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Extended droplet theory for aging in short-range spin glasses and a numerical examination
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We analyze isothermal aging of a four-dimensional Edwards-Anderson model in detail by Monte Carlo
simulations. We analyze the data in the view of an extended version of the droplet theory proposed recently
which is based on the original droplet theory plus conjectures on the anomalously soft droplets in the presence
of domain walls. We found that the scaling laws including some fundamental predictions of the original droplet
theory explain our results well. The results of our simulation strongly suggest the separation of the breaking of
the time translational invariance and the fluctuation dissipation theorem in agreement with our scenario.
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I. INTRODUCTION

Spin glasses exhibit characteristic slow dynamics be
the spin-glass~SG! transition temperatureTc . Recently ag-
ing phenomena, which have been known for a long time
glassy systems,1 has attracted renewed interest both in e
perimental and theoretical studies.2–7 A major theoretical
progress was the development of the dynamical mean-
theories~MFT! of spin glasses and related systems.8 Most
remarkably it found that the field cooled~FC! susceptibility
xFC is larger than the equilibrium susceptibilityxEA which is
related to the Edwards-Anderson~EA! order parameterqEA
by the fluctuation dissipation theorem~FDT! askBTxEA51
2qEA . This finding corresponds to the well known expe
mental observation9 that xFC is larger than the zero field
cooled ~ZFC! susceptibility xZFC. In addition, many new
view points for the glassy dynamics were discovered sub
quently such as the concept of effective temperature.10,11

However, the MFT does not provide insights into what w
become important in realistic finite dimensional system
Most seriously, thermally activated nucleation proces
which are presumably important in finite dimensional glas
systems cannot be captured at the mean-field level.

Recently we proposed a refined scenario12 for the isother-
mal aging based on the droplet theory for spin glasses.13–15

We conjectured that the original idea of effective stiffness
droplets in the presence of frozen-in domain wall, introduc
by Fisher and Huse,15 can be extended to take into accou
anomalously soft droplet excitations which are as large
frozen-in extended defects, i.e., domain walls. This conj
ture is partly motivated by the results of recent active stud
of spin-glass models atT5016 which revealed existence o
anomalous low-energy and large scale excitations.
anomalously soft droplets allow emergence of a new
namical order parameterqD and the dynamical susceptibilit
xD associated with the former by FDTkBTxD512qD . The
dynamical order parameterqD is expected to besmallerthan
the equilibrium EA order parameterqEA which means that
the dynamical susceptibilityxD is larger than the equilib-
rium susceptibilityxEA . Consequently, our scenario implie
a novel feature that breaking of the time translational inva
0163-1829/2002/66~6!/064431~26!/$20.00 66 0644
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ance~TTI! and FDT separates asymptotically at large len
~time! scales: the breaking point of TTI converges to t
equilibrium EA order parameterqEA while that of FDT con-
verges to the new dynamical order parameterqD smaller than
qEA . We will find that xFC5xD so that our scenario als
suggestsxFC.xEA .

Both the original droplet theory15 and our refined
scenario12 predict scaling laws for the time-dependent qua
tities measured in aging such as the magnetic autocorrela
function and the dynamical susceptibilities in terms of
time-dependent length scaleL(t) which presumably grows
extremely slowly in a logarithmic fashion due to therma
activated processes. By now it is well understood that len
scale that can be explored in practice is very much limi
not only in numerical simulations~typically 1210 lattice
spacings! but also in real experiments~typically ;100 lattice
spacings!. The latter implies one must seriously take ca
possible preasymptotic behaviors to elucidate the des
asymptotic behavior associated with the putativeT50 glassy
fixed point. To cope with such a complicated situation still
a controlled way, we examine the scaling theory by Mon
Carlo simulations in two strokes.

First, we examine the growth law of the dynamical leng
scaleL(t) itself by directly measuring the spatial coheren
using two real replicas. As realized in recent studies,17–20the
problem of crossover from critical to activated dynamics
the central issue here. Second, we examine the scaling p
erties of the time-dependent quantities of our interest by
rametrizing the times using the data of the time-depend
length scale obtained by the separate simulation. The orig
droplet theory and our extended version provide some us
information of finite length correction terms to the
asymptotic limit L→`. The two-strokes~or parametric!
strategy of the present paper, which is already employed
tially in the previous studies,17,21–24allows us to cope with
the mixture preasymptotic behaviors of different origins in
controlled way and far more advantages than usual
proaches which try to examine the scaling laws in one str
directly as a function of times blindly with many uncon
trolled fitting parameters.

In this paper we present a detailed study on the isother
©2002 The American Physical Society31-1
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aging by Monte Carlo ~MC! simulations on a four-
dimensional~4D! EA Ising SG model. While the model sys
tem in 4D is somewhat nonrealistic, the advantage of stu
ing the 4D Ising EA model is that important equilibrium
properties concerning both the critical phenomena atTc and
some essential scaling properties associated with theT50
glassy fixed point, both of which will turn out to provid
extremely useful information to study off-equilibrium dy
namics, are far better known in 4D than in three dimensi
~3D!. In oder to take care of the critical fluctuations, we w
use the well established information provided by the pre
ous studies. Furthermore the value of stiffness exponentu is
found to be considerably larger than that of 3D which i
plies easier access to low-temperature properties in 4D
in 3D within limited length scales. Indeed, a recent analy
of defect free-energy in 4D could clarify the anticipat
crossover from critical regime to low-temperature regime25

In our analysis we employ the values of these parameters
fix them so that we are left with a few free parameters in
scaling analysis.

The present paper is organized as follows. In the n
section we introduce our model system studied. In Sec.
we introduce the two time quantities used in this paper
summarize some of their basic properties for the convenie
of later sections. In Sec. IV we explain our extended drop
scaling theory12 in a more self-contained and comprehens
manner recalling also the fundamental results of the orig
droplet theory.13–15 In Sec. V we examine the growth law o
the dynamical lengthL(t) by MC simulations. In Secs. V
and VII, we examine time-dependent physical quantities
MC simulations and perform scaling analysis using
growth lawL(t) obtained in Sec. V. A part of the results wa
already reported in Ref. 17. Finally in Sec. VIII, we prese
some discussions and conclude this paper.

II. MODEL AND SIMULATION METHOD

We study the 4D Ising EA SG model, defined by t
Hamiltonian

H52(̂
i j &

Ji j SiSj2h(
i

Si , ~1!

where the sum runs over pairs of nearest-neighbor sites. I
variables are defined on a hypercubic lattice with perio
boundary conditions in all directions. The interactions a
quenched random variables drawn with equal probab
among6J with J.0. We will useJ as the energy unit. The
last term in the Hamiltonian represents the Zeeman ene
with h being the strength of the external uniform magne
field. In this representation, the magnetic fieldh has the
dimension of energy so that we will also measure it in
unit of J. In the simulations, we usekBT/J for the tempera-
ture scale and we set the Boltzmann constantkB51 for
simplicity.

It has been well established that a SG phase trans
does occur at a finite temperature with strong orderi
namely, a finite amplitude of SG order parameter in the
dered phase. Recent extensive MC studies25,26 have esti-
06443
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mated the critical temperature to be 2.0J. The critical expo-
nentn of the diverging coherence length is also obtained
n;0.921.0.25–27 Another important exponent associate
with T50 glassy fixed point is the stiffness exponentu
whose value is also obtained around 0.7 by MC simulatio25

and ground state calculation.28 We note that the value ofu
;0.7 in 4D is significantly larger than that of 3D Ising E
model u3D;0.2.29 This fact allows us to analyze th
asymptotic behaviors rather easily than 3D case, which
one of our main reasons for investigating the 4D EA mod

The simulation method is a standard single-spin-flip M
method using the two-sublattice dynamics with heat-b
transition probability. We define one Monte Carlo st
~MCS! as N spin trials. We also use the multispin codin
technique, which simulates 32 different systems indep
dently at the same time on a 32-bit computer. The sys
sizes studied areL58, 16, 24, and 32 atTc . Below Tc , we
mainly studyL524 systems, andL532 in order to check
finite-size effects. There is no significant difference betwe
data ofL524 and 32 at least within our time window (105

MCS!.

III. TWO-TIME QUANTITIES

Experimentally, isothermal aging of spin glasses is inv
tigated by observing response of the system to an app
external magnetic field. In the present paper, we study
namical dc linear magnetic susceptibilities and their con
gate magnetic~spin! autocorrelation function during isother
mal aging by Monte Carlo simulations. In the prese
section, we introduce the two time quantities and summa
some basic properties.

To mimic the experimental protocol of isothermal agin
we consider that the configuration of the system is co
pletely random at timet50 and then start to relax in touc
with a heat bath at temperatureT which is lower than the
critical temperatureTc . Thus cooling rate is infinitely fast.

There are two standard protocols used in dc magnetiza
measurements. In the so-called zero field cooling~ZFC! pro-
cedure, the system first evolves for a waiting timetw without
an applied magnetic field then a small probing magnetic fi
of strengthh is switched on. The growth of the induce
magnetization is measured afterwards. In the measureme
the so-called thermoremanent magnetization~TRM!, the sys-
tem evolves under the applied magnetic field of strength
for the waiting timetw and then the field is cut off. The
decay of the magnetization induced during the waiting ti
is measured afterwards. In our simulations, we measure
linear susceptibility at timet.tw as

x~ t,tw!5
1

N

^M ~ t !&
h

, ~2!

where M (t) is the total magnetization measured at timet
with N being the number of spins. The total magnetization
given by sum

M ~ t !5(
i

Si~ t !, ~3!
1-2
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whereSi(t) is the Ising spin variable at sitei at time t after
the quench. Correspondingly, we measure the magn
~spin! autocorrelation function

C~ t,tw!5
1

N
^M ~ t !M ~ tw!&5

1

N (
i

^Si~ t !Si~ tw!&. ~4!

The last equation holds for our model with no ferromagne
or antiferromagnetic bias so that the sum of the cross te
of iÞ j vanishes as 1/AN→0 in the thermodynamic limitN
→`. Furthermore in our Ising model, the spins are norm
ized Si

251 which yields

C~ t,t !5
1

N (
i

^Si~ t !2&51 ~5!

for any t.
In the above equations,^•••& means to take an averag

over different realizations of initial conditions, therm
noises and realization of random exchange couplings of
system. However, the above quantities are presumably
averaging for thermodynamically large systemsN→`.

If linear response holds, the dynamical linear susceptib
ties measured in the ZFC and TRM procedure can be wri
as

xTRM~ t,tw!5E
0

tw
dt8R~ t,t8!, ~6!

xZFC~ t,tw!5E
tw

t

dt8R~ t,t8!, ~7!

whereR(t,t8) is the magnetic linear response function. T
latter is defined as

R~ t,t8!5
1

N
lim

dh→0

d^M ~ t !&

dh~ t8!
, t.t8, ~8!

whered^M (t)& is the induced magnetization at timet by an
infinitesimal probing pulse fielddh(t8) applied only at time
t8(,t). From these, it follows that the sum of the two su
ceptibilities

xZFC~ t,tw!1xTRM~ t,tw!5E
0

t

dt8R~ t,t8!5xZFC~ t,0! ~9!

becomes independent of the waiting timetw and only a func-
tion of the total time t elapsed after the temperatu
quench.3,30 One can use this sum rule as a criterion to che
linearity of measurements.4,30,31

Let us briefly discuss the implication of the sum rule~9!
combined with the following very mild assumptions. Firs
the ZFC linear susceptibility limtw→0xZFC(t,tw) increases
with t but saturates since it is bounded from above. Let
define in particular the limit

xFC[ lim
t→`

xZFC~ t,0!. ~10!
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We call the latter field cooled~FC! susceptibility because it is
more or less similar to what is called FC susceptibility as
discuss below. Second, it is natural to assume weak l
term memory7,8

lim
t→`

xTRM~ t,tw!50 ~11!

for any large but finitetw . The latter simply means that TRM
should relax down to zero for any large but finite waitin
time tw during which the magnetic field is applied. Then w
find using above assumptions in the sum rule~9!,

lim
t→`

xZFC~ t,tw!5 lim
t→`

xZFC~ t,0!5xFC ~12!

for any large but finitetw .
Let us explain why we call Eq.~10! the FC susceptibility.

Usually the FC magnetization is measured by cooling do
the temperature with a certain cooling rate from aboveTc
down to a target temperatureT below Tc with the magnetic
field h being applied. Suppose that it takes timee to cool
down the temperature~typically of order 30 sec! and the
target temperature is reached at timet50. Then the linear
susceptibility measured in this protocol can be expressed

MFC~ t !/h5E
2e

0

dt8R~ t,t8!1xZFC~ t,0!. ~13!

The above expression is formally valid as long as the lin
response holds. Note that the response function in the
term is defined with respect to the particular schedule of
temperature changes. The contribution of the first term
creases with timet because of the weak long term memo
property ~11!. Thus in the limit t→` the susceptibility
MFC(t)/h converges to the FC susceptibility of our definitio
in Eq. ~10!, limt→`MFC(t)/h5 limt→`xZFC(t,0)5xFC. The
approach to the limit may well be slow. Experimental obs
vations ~see, for instance, Fig. 13 of Ref. 3! show that the
correction term to the asymptotic limit relaxes slowly but t
amplitude is very small such that it can be made much l
than 1% of the asymptotic value well within the experime
tal time window.

In the present paper, we do not discuss the possible eff
of finite cooling rates and assume the idealized tempera
quenche50. In this idealized situation, the first term in Eq
~13! is absent and the TRM becomes equivalent to the
called isothermal remanent magnetization~IRM!.

Another interesting limit is to considertw→` first with
fixed time separationt5t2tw . In this limit, one expects to
find equilibrium ~stationary! response

xeq~t![ lim
tw→`

xZFC~t1tw ,tw!, ~14!

which only depends on the time separationt. The equilib-
rium susceptibilityxEA is defined as

xEA[ lim
t→`

xeq~t!. ~15!

The last static susceptibilityxEA is more or less close to wha
is called the ZFC magnetization~divided byh).
1-3



pt
in
n

y-

h

l
er

in

s

t

he

a
io

in

a

on

e
n-

pa-
h

ory
ill

ons
a
of

are
For
d
al

r
f

tic

et

nite
ut
um

t

exist

im-

ts
p-

HAJIME YOSHINO, KOJI HUKUSHIMA, AND HAJIME TAKAYAMA PHYSICAL REVIEW B 66, 064431 ~2002!
A very important issue is then whether the two susce
bilities xEA andxFC are the same or different. As we noted
the Introduction this is intimately related with the fundame
tal experimental observation in spin-glass systems,9 namely,
xFC.xZFC. One of the most remarkable finding of the d
namical mean-field theory8 is that indeed an inequality

xFC.xEA ~16!

holds with xFC defined in Eq.~10! and xEA defined in Eq.
~15!. The difference is due to anomalous contribution of t
slowly relaxing, aging part of the response functionR(t,t8).
On the other hand, the conventional droplet theory13–15 was
understood7 to predict xFC5xEA , i.e., no anomaly. As we
explain later in Sec. IV D, our extended droplet theory12 pre-
dicts Eq.~16! with xFC being identified with the dynamica
susceptibilityxD associated with the noble dynamical ord
parameterqD(,qEA) askBTxD512qD .

Another important issue is to what extent FDT holds
aging systems. In our present context FDT reads

R~ t,t8!5
1

kBT
] t8C~ t,t8! ~17!

where C(t,t8) is the autocorrelation function. It become
after integration over time* tw

t dt8•••,

FDT 12C~ t,tw!5kBTxZFC~ t,tw!. ~18!

Since thismusthold precisely in equilibrium, the equilibrium
limit of ZFC linear susceptibility~14! must be related to tha
of the spin autocorrelation function as

Txeq~t!512Ceq~t!, ~19!

where

Ceq~t![ lim
tw→`

C~t1tw ,tw!, ~20!

is the spin autocorrelation function in the equilibrium. In t
static limit t→`, Eq. ~19! becomes the static FDT

kBTxEA512qEA , ~21!

whereqEA is the static EA order parameter defined as

qEA5 lim
t→`

Ceq~t!. ~22!

Except for the ideal equilibrium limit, FDT~18! is not guar-
anteed in general. However, it was realized recently by De
Cugliandolo, and Kurchan that possible amplitude of the v
lation of the FDT~18!

I ~ t,tw![12C~ t,tw!2kBTxZFC~ t,tw! ~23!

is bounded from above by the entropy production rate.32 The
bound implies even for very slowly relaxing systems
which entropy production rate becomes small, the FDT~18!
should hold between spontaneous thermal fluctuations
linear responses at least for short enough time scalest.

Let us consider asymptotic limittw→` of the two time
quantities with fixed value of the autocorrelation functi
06443
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C5C(t1tw ,tw). First let us note that limt→`Ceq(t)5qEA

implies the time translational invariance~TTI! is strongly
broken at 0,C,qEA , i.e., the two time quantities cannot b
a function of only the time separation in this regime. Co
cerning the integral FDT violation~23!, it becomes a func-
tion of C, i.e., limtw→`I (t,tw)5I (C). In conventional cases

I (qEA,C,1)50 while I (0,C,qEA).0 being a non-
trivial function of C by the dynamical MFT~Refs. 8 and 33!
and I (0,C,qEA)5qEA2C in usual coarsening
systems.34–36 On the other hand, our scenario12 suggests
I (qD,C,1)50 andI (0,C,qD)5qD2C. HereqD is the
new dynamical order parameter which is smaller thanqEA .
Thus the breaking points of TTI and FDT take place se
rately atqEA andqD , respectively, in our scenario while bot
of them take place simultaneously atqEA in the dynamical
MFT and usual coarsening systems.34–36

IV. THEORETICAL BACKGROUND

In this section we discuss our extended droplet the
sketched in Ref. 12 concerning isothermal aging which w
be our basis to analyze the data of Monte Carlo simulati
in later sections. As we noted in the introduction, we pay
special attention to the idea of so-called effective stiffness
droplet excitations in the presence of domain walls which
present as extended defects during isothermal aging.
clarity, we will try to present this section in a self-containe
fashion including summaries of the results of the origin
droplet theory14,15 which are almost fully included in ou
scenario. To simplify notations, we consider systems oN
Ising spinsSi561 (i 51, . . . ,N) in a d-dimensional space
coupled by short-ranged interactions of energy scaleJ with
random signs with no ferromagnetic or antiferromagne
bias.

A. Basics

Let us recall briefly the starting point of the dropl
theory.14 It assumes that thermodynamic states of~Ising!
spin-glass phases consist of a pair of pure states of an infi
system which are related by global spin inversion. At low b
finite temperature in the spin-glass phase, an equilibri
state can be considered as made of a ground state, sayG or
its global spin inversionḠ, plus thermally activated drople
excitations of various sizes taking place on top ofG. In
simple systems such as ferromagnets droplet excitations
but play a rather limited role.34 An essential finding of the
original droplet theory13,14 is that the temperature isdanger-
ously irrelevantin spin-glass phases because of strong
pacts of thermally activated droplets.

A droplet at a given length scaleL is supposed to be a
compact cluster of spins with a volumeLd with d being the
dimension of the space and a surface volumeLdf with df
being the~fractal! surface dimension. The typical value of i
excitation gapFL

typ with respect to the ground state is su
posed to scales as

FL
typ;Y~L/L0!u, ~24!
1-4
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where the exponentu.0 is the stiffness exponent,Y is the
stiffness constant, andL0 is a microscopic length scale. Th
excitation gap is, however, broadly distributed with the ty
cal value given above. The probability distribution of th
free-energy gap is expected to follow a universal scal
form

r~FL!dFL5 r̃~FL /FL
typ!dFL /FL

typ ~25!

with nonvanishing amplitude at the origin

r̃~0!.0 ~26!

which allows marginal droplets. This propertyr̃(0).0 al-
lows dangerously active droplets which will respond to ar
trarily weak perturbations so that they play extremely imp
tant roles as the Goldstone modes: they domin
spontaneous thermal fluctuations and linear responses.

Dynamically, the excitation of such a cluster of spins
supposed to happen only by thermal activated process.
typical value of free-energy barrierBL

typ to flip the cluster of
spins is supposed to scale as

BL
typ;D~L/L0!c, ~27!

whereD is a characteristic free-energy scale of the barrie
The Arrhenius law implies that a droplet of length sca
L(t),

L~ t !;S kBT

D
ln~ t/t0! D 1/c

, ~28!

can be activated within a time scale oft. Heret0 is a certain
unit time scale for the activated processes. Let us call
time-dependent length scale as the dynamical length sca

B. Crossover from critical to low temperature regime

In practice, it is necessary to take into account of criti
fluctuations nearTc . Even at T,Tc , the length scales
shorter than the coherence length of the critical fluctuatio

j2;L0u12T/Tcu2n ~29!

should be dominated by critical fluctuations. Asymptotic lo
temperature properties should appear only at larger len
scales.

Correspondingly, we expect two typical stages in the
namical length scaleL(t) as shown in Fig. 1. One is a critica
dynamics associated with critical slowing down in tim
ranget0(T)@t@t0, whereL(t) follows a power law with
the dynamical critical exponentz,

L~ t !5 l 0~ t/t0!1/z. ~30!

Here l 0 is a microscopic length scale which is of order
lattice distance in EA models andt0 is a microscopic time
scale which is typicallyt0;10212210213 (sec) in real spin
systems while it is 1 Monte Carlo Step~MCS! in usual heat-
bath Monte Carlo simulations. This formula means that e
at T,Tc , L(t) behaves like the critical power law at sho
time-length scales. On the other hand, the intrinsic lo
06443
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temperature dynamics associated with theT50 glassy fixed
point ~28! should occur only at larger time scales beyond
certain crossover timet@t0(T).

The crossover lengthL0(T) would be determined by a
comparison between free-energy barrier and thermal ene

kBT;D~T!@L0~T!/ l 0#c, ~31!

where the characteristic free-energy scaleD(T) behaves as
D(T)5Ju12T/Tcucn nearTc .15 It leads to the temperatur
dependence ofL0(T),

L0~T!5 l 0~T/J!1/cu12T/Tcu2n, ~32!

which is essentially equivalent to Eq.~29!. The correspond-
ing crossover timet0(T) is given by

t0~T!5t0@L0~T!/ l 0#z. ~33!

We obtain the singular part of the crossover time atT,
t0(T);u12T/Tcu2zn, as expected from a critical scalin
theory. Consequently, the scaling formula of the growth l
which describes the whole crossover from the critical d
namics att!t0(T) and the activated dynamics att@t0(T)
is given by

L~ t !/L0~T!5L̃@ t/t0~T!#, ~34!

where

L̃~x!;H x1/z ~x!1!,

ln1/c~x! ~x@1!.
~35!

One should note that the crossover could be very gradual
functional form of the intermediate regime~which will domi-
nate realistic time ranges in simulations and experime!
can have very complicated expression which is not obvio
This crossover in the growth law of the dynamical leng
scale is numerically examined in Sec. V.

The importance of the crossover from critical to low tem
perature behavior has been pointed out by Bokilet al.37 con-
cerning some static properties of low-temperature SG ph
Let us note that the above analysis of the crossover from
critical to activated dynamics is a direct~dynamical! ana-
logue of the analysis of defect free-energy in 4D EA mode25

FIG. 1. Schematic picture of length scale.
1-5
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by one of us~K.H.!. In the latter study, the defect free-ener
was found to become a universal constant in the limitL
!j2 and grows asY(T)(L/L0)u and Y(T);Ju12T/Tcuun

with u50.82, n50.93 atL@j2 .

C. Domain growth

During isothermal aging up to a timet after quench, do-
mains with the mean sizeL(t) separating different pure
states grow up by coarsening domain walls of smaller len
scales. The droplet theory proposed scaling properties
time-dependent physical quantities in terms of tim
dependent mean domain sizeL(t). We discuss the scaling b
L(t) of one-time quantities with time elapse after the quen
which examine later by MC simulations. One example
time development of energy per spin defined by

e~ t !52
1

N (̂
i j &

^Ji j Si~ t !Sj~ t !&. ~36!

Relaxation of the energy per spin is expected to be du
relaxation of excessive energy associated with domain w
Thus it is expected to decrease as22

e~ t !2eeq5Y8S L~ t !

l 0
D u2d

, ~37!

whereY8 is a temperature-dependent parameter.
Another interesting one-time quantity is domain-wall de

sity rs(t) in which the morphology of the domain with th
fractal surface dimensiondf>d21 appears. In coarsenin
dynamics the density decreases with time during isother
aging. In simple systems such as a ferromagnet where
domain wall becomes flat at sufficiently low temperature,
density of domain wall is proportional to the inverse of t
mean size 1/L(t). However, it could be rough with the frac
tal dimension in spin glasses because of the disorder
frustration so that we expect

rs~ t !;S L~ t !

l 0
D df2d

. ~38!

In MC simulations, two replicas with identical interactio
bonds are updated independently and the domain-wall d
sity is calculated as21

rs~ t !5
1

2 S 12
1

NB
(̂
i j &

s i
(a)~ t !s j

(a)~ t !s i
(b)~ t !s j

(b)~ t ! D ,

~39!

whereNB is the number of bonds and the suffixesa andb
denote replica indices. Here, following Ref. 21 we take sh
time average of each spin as

s i
(a)~ t !5sgnS (

t5t/2

t

Si
(a)~t!D . ~40!

This procedure in Eq.~40! means that smaller fluctuation
associated with small droplets are eliminated and the co
ening domain walls are emphasized. Without taking such
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erage over time, the density is similar to so-called link ov
lap function, which does not vanish in the long time limit

D. Domain walls and soft droplets

Following Ref. 15, the whole process of isothermal agi
may be divided intoepochs such that the typical separatio
between domain walls~hereafter simply denoted as doma
size! L0 ,aL0 ,a2L0 , . . . ,anL0 , . . . wherea.1. At each ep-
och, droplets of various sizes up to that of the domain s
can be thermally activated or polarized by the magnetic fie
The two time quantities we introduced in Sec. III, name
the autocorrelation functionC(t1tw ,tw) defined in Eq.~4!
and the linear susceptibilityx(t1tw ,tw) defined in Eq.~2!
probe such thermal fluctuations and linear responses of d
lets smaller than the size of the domain if the time separa
is limited such thatL(t)<L(tw).

In a previous work,12 we extended the idea of Fisher an
Huse15 who noticed that droplet excitations can be soften
in the presence of a frozen-in defect or domain wall co
pared with ideal equilibrium with no extended defects. Th
is because droplets which touch the defects can reduce
excitation gap compared with those in equilibrium. This e
fect will have very important impacts on the two time qua
tities.

Let us consider a system with a frozen-in defect of sizeR:
a large droplet of sizeR is flipped with respect toG, which is
a ground state of an infinite system, and then it is frozen. T
typical free-energy gapFL,R

typ of a smaller droplet of sizeL in
the interior of the frozen-in defect is expected to scale as

FL,R
typ 5Yeff@L/R#~L/L0!u, L,R ~41!

with Yeff@L/R# being an effective stiffness which is only
function of the ratioy5L/R.

For y!1, Yeff@y# will decrease withy as15

Yeff@y#/Y512cvyd2u for y!1. ~42!

HereY is the original stiffness constantY5Yeff(0). A basic
conjecture, on which our new scenario based, is that at
other limit y;1 the effective stiffness vanishes as

Yeff@y#/Y;~12y!a, y;1 ~43!

with 0,a,1 being an unknown exponent, and that t
lower bound forFL,R

typ should be of orderJ, sayF0.
We assume that the probability distribution of the fre

energy gapFL,R is broad and obey the same functional for
as Eq.~25! whereFL

typ should be replaced byFL,R
typ . Then the

scaling form of the distribution of the gap~25! and nonzero
amplitude of gapless dropletsr̃(0).0 ~26! implies that the
probability that a gap is smaller than a certain thresh
dU(!FL

typ) scales as

Prob~FL,R^dU !;r̃~0!dU/FL,R
typ . ~44!

Since the probability islinear with dU, these active drople
are dangerously irrelevant:13–15 arbitrary small perturbation
dU may trigger a droplet excitation.
1-6
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EXTENDED DROPLET THEORY FOR AGING IN SHORT- . . . PHYSICAL REVIEW B 66, 064431 ~2002!
1. Two length quantities

To explain the consequence of our conjecture above in
duced, let us consider thermal fluctuations and magnetic
ear responses of droplet excitations of sizeL enclosed in a
compact region made by a frozen-in defect at scaleR which
has Nd}(R/L0)d spins. To this end, let us construct a to
droplet model14 defined on logarithmically separated she
of length scalesLk /L05ak,R/L0 with a.1 and 0<k
<n2<n1 whereR/L05an1 andLm/L05an2. For each shell
an optimal droplet is assigned whose free-energy gap
minimized within the shell. ThenFL,R

typ will be of orderF0 at
the shellk5n1 so that we have

F̃L,R
typ 5FL,R

typ ~12dk,n1
!1F0dk,n1

. ~45!

For simplicity, droplets at different scales are assumed to
independent from each other.

At the shell L/L05ak, the system is decomposed in
compact cells of volumeLd such that each cells represents
droplet of sizeL. The number density of droplets per sp
associated with the shell scales as

NdS L

L0
D 2d

ln a. ~46!

Each droplet excitation will induce a random change of
magnetization of order

ML;mA~L/L0!d, ~47!

wherem is the average magnetic moment within a volume
L0.

The thermal fluctuation can be measured by an order
rameter

q5Nd
21(

i
^Si&

2, ~48!

where the sum runs over sites in the interior of the frozen
defect. Here we have put the overline which means to t
average over different realization of the randomness. In
absence of any droplet excitations,q51 holds due to the
normalization of the Ising spins. A spontaneous thermal fl
tuation of a droplet will take place if its excitation gap ha
pens to be smaller than the thermal energykBT. The prob-
ability of the latter is found to be proportional t
r̃(0)kBT/FL,R

typ due to Eq.~44!. So the reduction from 1 due

to a droplet excitation at scaleL is of order ML
2r̃(0)

3(kBT/FL,R
typ ). Then the reduction of the spin autocorrelatio

by droplet excitations at scaleL is estimated as

dqL;ML
2r̃~0!

kBT

FL
typ S L

L0
D 2d

ln a, ~49!

where the last factor is due to the number of droplets per s
given in Eq.~46!.

The magnetic linear response by weak external magn
field h is measured by a linear susceptibility
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x5 lim
h→0

Nd
21(

i
^Si&h /h, ~50!

where ( i^Si&h is the induced magnetization by the fiel
Since a droplet excitation can induce a magnetization of
der ML given in Eq.~47! with random signs, it can gain a
Zeeman energy of orderdUL;MLdh by responding to the
field. The probability that the droplet excitation takes place
then proportional to the probability that the gain by the Ze
man energy is larger than the excitation gap of the drop
which can be found using Eq.~44!. Then the expectation
value of the magnetic moment induced by droplet excitatio
at scaleL is estimated as

hdxL;MLr̃~0!
hML

FL
typ S L

L0
D 2d

ln a. ~51!

Now summing over contributions at different length sca
0,k,n2, we obtain the total reduction of the order param
eter from 1 and the linear susceptibility as using Eqs.~45!,
~49!, and~51! by

12q~Lm ,R!5kBTx~Lm ,R!

5 r̃~0!m2(
k50

n2 kBT

FL,R
typ ~12dk,n1

!1F0dk,n1

5 r̃~0!m2kBTE
L0

LmdL

L F12Da@ ln~L/R!#

FL,R
typ

1
Da@ ln~L/R!#

F0
G . ~52!

In the last equation, the sum(k50
n2 is replaced by an integra

*L0

LmdL/L and Da(z) is a pseudo-d-function of width lna.38

Note that FDT is satisfied between Eqs.~49! and ~51!.
In the following let us call the two length quantitie

q(L,R) andx(L,R) as the generalized order parameter a
the generalized linear susceptibility, respectively. We will a
sociate these two length quantities with the two time qua
ties measured in aging experiments.

2. Edwards-Anderson order parameter

For clarity, let us consider theequilibrium limit where
there is no extended defects which can be realized by ta
R→` first. In the latter limit we recover the result of th
original droplet theory14

lim
R→`

q~L,R!5qEA1c
r̃~0!m2kBT

Y~L/L0!u
, ~53!

with

c5E
1

`

dyy212u. ~54!
1-7
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and the Edwards-Anderson~EA! order parameter defined i
Eq. ~22! evaluated as

qEA5 lim
L→`

lim
R→`

q~L,R!512cr̃~0!m2
kBT

Y
. ~55!

The associatedequilibrium susceptibilityxEA is defined as
Eq. ~21! kBTxEA[12qEA . The above expressions becom
useful when we consider equilibrium dynamics.

3. Dynamical order parameter

It is useful to consider asymptotic behavior at large si
R/L0@1 with the ratiox5Lm /R being fixed. We obtain for
0,x<1,

q~xR,R!5qEA1
r̃~0!m2kBT

Y~R/L0!u
A~x!2

r̃~0!m2kBT

F0
Qa~ ln x!

~56!

with Qa(z) being a pseudo-step-function of width lna ~Ref.
38! and

A~x!5E
x

`

dyy212u2E
0

x

dyy212u

3$Y/Yeff@y#@12Da~ ln y!#21%. ~57!

Note that the second integral converges because of Eq.~42!
and the inequalityu,(d21)/2.14 Thus as far as 0,x,1,
the order parameter converges to theequilibrium EA order
parameterqEA evaluated in Eq.~55!.

In the intriguing casex;1, A(x) will remain finite as far
as 0,a,1. At x;1 the last term of Eq.~56!, which is due
to the anomalously soft droplets, contributes and we obt

q~R,R!5qD1A~1!
r̃~0!m2kBT

Y~R/L0!u
, ~58!

where we have defined the dynamical order parameter

qD[ lim
R→`

q~R,R!5qEA2 r̃~0!m2
kBT

F0
. ~59!

Naturally, we can define the associated dynamical linear
ceptibility xD as

kBTxD[12qD . ~60!

The above results imply

qD,qEA ~61!

and

xD.xEA . ~62!

As we discuss belowqD andxD play significantly important
roles in the dynamical observables of aging. We will see t
the field cooled susceptibilityxFC defined in Eq.~10! is equal
to the dynamical susceptibilityxD defined above. Thus th
inequality ~62! implies the anticipated inequalityxFC.xEA
given in Eq.~16!.
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4. Two-time and two-length quantities

We can now associate the two length quantities discus
above with the two time quantities for short time separatio
L(t)<L(tw). In the latter regime, the autocorrelation fun
tion C(t1tw ,tw) and the ZFC linear susceptibilityxZFC(t
1tw ,tw) measure, respectively, thermal fluctuations and
ear responses of droplets smaller than the size of the dom
L(tw).

The autocorrelation function at a given time separationt
probes thermal fluctuations of droplets as large asL(t) in the
presence of domain walls of sizeR(tw) so that we expect

C~t1tw ,tw!5q@L~t!,L~ tw!#, ~63!

whereq(L,L8) is the generalized order parameter given
Eq. ~52!. Similarly, the ZFC susceptibility probes the pola
ization of droplets as large asL(t) in the presence of domain
walls of sizeR(tw) we expect

kBTxZFC~t1tw ,tw!5kBTx@L~t!,L~ tw!#

512C~t1tw ,tw!, ~64!

wherex(L,L8) is the generalized susceptibility given in E
~52!.

Let us note that the generalized order parameterq(L,L8)
and the generalized susceptibilityx(L,L8) are defined via
disorder averaging of many different realization of small s
tems of sizeL8. Here it is important to recall that at an
finite time, a macroscopic system will contain macrosco
number of domains no matter how large their sizeL8
5L(tw) is. Thus we can safely evaluate these two time qu
tities, which are macroscopic quantities, by the disord
averaged two-length quantities.

Let us emphasize that the FDT~18! is satisfied while time
translational invariance~TTI! is broken in the above two
length/time quantities forL(t)<L(tw). The latter is due to
the fact that the autocorrelation function and the suscept
ity depends on two length/time, i.e., not onlyL(t) but also
on L(tw). For larger time separationsL(t).L(tw), we take
into account decay of memory due to coarsening of dom
walls following the original droplet theory.15

E. Scaling properties of two-time quantities

Using the results of the previous section, we now disc
scaling properties of the two time quantities at different
gimes in detail. Basically we expect three distinct regimes~i!
quasiequilibrium regimeL(t),L(tw), ~ii ! crossover regime
L(t);L(tw), and ~iii ! aging regimeL(t).L(tw). In the
following we first consider the ideal equilibrium limit fo
clarity and then the three regimes subsequently.

1. Equilibrium limit

Let us consider first the equilibrium limits of the autoco
relation function and the ZFC susceptibility which are o
tained by taking the limitL(tw)→` with fixed L(t) in Eqs.
~52!, ~63!, and ~64!. From Sec. IV D 2 one immediately
finds15
1-8
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Ceq~t!5qEA1cr̃~0!m2~kBT/Y!@L~t!/L0#2u ~65!

and

xeq~t![ lim
tw→`

xZFC~t1tw ,tw!5xEA2c
r̃~0!m2

Y@L~t!/L0#u
.

~66!

In Eq. ~65! qEA is the EA order parameter defined in Eq.~22!
and evaluated in Eq.~55!. The numerical constantc is given
in Eq. ~54!. CorrespondinglyxEA is the equilibrium suscep
tibility related toqEA askBTxEA512qEA as in Eq.~21!.

2. Quasiequilibrium regime

Now we discuss the quasi-equilibrium regimeL(t)
,L(tw). The autocorrelation function and ZFC linear su
ceptibility can be evaluated using Eqs.~52!, ~63!, and ~64!.
For simplicity, here we assume to stay deep in the quasie
librium regimeL(t)!L(tw). Then using the scaling prop
erty of the effective stiffness~42!, one obtains23

C~ t5t1tw ,tw!5Ceq~t!

2c8r̃~0!m2
kBT

Y@L~t!/L0#u S L~t!

L~ tw! D
d2u

1•••, ~67!

with Ceq(t) being the equilibrium part given in Eq.~65! and
c85cv*0

1dyy2[(d21/2)2u] . The second term is the weak no
equilibrium correction term due to the weak softening
small droplets which gives rise to some weak waiting tim
dependences.

The above formula combined with the formula for th
equilibrium part ~65! yields a systematic extrapolatio
scheme to determine the EA order parameterqEA . Such an
extrapolation was already demonstrated in our previ
paper.17 In Sec. VII C, we perform such an analysis nume
cally.

Similarly, the ZFC susceptibilityxZFC(t1tw ,tw) is evalu-
ated as

kBTxZFC~ t5t1tw ,tw!5kBTxeq~t!1c8r̃~0!m2

3
kBT

Y@L~t!/L0#u S L~t!

L~ tw! D
d2u

1•••

~68!

with xeq(t) being the equilibrium part given in Eq.~66! and
xEA is the equilibrium susceptibility.

The quasiequilibrium regime is most relevant for the m
surements of the relaxation of ac susceptibilities during i
thermal aging. Recently a related scaling analysis was
formed in an experiment.19 Let us note that previous
experimental analysis of spontaneous thermal fluctuation
the magnetization and ac susceptibility have already c
firmed that FDT holds for quasiequilibrium regime whi
nonstationarity is observed clearly.4,39,40
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3. Crossover regime

Next let us consider the crossover regimeL(t);L(tw).
Here we have to consider also the contribution of anom
lously soft droplets of sizes as large as that of the doma

From Eq. ~58! the spin autocorrelation function is ob
tained immediately as

C~t1tw ,tw!uL(t)/L(tw);1

;qD1 r̃~0!m2A~1!
kBT

Y@L~ tw!/L0#u
, ~69!

whereqD is the dynamical order parameter defined in E
~59!. Similarly the ZFC susceptibility is obtained as

kBTxZFC~ tw1tw ,tw!uL(t)/L(tw)

;1;kBTxD2 r̃~0!m2A~1!
kBT

Y@L~ tw!/L0#u
, ~70!

wherexD is the dynamical susceptibility defined in Eq.~60!.
As we discuss in Sec. IV E 6, the change from the qua

equilibrium regime and the crossover regime becomes v
abrupt as function ofx5L(t)/L(tw) in the asymptotic limit
L(tw)→` ~see Fig. 2!. This feature deserves to be studied
simulations and experiments. A convenient measure is
modified relaxation rate functionSmod(x,tw) we introduce in
Eq. ~91!.

4. Aging regime: autocorrelation function

Let us now consider aging regimeL(t);L(t).L(tw)
where we need to consider growth of the domains explici
For simplicity, we used the notion ofepochsmentioned
previously.15 The nth epoch spans logarithmically separat
time scales betweentn21 and tn such that L(tn21)
5an21L0 andL(tn)5anL0 with a.1. At each epoch some
of the smaller domains are eliminated so that domain w
are coarsened. Thus a given site may or may not belon
the same domain (G or Ḡ) at two different epochs. The prob
ability Ps(R1 ,R2) that a given site belongs to the same d

FIG. 2. Different asymptotic regimes of the two-time quantitie
See text for details.
1-9
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main at the two different epochs characterized by the size
the domainsR1 and R2 presumably becomes a function
the ratio of the size of the domains, i.e.,

Ps~R1 ,R2!5PsS R1

R2
D ~71!

reflecting the self-similar nature of the domain grow
process.15,35 This function describes the slow decay
memory by the domain growth and plays the central role
the following.

For simplicity, let us neglect thermally active droplet e
citations in the interior of the domains and consider only
domain growth itself for the moment. Then the autocorre
tion function between two epochs such that size of doma
areR15L(t) andR25L(tw) becomes

C~ t5t1tw ,tw!5C̃S L~ t !

L~ tw! D ~72!

with

C̃~x!52Ps~x!21. ~73!

In the limit x→11, the scaling function should converge

lim
x→11

C̃~x!51, ~74!

because the normalization of the Ising spins. In the ot
limit, the scaling function is expected to behave asympt
cally as

C̃~x!;x2l ~x@1! ~75!

with l being a nonequilibrium exponent15,35

d/2,l,d. ~76!

By taking into account thermally active droplet excit
tions, we expect the scaling form of the spin autocorrelat
function as

C~ t,tw!;qDC̃S L~ t !

L~ tw! D , ~77!

whereqD is the dynamical order parameter introduced in E
~59!. Note that in usual coarsening process,35,36,41the ampli-
tude is given by EA order parameterqEA which was also
assumed in the original droplet theory.15 However, we expect
the dynamical order parameterqD is more natural because o
the anomalously soft droplets which are as large as doma
The above scaling form~77! should be manifested in th
asymptotic limit L(tw)→` with the ratio x5L(t)/L(tw)
fixed to a certain value larger than 1. Note that the norm
ization ~74! allows matching with the crossover regime d
cussed in the previous section in the asymptotic limitL(tw)
→`.

At finite time scales, we expect some correction ter
because of the following reasons. First let us recall that
asymptotic amplitude of the order parameter is attained o
by integrating out contributions of droplet excitations up
06443
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infinitely large ones. At finite length scales, the amplitude
the order parameter should be larger thanqD due to the al-
gebraic correction term such as the second term in Eq.~58!
or ~69!. Then the factorqD in the scaling form~77! should be
replaced by some time-dependent factor at finite time sca
Second, we also expect some additive correction terms s
with some probability there will be some region where d
main walls do not pass through so that the dynamics du
droplets in the interior of the domains continues. Such q
siequilibrium corrections will be additive as considered
dynamical MFT.8 However, we do not know how to collabo
rate both the multiplicative and additive correction terms
multaneously and we will leave the problem of correcti
terms for the autocorrelation function in the aging regime
future studies.

5. Aging regime: linear susceptibilities

Finally let us consider the linear response to magne
field during the domain growth~aging!. Suppose that mag
netic fieldh is applied only during a certainepochwhere the
size of the domain isLn /L05an with n being a certain posi-
tive integer. Then let us consider the magnetizationdMn(t)
measured at some timet.tn21 during and after the epoch,

dMn~ t !5hE
tn21

min(t,tn)

dt8R~ t,t8!, ~78!

whereR(t,t8) is the response function defined in Eq.~8!.
During the epoch, droplets over the length scales fromL0

up to L(t5t2tn21) can be polarized by the field. Impor
tantly the size of the domain can be considered as froze
time to the valueLn during this epoch so that the linea
response is the same as that in the quasiequilibri
crossover regimes. Thus the magnetization measured w
the same epoch will be

dMn~ t !;hx@L~t!,Ln#

;hr̃~0!E
L0

L(t)dL

L

m2

FL,Ln

typ
for tn21,t,tn

~79!

where we used the generalized susceptibility given in
~52!. This part due to the droplets satisfies the FDT~18!.

When the field is cut off at timetn , depolarization of the
droplets will start. Let us now follow the argument of Fish
and Huse,15 and first consider a certain early stage of t
(n11)-th epoch, say up to timetn

1 slightly after tn , such
that further domain growth still does not proceed apprec
bly. Note that the switching off of the field is equivalent
adding additional field of the opposite sign2h. The latter
will induce additional negative magnetization whose amp
tude grow similar to Eq.~79! with t being understood as th
time after the field change. Up to the timetn

1 most of the
magnetizations will be canceled. However, some resid
magnetization of order
1-10
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EXTENDED DROPLET THEORY FOR AGING IN SHORT- . . . PHYSICAL REVIEW B 66, 064431 ~2002!
dMn~ tn
1!;c9r̃~0!

hm2

Y~Ln /L0!u
~80!

may be left behind. Herec9 is a certain numerical constan
As domain growth proceeds further, the residual magnet
tion will remain only if the domain to which the polarize
droplet belongs is not eliminated. Then the remanent mag
tization will decay by the further domain growth as

dMn~ t !;dMn~ tn
1!F2PsS L~ t !

Ln
D21G

;c9r̃~0!
hm2

Y~Ln /L0!u
C̃S L~ t !

Ln
D for t@tn .

~81!

HereC̃@L(t)/L# is related to the probabilityPs@L(t)/L# that
a given site belongs to the same domain at the two diffe
epochsLn andL(t)(.Ln) as given in Eq.~73!. This is the
aging part of the response which violates the FDT~18!
strongly.

Combining the above results we can now evaluate
ZFC and TRM susceptibilities defined in Eqs.~7! and~6! by
summing over the responses at different epochs given
Eqs. ~79! and ~81!. Suppose that the observation timet be-
longs to thenth epoch and the waiting timetw belongs to the
mth epoch such thatm,n. Then the ZFC susceptibility is
obtained as

xZFC~ t,tw!5E
tw

t

dt8R~ t,t8!

5
1

h (
k5m

n

dMk~ t !;x@L~t!,L~ t !#

1c9E
L(tw)

L(t) dL

L

r̃~0!m2

Y~L/L0!u
C̃S L~ t !

L D . ~82!

The first term in the last equation is the response of drop
~79! during the last epoch where the observation is be
done and second term is the aging part~81! due to the rema-
nence of the response made at previous epochs. Note tha
expression is valid also for the quasiequilibrium and cro
over regimes because thereL(t);L(tw) holds and the sec
ond term is absent so that the expression becomes the
as Eq.~64!.

In the special case oftw50, the above result becomes

xZFC~ t,0!;x@L~ t !,L~ t !#1c9E
L0

L(t)dL

L

r̃~0!m2

Y~L/L0!u
C̃S L~ t !

L D
;xD2c-

r̃~0!m2

Y@L~ t !/L0#u
, ~83!

where

c-5A~1!2cnst ~84!
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cnst5cE
0

1

dyy212u1l.0. ~85!

To obtain the last equation, we used the dynamical susce
bility xD defined in Eq.~60! and the scaling formC̃(x)
;x2l given in Eq.~75! and assumed thatt is large enough
so that L(t)/L0!1 holds. Note thatcnst represents the
strength of the aging part of the response whose contribu
to xZFC(t,0) scales ascnstm

2/@L(t)/L0#u. Now comparing
the result~83! with ~10! which reads as

xFC[ lim
t→`

xZFC~ t,0!

we find the dynamical susceptibilityxD defined in Eq.~60! is
nothing but the desired FC susceptibilityxFC. Thus using the
inequality ~62! we obtain

xFC5xD.xEA ~86!

which is nothing but the anticipated inequality~16!.
Lastly let us evaluate the TRM susceptibility in the agi

regime. Suppose the waiting timetw belongs to themth ep-
och and observation is done well after the waiting time su
that the domain growth proceeds appreciablyL(t).L(tw).
Then summing over the aging part of the response~81! we
obtain

xTRM~ t5t1tw ,tw!5E
0

tw
dt8R~ t,t8!

;(
k51

m

dMk~ t !

;c9E
L0

L(tw)dL

L

r̃~0!m2

Y~L/L0!u
C̃S L~ t !

L D
;cnst

m2

Y@L~ tw!/L0#u S L~ t !

L~ tw! D
2l

for L~ t !;L~t!.L~ tw!. ~87!

Here cnst is defined above in Eq.~85! which represents the
strength of the integral of the aging part of the response.
obtain the last equation, we used the scaling formC̃(x)
;x2l given in Eq.~75! and assumed thattw is large enough
so thatL0 /L(tw)!1 holds. The functional form agrees wit
what was anticipated by Fisher and Huse.15

Thanks to the sum rule~9!, the relaxation of TRM sus-
ceptibility ~6! and ZFC susceptibility~7! can be obtained
from each other usingxZFC(t,0) obtained as Eq.~83!. Here
one must pay attention to the fact thatxZFC(t,0) contains
both the response due to droplets~which satisfy the FDT!
and aging part~which violates the FDT! as can be seen in
Eq. ~83!.

In the previous Secs. IV E 2 and IV E 3, we obtained sc
ing properties of the ZFC susceptibility in th
quasiequilibrium/crossover regime. The ZFC susceptibi
1-11
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in these regimes contain only response of droplets wh
satisfy the FDT. However, one can check that the TRM s
ceptibility in these regimes, which can be readily obtain
via the sum rule, becomes a mixture of response due to d
lets and aging part. Thus the ZFC susceptibility in t
quasiequilibrium/crossover regimes is better suited to ex
ine responses of droplets than the TRM susceptibility.

Conversely the TRM susceptibility in the aging regime
better suited to examine aging part of the response than
ZFC susceptibility. As can be seen in Eq.~87!, the TRM
susceptibility in the aging regime contains only the ag
part of the response. On the other hand, one can check
the ZFC susceptibility which can be readily obtained by
sum rule becomes a mixture of response due to droplets
aging part.

6. Summary

Let us consider large time limit such thatL(tw)→` is
taken with the ratio

x5
L~t!

L~ tw!
~88!

being fixed to certain values. Here it is useful to consider
large time limit of the sum rule~9!. For anyt that may be
allowed to grow withtw we find

lim
tw→`

@xTRM~t1tw ,tw!1xZFCx~t1tw ,tw!#5xD . ~89!

In the last equation we used the definition of the field coo
~FC! susceptibility defined in Eq.~10! and our result~86!.
The asymptotic behaviors discussed below are displaye
Figs. 2 and 3.

First x,1 corresponds to the quasi equilibrium regim
where the spin autocorrelation function slowly decays fr
1 to static order parameterqEA accompanying some wea
waiting time dependence or weak violation of time trans
tional invariance~TTI!. Here if one fixL(t) and letL(tw)
→` one obtains the ideal equilibrium limit behavior whe

FIG. 3. Different asymptotic regimes in theC2TxZFC plane.
The dotted line labeledkBTx512C represents the FDT line. Se
text for details.
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the weak violation of TTI is removed. On the other hand, t
FDT ~18! 12C(t1tw ,tw)5kBTxZFC(t1tw ,tw) is satisfied
even in the presence of the weak violation of TTI. In t
large time limitL(tw)→` with fixed x,1, the time depen-
dences~including the weak violation of TTI! disappears such
that the spin autocorrelation converges to the static EA or
parameterqEA and the ZFC susceptibility converges to th
equilibrium susceptibility kBTxEA . Correspondingly the
TRM susceptibility converges tokBTxD2kBTxEA5qD
2qEA because of the sum rule~89!. In the last equation we
usedkBTxD512qD given in Eq.~60!. To summarize, the
spin autocorrelation function and the susceptibilities asym
totically become flat lines in the quasiequilibrium regim
(x,1) as displayed in Fig. 2. In the parametric plot of Fi
3, the whole quasi-equilibrium regime converges to a sin
point (qEA ,kBTxEA). Importantly, the scaling theory ha
provided not only such asymptotic limits but details of finit
time (t,tw) correction terms by which the asymptotic limit
approached as discussed in Sec. IV E 2. The latter are
amenable to be examined seriously by experiments
simulations. In Sec. VII we present such a detailed analy
for the 4D EA model based on MC simulations.

Secondx;1 corresponds to the crossover regime. Fro
Eq. ~69!, we expect the spin autocorrelation function dro
vertically @againstL(t)/L(tw)# from the EA order paramete
qEA down to the dynamical order parameterqD which is
smaller thanqEA due to the anomalously soft droplets. In th
regime we expect the FDT~18! is still satisfied in spite of the
strong nonstationary character and we expect the ZFC
ceptibility increases vertically from the static susceptibil
kBTxEA to a larger valuekBTxD512qD . Correspondingly
the TRM susceptibility drops off vertically fromkBTxD
2kBTxEA5qEA2qD to zero because of the sum rule~89!. In
the parametric plot of Fig. 3, the crossover regime conver
to the line of points in the section of the FDT line betwe
(qEA ,kBTxEA) and (qD ,kBTxD).

The abruptness of the changes of the two time quanti
at x;1 is very surprising. Here let us recall the well know
experimental43 and numerical44 observations that the so
called relaxation rate

S~t,tw![
dxZFC~t1tw ,tw!

d ln~t!
~90!

has a broad peak centered at aroundt;tw . Our scenario
naturally suggests a modified relaxation rate function

Smod~x,tw![
dxZFC~t1tw ,tw!

dx
ux5L(t)/L(tw) , ~91!

which should have a sharper peak atx;1 with increasing
L(tw). This modified relaxation rate will be useful for furthe
numerical simulations and experiments.

In order to describe the interior of the crossover regi
more closely, different scaling variables other thanL(t) and
L(tw) are certainly needed. Unfortunately, the droplet the
which is based on the dynamical length scales cannot
vide information for proper scaling variable to describe t
interior of the crossover regime. A possible scaling varia
1-12
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would be a5t/tw as proposed by Fisher and Huse15 with
which the abruptness will be absent. Note that possible la
time limits tw→` classified by different values ofa are
smashed to a pointx5L(t)/L(tw)51 in thex axis for alla.

Finally x.1 corresponds to the aging regime where
spin autocorrelation function takes a continuous value
tweenqD and 0 as deceasing function ofx as given in Eq.
~77!. Here the result~87! implies the TRM susceptibility is
asymptotically zero. The latter means the ZFC susceptib
converges to the FC susceptibilitykBTxFC because of the
sum rule~89!. The FDT~18! is thus strongly violated. In the
parametric plot of Fig. 3, asymptotic limit for eachx con-
verges to a point on the flat horizontal line connecti
(0,TxD) and (qD ,kBTxD).

In conventional understanding7 which includes usua
coarsening systems35,36,41and mean-field spin-glass models8

both the violation of TTI and FDT happens asymptotically
the same static order parameterqEA . A remarkable feature o
our present scenario is that the break points of TTI and F
are separated: the break point of TTI is located atqEA while
that of FDT is located at the dynamic order parameterqD .

So far it is implicitly assumed that FDT~18! is valid in
the quasiequilibrium regime and also in the crossover reg
in spite of the fact that there are weak and strong wait
time effect. A supplementary argument for the validity
FDT can be made by considering the bound on the poss
violation of FDT found in Ref. 32. The rigorous bound32 on
the integral violationI (t,tw) defined in Eq.~23! is put in
terms of the entropy production rate which presumably
the same scaling form as the energy relaxation rate. T
using the scaling form of the energy relaxation~37! one finds

uI ~ t,tw!u<KE
tw

t

dsAde~s!

ds
<K8@~ t/t0!1/21a2~ tw /t0!1/21a#

~92!

with K and K8 being certain finite constants and 0,a!1
being an arbitrary small positive nonzero number. Now let
consider the bound in the large time limittw→` in the qua-
siequilibrium regimex5L(t)/L(tw),1. For convenience
let us introducey such that

t5t2tw5t0~ tw /t0!y. ~93!

Then we find

lim
tw→`

I ~ t,tw!<~1/21a!K8 lim
tw→`

~ tw /t0!21/21y1a50.

~94!

The last equations holds for 0<y,1/2 sincea is an arbi-
trary small positive number. This observation implies th
FDT is satisfied not only in the equilibrium limit but also i
the quasiequilibrium regime. In order to verify the validity
FDT in the crossover regimey;1, apparently improved
bounds are needed.

7. Comparison with conventional pictures

Finally, let us compare our scenario with the conventio
picture for isothermal aging7 which applies for the dynamica
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mean-field theory~MFT! of spin glasses8 and usual coarsen
ing systems.35,36,41Here let us consider the asymptotic lim
tw→` of the two time quantities by fixing the value of th
autocorrelation function to a certain valueC in the range 0
,C,1. In that limit, the ZFC susceptibility becomes
function of C, x5x(C). This definition of asymptotic limit
can be considered in general and our scenario implies
simple structure ofx(C) shown in Fig. 3. In the usual coars
ening systems and in the dynamical MFT, the FDT line t
minates at (qEA ,TxEA) while it extends up to (qD ,TxD) in
our scenario. In the usual coarsening systems, a horizo
line connects (0,kBTxEA) and (qEA ,kBTxEA) where the FDT
is violated strongly. On the other hand, the dynamical M
predicts a curved line between (0,xD) and (qEA ,xEA). Our
picture is different from both of them.

The difference between usual coarsening systems and
scenario is the presence of the anomalously soft drop
Droplet excitations exist also in simple coarsening syste
such as ferromagnets34 but with extremely small probability.
In our scenario, the anomalously soft droplet can exist w
probability of orderO(1) in a given domain irrespective o
the size of the domain so that the thermal fluctuations in e
domain are anomalously large compared with equilibriu
where there are no extended defects.

For clarity, let us note42 that there are also some excessi
response in usual coarsening systems due to thermalized
main walls41 at wave numbersk such thatkL(t)@1. They
are similar to the anomalously soft droplets in our scenario
the sense that~1! they satisfy FDT but~2! disappear in the
ideal equilibrium. However their integral contribution to th
response decreases with the growth of the domainL(t) so
that their contribution vanishes asymptotically. On the oth
hand, the excessive response of the anomalously soft d
lets in our scenario giveO(1) contribution irrespective of
the size of the domain so that their contribution to the
sponse do not disappear as far astw→` limit ~ideal equilib-
rium! is not took first.

Although both the dynamical MFT and our scenario co
cludes the inequality~16! xFC.xEA , the origins are differ-
ent. The difference between the two, calledanomaly, is at-
tributed to contributions of aging part of the respon
function which violates the FDT in the case of the dynami
MFT while it is rather attributed to the responses due to
anomalously soft droplets which still satisfy the FDT in o
scenario. For example, one can see in Eq.~83! that xFC
(5xD) is generated not from the aging part but from the p
due to the anomalously soft droplets which satisfies the F

There is a conjecture33 that there is a connection betwee
the statics and dynamics such that the functionx5x(C) in
the dynamics should be related to the overlap distribut
function P(q) in equilibrium, as

kBTx~C!5E
C

1

dC8E
0

C8
dC9P~C9!. ~95!

This is known to hold exactly in some~not all! mean-field
models8 and usual coarsening systems.36,41 Moreover, an in-
teresting conjecture45 was proposed recently that at finit
time ~length! scales, the above formula holds for the tw
1-13
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time quantities at a finite waiting timetw and aP(q) mea-
sured in equilibrium of a finite system of sizeL(tw). We
agree with this proposal partially but not completely as
discuss in the following.

In order to fully reproduce the parametric plot Fig. 3, w
would needP(q) with a delta peak atq5qD rather than at
q5qEA . On the other hand, we expect aP(q) with delta
peak atq5qEA in the absence of any extended defects as
original droplet theory has predicted.14 Thus the correspon
dence between the dynamics and statics does not hold a
in this sense in our scenario.

However, one can explicitly consider a rather spec
static situation in the presence of extended defects of s
sayR, which is actually what we considered in Sec. IV D.
any finite size systems, it is likely that the existence
boundaries~periodic, free, etc.! will intrinsically induce cer-
tain defects as compared with infinite systems.22,46,47 Thus
we expect actually the circumstance we are considerin
relevant in practice. Our scenario implies the average ove
q̄5*0

1dqqP(q) measured in such an equilibrium is equiv

lent to q(R,R)5qD1 r̃(0)m2kBT/Y(R/L0)uA(1) of Eq.
~58!. Thus our scenario suggestsxFC5 limt→`xZFC(t
1tw ,tw)512q̄512*0

1dqqP(q) for any tw while
limt→`C(t1tw ,tw)→0 for any tw . Thus our scenario
agrees with the conjecture of Ref. 45 at the special poinC
50 plus the usual FDT part betweenC5qEA andC51 but
not in the section 0,C,qEA . HereP(q) should be under-
stood as measured in equilibrium but with the extended
fects. It will be natural to expect thatP(q) in such a situation
becomes a nontrivial, non-self-averaging function ofq with
finite amplitude atq50 as observed in many numeric
simulations of finite size systems.48,49

In the above arguments, we considered asymptotic lim
with fixed C while it is more natural to consider asymptot
limits with fixed ratio of the two lengthx5L(t)/L(tw) in the
droplet theory. In the dynamical MFT, one needs infinite
many kinds of time reparametrization functionsh(t) to span
the whole correlation range 0,C,1 but the droplet theory
has only one natural variableL(t). However, it should be
remarked that the scaling variable to describe the interio
the crossover regimeqD,C,qEA is not known at presen
within the droplet theory.

V. GROWTH LAW OF THE CORRELATION LENGTH
IN OFF-EQUILIBRIUM

As discussed in Sec. IV, the dynamical length scaleL(t)
and its growth law with time are important to understa
nature of aging in SG systems from the view point of t
scaling theory. In the present section, we discuss our num
cal results of the length scale and its growth law during i
thermal aging. A plausible definition of the length scaleL(t)
is given by a decay constant of a correlation functionG(r ,t).
We measure the equal-time replica correlation function
off-equilibrium under zero magnetic field, defined by

G~r ,t !5(
i

^Si
(a)~ t !Si

(b)~ t !Si 1r
(a) ~ t !Si 1r

(b) ~ t !&, ~96!
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wherea andb denote the replica indices which are updat
independently from different initial random spin configur
tions. In our simulation, only one MC sequence is perform
for each random bond. Typical number of samples avera
over bond realizations is about 128. As report
previously,20,22,50 the correlation functionG(r ,t) exhibits a
complicated functional form which is not a simple expone
tial and depends on timet. This may be because a characte
istic distance above whichG(r ,t) approximately follows an
exponential form depends on time considerably. In orde
avoid the artificial effect, we do not employ the so-call
ratio method,22,50 where the full data ofG(r ,t) are used in-
dependent oft. Instead, we estimateL(t) by fitting directly
the tail part ofG(r ,t) to an exponential formula for eac
time t. In the fitting procedure, we focus our attention on
on the large distance tail ofG(r ,t) and carefully choose the
range depending on timet.

In Fig. 4 we show our results of the length scaleL(t) at
the critical temperatureTc52.0J. The data of the length
scaleL(t) follows expected critical power law~30! except
for the data withL58, which is due to finite-size effect. Th
estimate of the exponentz, 4.98(5), is roughly consistent
with that of the previous work,27 which quotedz54.45(1).
The data, including the sizeL58 deviated from the powe
law, scale well using a standard finite-size scaling for
shown in the inset of Fig. 4. It is seen that the length sc
L(t) manages to reach at most few lattice spacing even
about 105 MCS. Nonetheless it should be noted thatL(t)
already captures macroscopic behavior in the sense tha
critical exponentz is successfully estimated fromL(t) and
that a strong finite-size effect is observed already inL58
data.

Let us now examine the crossover from critical to ac
vated dynamics discussed in Sec. IV B. In Fig. 5, we disp
the raw data of the length scaleL(t) belowTc and atTc . The
critical dynamics is expected to be dominant nearTc . In fact,
the length scaleL(t) at T/J51.8 is not distinguishable from
that at T5Tc within our time regime. Let us examine th

FIG. 4. R(t) of the 4D Ising SG model atT/J52.0 with differ-
ent system sizes. The dashed line represents a power law with
ponent 1/z. In the inset, an expected finite-size scaling plot
shown.
1-14
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crossover scaling defined in Eqs.~34! and ~35!. We present
the scaling plot in Fig. 6 by using the same data as show
Fig. 5. In this plot, for two scaling parameters,Tc andn, we
use the known values obtained previously,25 while only one
remaining parameterc is appropriately chosen for the da
with different temperatures to merge into a universal cur
The best scaling plot is obtained byc;2.523.0. The pro-
posed scaling pretty well works in the observed time regim
It is clearly found that the scaling function exhibits a cros
over from the critical power law to slower growth law ass
ciated with low temperature dynamics which is compati
with the logarithmic growth law predicted by the dropl
theory.

VI. RELAXATION OF ENERGY AND DENSITY
OF DOMAIN WALL

In the present section, we examine scaling properties
one-time quantities under isothermal aging after que

FIG. 5. Time evolution ofR(t) of the 4D Ising SG model atTc

and belowTc with L524.

FIG. 6. Scaling plot ofR(t) of the 4D Ising SG model, where
the SG transition temperatureTc52.0 and the critical exponentn
50.93 are fixed, but the dynamical exponentz is obtained to be
4.98(5) from the best scaling.
06443
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hbased on the view point presented in Sec. IV C. In the f
lowing sections, we perform simulations mainly at two lo
temperaturesT/J51.2 and 0.8 which amount to 0.6Tc and
0.4Tc , respectively. It is found that the effects of critic
fluctuations do not dominate our time window at these te
peratures but can be taken into account in a renormal
way.

A. Energy

In Fig. 7, we present the data of the energy per spine(t)
defined in Eq.~36! at T/J50.8 and 1.2. As seen in the uppe
figure, the energy function relaxes with time to an equil
rium value at each temperature. However, it is rather hard
extract the equilibrium value from the figure because of
extremely slow dynamics. On the other hand, the sca
formula ~37! says that the energy approaches its equilibri
value linearly as a function ofLu2d(t). We thus plot the
same data set againstLu2d(t) in the lower one by using the
length scaleL(t) estimated independently in the previou
section and the known value of the stiffness exponenu
50.82.25 We see the linear behavior as a function ofLu2d(t)

FIG. 7. Energy relaxation atT/J50.8 and 1.2 as a function o
elapse time~upper figure! and the length scaleL(t) ~lower figure!.
The straight lines in the lower figure represent fitting result to
linear function function of@L(t)/ l 0#u2d.
1-15
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for largeL(t) which supports the validity of the scaling fo
mula ~37!. One can take the long time limit of the energ
relaxation using the scaling formula. A similar scaling ana
sis of the energy has been confirmed in the 3D Ising EA
model including finite size effects.22 This two stroke strategy
has an advantage over the direct analysis with time and g
us a more powerful tool in the analysis of two-time quan
ties discussed in the following sections.

B. Density of domain wall

In Fig. 8, we show the domain-wall densityrs(t) defined
in Eq. ~39!. The average over bond realizations is taken o
256 samples withL524. It is found that the density mono
tonically decays and there is no tendency of saturat
which is similar behavior observed in the 3D Ising E
model.21 This is clearly seen in the lower figure, where fo
lowing Eq. ~38! we plot rs(t) as a function ofLdf2d(t)
estimated in the previous section. Here we use the valu
the fractal dimensiondf53.75 recently evaluated in Ref. 51
As shown in the lower figure,rs(t) is well fitted by a linear
function of Ldf2d(t) and the fitting function is down to zer
in the large time/length limit. We stress again the validity
the scaling formula with the length scaleL(t).

FIG. 8. Density of the domain wall atT/J50.8 and 1.2 with
L524 as a function of timet ~upper figure! andL(t) ~lower figure!.
The straight line in the lower figure represents fitting result to
linear function ofLdf2d(t) with df53.75 ~Ref. 51!.
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VII. RELAXATION OF CORRELATION FUNCTION
AND LINEAR SUSCEPTIBILITIES

We now turn to the two time quantities. First we displa
the data in Sec. VII A and discuss the overall features qu
tatively in Sec. VII B from the point of view of the scaling
theory explained in Sec. IV E. Then we go to more detai
examinations of the scaling properties in the subsequent
tions. In order to test the scaling ansatz explained in S
IV E which are expressed in terms of the dynamical len
scaleL(t), we use the data ofL(t) discussed in the previou
Sec. V.

A. Measurements of spin autocorrelation function and linear
susceptibilities

In Fig. 9, we present the data of the spin autocorrelat
function C(t1tw ,tw) measured up to 105 MCS for various
waiting times tw510,102,103,104,105 at T/J51.2 and 0.8.
The system size isL524. The data are obtained by perform
ing MC simulations starting from random initial condition
The average over realizations of randomness is taken ove
samples. The data show clear waiting time dependences

a
FIG. 9. Spin autocorrelation function of the 4D Ising SG mod

at T/J51.2 ~upper figure! and 0.8 ~lower figure! with different
waiting time. The top data curves are the equilibrium curves
tained in Sec. VII C.
1-16
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also show the curve of equilibrium relaxationCeq(t) ex-
tracted in the analysis which will be explained later in S
VII C. The latter yields the value of static EA order param
eterqEA whose value is also indicated in the figure. In ad
tion we also indicate in the figures the values of the dyna
cal order parameterqD which will be obtained in the analysi
explained later in Sec. VII E. As discussed in Sec. IV E,
expect that the spin autocorrelation function develops a
teau atqEA in the quasiequilibrium regime and decays dow
to zero in the aging regime. The decay is expected to be m
steep at around the dynamical order parameterqD . The data
indeed appears qualitatively compatible with these expe
tions.

In Figs. 10 and 11, we display the data of the ZFC s
ceptibility (T/J)xZFC(t1tw ,tw) and the TRM susceptibility
(T/J)xTRM(t1tw ,tw) measured up to 105 MCS for various
waiting times tw510,102,103,104,105 at T/J51.2 andT/J
50.8 using field of strengthh/J50.1. Again the system siz
is L524. The average over realizations of randomnes
taken over 32 samples. Here the susceptibilities are defi
by dividing the measured magnetization per spinm(t)
5(1/N)( i 51

N Si(t) at time t by the strength of the externa
magnetic fieldh/J. For the measurement of the TRM su

FIG. 10. Linear susceptibilities atT/J51.2: ZFC susceptibility
~upper figure! and TRM susceptibility ~lower figure!. Here
(T/J)xEA50.42 and (T/J)xD50.52.
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ceptibility xTRM(t5t1tw ,tw), some waiting timetw is
elapsed under the field and then the field is switched of
t5tw . Conversely, the ZFC susceptibilityxZFC(t5t
1tw ,tw) is measured by first elapsing the waiting timetw
with no applied field and then field is switched on att
5tw .

To check the linearity of the response, we examined
sum rule ~9!: the sum of the two susceptibilities becom
(T/J)xZFC(t,0). As shown in Fig. 12, the sum rule is sati
fied over our time window within the statistical accuracy.

In Figs. 10 and 11, we can see clear waiting time dep
dences of the susceptibilities. As discussed in Sec. IV E,
expect that the ZFC susceptibility first develops a plateau
the static susceptibilityxEA within the quasiequilibrium re-
gime and then grows further up to the dynamical suscepti
ity xD later in the aging regime. Correspondingly, we exp
that the TRM susceptibility develops a plateau atxD2xEA
within the quasiequilibrium regime and decays down to z
in the aging regime. For the references, we indicated
values of the static susceptibility (T/J)xEA , the dynamical
susceptibility (T/J)xD , and their difference in the figure
using the values which will be obtained in Secs. VII C a
VII E. The data indeed appears qualitatively compatible w
the expected behavior.

FIG. 11. Linear susceptibilities atT/J50.8. Here (T/J)xEA

50.2 and (T/J)xD50.33.
1-17
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B. Overall features

In Fig. 13, we show the spin autocorrelation functi
C(t1tw ,tw) and the ZFC susceptibility 12(T/J)x(t
1tw ,tw) plotted againstx5L(t)/L(tw).

Here we parametrized the timest and tw using the time-
dependent lengthL(t) obtained in Sec. V. More precisely, w
first fitted the data of the domain sizeL(t) as L(t)/L05a0
1a1ln(t)1a2ln

2(t)1a3ln
2(t) with t measured in the unit o

MCS andL051 ~lattice distance!. This fitting was enough to
model the data ofL(t) within our time window. Then we
used the resultant fitting functions to do the paramteriza
here and in the following analysis. When we do the para
etrization, we discard short time datat,10 becauseL(t) is
not available there.

The figure should be compared with Fig. 2 which expla
the expected asymptotic behavior of the two time quanti
in the large time limit L(tw)→` with the ratio x
5L(t)/L(tw) fixed to certain values. We expect three d
tinct regimes depending on the value of the fixed ratio~i!
quasiequilibrium regimex,1 where the autocorrelatio
functions spans values in the rangeqEA,C,1, ~ii ! cross-
over regimex;1 for qD,C,qEA , and ~iii ! aging regime
x.1 for 0,C,qD . Here qEA and qD are convergence
points of the break points of TTI and FDT, respectively,
the limit L(tw)→`.

In the quasiequilibrium regimex,1, we expect that the
spin autocorrelation function convergence to a plateauqEA in
the large time limitL(tw)→`. Correspondingly the ZFC
susceptibility (T/J)xZFC(t1tw ,tw) is expected to converg
to the static susceptibility (T/J)xEA512qEA . In the figure,
we indicated the value ofqEA which will be obtained later in
Sec. VII C. The data indeed appears descending down
ward the plateau from above with increasingtw ~at x,1) but
still far from it. Fortunately, the scaling theory provides pr
diction on the correction terms to the asymptotic limit
explained in Sec. IV E 2. In the Sec. VII C, we will examin
the correction terms in detail which actually yields the va
of qEA . Second important observation is that the FDT

FIG. 12. Check of the sum rule~9! at T/J51.2 ~upper figure!
and 0.8 ~lower figure!. The data of the ZFC susceptibilit
(T/J)xZFC(t,0) is also included.
06443
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2C(t,tw)5(T/J)xZFC(t,tw) is well satisfied in the quasiequi
librium regimex,1 as expected.

In the crossover regimex;1, we expect a vertical drop
from the plateau at the static EA order parameterqEA down
to the dynamical order parameterqD for the spin autocorre-
lation function. Correspondingly the ZFC susceptibili
(T/J)xZFC(t1tw ,tw) is expected to jump from the stati
susceptibility (T/J)xEA512qEA up to the dynamical sus
ceptibility (T/J)xD512qD still keeping the FDT 1
2C(t,tw)5(T/J)xZFC(t,tw) as explained in Sec. IV E 2. In
the figure, we indicated the value ofqD which will be ob-
tained later in Sec. VII E. We will examine the slope of th
curves aroundx;1 in Sec. VII E and find indeed that th
suitably refined relaxation rate functionSmod(x,tw) defined
in Eq. ~91! have a sharply pronounced peak at aroundx
;1. Furthermore, we will examine the violation of FD
I (t1tw ,tw)512C(t1tw ,tw)2(T/J)xZFC(t1tw ,tw) de-
fined in Eq. ~23! in Sec. VII G and find indeed that it is
decreasing with increasingtw in the crossover regimex

FIG. 13. Plot of spin autocorrelation functionC(t1tw ,tw) and
12(T/J)xZFC(t1tw ,tw) againstx5L(t)/L(tw) at T/J51.2 ~up-
per figure! and 0.8~lower figure!. For each waiting timetw , the
lower curve is the spin autocorrelation function and the upper cu
is the susceptibility.
1-18
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;1. The result is compatible with our expectation that t
FDT is asymptotically valid even in the crossover regime

In the aging regimex.1, we expect the ZFC susceptibi
ity 12(T/J)xZFC(t1tw ,tw) converges to the dynamica
susceptibility (T/J)xD512qD while spin autocorrelation
function C(t1tw ,tw) becomes a scaling function o
L(t)/L(tw). Indeed the data appears slow converges to s
limits. For the susceptibility, the scaling theory provides p
diction on the scaling forms of the correction terms to t
asymptotic limit as explained in Sec. IV E 5. We will exam
ine and confirm them in Sec. VII E. The value ofqD indi-
cated in Fig. 13 will be actually obtained as the result of su
an analysis.

In Fig. 14, the susceptibility (T/J)xZFC(t1tw ,tw) and
the spin autocorrelation functionC(t1tw ,tw) are plotted in
a parametric way. It should be compared with Fig. 3, wh
explains the expected asymptotic regimes in the large t
limit L(tw)→` with the fixed ratiox5L(t)/L(tw). The
curves apparently continue to move upwards with increas
waiting time tw and the break point of FDT does not appe

FIG. 14. Parametric plot (T/J)xZFC(t,tw) vs C(t,tw) at T/J
51.2 ~upper figure! and 0.8 ~lower figure!. The straight tangen
lines represents the FDT~18!. The convergence points of the brea
points of TTI @qEA ,(T/J)xEA# and the break points of FDT
@qD ,(T/J)xD# which will be obtained later in Secs. VII C an
VII E, respectively, are indicated.
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to converge to@qEA ,(T/J)xEA# which will be obtained in
Sec. VII C. This observation is consistent with our pictu
presented in Fig. 3. It is radically different from convention
understanding7 that assumes break points of TTI and FD
are the same. As we discuss in Sec. VII F, the separatio
the break points of TTI and FDT will become apparent wh
time ~length! dependences are explicitly considered.

C. Quasiequilibrium regime

Let us now examine the scaling properties in the qua
equilibrium regime x5L(t)/L(tw),1 discussed in Sec
IV E 2. Since we have seen the FDT is well satisfied in t
quasiequilibrium regimex,1 ~see Fig. 13!, we will only use
the data of the spin autocorrelation function. To focus on
quasiequilibrium regime, we took another dense data se
the autocorrelation functionC(t1tw ,tw) ~shown in Fig. 15!
of many waiting timestw51, . . . ,30 000~MCS! and rela-
tively short time separationst,1000 ~MCS!. Here we do
not use the fitting of the growth law ofL(t) to parametrize
the time but use directly the data ofL(t) obtained in Sec. V.

The formula~67! combined with Eq.~65! gives a protocol
to extract the static EA order parameter as the followin
This analysis is already reported partly in our previo
work.17

At first we take the equilibrium limittw→` of C(t
1tw ,tw) for each time separationt. From Eq. ~67!, one
finds that the autocorrelation function becomes only a lin
function of 1/Ld2u(tw) for a fixed t. Thus we plotted the
data points of a givent of varioustw against 1/Ld2u(tw) and
fitted to a linear function in the largeL(tw) regime. The
equilibrium limit Ceq(t) is read off directly from the fit. Here
we use the stiffness exponentu50.82.25 For L(tw) we used
the data obtained in Sec. V. Typical fitting results are sho
in Fig. 16. The linearity as a function of 1/Ld2u(tw) supports
the validity of the formula~67!. We repeated the same pro
cedure for eacht. The obtained equilibrium curveCeq(t)
was displayed in Fig. 9.

Next we take the larget limit of the extractedCeq(t)
using Eq.~65!. As shown in Fig. 17,Ceq(t) appears as a

FIG. 15. Spin autocorrelation function atT/J51.2. The top data
points are the equilibrium limit obtained by the extrapolati
method explained in the text.
1-19
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linear function of 1/Lu(t) which supports Eq.~65!. A linear
fit gives the EA order parameterqEA as the limiting value.
We obtained the EA order parameterqEA50.58(2) atT/J
51.2 and 0.82(1) atT/J50.8. To our knowledge this an
our previous work17 is the first which confirmed this funda
mental scaling law~65!.

Finally, we discuss the weak nonequilibrium correcti
term to the equilibrium limit which is responsible for th
weak violation of TTI in the quasiequilibrium regime. Th
expression~67! suggests that the weak nonequilibrium co
rection term DC(t1tw ,tw)5C(t1tw ,tw)2Ceq(t) multi-
plied by Lu(t) becomes only a function ofL(t)/L(tw)
(,1). As shown in Fig. 18, we confirm this scaling form
For the limit of L(t)/L(tw)!1, the scaling function show
the expected power law behavior@L(t)/L(tw)#d2u being
consistent with Eq.~67!.

FIG. 16. Typical examples of the extrapolation to the longtw

limit with fixed t. Two arrows represent the extrapolated values
Ceq(t) of t5100 and 1000 atT/J51.2. The horizontal error bar
are those ofL(t) presented in Fig. 5.

FIG. 17. Equilibrium spin autocorrelation functionCeq(t) at
T/J51.2 ~upper data!and 0.8~lower data!. The horizontal error bars
are those ofL(t) presented in Fig. 5. The lines represent fittin
according to the formula~65!.
06443
D. Crossover regime

In the crossover regimex5L(t)/L(tw);1, we expect a
vertical jump of the two time quantities at asymptotic lim
L(tw)→`. In Fig. 19 we display the plot of the usual rela
ation rate functionS(t,tw) of Eq. ~90!, which shows the well
known peak structure observed in experiments43 and a MC
simulation.44 This can be interpreted as the signal of t
rapid changes in the crossover regime. However, our s
nario naturally suggested a more appropriate,modifiedrelax-
ation rate functionSmod(x,tw) of Eq. ~91!. In Fig. 20 we
show the plot of the modified relaxation rate function.
clearly develops a sharp peak at aroundx;1 with increasing
L(tw) as expected.

E. Scaling of susceptibilities

For the growth of the ZFC susceptibility with zero wai
ing time we expect a scaling form~83! which reads

xZFC~ t,0!;xD2c-m2
m2

Y~L~ t !/L0!u

f

FIG. 18. Scaling plot of the non-equilibrium correction terms
C(t1tw ,tw) in the quasi-equilibrium regime atT/J51.2 ~upper
figure! and 0.8~lower figure!. The horizontal error bars are those
L(t) presented in Fig. 5. The line has the expected sloped2u for
small L(t)/L(tw) limit @see Eq.~67!#.
1-20
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EXTENDED DROPLET THEORY FOR AGING IN SHORT- . . . PHYSICAL REVIEW B 66, 064431 ~2002!
with c- being a numerical constant defined in Eq.~84!. In
Fig. 21 we show the sum (T/J)xZFC(t1tw ,tw)
1(T/J)xTRM(t1tw ,tw) plotted againstL(t5t1tw)2u us-
ing u50.82.25 We have checked that they satisfy the su
rule ~9! and agrees with (T/J)xZFC(t,0) ~see Fig. 12!. As can
be seen in the figure, the data are indeed consistent with
expected scaling form being linear with 1/L(t)u and pointing
toward a constant in the limitL(t)→`. From the linear fit
shown in the figure we find the values of the dynami
susceptibility (T/J)xD as 0.54 atT/J51.2 and 0.33 atT/J
50.8. The corresponding dynamical order parameterqD can
be determined via FDT (T/J)xD512qD ~60! as 0.46 at
T/J51.2 and 0.67 atT/J50.8.

In the analysis of Sec. VII C, we have obtained the va
of the equilibrium EA order parameterqEA from which we
readily find the equilibrium susceptibility (T/J)xEA51
2qEA . Interestingly enough we find the data
(T/J)xD(t,0) shown in the figure clearly goes over the sta
susceptibility (T/J)xEA and the anticipated inequalityxFC
5xD.xEA holds @see Eq.~86!#. This is one of the main
results of the present numerical simulation.

The sum rule~9! requires us to examine only either th
TRM or ZFC susceptibility plus the growth of the ZFC su
ceptibility with zero waiting timexZFC(t,0) which was ob-
tained above. We have already analyzed the ZFC suscep

FIG. 19. Plot of the usual relaxation rate functionS(t,tw) at
T/J51.2 ~upper figure! and 0.8~lower figure!.
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FIG. 20. Scaling plot of the modified relaxation rate functio
Smod(x,tw) at T/J51.2 ~upper figure! and 0.8~lower figure!.

FIG. 21. Growth of the sum (T/J)xZFC(t1tw ,tw)
1(T/J)xTRM(t1tw ,tw) with t. The data is the same as those us
in Fig. 12. The fitting lines are due to Eq.~83!.
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ity in the quasiequilibrium regime and crossover regime
the preceding sections. In the following, we examine
TRM susceptibility in the aging regime which will comple
our scaling analysis of the linear susceptibilities.

Let us examine the scaling ansatz~87! which reads

xTRM~t1tw ,tw!;cnst

m2

Y@L~ tw!/L0#u S L~ t !

L~ tw! D
2l

for the TRM decay in the aging regimeL(t)/L(tw).1. In
Fig. 22, we show the scaling plot of the the decay of
TRM susceptibility xTRM using the stiffness exponentu
50.82.25 The results indeed agrees very well with the p
diction ~87! anticipated by Fisher and Huse15 and gives the
nonequilibrium exponentl;3.5. The latter satisfies th
bound~76! with d54. To our knowledge this is the first tim
that this fundamental scaling law is confirmed.

F. Separation of the break points of TTI and FDT

The results of the analysis presented so far supports
the existence of the anticipated asymptotic regimes displa
in Figs. 2 and 3 which predicts separation of the breaking
TTI and FDT. In order to look more directly on the separ
tion, we present the ZFC linear susceptibili

FIG. 22. Scaling plot of (T/J)xTRM(t1tw ,tw) at T51.2 ~upper
figure! andT50.8 ~lower figure!. The dotted line is a power law fi
with exponentl53.5.
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(T/J)xZFC(t,tw) and spin autocorrelation function 1
2C(t,tw) of various waiting times tw plotted against
1/L(t)u in Fig. 23.

In the figure, we included the equilibrium ZFC linear su
ceptibility (T/J)xeq(t) for comparison. The latter was ob
tained by the FDT (T/J)xeq(t)512Ceq(t) using the equi-
librium spin autocorrelation functionCeq(t) extracted
previously in Sec. VII C. SinceCeq(t) is a linear function of
1/L(t)u as we confirmed in Sec. VII C~see Fig. 17!,
(T/J)xeq(t) becomes a straight line in the plot pointing t
ward the equilibrium susceptibility (T/J)xEA . The top curve
is (T/J)xZFC(t,0) which is at the other extreme: zero wa
ing time. It becomes also a straight line in the plot as
already saw in Sec. VII E~see Fig. 21! pointing toward the
dynamical susceptibility (T/J)xD which is significantly
larger than the equilibrium susceptibility (T/J)xD .

FIG. 23. ZFC linear susceptibilities vs 1/Lu(t) at T/J51.2 and
T/J50.8. The curves with small symbols arexZFC(t1tw ,tw) with
tw50,10,102,103,104,105 from the top to the bottom. The curve
with solid lines are 12C(t1tw ,tw) of tw50,10,102,103,104,105

from the top to the bottom. The data ofTxeq(t) ~filled triangle! and
its linear fit are shown at the bottom. The linear fit toTxZFC(t,0) is
also shown at the top.
1-22
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Note that the slope of the susceptibility in the zero waiti
time limit is smaller than that of the equilibrium limit. Thi
can be explained as the following. From Eq.~66!, the slope
of the equilibrium limit is expected to be proportional toc
defined in Eq.~54! while Eq. ~83! suggests the slope of th
zero waiting time limit is proportional toc-5A(1)2cnst
given in Eq. ~84!. Here cnst is a positive constant and th
value of A(1) can be evaluated by Eq.~57!. The latter im-
plies A(1),c because the first term in Eq.~57! becomes
identical toc defined in Eq.~54! while the second term is
negative becauseY/Yeff@y#>1. Thus we expectc.c-.

Now a surprising observation is that the break points
FDT moves further away from the equilibrium curve by i
creasingtw . It appears very unlikely that the break points
the FDT converge to the equilibrium susceptibili
(T/J)xEA . This feature strongly suggests that the violati
of TTI and FDT do not take place simultaneously but se
rates asymptotically. In our scenario presented in Sec. I
the anomalously extended FDT regime is attributed to
soft droplets. It satisfies FDT but is absent in the ideal eq
librium where there are no frozen-in extended defects: it
dynamical object.

G. Integral violation of FDT

Let us finally examine the integral violation of the FD
defined in Eq.~23!. In Fig. 24, the integral violationI (t
1tw ,tw) obtained using our data is plotted again
L(t)/L(tw). We see it decreases with increasing waiti
time tw deep in the quasiequilibrium regimex5L(t)/L(tw)
!1 and increases deep in the aging regimex5L(t)/L(tw)
@1.

The intriguing problem is the validity of the FDT in th
crossover regimex5L(t)/L(tw);1. In Sec. IV E 3 we con-
jectured that it is satisfied in the crossover regime. In Fig.
one can see that the integral violation is indeed decrea
with increasingtw at L(t)/L(tw);1 which appears compat
ible with our expectation.

As noted in Sec. IV E 3, a possible scaling variable for
interior of the crossover regime would bea5t/tw . In the
limit tw→`, possible limits classified by differenta are all
smashed into the crossover regimex5L(t)/L(tw)51. In
Fig. 25, we show the integral violation againsta5t/tw .
Indeed, it is decreasing function for any value ofa5t/tw
including even the highesta within our data. These obse
vations are compatible with our conjecture that the FDT
asymptotically valid in the crossover regime.

VIII. DISCUSSION AND SUMMARY

To summarize, we have presented the results of a deta
MC simulation of a 4D EA Ising spin-glass model in th
present paper. We demonstrated that the results can be
understood within the extended droplet theory we propo
recently.12

We demonstrated the dynamical susceptibilityxD larger
than the equilibrium susceptibilityxEA exists in agreemen
with the extended droplet theory. Within the latter scena
the two different limits emerge as different large time~size!
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limits of the two-time~length! quantities. This phenomeno
is presumably intimately related with the well known expe
mental observationxFC.xEA which has been known for a
long time since the very discovery of spin glasses.9 The
question was, if it is a short time transient phenomena or
The dynamical MFT was the first which clearly appreciat
that the differencexFC2xEA ~called ‘‘anomaly’’8! exists in a
well-defined large time limit. Our scaling theory provide
systematic extrapolation scheme to obtain the two susce
bilities in a controlled way. It will be certainly interesting t
perform such an analysis in experiments and numer
simulations.

We found evidences of the abrupt change of the two-ti
quantities in the crossover regimeL(t);L(tw) which was
anticipated in the extended droplet theory. This is direc
related to the existence of the two different susceptibilit
mentioned above. In previous experimental studies, it w
well known that the relaxation rateS(t,tw) has a broad peak
as a function oft at aroundt;tw . This phenomenon is
expected to be intimately related with the abrupt change
the crossover regime. We proposed a modified relaxation
Smod(x,tw) with x5L(t)/L(tw). As expected, it was found
numerically to develop a peak atx;1 which sharpens with

FIG. 24. Integral violation of FDT atT/J51.2 ~upper figure!
andT/J50.8 ~lower figure! plotted againstL(t)/L(tw).
1-23
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increasingtw when plotted againstx. Probably the latter will
be more useful in future studies.

A very important feature of our analysis is the two-stro
strategy. In numerical simulations one can obtain directly
data of dynamical length scaleL(t) by which time-
dependent quantities are immediately translated into len
dependent quantities. In addition, the information of the st
ness exponentu and fractal dimensiondf of droplets are
known from independent studies of equilibrium properti
Thus we had virtually zero fitting parameter left for us in th
stage to test various data collapse expected from the sc
ansatz.

The analysis of the growth law itself can be done se
rately. We found that the growth lawL(t) measured at vari-
ous temperatures belowTc shows the anticipated crossov
from short time~length! critical dynamics to asymptotic ac
tivated dynamics. In our scaling analysis, we used the crit
exponentsn, z and the critical temperatureTc determined in
previous studies on equilibrium critical properties so that
have only one free-parameterc which was found to be 2.5
23 in the present model. All the temperature dependen
are renormalized into the crossover lengthL0(T) and the
corresponding crossover time scalet0(T)}L0(T)z by which

FIG. 25. Integral violation of FDT atT/J51.2 ~upper figure!
andT/J50.8 ~lower figure! plotted againstt/tw .
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all data are collapsed onto a universal growth law functi
The latter becomes the expected power law for the crit
dynamics at short times~length! and a slower function a
large times~length! suggesting activated dynamics.

Similar analysis should be done on experimental studie52

and numerical simulations of other systems, particularly
3D models, as well. In experiments, however, this two-stro
strategy is not possible and probably the best way is to s
from simplest quantities such as relaxation of the
susceptibility19 to work out the parameters of the growth law
The advantage of the experiment, on the other hand, is
one can explore the order of 100 lattice spacings while
present numerical simulations are limited to 1210 lattice
spacings.

Concerning the effects of critical fluctuation, many rece
studies have pointed out the importance to renormalize
effect. In three dimensions, previous results on the gro
law by numerical simulations22,50,53as well as experiments54

are well fitted to a power law asL(t);t1/z(T) where the
exponent 1/z(T) is proportional toT @but thisT linearity of
1/z(T) starts to break in the temperature range aroundT
;0.75Tc ~Ref. 22!#. Probably it is a sort of interpolation
formula betweenTc , where critical fluctuations are domi
nant, andT→0, where all time scales associated with th
mally activated processes diverge. Indeed a recent exp
ment in 3D systems19 suggests the logarithmic growth law
works well if critical fluctuation is properly considered.
recent numerical study of the growth law20 has also found a
signature of the crossover.

It is useful to note that the empirical power lawL(t)
;t1/z(T), combined with the scaling laws in terms ofL(t),
explains many of the empirical formulas proposed in pre
ous experiments and numerical studies in a unified man
being consistent with our two-stroke approach. For exam
a fitting formula Ceq(t)5qEA11/ta used in previous nu-
merical studies~for example, Ref. 60! can be understood as
variant of Eq.~65! with a5u/z(T). The well-known ‘‘sub-
aging’’ scaling for the TRM susceptibility5,55 xTRM(t
1tw ,tw);F(t/tw

m) with m,1 can be understood as a var
ant of Eq.~87! with m512u/l. The ‘‘vt scaling’’ of the ac
susceptibility5 can also be understood similarly as alrea
noted in a numerical study23 and an experimental19 study. In
addition, some apparent subaging feature of ac and dc
ceptibilities can be removed by considerations of finiten
of cooling rates in real experiments.19,20,56

The fundamental assumption of our scenario is that
effective stiffness constantYeff of the free-energy gapFL,R

typ

of droplets is a function of the ratiox5L/R of the two length
scales, namely, the length scale of the droplet itselfL and of
the extended defectR which surrounds the droplet. Mos
importantly we assumed the vanishing of the effective st
ness constant asx→1. This allowed the emergence of th
two different order parametersqEA andqD and the associated
susceptibilitiesxEA and xD . It is desirable to clarify the
scaling of the stiffness constant explicitly in the whole ran
of 0,x,1.

We expect our conjecture is consistent with the results
recent studies of low-energy excitations in spin-gla
1-24
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models.16 In spin glasses of finite sizesR, it is likely that the
existence of boundaries will intrinsically induce certain d
fects as compared with infinite systems.22,46,47Then we ex-
pect droplet excitations as large as the system size itseL
;R is anomalously soft. Such an anomaly is indeed found
the series of recent studies.16 Although there new exponen
u850 was conjectured,16 we consider it is better to attribut
this to the zero stiffness constantYeff@1#50 as in Eq.~43!.
The stiffness exponentu.0, on the other hand, is associate
with a defect inG as we adopt in Eq.~41!. The anomalously
low energy and large scale excitations atL;R explains the
apparently nontrivial overlap distribution functionP(q)
found in numerous numerical studies of finite si
systems48,49 which appear very similar to the prediction o
the equilibrium mean-field theory.57 Although the meaning of
the apparently nontrivial~and probably non-self-averaging!
P(q) in equilibrium is not obvious,58 we consider the con-
tribution of the anomalous excited states to the macrosco
magnetic susceptibility in the present dynamical situati
which is the realistic situation, is very important. As we d
cussed in Sec. IV E 7, our scenario implies the average o
lap q̄5*0

1dqqP(q) measured in equilibrium of finite size
systemsR ~with built-in defects! is equivalent to the dynami
cal order parameterqD . We found the latter is related to th
field cooled susceptibilityxFC as xFC5xD5(12qD)/kBT
@see Eqs.~60! and ~86!#. It would remind one of a folklore
found in some literature that the difference ofxFC andxZFC
is somewhatrelated to difference ofq̄ and qEA which is a
consequence of the non trivialP(q) found in Parisi’s replica
symmetry broken solution of the mean-field model.57 How-
ever, we still have to recall the intrinsically dynamical natu
of the situation: the domain walls, which allow the anom
er

s

gl
y

v
e

06443
-

n

ic
,

-
r-
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lous softening of droplets, are dynamical objects and t
should be absent in ideal equilibrium whereP(q) will have
only one delta peak atq5qEA as predicted by the origina
droplet theory.14

Concerning the dynamical MFT, a serious problem
practice is that correction terms to the asymptotic limit is n
known. They should obviously exist in theC2x relation
since the curves in Fig. 14 systematically moves with
creasingtw . Such a feature exists in the data of a rec
experiment of simultaneous magnetic noise/respo
measurement52 and previous numerical studies.53,59–61

Our numerical results indeed suggests the separatio
the breaking of TTI and FDT~see Fig. 23!. Such a feature
has not been realized in previous studies.52,53,59–61Within
the scaling theory, the correction terms to the expec
asymptotic limit~Figs. 2 and 3! themselves are predicted t
have salient universal scaling properties which are amen
to be examined in practice. Our numerical results were w
explained by the latter scaling ansatz including the deca
the TRM susceptibility~87! which itself was predicted by the
original droplet theory more than a decade ago.
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