover could be very gradual and
functional form of the intermediate reginehich will domi-
nate realistic time ranges in simulations and experiments
L(t)=lq(t/tg) 2 (30) can have very cpmplicated expression which is not obvious.
This crossover in the growth law of the dynamical length
Herel, is a microscopic length scale which is of order 1 scale is numerically examined in Sec. V.
lattice distance in EA models artg is a microscopic time The importance of the crossover from critical to low tem-
scale which is typicallyt,~10"1?— 10" 13 (sec) in real spin  perature behavior has been pointed out by Bekil 3’ con-
systems while it is 1 Monte Carlo Sté€pICS) in usual heat- cerning some static properties of low-temperature SG phase.
bath Monte Carlo simulations. This formula means that everiLet us note that the above analysis of the crossover from the
at T<T,, L(t) behaves like the critical power law at short critical to activated dynamics is a dire@ynamical ana-
time-length scales. On the other hand, the intrinsic low4ogue of the analysis of defect free-energy in 4D EA m&tel
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by one of ugK.H.). In the latter study, the defect free-energy erage over time, the density is similar to so-called link over-
was found to become a universal constant in the limit lap function, which does not vanish in the long time limit.
<¢_ and grows as/ (T)(L/Lg)? and Y(T)~J|1—T/TJ?

with #=0.82, v=0.93 atL>¢_ . D. Domain walls and soft droplets

Following Ref. 15, the whole process of isothermal aging
may be divided inteepocls such that the typical separation
During isothermal aging up to a tinteafter quench, do- between domain walléhereafter simply denoted as domain
mains with the mean siz&(t) separating different pure size Lg,alq,a’Lg, ...,a"Lg, ... wherea>1. At each ep-
states grow up by coarsening domain walls of smaller lengtioch, droplets of various sizes up to that of the domain size
scales. The droplet theory proposed scaling properties afan be thermally activated or polarized by the magnetic field.
time-dependent physical quantities in terms of time-The two time quantities we introduced in Sec. I, namely,
dependent mean domain sizét). We discuss the scaling by the autocorrelation functio@(7+t,,,t,,) defined in Eq.4)
L(t) of one-time quantities with time elapse after the quenchand the linear susceptibility(r+t,,,t,) defined in Eq.(2)
which examine later by MC simulations. One example isprobe such thermal fluctuations and linear responses of drop-
time development of energy per spin defined by lets smaller than the size of the domain if the time separation
is limited such that (7)<L(t,).
1 In a previous work? we extended the idea of Fisher and
e=-y <|2]> (JiS(O§(1). (30 Husd® who noticed that droplet excitations can be softened
in the presence of a frozen-in defect or domain wall com-
Relaxation of the energy per spin is expected to be due tpared with ideal equilibrium with no extended defects. This
relaxation of excessive energy associated with domain wallds because droplets which touch the defects can reduce the

C. Domain growth

Thus it is expected to decreasé?as excitation gap compared with those in equilibrium. This ef-
fect will have very important impacts on the two time quan-
(L) tities.
e(t) —eeq=Y T, ) (37) Let us consider a system with a frozen-in defect of §tze

. a large droplet of sizR s flipped with respect td’, which is
whereY' is a temperature-dependent parameter. a ground state of an infinite system, and then it is frozen. The
Another interesting one-time quantity is domain-wall den'typical free-energy gap®® of a smaller droplet of size in

sity ps(t) in which the morphology of the domain with the e interior of the frozen-in defect is expected to scale as
fractal surface dimensiod;=d—1 appears. In coarsening

dynamics the density decreases with time during isothermal FY%=YfL/R](L/L)?, L<R (41)
aging. In simple systems such as a ferromagnet where the

domain wall becomes flat at sufficiently low temperature, thewith Y ./ L/R] being an effective stiffness which is only a
density of domain wall is proportional to the inverse of thefunction of the ratioy=L/R.

mean size 1/(t). However, it could be rough with the frac- Fory<1, Y y] will decrease withy as™
tal dimension in spin glasses because of the disorder and
frustration so that we expect Yeryl/Y=1—c,y? 7 for y<1. (42
L(t))\d%d HereY is the original stiffness constaiit=Y .4(0). A basic
ps(t)~(|— (38)  conjecture, on which our new scenario based, is that at the
0

other limity~1 the effective stiffness vanishes as
In MC simulations, two replicas with identical interaction
bonds are updated independently and the domain-wall den- Yer /Y ~(1-y)?, y~1 (43

sity is calculated &3 . .
y with 0<a<<1 being an unknown exponent, and that the

1 1 lower bound forF‘Ly’pR should be of orded, sayF.
ps()=5| 1= > a?‘“(t)a}”(t)ai(ﬂ)(t)oj("’)(t)), We assume that the probability distribution of the free-
B {il) energy gag- | R is broad and obey the same functional form
B9 s Eq.(25) whereF P should be replaced by%. Then the
whereNg is the number of bonds and the suffixesand 8 scaling form of the distribution of the ga@5) and nonzero
denote replica indices. Here, following Ref. 21 we take shoramplitude of gapless droplefg0)>0 (26) implies that the

time average of each spin as probability that a gap is smaller than a certain threshold
SU(<FPP) scales as
t
(@) ()= () -
" Sg’( 2, (”)' “0 PIOK(F o(8U)~5(0) SU/F Y. (44)

This procedure in Eq(40) means that smaller fluctuations Since the probability isinear with 6U, these active droplet
associated with small droplets are eliminated and the coarsre dangerously irrelevafit=° arbitrary small perturbation
ening domain walls are emphasized. Without taking such avéU may trigger a droplet excitation.
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1. Two length quantities

To explain the consequence of our conjecture above intro-
duced, let us consider thermal fluctuations and magnetic lin-
ear responses of droplet excitations of sizenclosed in a where =;(S))y, is the induced magnetization by the field.
compact region made by a frozen-in defect at s€alghich  Since a droplet excitation can induce a magnetization of or-
has Ny (R/L)® spins. To this end, let us construct a toy der M, given in Eq.(47) with random signs, it can gain a
droplet model* defined on logarithmically separated shells Zeeman energy of ordefU, ~M éh by responding to the
of length scalesL,/Lo=a*<R/L, with a>1 and O<k field. The probability that the droplet excitation takes place is
<n,=<n; whereR/Ly=a"t andL/Lo=a"2. For each shell then proportional to the probability that the gain by the Zee-
an optimal droplet is assigned whose free-energy gap isman energy is larger than the excitation gap of the droplet
minimized within the shell. Theﬁ‘ﬁ’% will be of orderFyat  which can be found using Ed44). Then the expectation
the shellk=n; so that we have value of the magnetic moment induced by droplet excitations

at scalel is estimated as

x=lim Ng* > (S)n/h, (50)
h—0 !

FYR=FUR(1= 8cn,) +Fodin,- (45) y

Ina. (51

For simplicity, droplets at different scales are assumed to be héx.~M_p(0)
independent from each other.

At the shellL/L,=a", the system is decomposed into
compact cells of volumé&® such that each cells represents a
droplet of sizeL. The number density of droplets per spin
associated with the shell scales as

hML(L

F | Lo

Now summing over contributions at different length scales
0<k<n,, we obtain the total reduction of the order param-
eter from 1 and the linear susceptibility as using Ed$),
(49), and(51) by

L —d
Nd(L—> na. 49 1-ALnRI=keTx(Ln.R)

’ 22 kgT
Each droplet excitation will induce a random change of the =p(0)m2Y, 5
magnetization of order k=0 FYR(1= 8n) +Fobin,

~ ~ LmdL| 1—A,[In(L/R
M ~my/(L/Lg)Y, (47) :p(o)mszTJ < a[typ( )]
wherem s the average magnetic moment within a volume of Lo FLR
Lo.
The thermal fluctuation can be measured by an order pa- + M ) (52)

rameter Fo

In the last equation, the suEnk“io is replaced by an integral
ft(";d L/L andA,(Z) is a pseudas-function of width Ina.®

. L . Note that FDT is satisfied between E¢49) and (51).
where the sum runs over sites in the interior of the frozen-in . "
. . In the following let us call the two length quantities
defect. Here we have put the overline which means to take .
. L (L,R) and x(L,R) as the generalized order parameter and
average over different realization of the randomness. In th . . L . X
e generalized linear susceptibility, respectively. We will as-

absenge qf any droplgt equtat|or1$,=1 holds due to the sociate these two length quantities with the two time quanti-
normalization of the Ising spins. A spontaneous thermal flucs

tuation of a droplet will take place if its excitation gap hap- ties measured in aging experiments.
pens to be smaller than the thermal enekgy¥f. The prob-
ability of the latter is found to be proportional to

5(0)kgT/FYP, due to Eq.(44). So the reduction from 1 due For clarity, let us consider thequilibrium limit where
o a drop;-e’;{ excitation at scale is of order MZp(0) there is no extended defects which can be realized by taking
L

; ) ) . R—oo first. In the latter limit we recover the result of the
X (kg T/F\). Then the reduction of the spin autocorrelation original droplet theor}
by droplet excitations at scaleis estimated as

q=Ng 1Ei (s)?, (48)

2. Edwards-Anderson order parameter

- _ p(0)m?kgT

 keT/ L@ lim q(L,R) = qeat c o2

G0 5[] e 49 A A (Y
L

: (53

where the last factor is due to the number of droplets per spiWIth
given in Eq.(46).

The magnetic linear response by weak external magnetic c= fxdyy‘l“’. (54)
field h is measured by a linear susceptibility 1
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and the Edwards-AndersdiEA) order parameter defined in 4. Two-time and two-length quantities

Eq. (22) evaluated as We can now associate the two length quantities discussed

B KeT above with the two time quantities for short time separations
gea= lim lim q(L,R)=1—cp(o)mZT, (550  L(7)=<L(ty). In the latter regime, the autocorrelation func-
tion C(7+t,,t,) and the ZFC linear susceptibilityzgc(7
+t,,,t,) measure, respectively, thermal fluctuations and lin-
ear responses of droplets smaller than the size of the domain

L—o R—o

The associate@quilibrium susceptibility g is defined as
Eq. (21) kgTxea=1—qga. The above expressions become

) S ; L(ty).
useful when we consider equilibrium dynamics. w. . . . . ;
d y The autocorrelation function at a given time separation
3. Dynamical order parameter probes thermal fluctuations of droplets as largé @9 in the

) ) ) ) . presence of domain walls of sif(t,,) so that we expect
It is useful to consider asymptotic behavior at large sizes

R/Lo>1 with the ratiox=L,,/R being fixed. We obtain for Cr+1ty,tw) =q[L(7),L(ty)], (63)
0<x=<1,
whereq(L,L") is the generalized order parameter given in
®.(Inx) Eq. (52). Similarly, the ZFC susceptibility probes the polar-
a ization of droplets as large &g 7) in the presence of domain
(56)  Wwalls of sizeR(t,) we expect

B(O)mZkBTA p(0)mPkgT

xR,R)= + ——A(X
a( )=dea Y(RILg)" Fo

with ®,(z) being a pseudo-step-function of widthdr(Ref.

38) and kBTXZFC(T+tW vtw): kBTX[L(T)yL(tW)]
© X :1_C(T+tW'tW)i (64)
_ —1-6_ ~1-0
Ax) fx dyy fo dyy wherey(L,L") is the generalized susceptibility given in Eq.
(52).
XYY e yI[1—Ax(Iny)]—1}. (57) Let us note that the generalized order paramefér,L")

Note that the second integral converges because of&2y. and the generalized susceptibilig(L,L") are defined via
and the inequalityy<(d—1)/2.14 Thus as far as @x<1, disorderaveraging of many different realization of small sys-

parametenr|g, evaluated in Eq(55). finite time, a macroscopic system will contain macroscopic
In the intriguing case~ 1, A(x) will remain finite as far Number of domains no matter how large their sizé
as 0<a<1. At x~1 the last term of Eq(56), which is due = L(ty) is. Thus we can safely evaluate these two time quan-

to the anomalously soft droplets, contributes and we obtairtiti€s, which are macroscopic quantities, by the disorder-
averaged two-length quantities.

(0)m?kgT Let us emphasize that the FO¥TY) is satisfied while time
g(R,R)=gp+A(1) o (58) translational invariancéTTI) is broken in the above two
Y(R/Lo) length/time quantities fok.(7)<L(t,). The latter is due to

where we have defined the dynamical order parameter  the fact that the autocorrelation function and the susceptibil-
ity depends on two length/time, i.e., not orily7) but also

) ~ ,Ke onL(t,). For larger time separationy r)>L(t,), we take
9o= lim q(R,R) =gea—p(0)M"——. (59 into account decay of memory due to coarsening of domain
R 0 walls following the original droplet theory’
Naturally, we can define the associated dynamical linear sus-

ceptibility xp as E. Scaling properties of two-time quantities

keTxp=1—0p- (60) Using the results of the previous section, we now discuss
) scaling properties of the two time quantities at different re-
The above results imply gimes in detail. Basically we expect three distinct regiries
quasiequilibrium regimé.(7)<L(t,), (ii) crossover regime
9o =Gea 6D L(7)~L(t,), and (iii) aging regimeL(7)>L(t,). In the
and following we first consider the ideal equilibrium limit for
clarity and then the three regimes subsequently.
XD XEA - (62

As we discuss belowp and yp play significantly important
roles in the dynamical observables of aging. We will see that Let us consider first the equilibrium limits of the autocor-
the field cooled susceptibilityrc defined in Eq(10) is equal  relation function and the ZFC susceptibility which are ob-
to the dynamical susceptibilityp defined above. Thus the tained by taking the limit.(t,,) —o° with fixed L(7) in Egs.
inequality (62) implies the anticipated inequalityec>xea  (52), (63), and (64). From Sec. IVD2 one immediately
given in Eq.(16). finds'®

1. Equilibrium limit
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Ced V) =0eat cp(0)M*(kgT/Y)[L(7)/Lo] * (65

nd T Cle+tw,iw) = -
- Quasi-Equilibrium Tk T (T 00, 1)
)= i (T+1ty,ty) pOm? C |
)= lim T , = —C—. Trossover
Xed tWMCXZFC wrtw) = XEA Y[L(7)/Lo]"

(66) Aging

In Eq. (65) gea is the EA order parameter defined in Eg2) o
and evaluated in Ed55). The numerical constarmtis given

in Eq. (54). Correspondinglyyg, is the equilibrium suscep-  4,,—¢,
tibility related toqgs askgTxea=1—0ga as in Eq.(22).

0 >
2. Quasiequilibrium regime 0 1 L(D/L(tw)
Now we discuss the quasi-equilibrium regimie(7)

<L(t,). The autocorrelation function and ZFC linear sus-gq
ceptibility can be evaluated using Eq52), (63), and (64).

FIG. 2. Different asymptotic regimes of the two-time quantities.
e text for details.

I_:or_ simpligity, here we assume to stay deep in thg guasiequi- 3. Crossover regime
librium regimelL(7)<L(t,). Then using the scaling prop- . .
erty of the effective stiffnes&42), one obtain® Next let us consider the crossover regigr) ~L(t,,).
Here we have to consider also the contribution of anoma-
C(t=r7+1y,t,)=Ceq 7) lously soft droplets of sizes as large as that of the domain.

From Eq. (58 the spin autocorrelation function is ob-

- kgT L(7)\97? tained immediately as
_C/p(o)mz - L(t )
Y[L(7)/Lo] w Cl7+tw tw L) ~1
+..., (67 KT
~ B
with C.{ 7) being the equilibrium part given in E¢65) and NqD"'p(O)mZA(l)Y[L(t )/Lo]”, (69)
w

¢'=c,[5dyy?@= 124 The second term is the weak non-
equilibrium correction term due to the weak softening ofwhereqp is the dynamical order parameter defined in Eq.
small droplets which gives rise to some weak waiting time(59). Similarly the ZFC susceptibility is obtained as
dependences.

The above formula combined with the formula for the KeTxzrc(tw+ tw tw)[L(miLce
equilibrium part (65 yields a systematic extrapolation

w

scheme to determine the EA order parametef. Such an ~ ) kgT
extrapolation was already demonstrated in our previous ~1~ksTxp—p(0)m A(l)m' (70
papert’ In Sec. VII C, we perform such an analysis numeri- wii=o
cally. whereyp is the dynamical susceptibility defined in E§Q).
Similarly, the ZFC susceptibility zec( 7+ ty, , 1) iS evalu- As we discuss in Sec. IV E 6, the change from the quasi-
ated as equilibrium regime and the crossover regime becomes very
abrupt as function ok=L(7)/L(t,,) in the asymptotic limit
KeTxzec(t= 74ty tw) =K T xed 7-)jL(;'T)(())mZ L(t,)— (see Fig. 2 This feature deserves to be studied in
simulations and experiments. A convenient measure is the
kgT L(7) |97 modified relaxation rate functio,,(X,t,,) we introduce in
X 0( ) o Eq. (92).
Y[L(7)/Lo]%\ L(tw)
(68 4. Aging regime: autocorrelation function
with xe((7) being the equilibrium part given in E¢66) and Let us now consider aging regime(t)~L(7)>L(ty)
Yea is the equilibrium susceptibility. where we need to consider growth of the domains explicitly.

The quasiequilibrium regime is most relevant for the mea+0" _S|mpI|c5|ty, we used the notion oépochsmentioned
surements of the relaxation of ac susceptibilities during isoprewously? The nth epoch spans logarithmically separated
thermal aging. Recently a related scaling analysis was pefMe 1506“93 betweert,_; and t, such that L(t,_,)
formed in an experimerif Let us note that previous =& LoandL(t,)=a"L, with a>1. Ateach epoch some
experimental analysis of spontaneous thermal fluctuation o?f the smaller domains are eliminated so that domain walls
the magnetization and ac susceptibility have already con@’e coarsened. Thus a given site may or may not belong to
firmed that FDT holds for quasiequilibrium regime while the same domainl{ or I') at two different epochs. The prob-
nonstationarity is observed cleafi§?4° ability P4(R{,R,) that a given site belongs to the same do-
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main at the two different epochs characterized by the sizes affinitely large ones. At finite length scales, the amplitude of
the domainsk; and R, presumably becomes a function of the order parameter should be larger tliggndue to the al-
the ratio of the size of the domains, i.e., gebraic correction term such as the second term in(ER).
or (69). Then the factor, in the scaling forn{77) should be
replaced by some time-dependent factor at finite time scales.
Second, we also expect some additive correction terms since
with some probability there will be some region where do-
main walls do not pass through so that the dynamics due to
droplets in the interior of the domains continues. Such qua-
; nsiequilibrium corrections will be additive as considered in
the folloyvmg. . . dynamical MFT® However, we do not know how to collabo-
For simplicity, let us neglect thermally active droplet ex- rate both the multiplicative and additive correction terms si-

citations in the interior of the domains and consider only themultaneously and we will leave the problem of correction

domain growth itself for the moment. Then the autocorrelayg g for the autocorrelation function in the aging regime for

tion function between two epochs such that size of domam;;Uture studies
areR;=L(t) andR,=L(t,) becomes '

Ps(R1,Ry)=Pg| 5~ (71
R

reflecting the self-similar nature of the domain growth
process>3® This function describes the slow decay of
memory by the domain growth and plays the central role i

_[ L(t) 5. Aging regime: linear susceptibilities
C(t:THW't‘N):C(L(tW)) (72) Finally let us consider the linear response to magnetic
. field during the domain growtlfaging. Suppose that mag-
with netic fieldh is applied only during a certai@pochwhere the
~ size of the domain it ,/Ly=a" with n being a certain posi-
C(x)=2P4(x)—1. (73

tive integer. Then let us consider the magnetizathdm,(t)
In the limit x— 1, the scaling function should converge as Mmeasured at some tinte-t,_; during and after the epoch,

lim C(x)=1, (74) min(t.t,)

ot 5Mn(t)=hft dt’'R(t,t'), (78)
because the normalization of the Ising spins. In the other "
limit, the scaling function is expected to behave aSymptOti'whereR(t,t’) is the response function defined in E8).

cally as During the epoch, droplets over the length scales ftgm
up toL(r=t—t,_;) can be polarized by the field. Impor-

CH~x"  (x>1) (79 tantly the size of the domain can be considered as frozen in

with \ being a nonequilibrium exponént® time to the valueL,, during this epoch so that the linear
response is the same as that in the quasiequilibrium/
d/2<a<d. (76)  crossover regimes. Thus the magnetization measured within

the same epoch will be
By taking into account thermally active droplet excita-

tions, we expect the scaling form of the spin autocorrelation
P ¢ P SM () ~hx[L(7),L]

function as
L(t) h~(0)JL(T)OIL m for t t<t
_a-C ~hp Tt or th_<t<t,
C(tvtw) qDC L(tw))y (77) Lo L FLval)_n
whereqp is the dynamical order parameter introduced in Eq. (79)

(59). Note that in usual coarsening procés®*the ampli-
tude is given by EA order parametgg, which was also Where we used the generalized susceptibility given in Eq.
assumed in the original droplet thedRHowever, we expect (52). This part due to the droplets satisfies the F8).
the dynamical order parametgy, is more natural because of ~ When the field is cut off at timé,, depolarization of the
the anomalously soft droplets which are as large as domaingroplets will start. Let us now follow the argument of Fisher
The above scaling forni77) should be manifested in the and Huse; and first consider a certain early stage of the
asymptotic limit L(t,)—o with the ratio x=L(t)/L(t,) (n+1)-th epoch, say up to timg, slightly aftert,, such
fixed to a certain value larger than 1. Note that the normalthat further domain growth still does not proceed apprecia-
ization (74) allows matching with the crossover regime dis- bly. Note that the switching off of the field is equivalent to
cussed in the previous section in the asymptotic linfit,,) adding additional field of the opposite signh. The latter
—00, will induce additional negative magnetization whose ampli-
At finite time scales, we expect some correction termgude grow similar to Eq(79) with 7 being understood as the
because of the following reasons. First let us recall that théime after the field change. Up to the tini¢ most of the
asymptotic amplitude of the order parameter is attained onlynagnetizations will be canceled. However, some residual
by integrating out contributions of droplet excitations up tomagnetization of order
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Mt ~c"p(0) ———— 80
n(th) p( )Y(Ln/LO)” (80) o
cnst=cf dyy 179" r >0, (85)
0

may be left behind. Here” is a certain numerical constant.
As domain growth proceeds further, the residual magnetizary opain the last equation, we used the dynamical suscepti-

tion will remain only if the domain to which the polarized |, .. . . . ~
droplet belongs is not eliminated. Then the remanent magn&'“tykx? def_med in Eq.(60) and the SC?"”Q formC(x)
~x~* given in Eq.(75) and assumed thatis large enough

izati ill he furth i h
tization will decay by the further domain growth as so that L(t)/Lo<<1 holds. Note thatc, represents the

L(t) strength of the aging part of the response whose contribution
SM (1)~ M p(t)) 2PS(L—)—1} to xzrc(t,0) scales ag gm?/[L(t)/Lo]?. Now comparing
n the result(83) with (10) which reads as
- hm?  _(L(t :
~c"p(0) m C( ( )) for t>t,. Xrc= lim xze(t,0)
Y(L,/Lg)? '\ Ln toe

(81)  we find the dynamical susceptibilify, defined in Eq(60) is

- nothing but the desired FC susceptibiljy:. Thus using the
HereC[L(t)/L] is related to the probabilitP[L(t)/L] that  inequality (62) we obtain
a given site belongs to the same domain at the two different

epochsL an? Lﬁlt)(> L, as giVﬁn ri}n Eq|(73). Thhis is the XFC= XD~ XEA (86)
) . ; E
233?9'5?“ of the response which violates the FUIB) which is nothing but the anticipated inequalit}6).

Combining the above results we can now evaluate the Lastly let us evaluate the TRM susceptibility in the aging

ZFC and TRM susceptibilities defined in Eqg) and(6) by ~ 'edime. Suppose the waiting tintg belongs to thenth ep-
summing over the responses at different epochs given b ch and observation is done well after the waiting time such

Egs. (79) and (81). Suppose that the observation tirmbe- at the domain growth proceeds appreciably)>L(ty).
longs to thenth epoch and the waiting ting, belongs to the Ther_1 summing over the aging part of the respof@h we
mth epoch such thain<n. Then the ZFC susceptibility is obtain

obtained as

tW
. XTRM(t:T+tWItW):f0 dt'R(t,t")
Xereltt) = [ dUR(LE) ‘
~ D M(t)
k=1

1 n
=5 2 M) ~x[L(7),L(D)] 3
k=m Hfutme p(0)m? ~(L(t))
~ ~C -— C
Lo dL p(0)m? _[L(t) L L Y(L/ILy? | L
+c” f — C . (82
Lt L Y (L/Lg) L 2 L(t) |~
The first term in the last equation is the response of droplets ~C“StY[|_(tW)/|_O]0(L(tw))
(79) during the last epoch where the observation is being
done and second term is the aging [&f) due to the rema- for L(t)~L(7)>L(ty). (87)

nence O.f thg response made at previqus epoghs. Note that tp|%rec is defined above in Eq85) which represents the
expression is valid also for the quasiequilibrium and cross- nst

over regimes because thelrét)~ L (t,) holds and the sec- stren'gth of the mtegrgl of the aging part of thg response. To
ond term is absent so that the expression becomes the saﬁ’ilét?'P the last equation, we used the scaling fafx)

as Eq.(64). ~x~* given in Eq.(75) and assumed. thay, is large enough

so thatLy/L(t,,)<<1 holds. The functional form agrees with
what was anticipated by Fisher and Hd2e.

Thanks to the sum rul€9), the relaxation of TRM sus-
ceptibility (6) and ZFC susceptibilit(7) can be obtained
from each other using,e(t,0) obtained as Eq83). Here
one must pay attention to the fact therc(t,0) contains

In the special case df,=0, the above result becomes

LodL p(0)m? ~(L(t))

XZFC(taO)NX[L(t)’L(t)]+C”f|_ L y(L/L )0C L
0 0

o m p(0)m? 83 both the response due to droplefshich satisfy the FDT
Xp Y[L(t)/Lo]"' and aging partwhich violates the FDT as can be seen in
Eq. (83).
where In the previous Secs. IV E 2 and IV E 3, we obtained scal-
" ing properties of the ZFC susceptibility in the
c"=A(1)—cCpg (84  quasiequilibrium/crossover regime. The ZFC susceptibility
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g' ' the weak violation of TTI is removed. On the other hand, the
$A FDT (18) 1—C(7+t,,,ty) =KgTxzec( 7+ 1ty ,ty) is satisfied
2 even in the presence of the weak violation of TTI. In the
< large time limitL(t,,) —oc with fixed x<1, the time depen-
dencegincluding the weak violation of TTIdisappears such
+ ", Crossover that the spin autocorrelation converges to the static EA order
: B parametemeg, and the ZFC susceptibility converges to the
[ SET T SO ....... '©® Quasi-Equilibrium equilibrium susceptibility kgTyga. Correspondingly the

\;/; TRM susceptibility converges tokgTxp—KgTxea=0p
\ =
XY

—Qgga because of the sum rul@9). In the last equation we
usedkgTxp=1—qp given in Eq.(60). To summarize, the
o spin autocorrelation function and the susceptibilities asymp-
> totically become flat lines in the quasiequilibrium regime
1 (x<1) as displayed in Fig. 2. In the parametric plot of Fig.
C 3, the whole quasi-equilibrium regime converges to a single
point (dga.KeTxea). Importantly, the scaling theory has
provided not only such asymptotic limits but details of finite-
time (r,t,,) correction terms by which the asymptotic limit is
approached as discussed in Sec. IV E 2. The latter are well

amenable to be examined seriously by experiments and

in these regimes contain only response of droplets whicl}. : . .
satisfy the FDT. However, one can check that the TRM sus%é?fdgtfgséxrf Oe g él\glas\f\zlaed porr? Sﬁgt ;#33 ;igﬁéa”ed analysis

ceptibility in these regimes, which can be readily obtained Secondx~1 corresponds to the crossover regime. From

via the sum rule, becomes a mixture of response due to dro%—q_ (69), we expect the spin autocorrelation function drops

lets and aging part. Thus the ZFC susceptibility in the . :
quasiequilibrium/crossover regimes is better suited to exarertically [against. (7)/L(t,,)] from the EA order parameter

ine responses of droplets than the TRM susceptibility. grﬁal?(frvzgato thgugﬁgﬁrﬁéc::]oorg%ug?rasgf?tgfo ngtlghlr:Sthis
Conversely the TRM susceptibility in the aging regime is Mea Y piets.

better suited to examine aging part of the response than HeJme we expect the FD(LE) is still satisfied in spite of the

ZFC susceptivilty. AS can be seen in EQ7. the TRV 3t B0ad B LS e eeptbity
susceptibility in the aging regime contains only the aging P y y P y

part of the response. On the other hand, one can check thg® | Xea 10 @ larger valu&gTyp=1-0p . Correspondingly

Lo . . . e TRM susceptibility drops off vertically fronkgT xp
the ZFC susceptibility which can be readily obtained by the™ KsTXea=Gea— Op 10 Z€ro because of the sum ry&g). In

m rul m mixture of r n ropl E . .
sum rule becomes a ture of response due to droplets aqﬁe parametric plot of Fig. 3, the crossover regime converges

aging part. to the line of points in the section of the FDT line between
6. Summary (9dea.KeTxea) and @p KeTxp)-
_ ) o _ The abruptness of the changes of the two time quantities

Let us consider large time limit such the(t,)—> is  atx~1 is very surprising. Here let us recall the well known

taken with the ratio experimentdf and numericdf observations that the so-
called relaxation rate
L(7)
(89)

X=
L(ty) d +ity,ty
S(7,ty)= % (90)

qp 7N

FIG. 3. Different asymptotic regimes in tHeé—Tyzec plane.
The dotted line labele#dgTxy=1—C represents the FDT line. See
text for detalils.

being fixed to certain values. Here it is useful to consider the
large time limit of the sum rul€9). For any 7 that may be

. . has a broad peak centered at aroundt,,. Our scenario
allowed to grow witht,, we find

naturally suggests a modified relaxation rate function

tIiTw[XTRM(T+tW:tw)+XZFCX(T+tW!tW)]:XD . (89 g Tt )

W Smod X:tw) = T|x=L(r)/L(tW) . (9D
In the last equation we used the definition of the field cooled
(FC) susceptibility defined in Eq(10) and our result86).  which should have a sharper peakxat 1 with increasing
The asymptotic behaviors discussed below are displayed ib(t,,). This modified relaxation rate will be useful for further
Figs. 2 and 3. numerical simulations and experiments.

First x<1 corresponds to the quasi equilibrium regime, In order to describe the interior of the crossover regime

where the spin autocorrelation function slowly decays frommore closely, different scaling variables other thgr) and
1 to static order paramet&z, accompanying some weak L(t,) are certainly needed. Unfortunately, the droplet theory
waiting time dependence or weak violation of time transla-which is based on the dynamical length scales cannot pro-
tional invariance(TTI). Here if one fixL(7) and letL(t,,) vide information for proper scaling variable to describe the
—oo0 one obtains the ideal equilibrium limit behavior where interior of the crossover regime. A possible scaling variable
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would be a=1/t,, as proposed by Fisher and Hisavith mean-field theorfMFT) of spin glassésand usual coarsen-
which the abruptness will be absent. Note that possible larging systems>3¢*!Here let us consider the asymptotic limit
time limits t,—~ classified by different values ok are t,— of the two time quantities by fixing the value of the
smashed to a point=L(7)/L(t,)=1 in thex axis for all «. autocorrelation function to a certain val@in the range 0
Finally x>1 corresponds to the aging regime where the<C<1. In that limit, the ZFC susceptibility becomes a
spin autocorrelation function takes a continuous value befunction of C, y= x(C). This definition of asymptotic limit
tweengp and 0 as deceasing function wfas given in Eq. can be considered in general and our scenario implies the
(77). Here the result{87) implies the TRM susceptibility is  simple structure ok (C) shown in Fig. 3. In the usual coars-
asymptotically zero. The latter means the ZFC susceptibilityening systems and in the dynamical MFT, the FDT line ter-
converges to the FC susceptibiliggT ygc because of the minates at {ga, T xea) While it extends up todp,Txp) In
sum rule(89). The FDT(18) is thus strongly violated. In the our scenario. In the usual coarsening systems, a horizontal

parametric plot of Fig. 3, asymptotic limit for eachcon-  line connects (&gTxga) and @ea,KgTxea) Where the FDT
verges to a point on the flat horizontal line connectingis violated strongly. On the other hand, the dynamical MFT
(0,Txp) and @p .ksTxp)- predicts a curved line between {@) and Qga,xea). Our

In conventional understandihgwhich includes usual picture is different from both of them.
coarsening systerfs®®**and mean-field spin-glass modé&ls,  The difference between usual coarsening systems and our
both the violation of TTI and FDT happens asymptotically atscenario is the presence of the anomalously soft droplets.
the same static order parametgf, . A remarkable feature of Droplet excitations exist also in simple coarsening systems
our present scenario is that the break points of TTI and FDBuch as ferromagnéfsbut with extremely small probability.
are separated: the break point of TTl is locatedgt while  In our scenario, the anomalously soft droplet can exist with
that of FDT is located at the dynamic order paramejgr probability of orderO(1) in a given domain irrespective of
So far it is implicitly assumed that FDTL8) is valid in  the size of the domain so that the thermal fluctuations in each
the quasiequilibrium regime and also in the crossover regimeomain are anomalously large compared with equilibrium
in spite of the fact that there are weak and strong waitingvhere there are no extended defects.
time effect. A supplementary argument for the validity of  For clarity, let us not¥ that there are also some excessive
FDT can be made by considering the bound on the possibleesponse in usual coarsening systems due to thermalized do-
violation of FDT found in Ref. 32. The rigorous boulidn  main wallé! at wave numberk such thatkL(t)>1. They
the integral violationl (t,t,) defined in Eq.(23) is put in  are similar to the anomalously soft droplets in our scenario in
terms of the entropy production rate which presumably hashe sense thatl) they satisfy FDT bu{2) disappear in the
the same scaling form as the energy relaxation rate. Theileal equilibrium. However their integral contribution to the
using the scaling form of the energy relaxati@7) one finds response decreases with the growth of the donhdir) so
that their contribution vanishes asymptotically. On the other
t de(s) ) Yot w 1ot a hand, the excessive response of the anomalously soft drop-
||(t’tw)|$KJt ds\/ g =K' 1Wtt) ™ “=(tw/t) ™" “1  ets in our scenario givé®(1) contribution irrespective of
v (92) the size of the domain so that their contribution to the re-
sponse do not disappear as fartgs- limit (ideal equilib-
with K and K’ being certain finite constants andk@<1 rium) is not took first.
being an arbitrary small positive nonzero number. Now let us  Although both the dynamical MFT and our scenario con-
consider the bound in the large time linyjf—o in the qua-  cludes the inequality16) xec> xea, the origins are differ-
siequilibrium regimex=L(7)/L(t,)<1. For convenience ent. The difference between the two, call@domaly is at-
let us introducey such that tributed to contributions of aging part of the response
function which violates the FDT in the case of the dynamical
T=t—t,=to(ty/to)”. (93)  MFT while it is rather attributed to the responses due to the
anomalously soft droplets which still satisfy the FDT in our
scenario. For example, one can see in EBp) that xrc
lim 1(t,t,)<(1/2+ a)K’ lim (t,/ty)~ Y2V *+e=0. (=xp) is generated not from the aging part bu'g frpm the part
oo due to the anomalously soft droplets which satisfies the FDT.
(94) There is a conjecturéthat there is a connection between
the statics and dynamics such that the functieay(C) in

The last equations holds for<Oy<1/2 sincea is an arbi- 1o gynamics should be related to the overlap distribution
trary small positive number. This observation implies that,,tion P(q) in equilibrium, as

FDT is satisfied not only in the equilibrium limit but also in

the quasiequilibrium regime. In order to verify the validity of 1 cr

FDT in the crossover regimg~1, apparently improved kBTX(C)=f dC’J dC"P(C"). (95
bounds are needed. ¢ 0

Then we find

ty—= tw

This is known to hold exactly in som@ot alll mean-field

model§ and usual coarsening systeffi§! Moreover, an in-
Finally, let us compare our scenario with the conventionakeresting conjectuf@ was proposed recently that at finite

picture for isothermal agirigvhich applies for the dynamical time (length scales, the above formula holds for the two

7. Comparison with conventional pictures
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time quantities at a finite waiting timg, and aP(q) mea- 3
sured in equilibrium of a finite system of sigt,,). We .
agree with this proposal partially but not completely as we 2 | z~4.98(5) Ba .
discuss in the following. L=32 —=— &3

In order to fully reproduce the parametric plot Fig. 3, we ic & .
would needP(q) with a delta peak atj=qp rather than at Fpa——
g=0ga. On the other hand, we expectR(q) with delta & 1t =
peak atg= (g, in the absence of any extended defects as the™ R
original droplet theory has predicté8iThus the correspon- 0.7 r g -
dence between the dynamics and statics does not hold at a
in this sense in our scenario. 05 ¢

However, one can explicitly consider a rather special 04
static situation in the presence of extended defects of size ,

L . . 0.3

sayR, which is actually what we considered in Sec. IV D. In 10 1000 100000
any finite size systems, it is likely that the existence of ¢ (MCS)
boundarieqperiodic, free, etg.will intrinsically induce cer-
tain defects as compared with infinite systeh&*” Thus FIG. 4. R(t) of the 4D Ising SG model af/J=2.0 with differ-
we expect actually the circumstance we are considering isnt system sizes. The dashed line represents a power law with ex-
relevant in practice. Our scenario implies the average overlaponent 1Z. In the inset, an expected finite-size scaling plot is

q=/1dqqP(q) measured in such an equilibrium is equiva- Shown.
lent to q(R,R)=qD+7)(0)m2kBT/Y(R/L0)"A(1) of Eq.
(58). Thus our scenario suggestgec=Ilim, . .xzrc(7
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wherea and B8 denote the replica indices which are updated
- 1 : independently from different initial random spin configura-
tiy,ty) =1—q=1—JgdqgMq) for any t, while  ons In our simulation, only one MC sequence is performed
lim,_.C(7+ty,ty)—0 for any t,. Thus our scenario for each random bond. Typical number of samples averaged
agrees with the conjecture of Ref. 45 at the special pdint over bond realizations is about 128. As reported
=0 plus the usual FDT part betwe€qes andC=1 but  previously?®??>*°the correlation functiorG(r,t) exhibits a
not in the section &C<qgs. HereP(q) should be under- complicated functional form which is not a simple exponen-
stood as measured in equi”brium but with the extended denaj and depends on time This may be because a character-
fects. It will be natural to expect th&(q) in such a situation stic distance above whicB(r,t) approximately follows an
becomes a nontrivial, non-self-averaging functiongokith  exponential form depends on time considerably. In order to
finite amplitude atq=0 as observed in many numerical avoid the artificial effect, we do not employ the so-called
simulations of finite size systerfi&™® ~ratio method??*°where the full data of5(r,t) are used in-

In the above arguments, we considered asymptotic limitgjependent of. Instead, we estimate(t) by fitting directly
with fixed C while it is more natural to consider asymptotic the tail part ofG(r,t) to an exponential formula for each
limits with fixed ratio of the two lengtlk=L(7)/L(t,) inthe  timet. In the fitting procedure, we focus our attention only
droplet theory. In the dynamical MFT, one needs infinitely g the large distance tail @(r,t) and carefully choose the
many kinds of time reparametrization functidmd) to span  range depending on tinte
the whole correlation range<OC<<1 but the droplet theory In Fig. 4 we show our results of the length scalg) at
has only one natural variable(t). However, it should be the critical temperaturer,=2.0J. The data of the length
remarked that the scaling variable to describe the interior 0§caIeL(t) follows expected critical power 1awB80) except
the crossover regimgp<C<gga is not known at present for the data with. =8, which is due to finite-size effect. The

within the droplet theory. estimate of the exponerz 4.995), is roughly consistent
with that of the previous work! which quotedz=4.451).
V. GROWTH LAW OF THE CORRELATION LENGTH The data, including the size=8 deviated from the power
IN OFF-EQUILIBRIUM law, scale well using a standard finite-size scaling form,

] ) ) shown in the inset of Fig. 4. It is seen that the length scale
As discussed in Sec. IV, the dynamical length sdal®) | (1) manages to reach at most few lattice spacing even at
and its growth law with time are important to understand;pout 16 MCS. Nonetheless it should be noted that)
nature of aging in SG systems from the view point of theg\ready captures macroscopic behavior in the sense that the
scaling theory. In the present section, we discuss our nUMerkyiticq exponentz is successfully estimated from(t) and

cal results of the length scale and its growth law during iso'that a strong finite-size effect is observed alreadyt in8
thermal aging. A plausible definition of the length schlg) data.

is given by a decay constant of a correlation func®(m,t). | ot ys now examine the crossover from critical to acti-
We measure the equal-time replica correlation function inateq dynamics discussed in Sec. IV B. In Fig. 5, we display
off-equilibrium under zero magnetic field, defined by the raw data of the length scalét) belowT. and afT,. The

critical dynamics is expected to be dominant ngarIn fact,
G(r.t)= S@ysB (1)@ (1) S8 (1)), 96 the length scalé (t) at T/J=1.8 is not distinguishable from
(.t Z (STOSTOSHOSLO), 69 that at T=T. within our time regime. Let us examine the
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FIG. 5. Time evolution oR(t) of the 4D Ising SG model &k
and belowT with L=24.

crossover scaling defined in Eq84) and (35). We present
the scaling plot in Fig. 6 by using the same data as shown i
Fig. 5. In this plot, for two scaling parametef, and v, we
use the known values obtained previolfSlyyhile only one
remaining parametey is appropriately chosen for the data

with different temperatures to merge into a universal curve.

The best scaling plot is obtained lyy~2.5—3.0. The pro-

posed scaling pretty well works in the observed time regime.

It is clearly found that the scaling function exhibits a cross-
over from the critical power law to slower growth law asso-

ciated with low temperature dynamics which is compatible

with the logarithmic growth law predicted by the droplet
theory.

VI. RELAXATION OF ENERGY AND DENSITY
OF DOMAIN WALL

PHYSICAL REVIEW B 66, 064431 (2002
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FIG. 7. Energy relaxation af/J=0.8 and 1.2 as a function of
elapse timgupper figure¢ and the length scale(t) (lower figure.
The straight lines in the lower figure represent fitting result to a
linear function function of L(t)/1o]?~ 9.

In the present section, we examine scaling properties of
one-time quantities under isothermal aging after quencilipased on the view point presented in Sec. IV C. In the fol-

L(@®)/Lo(T)

0

008
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10
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FIG. 6. Scaling plot oR(t) of the 4D Ising SG model, where
the SG transition temperatuiie,=2.0 and the critical exponent

=0.93 are fixed, but the dynamical exponenis obtained to be
4.98(5) from the best scaling.

1le-05 0.001 1000

lowing sections, we perform simulations mainly at two low
temperature§/J=1.2 and 0.8 which amount to 0.6 and
0.4T., respectively. It is found that the effects of critical
fluctuations do not dominate our time window at these tem-
peratures but can be taken into account in a renormalized
way.

A. Energy

In Fig. 7, we present the data of the energy per i
defined in Eq(36) at T/J=0.8 and 1.2. As seen in the upper
figure, the energy function relaxes with time to an equilib-
rium value at each temperature. However, it is rather hard to
extract the equilibrium value from the figure because of the
extremely slow dynamics. On the other hand, the scaling
formula (37) says that the energy approaches its equilibrium
value linearly as a function of?~9(t). We thus plot the
same data set againisf 9(t) in the lower one by using the
length scalel (t) estimated independently in the previous
section and the known value of the stiffness exponént
=0.822 We see the linear behavior as a functiorLéf %(t)
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FIG. 8. Density of the domain wall ak/J=0.8 and 1.2 with _ _ _ _
L=24 as a function of timé (upper figur¢ andL(t) (lower figure. FIG. 9. Spin auto_correlatlon function of _the 4D I_smg.SG model
The straight line in the lower figure represents fitting result to aat T/J=21.2 (upper figurg¢ and 0.8 (lower figurg with different
linear function ofL9%~9(t) with d;=3.75(Ref. 51. waiting time. The top data curves are the equilibrium curves ob-

tained in Sec. VII C.
for largeL(t) which supports the validity of the scaling for-
mula (37). One can take the long time limit of the energy VIl. RELAXATION OF CORRELATION FUNCTION
relaxation using the scaling formula. A similar scaling analy- AND LINEAR SUSCEPTIBILITIES

sis of the energy has been confirmed in the 3D Ising EA SG

model including finite size effecf This two stroke strategy  We now turn to the two time quantities. First we display
has an advantage over the direct analysis with time and givé§€ data in Sec. VII A and discuss the overall features quali-
us a more powerful tool in the analysis of two-time quanti-tatively in Sec. VII B from the point of view of the scaling
ties discussed in the following sections. theory explained in Sec. IV E. Then we go to more detailed
examinations of the scaling properties in the subsequent sec-
tions. In order to test the scaling ansatz explained in Sec.
IV E which are expressed in terms of the dynamical length

~ InFig. 8, we show the domain-wall densiay(t) defined  gcajel (1), we use the data df(t) discussed in the previous
in Eq. (39). The average over bond realizations is taken oveigge. \/

256 samples with. =24. It is found that the density mono-
tonically decays and there is no tendency of saturation
which is similar behavior observed in the 3D lIsing EA
model?! This is clearly seen in the lower figure, where fol-
lowing Eq. (38) we plot ps(t) as a function ofL%d(t) In Fig. 9, we present the data of the spin autocorrelation
estimated in the previous section. Here we use the value dtinction C(7+t,,,t,,) measured up to POMCS for various

the fractal dimensionl;=3.75 recently evaluated in Ref. 51. waiting timest,=10,1¢,10°,10*,10° at T/J=1.2 and 0.8.

As shown in the lower figurep(t) is well fitted by a linear The system size is=24. The data are obtained by perform-
function of L% ~9(t) and the fitting function is down to zero ing MC simulations starting from random initial conditions.

in the large time/length limit. We stress again the validity of The average over realizations of randomness is taken over 32
the scaling formula with the length scdlét). samples. The data show clear waiting time dependences. We

B. Density of domain wall

"A. Measurements of spin autocorrelation function and linear
susceptibilities
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FIG. 10. Linear susceptibilities a/J=1.2: ZFC susceptibility
(upper figure and TRM susceptibility (lower figure. Here

FIG. 11. Linear susceptibilities at/J=0.8. Here {/J)xea
=0.2 and [/J)xp=0.33.

ceptibility xtrm(t=7+t,,t,), some waiting timet,, is
also show the curve of equilibrium relaxatid®.(7) ex-  elapsed under the field and then the field is switched off at
tracted in the analysis which will be explained later in Sect=t,,. Conversely, the ZFC susceptibilityy,rc(t=7
VII C. The latter yields the value of static EA order param- +t,,,t,) is measured by first elapsing the waiting tirge
etergga Whose value is also indicated in the figure. In addi-with no applied field and then field is switched on tat
tion we also indicate in the figures the values of the dynami—=t,, .
cal order parameteyy which will be obtained in the analysis To check the linearity of the response, we examined the
explained later in Sec. VIl E. As discussed in Sec. IV E, wesum rule (9): the sum of the two susceptibilities become
expect that the spin autocorrelation function develops a pla¢T/J) y,-(t,0). As shown in Fig. 12, the sum rule is satis-
teau atge, in the quasiequilibrium regime and decays downfied over our time window within the statistical accuracy.
to zero in the aging regime. The decay is expected to be most |n Figs. 10 and 11, we can see clear waiting time depen-
steep at around the dynamical order parameger The data  dences of the susceptibilities. As discussed in Sec. IV E, we
indeed appears qualitatively compatible with these expectasxpect that the ZFC susceptibility first develops a plateau at
tions. the static susceptibilitygs Within the quasiequilibrium re-

In Figs. 10 and 11, we display the data of the ZFC susgime and then grows further up to the dynamical susceptibil-
ceptibility (T/J) xzec(7+1ty ,t,,) and the TRM susceptibility ity y later in the aging regime. Correspondingly, we expect
(T/3) xtrm( 7+t ty) measured up to POMCS for various  that the TRM susceptibility develops a plateauxat— ea
waiting timest,,=10,1¢,10°,10",10° at T/J=1.2 andT/J  within the quasiequilibrium regime and decays down to zero
=0.8 using field of strength/J=0.1. Again the system size in the aging regime. For the references, we indicated the
is L=24. The average over realizations of randomness igalues of the static susceptibilityT(J) xga, the dynamical
taken over 32 samples. Here the susceptibilities are defineslisceptibility T/J)xp, and their difference in the figures
by dividing the measured magnetization per spnft) using the values which will be obtained in Secs. VII C and
=(1N)=N  S(t) at timet by the strength of the external VII E. The data indeed appears qualitatively compatible with
magnetic fieldh/J. For the measurement of the TRM sus- the expected behavior.
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B. Overall features
In Fig. 13, we show the spin autocorrelation function 0.6 | qég """""" .
C(r+ty,t,) and the ZFC susceptibility 2(T/J)x(r
+1,,,t,,) plotted againsk=L(7)/L(t,). 4L )
Here we parametrized the timesandt,, using the time-
dependent length(t) obtained in Sec. V. More precisely, we C(T+tw,tw) -
first fitted the data of the domain sitgt) asL(t)/Ly=a, 02 r .
+a4In(t) +a,n?(t)+agn?(t) with t measured in the unit of
MCS andL,= 1 (lattice distancg This fitting was enough to 0 , , , , , ,
model the data of_(_t)_ within our time window. Then we 0 0.5 1 L5 ) 25 3 35
used the resultant fitting functions to do the paramterization
here and in the following analysis. When we do the param- (b) X=L(T)/L(fw)
etrization, we discard short time data 10 becausé (t) is
not available there. FIG. 13. Plot of spin autocorrelation functi& r+t,,,t,) and

The figure should be compared with Fig. 2 which explainsl —(T/3) xzrc(7+tw tw) againstx=L(7)/L(t,) at T/I=1.2 (up-
the expected asymptotic behavior of the two time quantitieper figure and 0.8(lower figure. For each waiting timg,,, the
in the large time limit L(t,)— with the ratio x lower curve is the spin autocorrelation function and the upper curve
=L(7)/L(t,) fixed to certain values. We expect three dis- S the susceptibility.
tinct regimes depending on the value of the fixed rdtjo
guasiequilibrium regimex<1 where the autocorrelation —C(t,t,)=(T/I)xzrc(t.ty) is well satisfied in the quasiequi-
functions spans values in the range,<C<1, (ii) cross- librium regimex<1 as expected.
over regimex~1 for qp<C<(qga, and (iii) aging regime In the crossover regime~1, we expect a vertical drop
x>1 for 0<C<(qp. Here qg, and g are convergence from the plateau at the static EA order parameges down
points of the break points of TTI and FDT, respectively, into the dynamical order parametgg for the spin autocorre-
the limit L(t,,) —°. lation function. Correspondingly the ZFC susceptibility

In the quasiequilibrium regime<1, we expect that the (T/J)xzrc(7+1y,ty) IS expected to jump from the static
spin autocorrelation function convergence to a platgaguin susceptibility T/J)xga=1—0qga Up to the dynamical sus-
the large time limitL(t,)—c. Correspondingly the ZFC ceptibility (T/J)xp=1—0qp still keeping the FDT 1
susceptibility T/J) xzec(7+1,.t,) is expected to converge —C(t,t,)=(T/J)xzrc(t.ty) as explained in Sec. IVE 2. In
to the static susceptibilityT/J) xea=1—0ea. In the figure, the figure, we indicated the value gf which will be ob-
we indicated the value afg, which will be obtained later in  tained later in Sec. VII E. We will examine the slope of the
Sec. VII C. The data indeed appears descending down tgurves around~1 in Sec. VII E and find indeed that the
ward the plateau from above with increasiggatx<1) but  suitably refined relaxation rate functidsy, {x,t,,) defined
still far from it. Fortunately, the scaling theory provides pre-in Eq. (91) have a sharply pronounced peak at around
diction on the correction terms to the asymptotic limit as~1. Furthermore, we will examine the violation of FDT
explained in Sec. IV E 2. In the Sec. VII C, we will examine | (7+t,,,t,) =1—C(7+ty,ty) = (T/I) xzec(7+ 1ty ty) de-
the correction terms in detail which actually yields the valuefined in Eq.(23) in Sec. VII G and find indeed that it is
of gga. Second important observation is that the FDT 1decreasing with increasing, in the crossover regime
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04 FIG. 15. Spin autocorrelation function &tJ=1.2. The top data
- ' ' & ' points are the equilibrium limit obtained by the extrapolation
0.35 €TI.Dyp . method explained in the text.
/g 03 r e . | to converge tq qga,(T/J) xga] which will be obtained in
s 025 F :i%«* 8 Sec. VII C. This observation is consistent with our picture
€ ool "‘si*f*:%._(qEA,(T/f_ Xea)  presented in Fig. 3. It is radically different from conventional
xS {0 s Y understandinfgthat assumes break points of TTI and FDT
S 0.15 T A \ T are the same. As we discuss in Sec. VII F, the separation of
b 0.1 b 103 smes k| the break points of TTI and FDT will become apparent when
S X time (length dependences are explicitly considered.
0.05 110’ p——t .
FDT line .
0 e ! ! L ’ C. Quasiequilibrium regime
0 02 04 06 08 ! Let us now examine the scaling properties in the quasi-
(b) C(t,tw) equilibrium regime x=L(7)/L(t,)<1 discussed in Sec.

IV E 2. Since we have seen the FDT is well satisfied in the
FIG. 14. Parametric plotT/J)xzrc(t,tw) Vs C(t,ty) at /3 quasiequilibrium regime<1 (see Fig. 18 we will only use
=1.2 (upper figur¢ and 0.8(lower figure. The straight tangent  the data of the spin autocorrelation function. To focus on the
|In§S represents the FD(IL8). The convergence pomt_s of the break quasiequilibrium regime, we took another dense data set of
points of TTI [de,(T/J)xea] and the break points of FOT he 5yt0correlation functioB(r+t,,,t,,) (shown in Fig. 15
[ap,(T/I)xp] which will be obtained later in Secs. VIIC and of many waiting timest,,= 1 30 000(MCS) and rela-
VII E, respectively, are indicated. . . wo e
tively short time separations<1000 (MCS). Here we do
not use the fitting of the growth law df(t) to parametrize
~1. The result is compatible with our expectation that thethe time but use directly the data bft) obtained in Sec. V.
FDT is asymptotically valid even in the crossover regime. The formula(67) combined with Eq(65) gives a protocol
In the aging regimex>1, we expect the ZFC susceptibil- to extract the static EA order parameter as the following.
ity 1—(T/J)xzec(7+1,,ty) converges to the dynamical This analysis is already reported partly in our previous
susceptibility I/J)xp=1-0p While spin autocorrelation work.!’
function C(r+t,,t,) becomes a scaling function of At first we take the equilibrium limitt,—o of C(r
L(7)/L(t,). Indeed the data appears slow converges to suck t,,,t,) for each time separatiom. From Eg.(67), one
limits. For the susceptibility, the scaling theory provides pre-finds that the autocorrelation function becomes only a linear
diction on the scaling forms of the correction terms to thefunction of 1L97%(t,) for a fixed . Thus we plotted the
asymptotic limit as explained in Sec. IV E 5. We will exam- data points of a givem of varioust,, against 1.9~ %(t,,) and

ine and confirm them in Sec. VII E. The value @f indi- fitted to a linear function in the larg&(t,) regime. The
cated in Fig. 13 will be actually obtained as the result of suctequilibrium limit Co( 7) is read off directly from the fit. Here
an analysis. we use the stiffness exponefit=0.822° For L(t,,) we used

In Fig. 14, the susceptibility T/J) xzec(7+ 1ty tw) and  the data obtained in Sec. V. Typical fitting results are shown
the spin autocorrelation functioB(7+t,,,t,,) are plotted in  in Fig. 16. The linearity as a function ofl19~(t,,) supports
a parametric way. It should be compared with Fig. 3, whichthe validity of the formula(67). We repeated the same pro-
explains the expected asymptotic regimes in the large timeedure for eachr. The obtained equilibrium curv€(7)
limit L(t,)—o with the fixed ratiox=L(7)/L(t,). The was displayed in Fig. 9.
curves apparently continue to move upwards with increasing Next we take the large limit of the extractedC.7)
waiting timet,, and the break point of FDT does not appearusing Eq.(65). As shown in Fig. 17C¢{7) appears as a
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FIG. 16. Typical examples of the extrapolation to the ldpg
limit with fixed 7. Two arrows represent the extrapolated values of °_
Cef 7) Of 7=100 and 1000 af/J=1.2. The horizontal error bars =
are those ot (t) presented in Fig. 5. ~
g
linear function of 1L%(7) which supports Eq(65). A linear 2 0.1 F ]
fit gives the EA order parameteyz, as the limiting value. &
We obtained the EA order parametgg,=0.58(2) atT/J %3
=1.2 and 0.82(1) al/J=0.8. To our knowledge this and I_
our previous work’ is the first which confirmed this funda- t’;
mental scaling law(65). 8 001 F = |
Finally, we discuss the weak nonequilibrium correction
term to the equilibrium limit which is responsible for the 06 os 1 5
weak violation of TTI in the quasiequilibrium regime. The ’ ’
) I b) L(T)/L(tw)
expression67) suggests that the weak nonequilibrium cor-
rection term AC(7+ty,,t) =C(7+ty,ty) —Cef(7) multi- FIG. 18. Scaling plot of the non-equilibrium correction terms of

plied by L’(r) becomes only a function of(7)/L(t,)  C(r+t,,t,) in the quasi-equilibrium regime &F/J=1.2 (upper
(<1). As shown in Fig. 18, we confirm this scaling form. figure) and 0.8(lower figure. The horizontal error bars are those of
For the limit of L(7)/L(t,)<<1, the scaling function shows L(t) presented in Fig. 5. The line has the expected sthpe for
the expected power law behavipt (7)/L(t,)]% ¢ being  smallL(7)/L(t,) limit [see Eq(67)].
consistent with Eq(67).

D. Crossover regime

In the crossover regime=L(7)/L(t,)~1, we expect a

095 | ' ' ‘ N ' ] vertical jump of the two time quantities at asymptotic limit
’ ﬁ T L(t,)—<. In Fig. 19 we display the plot of the usual relax-
09 r / e ation rate functior( 7,t,,) of Eq. (90), which shows the well
085 - e | known peak structure observed in experim&ed a MC
} simulation** This can be interpreted as the signal of the
& 087 qea(T17=0.8) . 1 rapid changes in the crossover regime. However, our sce-
;% 075 | Y < _ nario naturally suggested a more appropriatedifiedrelax-
- ation rate functionS,,.(X,ty) of Eqg. (91). In Fig. 20 we
071 | show the plot of the modified relaxation rate function. It
0.65 | o . clearly develops a sharp peak at aroundl with increasing
06 Gen(T1T=12) L(t,) as expected.
0.55 o 0i5 1 115 2 25 E. Scaling of susceptibilities
(L(T)/Lo)™® For the growth of the ZFC susceptibility with zero wait-

ing time we expect a scaling fori83) which reads
FIG. 17. Equilibrium spin autocorrelation functicDe{7) at

T/J=1.2 (upper datgand 0.8(lower data. The horizontal error bars m2
are those ofL(t) presented in Fig. 5. The lines represent fittings XZFC(t,0)~)(D—C”’m2—0
according to the formulé65). Y (L(t)/Lo)
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FIG. 19. Plot of the usual relaxation rate functi®r,t,,) at (b) x=L(7)/L(tw)

T/J=1.2 (upper figure and 0.8(lower figure.

. o . i . FIG. 20. Scaling plot of the modified relaxation rate function
W_lth c"” being a numerical constant defined in E§4). In S.odxot,) at T/J3=1.2 (upper figurg and 0.8(lower figure.
Fig. 21 we show the sum T(J)xzrc(7+1ty . tw)

+(T/3) xtru( 7+ ty . t,) plotted against (t=7+t,) 7 us-

ing #=0.822° We have checked that they satisfy the sum

rule (9) and agrees withT/J) xzec(t,0) (see Fig. 12 As can

be seen in the figure, the data are indeed consistent with the
expected scaling form being linear with_1#) ¢ and pointing 0.6

(T/J)IXZFC(Z,O)z(I) [E—

toward a constant in the limit(7) —c. From the linear fit 0.55 F(T)yp(1.2)=0.54 =10 ]
shown in the figure we find the values of the dynamical 0.5 [ 102 st
susceptibility /J) xp as 0.54 afl/J=1.2 and 0.33 af’/J ) x W

107 sms
=0.8. The corresponding dynamical order parameggecan

be determined via FDTT/J)xp=1—qp (60) as 0.46 at
T/J=1.2 and 0.67 af/J=0.8.

045 F (T7yp4(1.2)=042
04

(T/J)XZFC-'- (T/‘])XTRM

In the analysis of Sec. VII C, we have obtained the value 0.35 [ (TH)p(0.8)=0.33 |
of the equilibrium EA order parameteyz, from which we 03 W s 3 T
readily find the equilibrium susceptibility T{(J) xga=1 0.25 - ]
—0Qga- Interestingly enough we find the data of
(T/3) xp(t,0) shown in the figure clearly goes over the static 0.2 (T hxEat0:8)=0-18
susceptibility [/J)xea and the anticipated inequalityrc 0.15 : : :
= xp>xea holds [see Eq.(86)]. This is one of the main 0 0.5 1 1.5 2
results of the present numerical simulation. L(t)“9

The sum rule(9) requires us to examine only either the
TRM or ZFC susceptibility plus the growth of the ZFC sus-  FIG. 21. Growth of the sum T/J)xzrc(T+ty tw)
ceptibility with zero waiting timeyxzrc(t,0) which was ob-  +(T/3) xtru(7+ty .t,) With t. The data is the same as those used
tained above. We have already analyzed the ZFC susceptibik Fig. 12. The fitting lines are due to E(3).
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) Ly

ity in the quasiequilibrium regime and crossover regime in
the preceding sections. In the following, we examine the FIG. 23. ZFC linear susceptibilities vsL1)( r) at T/J=1.2 and
TRM susceptibility in the aging regime which will complete T/J=0.8. The curves with small symbols aygr(7+t,, ,t,) with
our scaling analysis of the linear susceptibilities. t,=0,10,16,10°,10",1C° from the top to the bottom. The curves
Let us examine the scaling ans&87) which reads with solid lines are +C(7+ty,t,) of t,=0,10,16,10°,10",1C°
from the top to the bottom. The data Dk 7) (filled triangle) and
m2 L(t) N its linear fit are shown at the bottom. The linear fiftg,c( 7,0) is
( ) also shown at the top.

S L (1) /Lo]? | L (L)

XTrm( T+ Ty, ty) ~

(T13) xzec(t,ty) and spin autocorrelation function 1
—C(t,t,) of various waiting timest,, plotted against
1/L(7)% in Fig. 23.

for the TRM decay in the aging regimg(7)/L(t,)>1. In
Fig. 22, we show the scaling plot of the the decay of the

TRM susceptibility ytrm USing the stiffness exponertt ] ) o )
—0.8225 The results indeed agrees very well with the pre- I the figure, we included the equilibrium ZFC linear sus-

diction (87) anticipated by Fisher and HUSeand gives the Ceplibility (T/J)xe((7) for comparison. The latter was ob-
nonequilibrium exponent~3.5. The latter satisfies the fained by the FDTT/J)xe{7)=1—Ce{7) using the equi-
bound(76) with d=4. To our knowledge this is the first time llorium spin autocorrelation functionCe{(7) extracted

1/L(7)? as we confirmed in Sec. VIlQsee Fig. 17,

_ ) (T/J) xe 7) becomes a straight line in the plot pointing to-
F. Separation of the break points of TTI and FDT ward the equilibrium susceptibilityT{J) e . The top curve
The results of the analysis presented so far supports weit (T/J) xzrc(7,0) which is at the other extreme: zero wait-
the existence of the anticipated asymptotic regimes displayeitig time. It becomes also a straight line in the plot as we
in Figs. 2 and 3 which predicts separation of the breaking ofilready saw in Sec. VIl Esee Fig. 21 pointing toward the
TTIl and FDT. In order to look more directly on the separa-dynamical susceptibility T/J)xp which is significantly
tion, we present the ZFC linear susceptibility larger than the equilibrium susceptibilityf {J) xp -
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Note that the slope of the susceptibility in the zero waiting 0.4 . . .
time limit is smaller than that of the equilibrium limit. This 035 | m:llog _— g
can be explained as the following. From E6), the slope ) 103 e X
of the equilibrium limit is expected to be proportional ¢o 03 | ‘ ‘ )X?* -
defined in Eq.(54) while Eq. (83) suggests the slope of the g 10° —a—i *gi*
zero waiting time limit is proportional t&” =A(1)— Cnst 3 0.25 r a??; 1
given in Eq.(84). Herec, is a positive constant and the é 02 + X & -
value of A(1) can be evaluated by E¢7). The latter im- + ] 2
plies A(1)<c because the first term in E¢57) becomes \E/ 0.15 F ﬁ i
identical toc defined in Eq.(54) while the second term is 0.1k ¥ i
negative becaus¥/Y [ y]=1. Thus we expeat>c". x

Now a surprising observation is that the break points of 0.05 - 7
FDT moves further away from the equilibrium curve by in- 0 IS % <" ol !
creasing,, . It appears very unlikely that the break points of 0 0.5 1 1.5 2
the FDT converge to the equilibrium susceptibility _
(T/3)xea. This feature strongly suggests that the violation @ x=L(T)/L(tw)
of TTI and FDT do not take place simultaneously but sepa-
rates asymptotically. In our scenario presented in Sec. IV E 04 P ' e
the anomalously extended FDT regime is attributed to the 0.35 | 0 i & -
soft droplets. It satisfies FDT but is absent in the ideal equi- 103 st f
librium where there are no frozen-in extended defects: it is a — 0.3 1 g%‘ )
dynamical object. S 025 F 10° —=— i _

- 2 o2f |
G. Integral violation of FDT + ’g

Let us finally examine the integral violation of the FDT \E/ @13 r 5 i
defined in Eq.(23). In Fig. 24, the integral violation (7 0.1 r % .
+t,,t,) obtained using our data is plotted against i B |
L(7)/L(t,). We see it decreases with increasing waiting s ﬁ
time t,, deep in the quasiequilibrium regime=L(7)/L(t,,) 0L remeeat '
<1 and increases deep in the aging regixwwelL (7)/L(t,) 0 0.5 1 1.5 2
Lo . -, . (b) x=L(7)/L(tw)

The intriguing problem is the validity of the FDT in the
crossover regime=L(7)/L(t,)~1. In Sec. IV E 3 we con- FIG. 24. Integral violation of FDT aff/J=1.2 (upper figuré

jectured that it is satisfied in the crossover regime. In Fig. 24, 41/3=0.8 (lower figure plotted against.(7)/L(t,,).
one can see that the integral violation is indeed decreasing
with increasingt,, at L (7)/L(t,)~1 which appears compat- |imits of the two-time(length quantities. This phenomenon
ible with our expectation. is presumably intimately related with the well known experi-

As nOted in Sec. IVE 3, a pOSSible Scaling Variable for thernenta| ObservatioerC> XEA Wh|Ch has been known for a
interior of the crossover regime would ke=7/t,,. In the  |ong time since the very discovery of spin glas&eEhe
limit t,,—<°, possible limits classified by different are all  question was, if it is a short time transient phenomena or not.
smashed into the crossover regime L(7)/L(t,)=1. In" The dynamical MFT was the first which clearly appreciated
Fig. 25, we show the integral violation against=17/t,,.  that the differencerrc— xea (called “anomaly’®) exists in a
Indeed, it is decreasing function for any value @f 7/t,,  well-defined large time limit. Our scaling theory provides
including even the highest within our data. These obser- systematic extrapolation scheme to obtain the two suscepti-
vations are compatible with our conjecture that the FDT ispilities in a controlled way. It will be certainly interesting to
asymptotically valid in the crossover regime. perform such an analysis in experiments and numerical
simulations.

We found evidences of the abrupt change of the two-time
quantities in the crossover reginhg 7) ~L(t,) which was

To summarize, we have presented the results of a detailezhticipated in the extended droplet theory. This is directly
MC simulation of a 4D EA Ising spin-glass model in the related to the existence of the two different susceptibilities
present paper. We demonstrated that the results can be weflentioned above. In previous experimental studies, it was
understood within the extended droplet theory we proposewell known that the relaxation rat§( 7,t,,) has a broad peak
recently*? as a function ofr at aroundr~t,,. This phenomenon is

We demonstrated the dynamical susceptibifity larger  expected to be intimately related with the abrupt changes in
than the equilibrium susceptibilityga exists in agreement the crossover regime. We proposed a modified relaxation rate
with the extended droplet theory. Within the latter scenario S, X,t,) with x=L(7)/L(t,). As expected, it was found
the two different limits emerge as different large titsize numerically to develop a peak at-1 which sharpens with

VIIl. DISCUSSION AND SUMMARY
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0.4 . " . . . T all data are collapsed onto a universal growth law function.
035 - ”":1]0(3" . p ) i The latter becomes the expected power law for the critical
10° dynamics at short timeflength and a slower function at
03 r F . large times(length suggesting activated dynamics.
é 025 | ) 7 | Similar analysis should be done on experimental stdtlies
2 P and numerical simulations of other systems, particularly for
g o2} £ 1 3D models, as well. In experiments, however, this two-stroke
é 0.15 | ff 4 strateg)_/ is not possibl_e_ and probably the begt way is to start
~ R from simplest quantities such as relaxation of the ac
0.1 r > T susceptibility® to work out the parameters of the growth law.
0.05 + £ g The advantage of the experiment, on the other hand, is that
e one can explore the order of 100 lattice spacings while the
01(')_5 1041023102 10~ 10° 10' 10® 10° 10 presgnt numerical simulations are limited te- 10 lattice
a spacings.
@) o=T/tw Concerning the effects of critical fluctuation, many recent
04 e studies have pointed out the importance to renormalize its
’ =10 = effect. In three dimensions, previous results on the growth
0.35 | 103 s . law by numerical simulatiot°*>3as well as experimerts
03 L 10° —x— ; ) are well fitted to a power law ak(t)~t**" where the
i~ T F exponent 14(T) is proportional toT [but thisT linearity of
é 025 . T 1/z(T) starts to break in the temperature range aroiind
§ 02 k ; i ~0.75T. (Ref. 22]. Probably it is a sort of interpolation
+ +F formula betweenT,, where critical fluctuations are domi-
e 015F L T nant, andT—0, where all time scales associated with ther-
~ 0.1 k x 4 mally activated processes diverge. Indeed a recent experi-
' e ment in 3D systers suggests the logarithmic growth law
0.05 g . works well if critical fluctuation is properly considered. A
0 L il ! ! . recent numerical study of the growth I&has also found a
105104102102 107" 10° 10' 10> 10° 10* signature of the crossover. B
(b) o="T/tw It is useful to note that the empirical power la(t)

~tY4T) " combined with the scaling laws in terms bft),
explains many of the empirical formulas proposed in previ-
ous experiments and numerical studies in a unified manner
being consistent with our two-stroke approach. For example
a fitting formula Cq 7) =gga+ 1/7* used in previous nu-
increasingt,, when plotted against Probably the latter will merical studiegfor example, Ref. 60can be understood as a
be more useful in future studies. variant of Eq.(65) with a= 6/z(T). The well-known “sub-

A very important feature of our analysis is the two-strokeaging” scaling for the TRM susceptibili® x7ru(T
strategy. In numerical simulations one can obtain directly thet t,, ,t,) ~F(7/t};) with <1 can be understood as a vari-
data of dynamical length scalé&(t) by which time- antof Eq.(87) with u=1—6/\. The “wt scaling” of the ac
dependent quantities are immediately translated into lengttsusceptibility can also be understood similarly as already
dependent quantities. In addition, the information of the stiff-noted in a numerical studyand an experiment&l study. In
ness exponen® and fractal dimensiord; of droplets are addition, some apparent subaging feature of ac and dc sus-
known from independent studies of equilibrium properties.ceptibilities can be removed by considerations of finiteness
Thus we had virtually zero fitting parameter left for us in this of cooling rates in real experiment$?%:>®
stage to test various data collapse expected from the scaling The fundamental assumption of our scenario is that the
ansatz. effective stiffness constanf .4 of the free-energy gaE,t_y%

The analysis of the growth law itself can be done sepaef droplets is a function of the ratio=L/R of the two length
rately. We found that the growth lalv(t) measured at vari- scales, namely, the length scale of the droplet itsedihd of
ous temperatures beloW, shows the anticipated crossover the extended defedR which surrounds the droplet. Most
from short time(length critical dynamics to asymptotic ac- importantly we assumed the vanishing of the effective stiff-
tivated dynamics. In our scaling analysis, we used the criticahess constant as— 1. This allowed the emergence of the
exponents, z and the critical temperaturE, determined in  two different order parametetg, andqp and the associated
previous studies on equilibrium critical properties so that wesusceptibilitiesyga and xp . It is desirable to clarify the
have only one free-parametérwhich was found to be 2.5 scaling of the stiffness constant explicitly in the whole range
—3 in the present model. All the temperature dependencesf 0<x<1.
are renormalized into the crossover lendgtp(T) and the We expect our conjecture is consistent with the results of
corresponding crossover time scalgT)<Ly(T)? by which  recent studies of low-energy excitations in spin-glass

FIG. 25. Integral violation of FDT aff/J=1.2 (upper figure
andT/J=0.8 (lower figure plotted against/t,, .
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models®® In spin glasses of finite sizd® it is likely that the  lous softening of droplets, are dynamical objects and they
existence of boundaries will intrinsically induce certain de-should be absent in ideal equilibrium whe?éq) will have
fects as compared with infinite systef$%*’Then we ex-  only one delta peak aj=qg, as predicted by the original
pect droplet excitations as large as the system size itself droplet theory:*

~R is anomalously soft. Such an anomaly is indeed found in Concerning the dynamical MFT, a serious problem in
the series of recent studi€sAlthough there new exponent practice is that correction terms to the asymptotic limit is not
¢'=0 was conjecturetf we consider it is better to attribute known. They should obviously exist in th&@— y relation

this to the zero stiffness consta¥itg 1]=0 as in Eq.(43). since the curves in Fig. 14 systematically moves with in-
The stiffness exponertt>0, on the other hand, is associated creasingt,,. Such a feature exists in the data of a recent
with a defect inl" as we adopt in Eq41). The anomalously experiment of simultaneous magnetic noise/response
low energy and large scale excitationsLat R explains the measuremert and previous numerical studigs>9-5?
apparently nontrivial overlap distribution functioR(q) Our numerical results indeed suggests the separation of
found in numerous numerical studies of finite sizethe breaking of TTI and FDTsee Fig. 23 Such a feature
system&4° which appear very similar to the prediction of has not been realized in previous studies*?-5'Within

the equilibrium mean-field theoy.Although the meaning of the scaling theory, the correction terms to the expected
the apparently nontrivialand probably non-self-averaging asymptotic limit(Figs. 2 and Bthemselves are predicted to
P(q) in equilibrium is not obvious® we consider the con- have salient universal scaling properties which are amenable
tribution of the anomalous excited states to the macroscopito be examined in practice. Our numerical results were well
magnetic susceptibility in the present dynamical situationexplained by the latter scaling ansatz including the decay of
which is the realistic situation, is very important. As we dis- the TRM susceptibility87) which itself was predicted by the
cussed in Sec. IV E 7, our scenario implies the average ovepriginal droplet theory more than a decade ago.

lap 9= [3dqqP(q) measured in equilibrium of finite size
systemsR (with built-in defects is equivalent to the dynami-
cal order parametayy . We found the latter is related to the
field cooled susceptibilityyec as xpc=xp=(1—0p)/kegT This work was supported by a Grant-in-Aid for Scientific
[see Eqgs(60) and (86)]. It would remind one of a folklore Research PrograiGrant No. 12640367 and by a Grant-in-
found in some literature that the difference afc and xzec ~ Aid for the Encouragement of Young ScientigGrant No.

is somewhatelated to difference off and gg, which is a 13740233 from the Ministry of Education, Culture, Sports,
consequence of the non trivikl(q) found in Parisi’'s replica Science and Technology of Japan. The present simulations
symmetry broken solution of the mean-field modfeHow-  have been performed on Fujitsu VPP-500/40 at the Super-
ever, we still have to recall the intrinsically dynamical naturecomputer Center, Institute for Solid State Physics, the Uni-
of the situation: the domain walls, which allow the anoma-versity of Tokyo.
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