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Ferromagnetic HeisenbergXXZ chain in a pinning field
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We investigate the effect of a magnetic field supported at a single lattice site on the low-energy spectrum of
the ferromagnetic HeisenbergXXZ chain. Such fields, caused by impurities, can modify the low-energy spec-
trum significantly by pinning certain excitations, such as kink and droplet states. We distinguish between
different boundary conditions~or sectors!, the direction and also the strength of the magnetic field. E.g., with
a magnetic field in thez direction applied at the origin and11 boundary conditions, there is a critical field
strengthBc ~which depends on the anisotropy of the Hamiltonian and the spin value! with the following
properties: forB,Bc there is a unique ground state with a gap, at the critical valueBc there are infinitely many
~droplet! ground states with gapless excitations, and forB.Bc there is again a unique ground state but now
belonging to the continuous spectrum. In contrast, any magnetic field with a nonvanishing component in thexy
plane yields a unique ground state, which, depending on the boundary conditions, is either an~anti!kink, or an
~anti!droplet state. For such fields, i.e.,not aligned with thez axis, excitations always have a gap and we obtain
a rigorous lower bound for that gap.

DOI: 10.1103/PhysRevB.66.064429 PACS number~s!: 75.10.2b, 75.60.2d, 05.50.1q
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I. INTRODUCTION

The quantum spin-j HeisenbergXXZ chain has been the
focus of intensive studies in recent years. The spin-1/2 ch
by itself has connections with a surprising variety of inte
esting mathematical structures, such as quantum grou1

vertex algebras,2 and fundamental problems in combin
torics,3,4 to name just a few. Of course, the interest in t
XXZ model is not limited to mathematics. In 1995, Alcara
Salinas, and Wreszinski5 and, independently, Gottstein an
Werner,6 discovered that, with suitable boundary terms,
ferromagneticXXZ chain possesses a family of kink groun
states which describe a domain wall of finite thickness~these
domain walls are exponentially localized, with a width d
pending on the anisotropy parameterD, which diverges as
D↓1!. Moreover, it was shown in Ref. 5 that similar stat
exist for the spin-j model for arbitraryj and in all dimen-
sions.

From the physical point of view, the discovery of gia
magnetoresistance and its connection with transport pro
ties in the presense of magnetic domain walls has a
spurred renewed interest in the microscopic description
domain walls.7–16 Of particular relevance are low-lying ex
citations associated with them. Koma and Nachtergaele
covered that, although theXXZ model has a gap in its spec
trum above the trivial translation invariant ground stat
gapless excitations exist associated with diagonal dom
walls ~11,111, . . .! in two or more dimensions.17 The scaling
behavior of these excitations was recently determined
Refs. 18–20.

It is interesting to note that the kink and antikink grou
states were discovered by a careful study of theXXZ chain
with the special boundary conditions that make the spin-
model SUq(2) symmetric. Although this quantum grou
symmetry is destroyed forj .1/2 or d.1, interface ground
states exist in general. In one dimension it has been pro
rigorously that no other ground states exist, in the sens
0163-1829/2002/66~6!/064429~13!/$20.00 66 0644
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local stability, no matter what boundary conditions a
considered.21,22 In the last reference it was also proved th
the XXX chain does not have domain-wall ground states t
are stable in the infinite-volume limit.

There is an obvious need for a clear understanding
excitations near magnetic interfaces in order to develop m
accurate models of electron scattering at such interface
has been noted, however, that pinning of interfaces by im
rities may have to be taken into account as well.9 Here, we
study theXXZchain perturbed at one site by a magnetic fie
as a caricature model for a pinned domain wall. Admitted
the one-dimensional nature of the model restricts its dir
applicability to experimental situations. We will see, how
ever, that the low-lying spectrum of this model of pinne
interfaces exhibits a number of interesting features that
expect will carry over,mutatis mutandis, to the two- and
three-dimensional case.

Let us now define the model precisely and briefly su
marize our main results. The spin-j XXZ Hamiltonian
without boundary terms and with anisotropy parameterD.1
is defined on the finite chain labeled by the integers froma
to b by

H052 (
x5a

b21 F 1

D
~Sx

1Sx11
1 1Sx

2Sx11
2 !1Sx

3Sx11
3 2 j 21G , ~1!

where the copies of the spin operators at posit
x,Sx

1 ,Sx
2 ,Sx

3 satisfy the usual commutation relations:

@Sx
a ,Sx

b#5 i eabg Sx
g . ~2!

The anisotropyD.1 has been put in front of theXX part so
that we can easily take the Ising limitD→`. Unless other-
wise stated, we seta51. We consider the perturbation ofH0

obtained by adding a termBW •SW y , i.e., a magnetic field at the
sitey. As a way to impose boundary conditions, we also a
magnetic fields in thez direction at the boundary spins. Firs
©2002 The American Physical Society29-1
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consider boundary fields in the negativez direction at both
ends, which we will refer to as~11! boundary conditions
~BC’s!, indicating that they favor the spins at the ends
point in the positivez direction.

If the perturbation at the interior sitey has a componen
orthogonal to thez direction, we find that the ground state
unique and describes adroplet state, i.e., the magnetization is
reduced from its maximum possible value in some neighb
hood of y. Strictly speaking, the magnetization is reduc
everywhere in the chain, but by an amount that decays
ponentially fast away fromy.

However, when the field is in thez direction, then there is
a critical valueBc such that forB,Bc , the all spin-up state
is the ground state. AtB5Bc , there are infinitely many
ground states which are droplet states describing domain
negative magnetization of arbitrary size embedded in an
vironment of positive magnetization. For stronger fields,B
.Bc , the magnetic field selects the all spin-down state as
ground state. This is illustrated in Fig. 1.

The ground-state picture is simpler when we impo
~12! BC’s, i.e., fields in opposite directions at the bounda
spins. For boundary fields of magnitude~3!, and without a
perturbation in the interior, we then have a set ofkink states
as the ground state, one for every possible value of
magnetization.5,6 In that case, any nonzero fieldBW at an in-
terior sitey selects a unique ground state. IfBW is parallel to
thez direction the ground state is in the continuous spectru
and hence there are excitations of arbitrary small energ
there is a nonvanishing component ofBW in the xy plane, the
unique ground state is separated by a gap form the rest o
spectrum. The unique ground state is a kink state centere
a position which we calculate. We also obtain an estimate
the gap.

In Sec. II, we define the model and find the set of grou
states. Section III is devoted to the study of the gap in
spin-1/2 case. Some less illuminating calculations are p
sented in Appendixes A–C.

II. MODEL AND ITS GROUND STATES

The main lesson to be learned from the proof of comple
ness of the list of ground states of the infinite ferromagne

FIG. 1. Ground-state energy~thick line! in a magnetic field in
the z direction and~11! or ~22! BC. The dotted lines indicate
droplet states which describe excitations except at one value o
field strengthBc given in Proposition II.4. Also see Fig. 6.
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XXZchain~cf. Ref. 23!, is that one only needs to study finit
chain Hamiltonians with very simple BC’s. This remains tr
if we add a bounded perturbation with finite support to t
Hamiltonian, e.g., a magnetic field at one site. These sim
BC’s are fields in thez direction with either equal or opposit
sign which we will introduce shortly.

The HamiltonianH0, defined in Eq.~1!, is non-negative,
and the two translation invariant all spin-up/down states
the ground states ofH0. It will be convenient to separate
them by adding the equal-sign boundary fields,jA(S1

31Sb
3),

with

A5A~D!5A12D22, ~3!

and define thedroplet andantidropletHamiltonian

H0
115H02 jA~S1

31Sb
322 j 1!, ~4!

H0
225H01 jA~S1

31Sb
312 j 1!.

For convenience we have normalized the ground-state
ergy to 0. By reflecting allSx

3 into 2Sx
3 the two Hamiltonians

H11 and H22 are unitarily equivalent and we only stud
H0

11 .
Additional ground states emerge when we add oppos

sign boundary terms. It turns out that precisely for the fie
6 jA(S1

32Sb
3) one discovers the full set of new groun

states. Therefore we define thekink and antikink Hamil-
tonian,

H0
125H02 jA~S1

32Sb
3!, ~5!

H0
215H01 jA~S1

32Sb
3!. ~6!

Again, by spin reflection, the kink and antikink Hamiltonian
are unitarily equivalent. Let us define

hxx11
12 52

1

D
~Sx

1Sx11
1 1Sx

2Sx11
2 !

2Sx
3Sx11

3 1 j 212 jA~Sx
32Sx11

3 !, ~7!

and

hxx11
21 52

1

D
~Sx

1Sx11
1 1Sx

2Sx11
2 !

2Sx
3Sx11

3 1 j 211 jA~Sx
32Sx11

3 !. ~8!

In terms of these interactions terms we may write

H0
125 (

x51

b21

hxx11
12 , ~9!

and

H0
215 (

x51

b21

hxx11
21 . ~10!

This will be used in Sec. III.
It is useful to introduce another parameter, 0,q,1, such

that q1q2152D. The Hamiltonians defined in Eqs.~5! and

he
9-2
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FERROMAGNETIC HEISENBERGXXZ CHAIN IN A . . . PHYSICAL REVIEW B 66, 064429 ~2002!
~6! in the spin-1/2 case commute with a representation
SUq(2). For j .1/2, the only obvious conserved quantity
the totalS3 component, which commutes with all the Ham
tonians defined above.

In the following we first deal with the kink Hamiltonian
H0

12 . There is a unique ground state for each value~sector!
m of S3, all of which have the same energy 0. The eigenv
uesmx of Sx

3 are in $2 j ,2 j 11, . . . ,j 21,j %, such that the
total S3 component takes the valuesm5(xP@1,b#mx . The
eigenvectors ofS3 are denoted byu(mx)&, and we have
Sy

3u(mx)&5myu(mx)&. Further, let

wm5AS 2 j
m1 j D .

The unique ground states in the respectiveS3 sectors are
called kink states which were found by Alcaraz, Salinas, a
Wreszinski.5 They are given by

cm5 (
$mx%

)
x51

b

q2x( j 2mx)wmx
u~mx!&. ~11!

As the cm are not normalized, we also definefm
5cm /icmi . The sum over$mx% is restricted to combination
such that(mx5m. If m56 jb is maximal/minimal, then the
statefm is the all spin-up/down state, i.e., the magnetizat
profile in the z direction, ^fmuSx

3ufm&56 j . Both from a
physical and mathematical point of view, the infinite cha
limit is the most interesting case. Clearly, more care has to
taken when using an infinite volume Hamiltonian. The na
ral tool is the Gel’fand-Naimark-Segal representation. In o
case here, there are four~unitarily! inequivalent representa
tions on Hilbert spaces, which are also calledsectors. These
are the(anti)kink sectorscontaining the infinite-volume~an-
ti!kink ground states, and the(anti)droplet sectorswith the
all spin-~down!up ground state. As mentioned above, for t
infinite-volume limit it is sufficient to study the effect of th
perturbation for the finite chain Hamiltonians,H0

11 and
H0

12 . For more details, we refer to Ref. 23.
For our purposes it will be very convenient to define t

states

c~z!5C (
umu< jb

zjb2mcm , ~12!

whereC is a normalization constant. They are product sta
i.e.,

c~z!5 ^ x51
b xx~z!, ~13!

with

xx~z!5~11uzu2q22x!2 j (
mx52 j

j

~zq2x! j 2mxwmx
u~mx!&.

~14!

The same construction can be carried through for the a
kink Hamiltonian. We denote the corresponding states for
antikink Hamiltonian byc̃(z). If we let

x̃x~z!5~11uzu2q22x!2 j (
mx52 j

j

~zq2x! j 2mxwmx
u~2mx!&,

~15!
06442
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then c̃(z)5 ^ x51
b x̃x(z) are ground states ofH21.

Now, let BW 5(B1 ,B2 ,B3) be a magnetic field vector with
~real! parameters, andV5BW •SW 5B1S11B2S21B3S3. Then
the eigenvalues ofV are iBW i•m with m52 j ,2 j 11, . . . ,j .
Define

H12~BW !5H0
121BW •SW y , ~16!

H11~BW !5H0
111BW •SW y . ~17!

In the study of the spectrum ofH12(BW ) andH21(BW ), it is
important to distinguish two cases:B1

21B2
2.0 andB1

21B2
2

50. The ground state in these two cases is described
Propositions II.1 and II.3, and Remarks II.2.

Proposition II.1 (Kink sector, B1
21B2

2.0). Let 1<y<b.
Then, the ground state ofH12(BW ) is the statec(z) of Eq.
~13! with z52@(iBW i1B3)/(B12 iB2)# qy. Its energy is
2 j iBW i .

The proof is a combination of previously known resu
and a straightforward calculation; see Appendix A.

Remarks II.2. 0. The ground state ofH21(BW ) is the state
c̃( z̃) of Eq. ~15! with z̃52@(iBW i2B3)/(B11 iB2)#qy. This
follows by a rotation by the anglep with respect to thex
axis.

1. For simplicity, let us assume thatB1
21B2

251. If B3

50, then the ground state,c@z52(B11 iB2) qy#, is a kink
state ~exponentially! localized at the magnetic field aty;
among the spanning set of ground statesc(z), the perturba-
tion picks the one which is most localized aty. If B3Þ0, the
extra termB3Sy

3 has the effect of shifting the kink fromy by
the distanceu logq(A11B3

21B3)u to the left if B3.0, and to
the right ~by the same distance! if B3,0.

2. The proof also shows that the statec(z) with z5

1@(iBW i1B3)/(B12 iB2)# qy is an eigenstate ofH12(BW )
with energy1 j iBW i . We see this~it is obviously linear if the
field is in thex or y direction only; see Fig. 2! branch as-
cending fromuB3u/2 in Figs. 2 and 3. In Fig. 4 it has too hig
an energy to be among the plotted lowest eigenvalues.

3. Of special interest is the second-lowest eigenvalue
particular, whether there is a gap uniformly in the number
sitesb, and how it depends onBW and the anisotropyD. This
will be treated in Sec. III. We can extend a method24 which
was first applied to prove a gap forH0

12 .
4. We discuss now qualitatively the low-energy spectru

and assume for simplicity thatj 51/2 and B250. It was
proven in Ref. 23 that the gap above theb11 ground states
of the unperturbed HamiltonianH0

12 is equal to 1
2cos(p/b)D21, which tends to 12D21 in the infinite chain
limit.

If B350, then there areb eigenvalues~recall thatb is the
length of the chain! of H12(B,0,0) descending from 0. This
can be seen as follows. We introduce the functionN(B)
5x (2`,0]@H12(B,0,0)2 1

2 B1# counting the number of non
positive eigenvalues; herex (2`,0] is the characteristic func
tion of ~2`,0#. N(B) is monotonically increasing, and equ
9-3
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FIG. 2. Energy of the lowest 16 eigenvalue
for the spin-1/2 kink Hamiltonian for the field
(B,0,0) on a chain of 13 sites andD52.25. No-
tice the ground-state energy~straight line down-
wards from 0!, the gap to the second eigenvalu
the energy1

2 uBu, and the energy 12D212uBu/2
of ce .
lc

er

st
el

te
r
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f

to b11 for uBu,12D211O(b21); this is guaranteed by
the gap above the ground states. In item 6 below we ca
late the lowest energy statece descending from 12D21 at
B50 with energy equal to 12D212 1

2 uBu @up to O(b21)#.
This state is ‘‘parallel’’ to the ground-state energy and int
sects with the state in item 2 atuBu512cos(p/b)D21; see
Fig. 2.

We can say more about the average of these loweb
11 eigenvalues by recalling the min-max principle, nam
that their average is a concave function inB. By symmetry
(B→2B) its ~left and right! derivative is always negative
and less than 1/2. Since the average is 0 atB50 it continues
to be negative. In the infinite volume limit there is an infini
number of ground states ofH0

12 , and eigenvalues fo
06442
u-
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y

H12(B,0,0) have to accumulate at some value betwe
2 1

2 uBu and 12D212 1
2 uBu; see Fig. 2, and in caseB35” 0,

see Figs. 3 and 4.
5. If B35” 0, then there appear to beb2y11 eigenvalues

descending from2uB3u/2; b2y11 is the number of kinks
to the left ofy; see Fig. 3. The next eigenvalues depend
B3. If uB3u,12D21, then the next lowesty eigenvalues de-
scend from2uB3u/2. If uB3u.12D21, then the statece ap-
pears to be the next lowest in energy; see Fig. 4.

6. We can calculate the state mentioned in the previ
two items. Letce5(x51

b axSx
2u↑& be the first excited state o

H0
12 in the one-overturned spin sector. The coefficientsax

are a solution to the discrete Laplace equation~see Ref. 22,
or cf. Appendix C by settingB50). The energy ofce is
s

nd
FIG. 3. Energy of the lowest 16 eigenvalue
for the spin-1/2 kink Hamiltonian for the field
(B,0,A/6) on a chain of 13 sites andD52.25; the
z component,B35A/65A12D21/6 is chosen
small compared to the gap 12D21 of H0

12 . No-
tice the ground-state energy, the gap above it, a
the branches descending from6B3/2, and 1
2D212B3/2.
9-4
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FIG. 4. Energy of the lowest 20 eigenvalue
for the spin-1/2 kink Hamiltonian with the field
(B,0,3) on a chain of 13 sites andD52.25; the
field in the z direction is chosen large compare
to 12D21. Notice that the branches stemmin
from B3/2 are too high in energy to be plotte
here. We see the ground-state energy, the
above it, and the energy ofce descending
from 12D212B3/2. In between there are
b2y1156 states bending downwards from
2B3/2521.5.
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equal to the gap 12D211O(b21). Now, define

ce~z!5 (
n50

b

zn~Sq
2!nce5 (

x51

b

axSx
2c~z!.

By choosing z as in Proposition II.1, we obtain th
equation

H12~BW !ce~z!5S 12D212
1

2
iBW i Dce~z!1O~b21!.

In Fig. 2, this is the straight line parallel to the groun
state energy.

Next, we consider the kink sector and magnetic fields
the form B15B250,B5B35” 0. Let B.0. Then, asb, the
size of the system increases, the ground state tends to th
spin-down stateu↓&. This vector is no longer in the infinite
volume kink sector very much aseikx is not a genuine~i.e.,
normalizable! eigenvector of the Laplacian on the real lin
In other words,u↓& is part of the continuous spectrum. So l
us consider the orthogonal sequence of kink states,cn ; n, as
usual, is the total z component. Then, the sequen
^cn ,H12(0,0,B),cn& converges to2 jB as n→2`. Since
the spectrum is closed and2 jB is the least possible eigen
value it has to be the ground-state energy. Therefore in
infinite chain limit,2 jB is contained in the continuous spe
trum, and is hence nonisolated. We conjecture that there i
other continuous spectrum close to2 j uBu, and thus2 j uBu is
purely an accumulation point of eigenvectors. We do
give a proof of this here. Similarily, ifB,0, then the bottom
of the spectrum isjB and there is no gap above the grou
state, which is obviously the all spin-up state. We illustr
the low-energy spectrum in Fig. 5. Let us collect our resu
in the following proposition.
06442
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Proposition II.3 (Kink sector, B1
21B2

250). The bottom of
the spectrum ofH12(0,0,B) is equal to2 j uBu, which is part
of the continuous spectrum. Excitations above the grou
state are gapless.

Now we consider the HamiltonianH11(BW ). It is useful to
decompose this as a sum of a kink and antikink Hamilton
(b>3):

H [1,b]
11 12 jA~2 j 11Sy

3!5H [1,y]
12 1H [ y,b]

21 ,

and thus

H [1,b]
11 ~BW !22 j 2A15H [1,y]

12 S B1

2
,
B2

2
,
B3

2
2 jA D

1H [ y,b]
21 S B1

2
,
B2

2
,
B3

2
2 jA D . ~18!

We start with the caseB1
21B2

2.0. As in the kink sector we
will find a unique ground state. Let

z52
i~B1 ,B2 ,B322 jA !i1B322 jA

B12 iB2
qy,

then according to Proposition II.1,c [1,y] (z) is the unique
ground state ofH [1,y]

12 (B1/2,B2/2,B2/22 jA), while the anti-

kink state c̃ [ y,b] ( z̃) is the corresponding ground state
H [ y,b]

21 (B1/2,B2/2,B3/22 jA). They are both product state

which happen to satisfyxy(z)5(21)2 j x̃y( z̃), because

1

2
@B1Sy

11B2Sy
21~B322 jA !Sy

3#xy
]~z!

52
j

2
i~B1 ,B2 ,B322 jA !ixy

]~z!,

wherexy
#(z) stands for eitherxy(z) or x̃y( z̃). Thus
9-5
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FIG. 5. Low-energy spectrum in the spin-1/
kink sector for the field~0,0,1.5! on a chain of 11
sites withD52.25. The high-energy spectrum
similar to Fig. 7 and will not be reprinted.n is the
total z component.
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c~BW !5 ^ x51
y xx~z! ^ ^ x5y11

b x̃x~ z̃!

is the unique ground state ofH0
11(BW ) with energy

2 j i(B1 ,B2 ,B322 jA)i12 j 2A.
Similar to the kinksector, the vector

^ x51
y xx~2z! ^ ^ x5y11

b x̃x~2 z̃!

is another eigenstate with energyj i(B1 ,B2 ,B322 jA)i
12 j 2A.

Finally, we come to the caseB15B250,B5B3. When
B50, it was proven in Ref. 25 that for spin 1/2 and in t
infinite-volume limit 12D21 is the gap above the groun
state. It can also be shown that there exists a gapd for higher
spins although no precise estimates are known. This imp
that uniformly in the size of the lattice, that the all spin-u
vector is the unique ground state forB,Bc5d/(2 j ), where
d is the~strictly positive! gap ofH0

11 . As we mentioned in
the Introduction, the valueB5A/(2 j ) is very particular and
interesting. It has been analyzed26 in the context of droplet
states for spin 1/2 but again the method extends to genej.
In fact, the set of ground states is infinitely degenerate~in the
infinite volume! and consists of pairs of symmetric kink
antikink states~i.e., droplets!, all of which have the same
energy jA. The magnetization profile in thez direction is
symmetric with respect to the center of the field aty. Exci-
tations are gapless because large droplets which are anti
metric with respect toy come arbitrarily close in energ
to jA.

Since the ground-state energy is concave, and since
B50 andB5A/2j , the all spin-up vector is a ground stat
we conclude that for allB,A/(2 j ), the all spin-up vector is
the unique ground state. Numerical experiments for spin
indicate that in the regionB,A the eigenvalues are ordere
by their totalS3 value such that the second-lowest eigenst
is in the sector with one overturned spin, and has ene
06442
es
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E2(B)512AD221B21 1
2 uBu, see Eq.~C3!; its ~infinite-

volume! derivation is given in Appendix C. The third-lowes
eigenvector is in the sector with two overturned spins, and
on. The lowest eigenvalues with respect to the totalS3 com-
ponent accumulate at the lineA2B/2. They all meet at the
critical valueA, where the ground state becomes infinite
degenerate. Assuming that this ordering holds true, we c
jecture that the gap for spin 1/2 andB<A equals 1
2AD221B21 1

2 (uBu2B), which converges to 121/2D for
large2B, and vanishes atB5A.

For B.A/(2 j ), the all spin-down state is the uniqu
ground state with energyA/(2 j )2 jB, which is part of the
continuous spectrum; in fact,A/(2 j )2 jB is purely an accu-
mulation point of eigenvectors. It seems that forB.A/2j the
eigenvalues are also ordered according to their totalz com-
ponentn, but this time in the opposite way, i.e., lowern
means lower energy, and clearly the lowest is the all sp
down state. Similar to the kink sector, we will not prove he
that the rest of the continuous spectrum is separated from
ground state.

The situation is illustrated in Figs. 6–8 forj 51/2, cf. also
Figure 1. Let us summarize our results in the followin
proposition:

Proposition II.4 (Droplet sector).The ground state of the

droplet Hamiltonian,H11(BW ), on a chain of lengthb>3

depends on the magnetic fieldBW in the following way:
1. If B1

21B2
2.0, then the ground state is unique. Th

ground-state energy is2 j i(B1 ,B2 ,B322 jA)i12 j 2A.
2. If B15B250,B5B3, and Bc5A/(2 j ), then for B

,Bc the unique ground state ofH11(0,0,B) is the all
spin-up vector with energyjB. For B5Bc the ground states
are droplet states which are~in the thermodynamic limit!
infinitely degenerate with energyjA. In infinite volume, ex-
citations above these ground states are gapless. ForB.Bc ,
9-6
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FIG. 6. The five lowest eigenvalues in th
spin-1/2 droplet sector for a chain of 13 sites wi
magnetic field (0,0,B) and D52.25. The eigen-
values are numbered byn, the number of over-
turned spins; e.g.,n50 means the all spin-up
state.
h
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the all spin-down state is the unique ground state, whic
an accumulation point of eigenvectors. Hence excitations
gapless.

III. ESTIMATE FOR THE SPECTRAL GAP
IN THE CASE jÄ1Õ2

Here we prove a uniform lower bound on the differen
between the ground-state energy and the energy of the
excited state for the spin-1/2 HamiltoniansH [1,b]

12 (BW ) and

H [1,b]
11 (BW ) on a finite chain@1,b# with the impurity field aty.
Before we prove these gap inequalities we introduce

methods which were invented in Refs. 24 and 27. LetCi ,i
50, . . . ,N be a sequence of connected intervals w
06442
is
re

rst

e

ø i 50
N Ci5@1,b#, and such that two intervals have at most o

lattice point in common. LethCi
>0 be some~local! Hamil-

tonians acting onC2uCi u, and define

H [1,b]5(
i 50

N

hCi
. ~19!

H [1,b] acts onHb5 ^ i 51
b C2. We assume that kerH [1,b]5” $0%.

Let g i denote the gap ofhCi
, i.e., the smallest nonzero eigen

value ofhCi
. It is clear that

kerH [1,b]5ù i 50
N kerhCi

. ~20!
e

all
FIG. 7. Here, we plot the full spectrum of th
spin-1/2 droplet HamiltonianH11(0,0,1.5A) for
13 sites, andD52.25. The indexn is the number
of overturned spins. The ground state is the
spin-down state, i.e.,n513.
9-7
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FIG. 8. Here, we amplify the low-energy
spectrum for the same Hamiltonian as in Fig.
At n513 we have indicated the ground stat
Clearly, one sees monotonicity of energy vsn.
-

p-
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we

t

.,

,

Let L,@1,b#, then we defineGL to be the orthogonal pro
jection onto the

ker (
i :Ci,L

hCi
. ~21!

We use the convention that ifCi,” L for any i, then we set
GL51. From these definitions we derive the following pro
erties:

1. GLGL85GL8GL5GL8 if L,L8.
2. GLGL85GL8GL if LùL850”.
3. hCi

>g i(12GCi
).

Next we define the intervalsL i5ø j < iCj , and operators
Ei ,i>0, onHb by

Ei5H 12GL0 for i 50

GL i
2GL i 11 for 1< i ,N

G[1,b] for i 5N

. ~22!

These operators are mutually commuting projections add
up to 1, i.e.,

Ei* 5Ei , EiEj5d i j Ei , (
i 50

N

Ei51. ~23!

The key assumption in order to deduce a gap forH [1,b] from
the gaps ofhCi

is the following assumption:
Assumption III.1. There exists a positive constante such

that 0<e,1/& and

EiGCi 11
Ei<e2Ei , 0< i<N21, ~24!

or equivalently,

iGCi 11
Ei i<e, 0< i<N21. ~25!
06442
g

Further, we assume that the gaps,g i , for the local Hamilto-
nians are bounded from below, i.e.,g i>g.0.

The conditions ~24! and ~25! are equivalent due to
GCi 11

Ei5GCi 11
GL i

2GL i 11
.

Now we are ready to state the main theorem which
apply in all three case below.

Theorem III.2 (Nachtergaele24). With the above defini-
tions and under the assumptions in Eq.~25! let c be orthogo-
nal to the ground states ofH [1,b] . Then

~c,H [1,b]c!>g~12A2e!2ici2, ~26!

i.e., the gap in the spectrum ofH [1,b] above 0 is at leas
g(12A2e)2.

Proof. Let c be orthogonal to the ground state, i.e
G[1,b]c50. Then,ici25(0<n,NiEnci2.

We estimateiEnci2 in terms of„c,HCn
(BW )c… as follows.

First notice, that for m<n22, or m>n11, EmGCn

5GCn
Em . Now we insertGCn

and the resolution of identity

$En%, and we get

iEnci25„c,~12GCn
!Enc…1S c, (

0<m,N
EmGCn

Enc D
5„c,~12GCn

!Enc…1„~En211En!c,GCn
Enc….

~27!

Let c1 ,c2.0, then

iEnci2<
1

2c1
„c,~12GCn

!c…1
c1

2
~c,Enc!

1
1

2c2
~c,EnGCn

Enc!1
c2

2
„c,~En211En!2c…,

~28!
9-8
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where we used the inequality

u~f1 ,f2!u<
1

2c
if1i21

c

2
if2i2

in both terms of Eq.~27!. Let g5min$gCi
% be the minimum

of the gaps of the HamiltonianshCi
.

The first term on the right-hand side of Eq.~28! is less
than 1/(2c1g)(c,hCn

c). Now, assuming the key estimat

iGCn
Eni,e, we see that

S 22c12
e2

c2
D iEnci22c2i~En211En!ci2<

1

c1g
~c,hCn

c!.

We sum overn usingici25(0<n,NiEnci2 from above and
get

S 22c12
e2

c2
22c2D ici22c2ici2<

1

c1g
~c,H [1,b]c!.

Finally, we optimize the constantsc1 ,c2 yielding c151
2eA2,c25e/A2. This proves the gap inequality.

In all the upcoming proofs on the various gaps we use
same definition of subsetsCn ,Ln of @1,b# and projections
Gn ,En . As usualyP@1,b# denotes the spot of the magnet
field. Let nl ,nr be some non-negative integers such thatnr
1nl>1, and assume thatnr.0; the choice ofnl ,nr in gen-
eral will depend onD andBW . The idea behind the definition
of Cn is that we cover the chain@1,b# by adding points to an
initially chosen intervalC05@y2nl ,y1nr # in an alternating
manner. First we add a point to the right ofC0, then to the left
until we reach the point 1. Then we add points only to t
right of C2(y2nl21) until we finish atb. More precisely, we

define the setsCn in the following way:
Definition III.3 Let C05@y2nl ,y1nr #, where we may

assume thaty2nl21<b2y2nr such thatC0,@1,b#. The
intervals forn.0 are then

C15@y1nr ,y1nr11#,C2

5@y2nl21,y2nl #, . . . ,C2(y2nl21)

5@1,2#,C2(y2nl )21

5@2y1nr2nl21,2y1nr2nl #, . . . ,Cb2(nl1nr )21

5@b21,b#.

We start with the kink case.
Proposition III.4 (Kink sector, B1

21B2
2.0). Let c be or-

thogonal to the ground state of the kink Hamiltonia
H [1,b]

12 (BW ), on a chain of lengthb. Then, there exists a strictl
positive function g12(BW ,D) and a function 0<e(BW ,D)
,1/A2, which are both independent ofb, such that the fol-
lowing gap inequality is satisfied:

„c,H [1,b]
12 ~BW !c…>g12~BW ,D!@12A2e~BW ,D!#2ici2.

~29!
06442
e

e

,

Proof. First we shift the ground-state energy to be 0, a
define the new Hamiltonian

H [1,b]~BW !5H [1,b]
12 ~BW !2

iBW i
2

1.

With the setup from Definition~III.3! we can write the
Hamiltonian,H [1,b] (BW ), in the following form:

H [1,b]~BW !5 (
i 50

b2(nl1nr )21

hCi

using

hCi
5H HC0

~BW ! for i 50

hxx11
12 for i .0

,

whereCi5@x,x11# for some 1<x,y2nl or y1nr<x,b,
and withhxx11

12 from Eq. ~7!.
We can express the gap conditions as
1. HL0

(BW )>gL0

12(BW ,D)(12G0), wheregL0

12(BW ,D) is the

gap for the finite chain Hamiltonian,HL0

12(BW ).

2. hxx11
12 512G[xx11] for 1<x,y2nl andy1nr<x,b.

Let g5min$gL0

12(BW ,D),1% which is strictly positive. Fi-

nally, we need to verify the second condition in Assumpti
III.1, and define

Cnªsup05” cPHLn11
:Enc5c

iGCn
ci

ici . ~30!

So letc satisfy

Gnc5c and Gn11c50. ~31!

First, let n52m,0<m<y2nl21; the casen>2(y2nl) is
similar, and the case of odd 1<n,2(y2nl) will be consid-
ered later.

Let c be a ground state ofLn , i.e., Gnc5c such that
Gn11c50. Then with the definition from Eq.~14!

c5 ^ i 5y2nl2m
y1nr1m

x i~z! ^ xy2nr1m11
' ~z!,

wherexx
'(z) is perpendicular toxx(z). Let us make some

definitions and call

fª2@~ iBW i1B3!/~B12 iB2!#,x

ªxy1nr1m~z!5u↑&1 f q2nr2mu↓&,x'

ªxy1nr1m~z!5 f q2nr2m21u↑&2u↓&,

and

~11q2!1/2uj&5qu↑↓&2u↓↑&.

Then,
9-9
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iGC n
ci2

ici2
512

iuj&^jux ^ x'&i2

ix ^ x'i2

512
q2

11q2

11u f u2q22(nr1m11)

11u f u2q22(nr1m)
.

Let m50, then we choosenr such that right-hand side is les
than 1/2. The condition forC0,1/A2 is thusu f uq2nr.1. By
monotonicity it is clear that the condition,Cn52m,1/A2,
holds true form>0.

Now we come to odd integers,n52m11 with 0<m
<y2nl21. Let c satisfyGnc5c, andGn11c50, thenc
is of the form c5xy2nl2m21

' (z) ^ ^ i 5y2nl2m
y1nr1m

x i(z). We

have thus

iGC n
ci2

ici2
512

1

11q2

11u f u2q2(nl1m11)

11u f u2q2(nl1m)
.

Let m50, then we choosenl such that right-hand side is les
than 1/2. This is accomplished if 1.u f uqnl. By monotonicity,
Cn52m11,1/A2 for m>0. Our condition for the choice o
nl ,nr is thus

qnr, UiBW i1B3

B12 iB2
U,q2nl.

Remark III.5. It is clear that there always exist integersnl
andnr such that 1.u f uqnl and 1,u f uq2nr are satisfied. Now
suppose thatq,u@(iBW i1B3)/(B12 iB2)#u,1, then we may
choose nl50 and nr51. In this case, g12(BW ,D)
5g2

12(BW ,D) is found explicitly in Appendix B, see Eq
~B1!. If B350, then one needs to choosene5nr51 and
diagonalize a three-site Hamiltonian which we will not d
here.

Proposition III.6 (Droplet sector). B1
21B2

2.0. Let c be
orthogonal to the ground state of the droplet Hamiltoni
H [1,b]

11 (BW ), on a chain of lengthb. Then, there exists a strictl
positive function g11(BW ,D) and a positive function 0
<e(BW ,D),1/A2, which are both independent ofb, such that
the following gap inequality is satisfied:

„c,H [1,b]
11 ~BW !c…>g11~BW ,D!@12A2e~BW ,D!#2ici2.

~32!

Proof. First, we need to shift the ground-state energy, a
define a new Hamiltonian,

H [1,b]~BW !5H [1,b]
11 ~BW !1

1

4
i~B1 ,B2 ,B32A!i2

1

4
A.

Using the sets from Definition~III.3! we have the decompo
sition

H [1,b]~BW !5 (
i 50

b2(nl1nr )21

hCi
,

with
06442
,

d

hCi
5H HC0

~BW ! for i 50

hxx11
12 for somex: 1<x,y2nl

hxx11
21 for somex: y1nr<x,b,

depending on whetherCi is to the left~right! of y. hxx11
12 and

hxx11
21 are taken from Eq.~7!, respectively, Eq.~8!. We have

the following gap properties:
1. HL0

(BW )>gC0

11(BW ,D)(12G0), where gC0

11(BW ) is the

gap for the Hamiltonian,HC0
(BW ).

2. hxx11
12 512G[xx11] for 1<x,y2nl .

3. hxx11
21 512G[xx11] for y1nr<x,b.

We are left with verifying the key estimate~25!. So let
05” c satisfy Gnc5c such thatGn11c50. If the interval
Ci 11 is to the left ofy then we have the same situation as
the previous proof with the condition 1.u f uqnl with the
slightly modified f 5@(i(B1 ,B2 ,B32A)i1B32A)/(B1
2 iB2)#.

If the intervalCi 11 is to the right ofy, then we will arrive
at the same condition fornr . This is true by symmetry bu
one can easily derive this in the very same way we did in
other case.

Remark III.7. The same remarks are in order he
for the droplet Hamiltonian. So let us suppose that

Ui~B1,B2,B32A!i1B32A

B12 iB2
U ,1,

then we choosenl50 and nr51. In this case,g11(BW ,D)
5g2

11(BW ,D) is explicitly calculated in Appendix B, see Eq
~B2!.

Proposition III.8 (Droplet sector).Let B15B250, and
B,A. Let c be orthogonal to the all spin-up ground state
the droplet Hamiltonian,H [1,b]

11 (0,0,B), on a chain of length
b>3, and letg3

1(B,D) be the gap for the three-site Hami
tonian from Eq.~B6!. Then,

„c,H [1,b]
11 ~B!c…>2g3

1~B,D!S 1

A2
2A q

q1q21D 2

ici2.

~33!

Proof. Again, we need to shift the ground-state ener
and define a new Hamiltonian,

H [1,b]~B!5H [1,b]
11 ~0,0,B!2

B

2
1.

As before, we use the same decomposition ofH [1,b] (B) into
local Hamiltonians,hCi

. The first gap condition ofC0 has to
be changed into

HL0
~B!>gC0

1 ~B,D!~12G0!.

We only need to compute

Cnªsup05” cPHLn11
:Enc5c

iGCn
ci

ici .

So let us take a~nonzero! vector c such thatGnc5c and
Gn11c50. If Cn11 is to the left ofy, then c5u↓&^u↑¯↑&,
andGCn

512uj&^ju. Then
9-10
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iGC n
ci2

ici2
5

1

11q2
,

which is less than 1/2, and (12A2e)252(1/A2
2Aq/(q1q21))2.

By symmetry this is also the condition ifCn11 is to the
right of y. More precisely, c5u↑•••↑&^u↓&, and GCn

51
2uz&^zu with (11q2)1/2uz&5qu↓↑&2u↑↓&.

By choosing C05@y21,y11#, we have verified the
statement. The three-site gap,g3

1(B,D) is calculated in
Appendix B.
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APPENDIX A: PROOF OF PROPOSITION II.1

Proof. First, it is clear that the bounded perturbationV

5BW •SW y can shift the ground-state energy ofH0
12 by no

more than its norm,j iBW i . We claim, and show below, tha
the product statec(z52@(iBW i1B3)/(B12 iB2)# qy), which
is a ground state ofH0

12 , is a also a ground state ofV.

Therefore we have found a ground state ofH0
12(BW ). That it

is the unique ground state follows by combining two fac
~i! c(z) is the unique kink state with this property, which w
will show, and~ii ! the vectorsc(z), for arbitrary complexz,
span the full ground-state space ofH0

126,22 and there is gap
to the rest of the spectrum.23,28 So, it only remains to prove
that among all vectorsc(z), there is a unique one that is
ground state and that the corresponding value ofz is as stated
in the proposition.

Since c(z) is of product form, andV acts nontrivially
only at sitey, we are left to show that

BW •SW yxy~z!52 j iBW ixy~z!. ~A1!

Without loss of generality, we may assume thatiBW i51.
Then, zq2y52@(11B3)/(B12 iB2)#. Now, checking all
2 j 11 vector components in Eq.~A1! we obtain

1

2
rn~B11 iB2!wn11~zq2y! j 2n211nB3wn~zq2y! j 2n

1
1

2
rn21~B12 iB2!wn21~zq2y! j 2n115 jwn~zq2y! j 2n,

with rn5Aj ( j 11)2n2n2, and forunu< j . This leads to the
following equation:
06442
-
.

e
-

:

1

2
rnwn11~12B3

2!1
1

2
rn21wn21~11B3!22nB3wn~11B3!

5 jwn~11B3!.

By a straightforward calculation one verifies that

1

2
rnwn111

1

2
rn21wn215 jwn ,

rn21wn215~ j 1n!wn ,

2
1

2
rnwn111

1

2
rn21wn215nwn .

This proves Eq.~A1!.

APPENDIX B: EXPLICIT DIAGONALIZATIONS
OF SMALL-SITE SPIN-1 Õ2 HAMILTONIANS

1. H 12
¿À

„B¢ …

Here we diagonalize the two-site Hamiltonian,H12
12(BW ),

with magnetic field not parallel to thez axis aty51. By the
XX symmetry we may assumeB250. Since we already
know two eigenvalues, namely,6 1

2 AB1
21B3

2, it is best to
factor them out from the characteristic equation. Anoth
way is to diagonalize the Hamiltonian restricted to the
thogonal complement of the two known eigenvectors. T
Hamiltonian is of the form

2H [1,2]
12 ~B1 ,B3!5S B3 0 B1 0

0 12A1B3 2D21 B1

B1 2D21 11A2B3 0

0 B1 0 2B3

D .

The characteristic polynomialp is equal to

p~ t !5~ t22B3
2!~ t222t12AB322B1

22B3
2!

12B1
2~ t2AB3!1B1

4 .

We divide this polynomial byt22B1
22B3

2 ~note that we have
multiplied the Hamiltonian by 2! obtaining

p~ t !5~ t222t2B1
22B3

212B3A!~ t22B1
22B3

2!.

The two eigenvalues we are looking for are thus

t6516A11B1
21B3

222B3A.

One can easily verify that

AB1
21B3

2>12A11B1
21B3

222B3A.

Hence the gap between the lowest eigenvalues
H [1,2]

12 (B1 ,B2 ,B3) is equal to

g2
12~BW !5

1

2
2

1

2
A11iBW i222B3A1

1

2
iBW i , ~B1!

which is a positive function.
9-11
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2. H
†12‡
¿¿

„B¢ …,B1
2¿B2

2Ì0

The diagonalization of the two-site droplet Hamiltonia
H [12]

11(BW ), with the field aty51 is very similar to the two-site
kink Hamiltonian. We have

2H [12]
11~B1 ,B3!2A1

5S B32A 0 B1 0

0 11B3 2D21 B1

B1 2D21 12B3 0

0 B1 0 A2B3

D .

The characteristic polynomialq of the right-hand side is
equal to

q~ t !5~ t22~B32A!2!~ t222t22B1
22B3

21A2!

22B1
2~ t2A2!1B1

4 .

t56AB1
21(B32A)2 are two roots and we factor them o

from q(t), and obtain

q~ t !5~ t222t2B1
22B3

21A2!@ t22B1
22~B32A2!#.

The two new eigenvalues ofH [12]
11(BW ) are

t65
1

2
~16A11iBW i22A21A!.

The gap above the ground state is therefore

g2
11~BW ,D!5

1

2
~12A11iBW i22A2

1AB1
21B2

21~B32A!2!. ~B2!

3. H
†13‡
¿¿

„0,0,B…,BËA

Since in this case there is only a magnetic field in thz
direction we can easily diagonalize the three-site drop
Hamiltonian,H5H [13]

11(0,0,B), with the field in the middle at
y52. ThenH commutes with the symmetryS:S(us1

^ us2

^ us3
)5us3

^ us2
^ us1

, wheres i56. We choose the fol-
lowing eigenbasis ofS:

v15~1,0! ^ ~1,0! ^ ~1,0!,

v25~0,1! ^ ~0,1! ^ ~0,1!,

v35
1

A2
~1,0! ^ ~1,0! ^ ~0,1!2

1

A2
~0,1! ^ ~1,0! ^ ~1,0!,

v45
1

A2
~1,0! ^ ~0,1! ^ ~0,1!2

1

A2
~0,1! ^ ~0,1! ^ ~1,0!,

v55
1

A2
~1,0! ^ ~1,0! ^ ~0,1!1

1

A2
~0,1! ^ ~1,0! ^ ~1,0!,
06442
,

t

v65~1,0! ^ ~0,1! ^ ~1,0!,

v75~0,1! ^ ~1,0! ^ ~0,1!,

v85
1

A2
~0,1! ^ ~0,1! ^ ~1,0!1

1

A2
~1,0! ^ ~0,1! ^ ~0,1!.

v1 ,v2 ,v3 ,v4 are eigenvectors ofH with eigenvaluese1
5B/2,e25A2B/2,e35 1

2 (A111B) and e45 1
2 (A112B),

respectively. What remains are two copies of the tw
dimensional matrix~due to the symmetryS),

N~B!5
1

2 S A111B 2~A2D!21

2~A2D!21 A112B
D .

The matrix N is equal to H11(B) reduced to the span
$v5 ,v6%, as well as to span$v7 ,v8%. The eigenvalues are
equal to

e55e75
1

2 S A112A1

2
D221B2D , ~B3!

e65e85
1

2 S A111A1

2
D221B2D . ~B4!

Notice that forB,B̄5(3A224A11)/4(12A),

e1,e55e7,e2 . ~B5!

This says that the lowest energies in the totalS3 sectors are
ordered~though not strictly! by their energy. The gap forB
<A is equal to

g3
1~B,D!

5H 1

2 S 11A2A1

2
D221B22BD for B<B̄

A2B for B̄<B<A

.

~B6!

APPENDIX C: EXCITATION EÀ„B…

Here we calculate the lowest eigenvalue ofH̃(B)5H0
11

1B(S0
32 1

2 ) in the sector with one overturned spin. Since w
want to avoid complications from finite chain boundary e
fects, we prefer to treat the infinite volume case with t
magnetic field at 0, say. We first takeB>0.

Let c5(xaxSx
2u↑&. Then, forc being an eigenvector o

H̃(B) with energy Ẽ, we have^↑uSx
1H̃(B)uc&5 Ẽax , and

thus we get the equations

ax1152D~12E!ax2ax21 , for uxu.1 ~C1!

a152D~12 Ẽ1B!a02a21 . ~C2!

It turns out that in addition to the pure absolutely continuo
spectrum of the discrete Laplacian~in the units here, it is the
interval @12D21,11D21#! there are two~a highest and a
lowest! eigenvalue generated by the perturbationBS0

3. Let
9-12
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r 65D~12 Ẽ!6AD2~12 Ẽ!221

be the solutions to the characteristic polynomial. Then,
solutions of Eq.~C1! are of the formax5a1r x1a2r 2x for
uxu.1. Notice thatr 15r 2

21. We now look for the solution
ax5r uxu with r 5r 2 which produces an eigenvector. Wit
this choice, we haveur 2u,1, we insert this into Eq.~C2!.
Then we get

DB5AD2~12 Ẽ!221,

from which we concludeẼ6(B)516AB21D22. From the
e

e

e

h

06442
ll

gap atB50 we know23 that Ẽ(0)512D21. Thus the correct
solution isẼ2(B) which, for the original Hamiltonian of in-
terest, namelyH0

111BS0
3, has to be shifted back byB/2.

Similarly, if B<0, then we studyH̃(B)5H0
111B(S0

3

1 1
2 ) which amounts to replacingB by 2B in Eqs.~C1! and

~C2!.
The lowest energy state ofH0

111BS0
3 in the sector with

one overturned spin is thus

E2~B!512AB21D221
1

2
uBu. ~C3!
.M.

un.
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