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Ferromagnetic HeisenbergXXZ chain in a pinning field
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We investigate the effect of a magnetic field supported at a single lattice site on the low-energy spectrum of
the ferromagnetic HeisenbekXXZ chain. Such fields, caused by impurities, can modify the low-energy spec-
trum significantly by pinning certain excitations, such as kink and droplet states. We distinguish between
different boundary conditiontr sectorg, the direction and also the strength of the magnetic field. E.g., with
a magnetic field in the direction applied at the origin anét+ boundary conditions, there is a critical field
strengthB, (which depends on the anisotropy of the Hamiltonian and the spin valiie the following
properties: foB< B, there is a unique ground state with a gap, at the critical vBJudere are infinitely many
(dropled ground states with gapless excitations, andBorB, there is again a unique ground state but now
belonging to the continuous spectrum. In contrast, any magnetic field with a nonvanishing componeryin the
plane yields a unique ground state, which, depending on the boundary conditions, is eiidueti)&imk, or an
(ant)droplet state. For such fields, i.agtaligned with thez axis, excitations always have a gap and we obtain
a rigorous lower bound for that gap.
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[. INTRODUCTION local stability, no matter what boundary conditions are
considered?? In the last reference it was also proved that
The quantum spifp-HeisenbergXXZ chain has been the theXXXchain does not have domain-wall ground states that
focus of intensive studies in recent years. The spin-1/2 chai@re stable in the infinite-volume limit.
by itself has connections with a surprising variety of inter- There is an obvious need for a clear understanding of
esting mathematical structures, such as quantum groupsgXcitations near magnetic interfaces in order to develop more
vertex algebra$,and fundamental problems in combina- accurate models of electron scattering at such interfaces. It
torics>* to name just a few. Of course, the interest in thehas been noted, however, that pinning of interfaces by impu-
XXZ model is not limited to mathematics. In 1995, Alcaraz, fities may have to be taken into account as Weflere, we
Salinas, and Wreszinskand, independently, Gottstein and study theXXZchain perturbed at one site by a magnetic field
Werner® discovered that, with suitable boundary terms, theas a caricature model for a pinned domain wall. Admittedly,
ferromagneticXXZ chain possesses a family of kink ground the one-dimensional nature of the model restricts its direct
states which describe a domain wall of finite thickn@éhsse  applicability to experimental situations. We will see, how-
domain walls are exponentially localized, with a width de-ever, that the low-lying spectrum of this model of pinned
pending on the anisotropy parametkyr which diverges as interfaces exhibits a number of interesting features that we
A|1). Moreover, it was shown in Ref. 5 that similar statesexpect will carry over,mutatis mutandisto the two- and
exist for the spink model for arbitraryj and in all dimen- three-dimensional case.
sions. Let us now define the model precisely and briefly sum-
From the physical point of view, the discovery of giant marize our main results. The spin-XXZ Hamiltonian
magnetoresistance and its connection with transport propewithout boundary terms and with anisotropy parameterl
ties in the presense of magnetic domain walls has alsés defined on the finite chain labeled by the integers fiom
spurred renewed interest in the microscopic description ofo b by
domain walls’~*® Of particular relevance are low-lying ex-
citations associated with them. Koma and Nachtergaele dis- 1 ., 50 5
covered that, although thé€XZ model has a gap in its spec- Ho= _Za Z(SXSXHJ“SXSXHHSiSiH_J 1, @
trum above the ftrivial translation invariant ground states,
gapless excitations exist associated with diagonal domaiwhere the copies of the spin operators at position
walls (11,111, . . ) in two or more dimension¥.The scaling  x,St,S?,S? satisfy the usual commutation relations:
behavior of these excitations was recently determined in
Refs. 18—20. [SE,Sf=ieF7g]. @)
It is interesting to note that the kink and antikink ground
states were discovered by a careful study of XxZ chain ~ The anisotropyA>1 has been put in front of theX part so
with the special boundary conditions that make the spin-1/2hat we can easily take the Ising limit—. Unless other-
model SY(2) symmetric. Although this quantum group Wise stated, we set=1. V\ie SonS|der the perturbation Hf,
symmetry is destroyed fgr>1/2 ord>1, interface ground obtained by adding a ter@-S, , i.e., a magnetic field at the
states exist in general. In one dimension it has been provesitey. As a way to impose boundary conditions, we also add
rigorously that no other ground states exist, in the sense ahagnetic fields in the direction at the boundary spins. First,
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Energy XXZchain(cf. Ref. 23, is that one only needs to study finite
chain Hamiltonians with very simple BC’s. This remains true
e if we add a bounded perturbation with finite support to the

Hamiltonian, e.g., a magnetic field at one site. These simple
BC's are fields in the direction with either equal or opposite
sign which we will introduce shortly.

e, The HamiltonianH, defined in Eq(1), is non-negative,

and the two translation invariant all spin-up/down states are

the ground states dfl,. It will be convenient to separate

them by adding the equal-sign boundary fielm(§’1+ i),

with

B, B

A=A(A)={1-A"2 3

FIG. 1. Ground-state energdyhick line) in a magnetic field in and define thelroplet and antidropletHamiltonian

the z direction and(++) or (——) BC. The dotted lines indicate

droplet states which describe excitations except at one value of the tt gy 3, 3 o:
field strengthB, given in Proposition 11.4. Also see Fig. 6. Ho " =Ho—JA(S+$-2]D), )
consider boundary fields in the negatizelirection at both Ho =Ho+jA(S3+S+2j1).

ends, which we will refer to ag++) boundary conditions i . h lized th d-stat
(BC’s), indicating that they favor the spins at the ends to" O convenience we have normaiized the ground-state en-

point in the positivez direction. ergy to 0. By reflecting_ al@_ into —.§ the two Hamiltonians

If the perturbation at the interior sitehas a component H*" andH™ " are unitarily equivalent and we only study
orthogonal to the direction, we find that the ground state is Ho "
unique and describestroplet statei.e., the magnetization is Additional ground states emerge when we add opposite-
reduced from its maximum possible value in some neighborsign boundary terms. It turns out that precisely for the fields
hood ofy. Strictly speaking, the magnetization is reducedijA(Sﬁ—ﬁ) one discovers the full set of new ground
everywhere in the chain, but by an amount that decays exstates. Therefore we define tlikénk and antikink Hamil-

ponentially fast away frony. tonian,
However, when the field is in thedirection, then there is
a critical valueB, such that foB<B., the all spin-up state Hy “=Ho—jA(S-S)), 5
is the ground state. AB=B,., there are infinitely many
ground states which are droplet states describing domains of Ho "=Ho+jA(Si—S)). (6)

ngganve magnetl_zgnon of afb.'”a'fy size embedded In an enAgain by spin reflection, the kink and antikink Hamiltonians
vironment of positive magnetization. For stronger fielBs,

>B., the magnetic field selects the all spin-down state as it&"® unitarily equivalent. Let us define
ground state. This is illustrated in Fig. 1.

1
The ground-state picture is simpler when we impose hx*xll:—K(SisiﬂJrSf(SiH)
(+—) BC's, i.e., fields in opposite directions at the boundary
spins. For boundary fields of magnitud®, and without a -S3S%,  +jP1-jA(SE - S, ), (7)

perturbation in the interior, we then have a sekink states
as the ground state, one for every possible value of th@nd

magnetizatior?:? In that case, any nonzero fieR at an in-

terior sitey selects a unique ground state Bifis parallel to 1= SXSX+1+ 5x5x+1)
thez direction the ground state is in the continuous spectrum,
and hence there are excitations of arbitrary small energy. If —§§+1+121+1A(§_§<+1)- (8)

there is a nonvanishing componentéﬂin thexy plane, the
unique ground state is separated by a gap form the rest of t
spectrum. The unique ground state is a kink state centered at
a position which we calculate. We also obtain an estimate for He ™ 2 hisq, (9)
the gap.

In Sec. Il, we define the model and find the set of ground
states. Section Il is devoted to the study of the gap in the
spin-1/2 case. Some less illuminating calculations are pre-
sented in Appendixes A—C. E Aoty - (10)

Ha terms of these interactions terms we may write

II. MODEL AND ITS GROUND STATES . . .
This will be used in Sec. lll.

The main lesson to be learned from the proof of complete- It is useful to introduce another parameter; §<1, such
ness of the list of ground states of the infinite ferromagneti¢ghatq+q~*=2A. The Hamiltonians defined in Eq&) and
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(6) in the spin-1/2 case commute with a representation ofhen’(z)=®P_,x.(z) are ground states df ~*.

SU,(2). |:30r1>1/2, the on_Iy obvious conS(_erved quantity is Now, Ietl§:(Bl,Bz,B3) be a magnetic field vector with

the totalS® component, which commutes with all the Hamil- - =

tonians defined above. (rea) parameters, an¥=B-S=B;S'+B,S?+B;S°. Then
In the following we first deal with the kink Hamiltonian the eigenvalues of are|B||- m with m=—j,—j+1, ... .

Hg ~. There is a unique ground state for each vakectoy Define

mof S3, all of which have the same energy 0. The eigenval-

uesm, of S are in{—j,—j+1,...j—1,j}, such that the H* (B)=Hg +B-S,, (16)
total S* component takes the valugs=Z=, 1pMx. The
eigenvectors ofS® are denoted byj(m,)), and we have H++(I§)=H*++I§-§y. (17)
Sl(my))y=m,|(m,)). Further, let 0
2 In the study of the spectrum ¢f*~(B) andH ™" (B), it is
W= \/ ( e ) important to distinguish two caseBZ+ B3>0 andB3+ B3

=0. The ground state in these two cases is described in
The unique ground states in the respect®fesectors are  Propositions 1.1 and 11.3, and Remarks 11.2.
called kink states which were found by Alcaraz, Salinas, and  Proposition I1.1 (Kink sector, B+B3>0). Let 1<y<h.

. -5 - -
Wreszinski They are given by Then, the ground state & " ~(B) is the statey(z) of Eq.
b , (13) with z=—[(||B]|+B3)/(B;—iB,)]q. Its energy is
‘ﬂm:{;} xll ™0™ ™w, [(my)). an - _jg|.

. i The proof is a combination of previously known results
As the ¢, are not normalized, we also definé,,

— ol [ o] The sum ovegm,} is restricted to combinations and a straightforward calculation; see Appendix A.
sucpl1 thatn21r.’nxzm. If m= ijt? is maximal/minimal, then the Remarks I1.20. The ground state df ~*(B) is the state

stateg,, is the all spin-up/down state, i.e., the magnetization#(Z) of Eq. (15) with 2= —[([|B[|—B3)/(B,+iB,)]g’. This

profile in the z direction, <¢m|§|¢m>: +j. Both from a follows by a rotation by the angler with respect to thex

physical and mathematical point of view, the infinite chainaxis.

limit is the most interesting case. Clearly, more care has to be 1. For simplicity, let us assume tha§+ B%zl. If Bs

taken when using an infinite volume Hamiltonian. The natu-=0, then the ground statejz=— (B, +iB,) ”], is a kink
ral tool is the Gel'fand-Naimark-Segal representation. In oufstate (exponentially localized at the magnetic field at

case here, there are folnitarily) inequivalent representa- among the spanning set of ground statés), the perturba-
tions on Hilbert spaces, which are also calsttors These ;0 picks the one which is most localizedyatlf By 0, the

are the(anti)kink sectorgontaining the infinite-voluméan- e .
ti)kink ground states, and th@nti)droplet sectorswith the extra term83§ has the effect of shifting the kink fromy by

all spin{downup ground state. As mentioned above, for thethe distancelogy(y1+B3+By)| to the left if B3>0, and to
infinite-volume limit it is sufficient to study the effect of the the right(by the same distangé B;<0.
perturbation for the finite chain Hamiltoniansi; © and 2. The proof also shows that the stajgz) with z=
Hg ~ . For more details, we refer to Ref. 23. +[(IB||+B3)/(B;—iB,)]q” is an eigenstate oH™ ~(B)
For our purposes it will be very convenient to define thewith energy+ j||B|. We see thigit is obviously linear if the
states field is in thex or y direction only; see Fig. 2branch as-
cending fromB5|/2 in Figs. 2 and 3. In Fig. 4 it has too high
Y(z)=C ; 20 My (12 an energy to be among the plotted lowest eigenvalues.
m/<jb 3. Of special interest is the second-lowest eigenvalue, in
whereC is a normalization constant. They are product statesparticular, whether there is a gap uniformly in the number of
ie., sitesb, and how it depends oB and the anisotro%&This
_ b will be treated in Sec. lll. We can extend a methodhich
. Y(2)=8x=1X(2), (13 was first applied to prove a gap fétg ~ .
with 4. We discuss now qualitatively the low-energy spectrum,
j and assume for simplicity thgt=1/2 andB,=0. It was
Yx(2)=(1+]2]2972)T Y (zg I ™w,, [(my)). proven in Ref. 23 that the gap above th¢ 1 ground states
me=—] X of the unperturbed Hamiltoniang‘ is equal to 1
(14 _cosg/b)A~2, which tends to + A1 in the infinite chain
The same construction can be carried through for the antiimit.
kink Hamiltonian. We denote the corresponding states for the If B;=0, then there arb eigenvaluegrecall thatb is the
antikink Hamiltonian by?/;(z)_ If we let length of the chaipof H* ~(B,0,0) descending from 0. This
j can be see+n as followls. We introduce the functh(B)
~ _ 2 oy i xj—m =X(-»0lH"(B,0,0)—3B1] counting the number of non-
xd(2)=(1+[z]"9") sz,j (zq™)’ Xmel(_mX)>’ pos(itivé ]eigenvalues; herg .. o) is the characteristic func-

X

(15)  tion of (—,0]. N(B) is monotonically increasing, and equal
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N FIG. 2. Energy of the lowest 16 eigenvalues
for the spin-1/2 kink Hamiltonian for the field
(B,0,0) on a chain of 13 sites ant=2.25. No-

|
|
|
|
|
|
|
|
w-2f ! .
B ! tice the ground-state energgtraight line down-
I wards from 0, the gap to the second eigenvalue,
: the energys|B|, and the energy A~ 1—|B|/2
-3f | . of Ye.
|
|
|
|
—4r ! i
|
|
|
_5 1 1 1 1 L
s 0 2 4 6 85
B

to b+1 for |B|<1—A~1+O(b~1); this is guaranteed by H' (B,0,0) have to accumulate at some value between

the gap above the ground states. In item 6 below we calcu= |B| and 1-A~*—3|B|; see Fig. 2, and in cas8;+0,

late the lowest energy statk, descending from + A~ at  see Figs. 3 and 4.

B=0 with energy equal to +A~1—3|B| [up to O(b~})]. 5. If B3#0, then there appear to lbe-y+1 eigenvalues

This state is “parallel” to the ground-state energy and inter-descending from-|B;|/2; b—y+1 is the number of kinks

sects with the state in item 2 #8|=1—cos@/b)A™!; see to the left ofy; see Fig. 3. The next eigenvalues depend on

Fig. 2. Bs. If |[B3|<1—A"1, then the next lowest eigenvalues de-
We can say more about the average of these lowest scend from—|Bj|/2. If |Bs|>1—A"1, then the state/, ap-

+ 1 eigenvalues by recalling the min-max principle, namelypears to be the next lowest in energy; see Fig. 4.

that their average is a concave functionBnBy symmetry 6. We can calculate the state mentioned in the previous

(B— —B) its (left and righ} derivative is always negative two items. Letzpe:EQ: 13,S, | 1) be the first excited state of

and less than 1/2. Since the average is B-a0 it continues H, ~ in the one-overturned spin sector. The coefficiemts

to be negative. In the infinite volume limit there is an infinite are a solution to the discrete Laplace equatisge Ref. 22,

number of ground states dfl; , and eigenvalues for or cf. Appendix C by setting3=0). The energy ofy, is

FIG. 3. Energy of the lowest 16 eigenvalues
for the spin-1/2 kink Hamiltonian for the field
(B,0,A/6) on a chain of 13 sites ank=2.25; the
. z component,B;=A/6=1—A"1/6 is chosen
small compared to the gap1A~ of Hj ~ . No-
tice the ground-state energy, the gap above it, and
. the branches descending fromBj/2, and 1
—A1-By/2.

-5
-15
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FIG. 4. Energy of the lowest 20 eigenvalues
. for the spin-1/2 kink Hamiltonian with the field
(B,0,3) on a chain of 13 sites ank=2.25; the
field in the z direction is chosen large compared
to 1—A~1. Notice that the branches stemming
from B3/2 are too high in energy to be plotted
here. We see the ground-state energy, the gap
above it, and the energy ofy, descending
from 1-A"1—B,/2. In between there are
b—y+1=6 states bending downwards from

. —By/2=—1.5.
-5 1 1 1 1
-15 2 4 6 85
B
equal to the gap 2 A1+ O(b~1). Now, define Proposition 11.3 (Kink sector, B+ B5=0). The bottom of
the spectrum oH ™ ~(0,0B) is equal to—j|B|, which is part
b b of the continuous spectrum. Excitations above the ground
— — _ — tate are gapless.
Ve(2)= 2, 2'(Sq) o= 2, aS #(2). S 3

¢ n=0 & S Now we consider the Hamiltonidd ™ *(B). It is useful to

decompose this as a sum of a kink and antikink Hamiltonian
By choosingz as in Proposition 1.1, we obtain the (b=3):

equation . . _ _
Hive +2IA(=J 1+ S) =H{yy +H by
_ 1 . and thus
H* B = 1-471- 1Bl | wz) 0,
5 81 B2 Bj

In Fig. 2, this is the straight line parallel to the ground-
state energy. H (_ B, Bs
Next, we consider the kink sector and magnetic fields of ybll 2722
the formB;=B,=0B=B3;#0. Let B>0. Then, as, the ) ) _
size of the system increases, the ground state tends to the ¥fe start with the casBf+B3>0. As in the kink sector we
spin-down staté|). This vector is no longer in the infinite- Wil find a unique ground state. Let
volume kink sector very much as** is not a genuindi.e., . )
normalizablg eigenvector of the Laplacian on the real Iine. _ I(B1,B2,B3— 2jA)[ + B3~ 2]A
In other words||) is part of the continuous spectrum. So let B,—iB;
S o hen according (0 Proosiion I, (2) is the e
(4, H*~(0,0B), ) converges to—jB asn— —s. Since ground state oH[1y (B1/2,B,/2,B,/12—jA), while the anti-
the spectrum is closed andjB is the least possible eigen- klnk state Yy ,1(2) is the corresponding ground state of
value it has to be the ground-state energy. Therefore in thEl(y, b (B1/2,B,/2B3/2—jA). They are both product states
infinite chain limit, — jB is contained in the continuous spec- which happen to satisfy,(z)=(— 1)2JXy(Z) because
trum, and is hence nonisolated. We conjecture that there is no
other continuous spectrum close-td|B|, and thus—j|B| is 1 . 5 _ ]
purely an accumulation point of eigenvectors. We do not E[BlSerBZSy+(BB_21A)§‘y]Xy(Z)
give a proof of this here. Similarily, B<0, then the bottom
of the spectrum i§B and there is no gap above the ground
state, which is obviously the all spin-up state. We illustrate
the low-energy spectrum in Fig. 5. Let us collect our results 5
in the following proposition. Wherexf;(z) stands for eithe,(z) or x,(2). Thus

qy

j .
== 5[(B1.B2.B3=2jA)[xy(2),
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Amplified low energy spectrum of H*~(0,0,B

<~

06k —_ == = =
2 — ======== "
- —_ - = = — FIG. 5. Low-energy spectrum in the spin-1/2
- —= = - — — kink sector for the field0,0,1.5 on a chain of 11
w _ —_— - — sites withA=2.25. The high-energy spectrum is
_o2l - — similar to Fig. 7 and will not be reprinted.is the
total z component.
-06f

-1 1 1 1 1 1 1 1 1 1 1 1 1

w(g):®§:1XX(Z)®®g:y+l;x(~z) £_(B)=1-JA ?+B?+3|B|, see Eq.(C3); its (infinite-
. volume derivation is given in Appendix C. The third-lowest
is the unique ground state ofig "(B) with energy  eigenvector is in the sector with two overturned spins, and so

—ill(B1,B2,B3—2jA)[+2j%A. on. The lowest eigenvalues with respect to the t8fatom-
Similar to the kinksector, the vector ponent accumulate at the life—B/2. They all meet at the
~ critical value A, where the ground state becomes infinitely
Y1 X(—2) @ O3y 1 xXx(—2) degenerate. Assuming that this ordering holds true, we con-
is another eigenstate with energyi(B;,B,,Bs—2jA)|  Jecture that ﬂfe gap for spin 1/2 anB<A equals 1
+2jA, —JA~“+B“+3(|B|—B), which converges to 41/2A for

Finally, we come to the casB;=B,=0B=B,. When large —B, and vanishes &=A. _ _
B=0, it was proven in Ref. 25 that for spin 1/2 and in the ~For B>A/(2j), the all spin-down state is the unique
infinite-volume limit 1~ A~ is the gap above the ground ground state with energf/(2j)—jB, which is part of the
state. It can also be shown that there exists adfap higher ~ continuous spectrum; in fach/(2j)—jB is purely an accu-
spins although no precise estimates are known. This impliegulation point of eigenvectors. It seems thatBor A/2j the
that uniformly in the size of the lattice, that the all spin-up eigenvalues are also ordered according to their totadm-
vector is the unique ground state Bk B.= 6/(2]), where  ponentn, but this time in the opposite way, i.e., lowar
8 is the(strictly positive gap ofHg *. As we mentioned in means lower energy, and clearly the lowest is the all spin-
the Introduction, the valuB=A/(2]j) is very particular and down state. Similar to the kink sector, we will not prove here
interesting. It has been analyZ&dn the context of droplet that the rest of the continuous spectrum is separated from the
states for spin 1/2 but again the method extends to geperalground state.

In fact, the set of ground states is infinitely degeneat¢he The situation is illustrated in Figs. 6—8 fp= 1/2, cf. also
infinite volume and consists of pairs of symmetric kink- Figure 1. Let us summarize our results in the following
antikink states(i.e., droplety, all of which have the same proposition:

energy jA. The magnetization profile in the direction is Proposition 11.4 (Droplet sector)The ground state of the
syr_nmetrlc with respect to the center of the f|¢|dyaEXC|- _droplet Hamiltonian,H++(l§), on a chain of lengttb=3
tations are gapless because large droplets which are antisym- T i

metric with respect toy come arbitrarily close in energy depends on the magnetic fielilin the following way:

to jA. 1. If B§+ B§>0, then the ground state is unique. The

Since the ground-state energy is concave, and since fdround-state energy is j||(B1,B,,B3— 2jA)| +2jA.

B=0 andB=A/2j, the all spin-up vector is a ground state, 2. If By=B,=0B=B3;, and B.=A/(2j), then for B
we conclude that for aB<A/(2j), the all spin-up vector is <B the unique ground state dfi**(0,0B) is the all
the unique ground state. Numerical experiments for spin 1/3pin-up vector with energjB. For B=B, the ground states
indicate that in the regioB<A the eigenvalues are ordered are droplet states which ai@ the thermodynamic limjt
by their totalS® value such that the second-lowest eigenstaténfinitely degenerate with energyA. In infinite volume, ex-
is in the sector with one overturned spin, and has energgitations above these ground states are gaplessBB@.,
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|
|
|
| .
|
|
|
A2
| .
|
I FIG. 6. The five lowest eigenvalues in the
- : spin-1/2 droplet sector for a chain of 13 sites with
w | magnetic field (0,8) and A=2.25. The eigen-
0 | values are numbered hy, the number of over-
I turned spins; e.g.n=0 means the all spin-up
: state.
|
04} | 7
n=0 :
|
|
|
08+ 1 T
' |
-2 ° A(8) 16

B

the all spin-down state is the unique ground state, which is@N ,Ci=[1b], and such that two intervals have at most one
an accumulation pOInt of e|genvect0r5 Hence excitations ar%tnce p0|nt in common. Lehc 0 be Somd|oca|) Hamil-

gapless. tonians acting ort2/¢l, and define
lll. ESTIMATE FOR THE SPECTRAL GAP
IN THE CASE j=1/2 H[m:% he.. (19
Here we prove a uniform lower bound on the difference
between the ground-state energy and the energy of the fwﬁ Lb] aCts ONHy=® 1\(:2_ We assume that ket #{0}.

excited state for the spin-1/2 Hamiltoniais},)(B) and Let vi denote the gap dic, i.e., the smallest nonzero eigen-
H[l b](B) on a finite chairf 1,b] with the impurity field aty. value ofhc It is clear that

Before we prove these gap inequalities we introduce the
methods which were invented in Refs. 24 and 27. Get N
=0,...N be a sequence of connected intervals with kerHpy b= Ni=okerh,. (20)

Spectrum of H**(0,0,B) for L = 13, B=1.5A
30

251

20} — EBEE E =
= =
— ] ] —
_ = | . = FIG. 7. Here, we plot the full spectrum of the
§ = = i spin-1/2 droplet Hamiltoniam * *(0,0,1.57) for
S or = | B 13 sites, and\=2.25. The index is the number
o . . of overturned spins. The ground state is the all
= = spin-down state, i.en=13.
10f = = I
=B
— —
— || —
5 — | — -
_ E == .| -
o 1 - ; ; ; ; z : i : e )
o 1 2 3 4 5 6 7 8 9 10 11 12 13 14
n
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Amplified low energy spectrum of H**(0,0,B)

15—

FIG. 8. Here, we amplify the low-energy

spectrum for the same Hamiltonian as in Fig. 7.

—_ - At n=13 we have indicated the ground state.
05} - - — Clearly, one sees monotonicity of energyrvs

2E/A(8)
|
({11
11
Il
I

Let AC[1,b], then we definegs, to be the orthogonal pro- Further, we assume that the gaps, for the local Hamilto-

jection onto the nians are bounded from below, i.e;=vy>0.
The conditions (24) and (25 are equivalent due to
ker >, he. (21 G, ,Ei=Gq,,Gn =Cay. - _ .
i:cca Now we are ready to state the main theorem which we

. . apply in all three case below.
We use the convention that G A for anyi, then we set “haqrem 1112 (Nachtergaeld). With the above defini-

G, =1. From these definitions we derive the following prop- tions and under the assumptions in E2f) let ¢ be orthogo-

erties:
1.G,Gy =G, G,=G, if ACA’. nal to the ground states &fj; ;). Then
2.G2Gr =Gy Gy I ANAT=0. (. Hpe )= 71— 2)2 2, (26

3.he=v(1-G¢). _ . -
Next we define the intervald;=U;;C;, and operators €., the gap in the spectrum &i;,; above 0 is at least

E;,i=0, on’H, by y(1-2¢)%
Proof. Let ¢ be orthogonal to the ground state, i.e.,
1-Gy, for i=0 Gp ¥#=0. Then,[[¢]*= o<l Entl|*.
. 2 =
E={ Gy ~Gy_, for 1=i<N. (22) | We est.|mateH Eny[” in terms of(,H (B) ) as follows.
' ' First notice, that form=sn—-2, or m=n+1, E,G,
G[l,b] for i=N :

=G Em. Now we insertGCn and the resolution of identity,
These operators are mutually commuting projections addingE,}, and we get
up tol,i.e.,
N |Entll?=(,(1- G JEn)+| 2 EnGe Enth
E*=E,, EE=5E, > E=1 23) o=m=N
i T i =] Cijis = i
I :(¢a(1_GCn)En¢)+((En—l+En)‘//aGCnEn¢)-
The key assumption in order to deduce a gapHery,; from (27)
the gaps oh, is the following assumption:

Assumption IIl.1 There exists a positive constansuch
that O<se<1W2 and

Letcq,c,>0, then

1 ¢
Endl?< — (4,(1-G +—(¢,E
EiGCi+lEi$62Ei , 0$|$N—1, (24) || n(/f” ch(l/l ( Cn)(ﬂ) 2 (lﬂ n(//)
ivalentl 1 C 5
or equivalently b5 (G Eat) 2 (i (B 1+ En)2),
2 n
||Gci+1Ei||$E' O<isN-1. (25) (28)

064429-8
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where we used the inequality

1 (o]
R e A = P &

in both terms of Eq(27). Let y=min{y.} be the minimum
of the gaps of the Hamiltoniar‘rsci.

The first term on the right-hand side of E@8) is less
than 1/(201y)(z/;,hcn¢f). Now, assuming the key estimate,

G¢ Enll<e, we see that

€ ) , 1
|2 i Il By 1t EuiE= (e )

We sum oven using||#|?>= = o= n<nl Ent]|? from above and
get

€2 1
2—cr- C—Z—zcz)w||2—c2||¢||2<5<w,Hm ».

Finally, we optimize the constants;,c, yielding c;=1
—€2,C,= €/\/2. This proves the gap inequality.

In all the upcoming proofs on the various gaps we use the

same definition of subsets,,A, of [1,b] and projections

G, ,E,. As usualy e[1,b] denotes the spot of the magnetic

field. Let n;,n, be some non-negative integers such that
+n,=1, and assume that >0; the choice oh,,n, in gen-
eral will depend om\ and B. The idea behind the definition
of C, is that we cover the chairl,b] by adding points to an
initially chosen intervaly=[y—n,,y+n,] in an alternating
manner. First we add a point to the right@jf then to the left

until we reach the point 1. Then we add points only to the

right of Cay—n,-1) until we finish atb. More precisely, we

define the set€,, in the following way:

Definition 111.3 Let Co=[y—n,;,y+n,], where we may
assume thay—n,—1<b—y—n, such thatC,C[1b]. The
intervals forn>0 are then

Ci=[y+n,,y+n,+1],C,
=ly—-nm=1y-nl, ... Coy—n-1)
=[1,2],Ca¢y—n)-1
=[2y+n,—n—-12+n,—n], ... 'Cb—(n|+nr)—1
=[b-1b].

We start with the kink case.
Proposition 111.4 (Kink sector, %4— B§>0). Let ¢ be or-

thogonal to the ground state of the kink Hamiltonian,

H[*lj,](é), on a chain of lengtlh. Then, there exists a strictly
positive function g*‘(é,A) and a function &e(é,A)
<1/\/2, which are both independent bf such that the fol-
lowing gap inequality is satisfied:

(W H 5 (B))=g" ~(B,A)[1-\2e(B,A) 1% 4. 9

PHYSICAL REVIEW B 66, 064429 (2002

Proof. First we shift the ground-state energy to be 0, and
define the new Hamiltonian

N |-
H[l,b](B)_H[l,b](B)_Tl-

With the setup from Definition(lll.3) we can write the
Hamiltonian,H[lvb](ﬁ), in the following form:

b—(n+n;)—-1

H[l,b](é): 2 he
1=0

i
using

HCO(E§) for i=0
o=

hyo, for i>0

whereC,=[x,x+ 1] for some k=x<y—n, ory+n,<x<b,
and withh; - ; from Eq. (7).
We can express the gap conditions as
1.H, (B)=gy}, (B,A)(1-Gy), wheregy ~(B,A) is the
gap for the finite chain Hamiltoniart Xo’(é).
2.0 1=1— Gpyxr 1) fOor 1sx<y—n; andy+n,<x<b.
Let y= min{gXo_(ﬁ,A),l} which is strictly positive. Fi-

nally, we need to verify the second condition in Assumption
I11.1, and define

I1Ge ¥
anzsup),él//EHAnJrl:En,//:l//W. (30)

So lety satisfy

Gnyp=¢ and Gp14=0. (32)

First, letn=2m,0=sm=<y—n,—1; the casen=2(y—n)) is
similar, and the case of oddsin<2(y—n;) will be consid-
ered later.

Let ¢ be a ground state oA, i.e., G = such that

G, +1¢=0. Then with the definition from Eq14)

_ o ytn+m 1
lﬂ_®i:yinl_mXi(Z)®Xy—nr+m+1(Z)-

where x; (2) is perpendicular toy,(z). Let us make some
definitions and call

f:=—[(|B|+B3)/(B1—iB,)],x
::Xy+nr+m(z):|T>+fq_nr_m|l>v)(l

’=Xy+nr+m(z):fqinrimil”>_|i>1

and

(A+g®)MEy=qlT)—|L1).

Then,

064429-9
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[
loI?

e ExexHI?

Ix® X2

g% L1+|f|2g-20emeD)
_l+q2 1+]|f[2q~20m

Letm=0, then we choose, such that right-hand side is less
than 1/2. The condition fo€,< 1/1/2 is thus|f|q ">1. By
monotonicity it is clear that the conditiorG,_,m<1/v2,
holds true form=0.

Now we come to odd integersi=2m+1 with O=m

<y—n,—1. Let ¢ satisfyG, =, andG,,. 14=0, theny
is of the form z/xzxi,nl,m,l(z)®®ly+y" ;"lmx,(z). We

have thus

IGe ,wil?

ldl?

Letm=0, then we choose, such that right-hand side is less
than 1/2. This is accomplished if4|f|q". By monotonicity,
Ch_oms1<1/\2 for m=0. Our condition for the choice of
n;,n, is thus

1 1+|f|2q2(n|+m+l)
- 1+q? 1+]|f|2g2m+m :

|B]+Bs
Bl_iB2

-n

Remark 1.5 It is clear that there always exist integars
andn, such that > |f|q™ and 1<|f|q~"r are satisfied. Now
suppose tha<|[(||B]|+Bs)/(B;—iB,)]|<1, then we may
choose nj=0 and n,=1. In this case, g* (B,A)
—gg‘(l§ A) is found explicitly in Appendix B, see Eq.
(B1). If B3=0, then one needs to choosg=n,=1 and
diagonalize a three-site Hamiltonian which we will not do
here.

Proposition 111.6 (Droplet sector). B+B3>0. Let ¢ be

orthogonal to the ground state of the droplet Hamiltonian,

H[*lj,](é), on a chain of length. Then, there exists a strictly
positive function g“(é,A) and a positive function 0

<e€(B,A)<1/\/2, which are both independent ofsuch that
the following gap inequality is satisfied:

(W Hi L (B)w)=g" " (B,A)[1- ﬁe(é,mzllwnz.( )
32

Proof. First, we need to shift the ground-state energy, an
define a new Hamiltonian,

- 1
Him(B)= [1b](B)+ ||(B1 B2,Bs— A)”__A

Using the sets from Definitioflll.3) we have the decompo-
sition

b—(n+n;)—-1

>

Hpwp (B)= he,

with

PHYSICAL REVIEW B6, 064429 (2002

Hco(é) fori=0

hci = h;x:-l
-+
Xx+1

dependlng on whethé; is to the left(right) of y. h;,, ; and

h,,;, are taken from Eq(7), respectively, Eq(8). We have

the following gap properties:

1. Hy,(B)=0¢"(B,A)(1-Gy), whereg; *
gap for the Hamiltonianki ¢ (B).

2. Xx+1 =1-Gpxxr1] for Isx<y-—n,.

3. hyi,=1— Gixx+1] for y+n,=x<b.

We are left with verifying the key estimat®5). So let
0+ ¢ satisfy G,,¢y= ¢ such thatG, ,,¢=0. If the interval
C, .1 is to the left ofy then we have the same situation as in
the previous proof with the condition>1|f|q™ with the
slightly modified f=[(||(B;,B,,B3—A)|+B3;—A)/(B;
—iBy)].

If the intervalC, . ; is to the right ofy, then we will arrive
at the same condition fam, . This is true by symmetry but
one can easily derive this in the very same way we did in the
other case.

Remark 1lIl.7 The same remarks are in order here
for the droplet Hamiltonian. So let us suppose that

||(B]JBZ1BS_A)||+ B3_A| <1
B,—iB, |

then we choos@,=0 andn,=1. In this caseg® *(B,A)
=g *(B,A) is explicitly calculated in Appendix B, see Eq.
(B2).

Proposition 111.8 (Droplet sector).Let B;=B,=0, and
B<A. Let ¢ be orthogonal to the all spin-up ground state of
the droplet Ham|lt0n|anH 1b](0 0B), on a chain of length
b=3, and letg; (B,A) be the gap for the three-site Hamil-
tonian from Eq.(B6). Then,

1
(&, H[lb](B)lp)?Zg;(BiA)(E_ \ = o ) 1.

(33

Proof. Again, we need to shift the ground-state energy,
and define a new Hamiltonian,

for somex: 1=x<y-—n,

for somex: y+n,<x<b,

(B) is the

Hi1.0)(B)=H1;(0,0B)— 51

(f\s before, we use the same decompositiopfy;(B) into

ocal Hamiltonianshci. The first gap condition of, has to
be changed into

H,,(B)=0( (B,A)(1-Gy).
We only need to compute
IGe, ¥l
A
So let us take dnonzer9 vector ¢ such thatG,#= ¢ and

Gnh+19=0. If C,,4 is to the left ofy, then y=|])®|1---T),
andGg =1—|£)(¢|. Then

Coi=SUR L yer,

064429-10
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G 2 1 1
” C”i| = L 5 Eann+1(1_B%)"'Epnflwnfl(l'*'Bs)z_nB3Wn(1+B3)
ll*  1+q
=jwp(1+Bj).
which is less than 1/2, and (1y2€)2=2(1/2 IWn(1+85)
—Jal(g+q )2 By a straightforward calculation one verifies that
By symmetry this is also the condition @, ; is to the 1 1
right of y. More precisely, y=|1---1)®|]), and G, =1 §inn+1+§Pn71Wn71=iWn,

—[2)(Z| with (1+a?)M)=alL1)—[11]).

By choosing Cp=[y—1y+1], we have verified the —(j+mw
statement. The three-site gag (B,A) is calculated in P-1Wn-1=(] n
Appendix B. 1 1

_EPanJrl"'EPnlenfl:an-
ACKNOWLEDGMENTS

. _ This proves Eq(Al).
This material is based upon work supported by the Na-

tional Science Foundation under Grant No. DMS-0070774.
B.N. would like to thank the Dipartimento de Matematica of
the Universitade Bologna, where this work was initiated, for
warm hospitality. We are indebted to Daniel Ueltschi for a 1.H} 7 (B)

very thorough reading of the manuscript and the figure in the i ) . .
introduction. W.S. wants to thank Shannon Starr for provid- Here we diagonalize the two-site Hamiltoniath;, (B),
ing the MATLAB program§6 with which many of the propo- with magnetic field not paraHEI to theaxis aty= 1. By the

APPENDIX B: EXPLICIT DIAGONALIZATIONS
OF SMALL-SITE SPIN-1/2 HAMILTONIANS

sitions in this paper were tested. XX symmetry we may assumB,=0. Since we already
know two eigenvalues, namely;%\/Bler B32, it is best to
APPENDIX A: PROOF OF PROPOSITION 1.1 factor them out from the characteristic equation. Another

way is to diagonalize the Hamiltonian restricted to the or-
Proof. First, it is clear that the bounded perturbatign thogonal complement of the two known eigenvectors. The

=B-S, can shift the ground-state energy Bfj ~ by no  Hamiltonian is of the form

more than its normj|B||. We claim, and show below, that B, 0 B, 0
the product state/(z= —[(||B|| + B3)/(B;—iB,)] q"), which 0 1-A+B Al 5
is a ground state oH; ~, is a also a ground state &f. 2H[+15](31 By) = L 8 1
Therefore we have found a ground statd—kﬁ‘(é). That it ' B, —A 1+A-Bs 0
is the unique ground state follows by combining two facts: 0 B, 0 —B;

(i) ¥(2) is the unique kink state with this property, which we

will show, and(ii) the vectorsy(z), for arbitrary complex, The characteristic polynomial is equal to

span the full ground-state spacekd§ ~®??and there is gap p(t)= (12— B2)(12— 2t + 2AB,— 2B2— B)
to the rest of the spectrufi?® So, it only remains to prove 3 s
that among all vectorgi(z), there is a unique one that is a +ZB§(t—ABg)+B‘l‘.

ground state and that the corresponding valueisfas stated . , ) 5 02 o2
in the proposition. We divide this polynomial by“—B{— B3 (note that we have

Since (2) is of product form, andv acts nontrivially ~Multiplied the Hamiltonian by Pobtaining
only at sitey, we are left to show that p(t) = (12— 2t — B2~ B2+ 2B,A) (12— B2~ B2).

B-S,x,(2)=—jllBl x,(2). (A1)  The two eigenvalues we are looking for are thus

Without loss of generality, we may assume tij&]=1. t.=1+1+B2+B5—2B;A.
Then, zq Y= —[(1+B3)/(B;—iB,)]. Now, checking all

2j+1 vector components in EGA1) we obtain One can easily verify that

1 JBZ+BZ=1—\1+B2+BI-2B,A.
A i -yyj—n-1 —yyj—n
2pn(Bl+IBZ)WnH(Zq ) +nBaWn(2a ™) Hence the gap between the Ilowest eigenvalues of
H(12(B1.B,,Bj) is equal to

foa 11— 1
92 (B):E_E 1+(8] —253A+§HBH, (B1)
with p,=j(j +1)—n—n?, and for|n|<j. This leads to the

following equation: which is a positive function.

1 . il . i
+§Pn—1(B1_|Bz)Wn—1(Zq NIZMH = jw,(zg V)",

064429-11
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2. H{,%(B),Bi+B3>0

PHYSICAL REVIEW B6, 064429 (2002

v6=(1,0®(0,)®(1,0),

The diagonalization of the two-site droplet Hamiltonian,

H[+12+](I§), with the field aty=1 is very similar to the two-site

kink Hamiltonian. We have
2H/1;(B1,B3) — Al

Bs—A 0 B, 0

0 1+B; —-A"! B;

B, -—-A1! 1-B; 0

0 B, 0

The characteristic polynomiaj of the right-hand side is

equal to

q(t)=(t2— (B3~ A)})(t?—2t—2B2— B3+ A?)

—2B3(t—A?)+B].

t== \/le+(B3—A)2 are two roots and we factor them out

from q(t), and obtain

q(t)= (2= 2t—B—B5+A?9)[t*~B]— (B3~ A?)].

The two new eigenvalues ¢1;,(B) are

1 =
te=5(1% V1+]|B|?P—A%+A).

The gap above the ground state is therefore

g; "(B.A)=5(1- V1+|B|?-A?

+\B2+B3+(B3—A)?).

=

3.H{13(0,0B),B<A

A-Bs

v7=(0,)®(1,0®(0,1),

Usziz(o,l)®(0,1)®(1,0)+ i(1,0)(22)(0,1)<§9(0,1)-

V2 V2

v1,00,03,0,4 are eigenvectors oH with eigenvaluese;
=B/2e,=A—B/2e;=3(A+1+B) and e,=3(A+1—-B),
respectively. What remains are two copies of the two-
dimensional matriXdue to the symmetrg),

—(ﬁm-l).

A+1-B

A+1+B
—(Y2a)™

The matrix N is equal toH" *(B) reduced to the span
{vs,vg}, as well as to spakv;,vg}. The eigenvalues are

1
N(B)= E

equal to
1 1 o oo
e5=e7=§ A+1— EA +B y (83)
1 1 o
8629825 A+1+ EA +B<]. (B4)
Notice that forB<B=(3AZ—4A+1)/4(1—A),
el< E5= E7< 5. (BS)

This says that the lowest energies in the t@&hkectors are
ordered(though not strictly by their energy. The gap fd
<A is equal to

1 _
1+A— EA‘2+BZ—B> for B<B

-B for B<B<A

g3 (B,A)
(B2)

Il
> NP

Since in this case there is only a magnetic field in the

direction we can easily diagonalize the three-site droplet

(B6)

Hamiltonian,H=H}3(0,0B), with the field in the middle at

y=2. ThenH commutes with the symmetr$: S(u(,1® Uy,
®U,,)=U, ®U, ®U, , Wwhereo;=*. We choose the fol-

lowing eigenbasis of
v1=(1,0®(1,0®(1,0),
v,=(0,)®(0,)®(0,1),

2 V2

N 2

1

V2

1
v5=ﬁ(1,0)®(1,0)®(0,1)+

! (1,0)@(1,0)@(0,1)—i(0,1)®(1,0)®(1,0),
1 1
(1,02(0,)®(0,1)— —(0,1)®(0,1)®(1,0),

(0,)®(1,0®(1,0),

APPENDIX C: EXCITATION &_(B)

Here we calculate the lowest eigenvalueFfB) = Ho ©
+ B(Sg— 3) in the sector with one overturned spin. Since we
want to avoid complications from finite chain boundary ef-
fects, we prefer to treat the infinite volume case with the
magnetic field at 0, say. We first talg=0.

Let y=3=,a,S,|1). Then, fory being an eigenvector of
H(B) with energy&, we have(1|S; H(B)|¢)="¢a,, and
thus we get the equations

a1=2A(1-8a,—a,_ 4, for |x|>1 (CJ

a;=2A(1-¢+B)ag—a_;. (C2)

It turns out that in addition to the pure absolutely continuous
spectrum of the discrete Laplacié@n the units here, it is the
interval [1—A~1,1+ A~ 1]) there are two(a highest and a
lowes) eigenvalue generated by the perturbatlBﬁ. Let

064429-12



FERROMAGNETIC HEISENBERGKXZCHAIN INA . ..

r.=A1-8+\VA%(1-%)2-1

be the solutions to the characteristic polynomial. Then, al

solutions of Eq.(C1) are of the forma,= ar*+ a,r * for
|x|>1. Notice thatr , =r . We now look for the solution

PHYSICAL REVIEW B 66, 064429 (2002

gap atB=0 we knovw#> that€(0)=1—A 1. Thus the correct
olution is€_(B) which, for the original Hamiltonian of in-
erest, namelH; "+ BSS, has to be shifted back /2.

Similarly, if B<0, then we studyH(B)=Hg " +B(S}

a,=r with r=r_ which produces an eigenvector. With *z) Which amounts to replacing by —B in Egs.(C1) and

this choice, we havér _|<1, we insert this into Eq(C2).
Then we get

AB=VA?%(1-8)2-1,
from which we concludé. (B)=1+ JB?+A 2. From the

The lowest energy state ¢f; *+BS; in the sector with
one overturned spin is thus

1
£ (B)=1- BZ+A’2+§|B|. (C3
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