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Model quantum magnet. 1l. Calculation of NMR line shapes
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Following an earlier lead in which we had demonstrated the role of the hyperfine interaction in both the
phase diagram and the dynamic susceptibility for a model quantum magnet such as, hildatalculate the
NMR line shape in this system. Although the nuclear quadrupolar component of the interaction is tiny com-
pared to the strength of theipolan hyperfine interaction, the former turns out to be a crucial diagnostic tool,
especially near the quantum critical point. We have carried out both a stochastic treatmentaméhitio
many-body calculation in order to have complementary insight into the algebraic expressions as well as the
computed NMR spectra. We hope our derived results will motivate NMR experiments on the quantum critical
phenomena in LiHokE
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I. INTRODUCTION 4f electrons, which then leads to a quantum “entanglement”
of nuclear and electronic spins in the background of an un-
In an earlier publicationthereafter referred to ag we  derlying quantum phase transition. One additional feature,
discussed in detail a rare-earth alloy LiHodnd argued why omnipresent in rare-earth NMR, is a quadrupolar interaction
this system, in the presence of a transverse magnetic fief@r the nuclear moments arising from the lack of sphericity
applied at right angles to the crystallin@xis, can be viewed in the distribution of the electronic charges around the
as a quantum magnétThe magnetic properties emanate nucleus.
from a dipolar interaction between the holmium moments The paper is organized as follows. In Sec. I, we describe
which, in the presence of a large uniaxial crystal field termthe representative Hamiltonian of the model magnet for the
can be truncated into a two-level Ising Hamiltonian governedstudy of NMR line shapes. The underlying mean-field theory
by long-range coupling, characteristic of dipolar systemsis formulated in Sec. Ill, whereas the line shape calculation is
Additionally, the applied magnetic field yields a term which presented in Sec. IV, with the aid of a stochastic model. In
does not commute with the Hamiltonian and, therefore, thésec. V we discuss aab initio many-body treatment which
composite system can be described by a transverse |5irﬂjOVideS justification for the stochastic method of Sec. IV.
model(TIM). The latter exhibits a quantum phase transitionFinally, Sec. VI contains the computed spectra and their
at zero temperature wherein the system transits from a ferr@nalysis.
magnetic phase to a paramagnetic phase as the strength of
the transverse field is increased. . _ o Il. HAMILTONIAN
The main feature of | was the discussion of the ubiquitous
magnetic hyperfine interaction between the Ho nuclear mo- The appropriateness of the TIM in conjunction with hy-
ment and its own electronic spin, which makes its presencperfine interactions, for describing the static and dynamic
felt especially at lower temperatures. Since it is the low-properties of the dipolar coupled LiHgFhas been discussed
temperature regime in which the quantum nature of the phase great detail in I. We represented holmium moments by
transition becomes important, it is expected that the hypersing spins making use of the fact that at the low operating
fine coupling would have a significant effect, on both thetemperatures of LiHoFwherein the system shows a perfect
static and dynamic properties. This was demonstrated in | bynean-field ferromagnetic transition at a temperature of 1.53
detailed calculations in the mean-field theory of the phas, only the two lowest crystal-field-split levels are predomi-
diagram as well as the dynamic susceptibility. Now one ofnantly occupied. Thus the dipolar interaction between the
the most versatile tools for probing the hyperfine interactiorholmium moments can be adequately described by an Ising
is nuclear magnetic resonan@MR). Since the main phys- Hamiltonian. Although the basic structure of the Hamiltonian
ics issue in LiHoR is in fact the occurrence of the quantum remains unchanged in the present context, an important dif-
critical point and the associated phase transition characteri$erence arises from the need to include the quadrupolar in-
tics, it would indeed be interesting to use NMR as a probeeraction in the Hamiltonian, especially for rare-earth alloys.
for investigating further the quantum phase transition in thiswhile the quadrupolar interaction, which is at least two or-
prototypical system. We explore this possibility by comput-ders of magnitude smaller than the corresponding dipolar
ing NMR line shapes in LiHoF; using the Ho nucleus as the hyperfine interaction, does not significantly alter the static
probe, and hoping thereby to spur new experiments in thiphase diagram and the dynamic susceptibility calculated in |,
system. The ensuing analysis is an extension of the calculdt substantially affects the NMR spectrum for the following
tional method outlined in 1. reasons. A nucleus with a spin angular momentuin a
In heavy rare-earth ions such as¥iathe dominant con- magnetic field yields (P+ 1) equally spaced values of the
tribution to the hyperfine field at the nucleus comes from themagnetic field quantum numbévl. An NMR experiment
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normally excites transitions between adjacent levels, the seng in perturbation theory a spin Hamiltonian that depends
lection rule beingAM==1. For a set of (B+1) evenly on ¢* with a prefactorQ) which is quadratic irH, .

spaced levels, there would be just a single NMR frequency,

but for the presence of quadrupolar interactions. Hence in IIl. MEAN-EIELD THEORY

rare-earth NMR, unlike most NMR, inclusion of the quadru- ] . . o ) .
polar interaction is a must. Thus a good representation of AS in I, in the mean-field approximation, the single-site
LiHoF, is the TIM with hyperfine interactions of both the Hamiltonian for Eq.(1) can be written as

dipolar and the quadrupolar variety :

Hs=Eq—(al*+H)o*—Qd%, (©)]

N N where we have substituted
HS:_i,Zzl Jija'izajz—gl aIiZUiZ _ n2 2
] Eq=Q[3(1*)"—17] (4)
N N
d
+Q2 [31)2-171-Q 2, of. o

i=1 i=1 H:J(O)<O'Z>, (5)

In Eq. (1), the interaction energy;; for the magnetic with J(0)=Z2;J;; . The partition function is given by
Pgwitzlltranr:ug?;’gnoments, recalling its origin in dipolar coupling, is Z—Tr(e Fe)=Tr o AlEq— (@l H)o?~ 00" ©)
The trace in Eq.6) is over the electronic as well as the
Jij=g’u[1-3 cod(a)1/r}, (2)  nuclear spin eigenstates. Labeling the eight nuclear eigen-
states by/M), we havel]|M)=M|M), M=—-7/2,...,7/2.
whereg is the gyromagnetic ratiqy the Bohr magneton, and Thys the partition functio can now be written as
rij ando;; are, Espectively, the magnitude and polar angle of T
the vector ¢;—r;) connecting sites andj. The angleg;; is _ Y SH)o?— 0o
distributed betvvjeen 0 and, causing the sign aJ;; to flluc- Z_M;m e PEoTr Al A, @)
tuate between positive and negative. With competing inter-
actions and the long-ranged nature of the dipolar interactionvhereEg =3Q(M?—2t). The trace now is over the eigen-
it is not obvious that the ground state is ferromagnetic. How-states of the electronic spu* alone. Using the property of
ever, it has been shown experimentally and theoretically thdPauli matrices, Eq(7) can be simplified as
the ground-state ordering, which is determined by theélattice 212
structure, is indeed ferromagnetic in the present instance. _ _ geM
The second term in Eq1) represents the hyperfine inter- Z_M;m e #Facosh gh(M)], ®
action between the nuclear sgihand the electronic spio}
of Ho®". For LiHoF,, the hyperfine coupling constaathas
been tabulated from electron paramagnetic resonéBe&® =JaM+H)?2+ 02
experiments to be 0.039 ¥’ Usually the hyperfine interac- h(M)=v(aM+H)"+ 0% ©
tion is isotropic, but because of the inherent spin anisotropy-ollowing |, the self-consistent relation for tizecomponent
along thez axis (c axis), the component of thg tensor along  of magnetizatiorm®=(¢?) is given by
this direction is at least an order of magnitude larger than the

where

transverse component. Thus the hyperfine interaction in Eq. S o sel aM+J(0)mZ) sink{ Bh(M)]
(1) can be assumed to be diagonal. The validity of this ap- ™ h(M)
proximation has been checked in I. The third term represents m’= » . (10
the interaction of the nuclear quadrupolar moment with the > e PEqcoshi gh(M)]
M

electric field gradient of the nucled$. While this term too

can pe i-sotropic, the cqmponent provides the dominant tpe phase diagram of the system in #eT plane in the

contribution for reasons just cited. In Fio the quadrupolar  resence of a dipolar hyperfine interaction was presented in

interaction is smaller than the dipolar hyperfine interaction \we nave checked that the phase diagram is negligibly al-

by two orders of magnitude, yet it has a nontrivial influenceigreq if the quadrupolar interaction term of strength 8.4

on the NMR line shapes. This is because the opem@fdn  jncluded in addition to the dipolar hyperfine interaction.

the dipolar hyperfine term can get relaxationally averaged to0 The Hamiltonian of Eq(3) describes the reversible dy-

zero due to dynamics as well as heat bath coupling. namics of the system. Since the subject of investigation is
The last term in Eq(1) induces tunneling effects by mix- NMR line shapes which are affected by the spin-spin and

ing the eigenstates corresponding to #goperator. This  gpin-lattice relaxations, it is necessary to introduce irrevers-

introduces quantum dynamics into the system, making iple effects leading to dissipative dynamics of the system. As

the prototype Hamiltonian of a quantum magnet. In the exin |, to include these effects we couple the system described
periments of Bitkoet al.”® this is realized by the application by Eq. (3) to the surrounding heat bath:

of a magnetic fieldH, perpendicular to the axis. This field
can cause an admixture of the crystal-field-split states, yield- Ho=Hs+H,+Hg, (11
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whereH, describes the interaction between the spin systenfior computing the dynamic susceptibility. In the present con-
and the heat bath. In order to obtain an appropriate expresgext, since we are interested in studying the relaxational ef-
sion for H,, it is convenient to first rotate in the angular fects in the system on theuclearspin via an NMR experi-
momentum space af about they axis (in a clockwise di- ~mMent, the appropriate quantity to calculate must involve the
rection by an angled=arctan}/H,). This is achieved by pff—d|agqnal operatot* whlch.causes resonance transitions
the rotation operator in the Hilbert space of thé spins.
. The Clauser-Blume solution faE(s) is given by
UR=e 107, (12)

where C(s)= 2, UMM AM'M|[U(8)]0|M'M),

Ho= JHZF 02 13 - (18)

In the rotated frame, the total Hamiltonian is )
where the over bar on top of the time-development operator

710:715“‘ :HI +Hg, (14) indicates an average over the “electronic” states:
while the subsystem HamiltonigHs, which is now diago- _ B
nal, is given by [0(9]a=2 Pu(v7|[U(8)]as] ), (19
v
~ al? 5 . ,
Hs= EQ_H_O(H‘T +Q0%)—Hgo” (15 p, being the Boltzmann factor associated with the electronic
state|v),

It may be noted that the transformation introduced above is
different from the one employed in |. The advantage of the
present scheme is that the NMR transition operatore-

mains unchanged by the rotation, although the hyperfine cou- o ) )

pling becomes off diagonal in the electronic system. whereag - - - ], implies a stochastic average. Now, detailed
In the following section we present a stochastic approac@lance of transitions require that for a spin-half system,

to the calculation of the resonance line shape which is physi-

cal and takes explicit cognizance of the stochastic forces in a(sﬂx)

the system. In this stochastic picture, the hyperfine coupled U_(s)= e '

nucleus-electron system is envisaged to be embedded in a 1-20%s+\)

random environment, the randomness being the result of

spin-lattice relaxational processes which make the electron- . . . .

spin feel time-fluctuating stochastic fields. Thus, followingWhere)\ is a phenomenologically introduced relaxation rate

Clauser and Blum&we imagine that the subsystem Hamil- an

tonian given by Eq(3) is subject to pulses, the distribution

of which follows a Poisson process. The strategy adopted =5 1

here is similar to the one employed in an NMR calculation in US(s+N)= VE pu(vy[[s+N=iLs] Hup), (22

proton glasse¥’ a

pV:eﬁHov[z CosmﬁHO)]711 (20)

(21)

Ls being the Liouville operator associated witls in Eq.
(15). Since the latter is diagonal among the angular momen-
The NMR line shape is given by tum states of the nucleus, because it contains tilywe can
further write

IV. RESONANCE LINE SHAPE

1 ~
Jw)=—lim ReC(s)], (16)
s——iw+o ~ G (S+N)
o _ Cl)= 2 [(M[1¥M )2 —2 . (@3
whereC(s) is the Laplace transform of the correlation func- MM’ 1-AGum(s+X)
tion defined as
iy where
C(t)=(I*(0)I*(1))eq- 17)
Here the angular brackets denote the appropriate quantum CMM,(S+)\)=(M’M|@(S+)\)|M’M). (24)

and statistical average. The quantgys related to the ap-

plied frequencyw and 6 is a small real-valued parameter

which not only ensures convergence of Laplace transforms In order to evaluaté&, . (s+\) from Eq.(24) we have
but takes into account possible instrumental broadening. W first rewrite the expression in ER2) as an integral over
would like to point out here that in I, we calculated the time and then use the definition for the exponential of a
electronic spin correlation functiof*(0)o(t)), necessary Liouville operator, thus obtaining
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éMM,(s+)\)=j dte” VY o
0 v

X (vM’[es uM ") uM e sl uM).
(25

Our next step is to employ the fact tHat is diagonal in the

PHYSICAL REVIEW B66, 064418 (2002

Pauli matricek:

exp(itg-ﬁ)zcos{ht)lﬂsin(ht)(%ﬂ. 26)

I“ representation and also use the following property of theAfter some straightforward algebra we obtain

- 1 ,
Gum(s+N)= Z[(sﬂ)—i(Eg —EQ)—i(h+h")]"[1—=Aym+Bywmtanh BHo)]

x%[(sﬂ)—i(Eg’—Eg)+i(h+h’)]—1[1—AMM,—BMM,tanr(ﬁHo)]

x%[(s+ x)—i(Eg"—Eg)—i(h—h’)]—1[1+AMM,+CMM,tanr(ﬁHo)]

x%[(s+ N)—i(EY —E¥)+i(h—h")] {1+ Ay, — Cyu-tank BHo)],

where
aH 2 202"
h'= Ho+ H—OM + HS , (29
A H HM H aHM’ 2’0
MM = ot Ho 0+H—0 + 2 |
(30
B ! >h’ H aHM h{ H aHM’
MM 0+H_0 0+H_0 :
(3D
1 [ ! H !
CMM':_, h Ho+_M +h H0+_M
h 0 0 ]
(32

With the expression fofsyy:(s+\) at hand, the NMR
line shape can be evaluated from E#6), in which [cf. Eq.

(23]

_ 1 Gy mo1(SHN)
C(S):Z% M,M+1

I-M)(I+M+1 =
( JME )1_7\GM,M+1(5+7\)

E5M,M—1(S"' N)

l+M)(I-M+1 = .
H+MX i )1—)\GM’M,1(S+)\)

(33

(27)

V. RESOLVENT EXPANSION

In the discussion in Sec. IV the effect of the fluctuating
environment was tacitly taken into account via stochastic
forces. In order to incorporate the effects of the heat bath and
its coupling to the subsystem more explicitly we will have to
go back to the full Hamiltonian of Eq.14) and provide a
many-body treatment. The advantage of suchahninitio
approach is not only to lend justification to the stochastic
method but also to give proper meaning to the phenomeno-
logical parameters such as the relaxation patéefore we
do that, it is necessary to model the interaction Hamiltonian

in the rotated frame, vizH, , which we choose to have the
following form:

~ 1
Hi=3 ; Gg0(bg+bg) + (bgor +bgo )}, (39)

whereb, and bg are phonon annihilation and creation opera-
tors for theqth phonon mode whiler .. are the ladder opera-
tors for the electron spin. The coupling constgptis taken

to be arbitrary.

The interaction Hamiltonian in E¢34) is a standard pre-
scription for treating spin lattice relaxation. Further, since in
the rotated space the electronic part of the subsystem Hamil-
tonian is diagonal in ther* representatioribarring the hy-
perfine coupling the interaction term causes spin flips via
the ladder operators. The latter processes lead to Glauber-like
kinetics of the underlying Ising modé&t.

It may be noted that the central quantity we need for the
line shape calculatiofcf. Eq.(18)] is the Laplace transform

of the time-development operatpfl(s)]av, where[ - - - ],
now indicates the explicit average over the density matrix
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associated with the bath Hamiltoniafy, . A convenient form  In Eq.(39), (- - -)) denotes bath-averaged phonon correlation
of the latter is achieved by writing a resolvent expansion offunctions.

[D(s)]av in which the interaction term, is treated A representative element of tt%a(O) matrix can be cal-
perturbatively’ Thus we can use the following general ex- culated as

pression fof U(s)],, : -
(+,+[2(0)]+,+)

[0(8)]ay=[5—iLs+3(9)] %, (35) A T
— IHt
where Ls is the Liouville operator associated with the spin _Eq: gqfo dt[e”"o(by(0)bg(1)))

Hamiltonian Hs, defined in Eq.(3), and3(s) is the so- bt t
called relaxation matrix, to be specified below. While it is +e o bg(Dbg(0)))], (39
possible to evaluats (s) to arbitrary orders in perturbation Which upon using the time-symmetry property of the phonon
theory, it suffices for the purpose of obtaining Markovian correlation functions can be rewritten as

dynamics to use an expansion upto second ordeH,n

which yield$ (+,+[2(0)[+.+)
+ o
< =J dte 20> g2(b,(H)bl(0)). (40
— - q\~q q
E(S) £| S_iﬁs—iﬁB‘Cle . (36) — q
Similarly,
The next step is the evaluation of the relaxation matrix 5
3.(s). We treat the heat bath in the Markovian approxima- (=, =[2(0)]=,-)
tion, i.e., neglect the frequency dependence of the relaxation e
matrix. Hence it is possible to write = f_w dteZ'Hoté 92(bi(t)bg(0)). (4D
2(s)~2(0)= fo dtf£,(e'Fstee L], (37) If the heat bath Hamiltoniafg, is taken to describe a free

phonon system, it is easy to write down the phonon correla-
Using the properties of the Liouville operatoand after tion functions. For instanct,
some algebra, in which we ignore tktiny) influence of the 1
hyperfine interaction on the relaxation behavior, we can write ((b:;(t)bq(O))):cot){Eﬁﬁwq) cod wqt) +i sin(wgt).
the matrix elements af (s) in the angular momentum space

of the electronic spin as (42)
5 However, if the thermal energy is much larger than the en-
(uv|Z(0)|u'v") ergy of the highest phonon modef the order of the Debye

frequency, as is indeed the case in the Markovian limit of

2 . . .
o~ Y9 (™ Mt — b the heat bath, the imaginary component of the correlation
_g 7y dt( 5##’5w'[”21 e Motlua=Ip function, as given above, can be neglected. Thus we assume
that
+2, e Hotlu=rp —C—D], (38)
n 2. Gibq(Dbg(0)~ 2 gibg(t)by(0))

where we have made the following substitutions:
A=(plo|pa)(palo | m)(ba(0)b(1) ~2q 95{ba(0)bg(H))
+(plo_ui)(palo | m){bi(0)bg(t)),
B=(v'|o[va)(wilo[»){(bg()bg(0))
+(v'[o|vi){vlo[#){bg(1)bg(0)),

1
~ 2 Ggbg(0)bg()=Z 2 (1),

(43

where® (t) is real and is a symmetric function of
Further, we can establish the following Kubo relation

— ’ ’ —iHot(u—7")
C=(ulou')v'|o-[v)[e leading to a detailed balance of transitions:

by(t)bl(0 —Hotw =) (0)b} , - -
X {bg(t)bg(0)p+e (bg(0)bg(t) )] (4,4 O]+ )= 20— —[3(0)| =), (44

D={(ulo_|u }v'|o.|v)[e Hotlr="") Hence, in the Markovian approximation,

X (bh(1)bg(0))+e Mot =M¢hl(0)bg(t) )]. (+,+[2(0)|+,+)=—(+,+|2(0)|—,—)=Ap_,
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wherel is the unit matrix and” the “transition” matrix with

(—,—|§(O)|—,—)= —(—,—|§(O)|+,+)=)\p+ ’ elements given by

(45)
where the Boltzman factors. are given by Eq(20) and the

relaxation rate\ is (wV|T ' v ) =P 8 0pr s - (48

pru’v

o Combining Eq.(35) with Eq. (47), we have
Azf dtd (1), (46) 9 Ea(39 a. (47
0
~ ] _ i -1
Therefore, the relaxation matrix(0) can be expressed as [U(S)]ay=L(sTM) =i Ls=AT] (49)
E(O)=)\(177), (47 Recall from Eq.(19) that what we need in the line shape
14000 . T . T T
12000 | -
10000 | -
8000 -
3 FIG. 2. J(w) Vs w in the pres-
- ence of a tiny quadrupolar interac-
6000 - tion term forR=0.1.
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O 1
2 2.5 3 35 4 45 5

wx 100
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10000

8000
B FIG. 3. J(w) vs w for R
=0.95, close to the quantum criti-

6000 cal point.

4000

2000

»x 100

calculation is a further averaging of E@9) over electronic ,
states. Developing Eq49) then as a Dyson series, we can Z/ v ) (v u'|=1 (51)
write Eq.(19) as mv

and regrouping of terms, yields E1) of Sec. IV.
From this point onwards then the computation of the

[0(8)]a=0%s+N) NMR line shape proceeds exactly as in Sec. IV, culminating
1 in Eg. (33). We may therefore conclude this section by reit-
+)\E pV( - 7_7[0(3)]% MM) erating that theab initio resolvent expansion treatment dis-
wy stA—iLs cussed here not only complements the stochastic model cal-

(50) culation of the previous section but also provides a more
detailed rationale behind some of the basic assumptions in-
volved in the stochastic model. The heat-bath-induced fluc-

which, upon employing the closure property of states as tuation effects are embodied in a parametethe so-called

8000 T T T T T T T
7000 + -
6000 -
5000 -
FIG. 4. J(w) vs w at the quan-
5 tum critical point R=1.0. The
= 4000 7 spectrum changes from a seven-
line to a four-line one at the quan-
3000 . tum critical point. See text of Sec.
VI.
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qguantum critical point foR=2.0.
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relaxation rate, the meaning of which is also amplifiedbe replaced by unity, and the NMR frequency equald

through the present discussifef. Eq. (46)]. —a(M—-1)=a.
The inclusion of a small quadrupolar interactidd
VI. COMPUTED NMR SPECTRA AND DISCUSSION =0.01a results in eight unequally distributed energy levels.

i i i =+ -
There are four parameters which need to be defined f0§|nce the selection rule BM=x1, we observe a seven

the computation of NMR spectra. The hyperfine conssast peak structure i7n Fig.52. The_: _peak t_o the extreme left corre-
taken from the literature as 0.039 K. Since the quadrupola?ponds FO the-3— —3 transition wh|Ie7 the pegk to the ex-
interaction is about two orders of magnitude less taawe ~ ('€Me right corresponds  to the — 3 transitions.  The
selectQ=0.01a. The parametes has been given a small respectlv_e_ intensities are governed by the matrix elements of
value of 0.0001 K. The relaxation rakeis actually the only ~the transition operatar*.
free parameter. For comparison with experimental data it is N Figs. 3, 4, and 5, we show the effect of the transverse
convenient to parametrize, although it is possible to calcu- field on the NMR spectrum. These correspondRte 0.95,
late it from first principles using the results of Sec. V. Such al.0, and 2.0, respectively. The transverse field, like tempera-
calculation would, however, require a detailed modeling ofture, is a disordering field. Hence we see thaflascreases,
the bath and assumptions about the nature of the phononthie system moves from the ferromagnetic to the paramag-
e.g., acoustic or optic. At the level of the NMR line shape wenetic phase. This behavior is accompanied by rapid fluctua-
feel it is reasonable to simply use as a fitting parameter. tion of the electronic component of the spin in the hyperfine
Thus we selech to be 1 K. Small values ok resulted in interaction, even though the temperature is low. The point is
extremely slow relaxation as opposed to the fast relaxation ahat the temperature controls the heat-bath-induced relax-
larger values of\. The results presented are robust over atation effects whereas it is the transverse field that triggers the
least a decade of values. Since hyperfine interactions are motion of the electronic spin due to quantum dynamics.
effective only at low temperatures, we have selected Thus, for large values of the transverse fiBldhe hyperfine
=0.1 K(refer to Fig 1 in ). We defineR to be the ratio of interaction is “motionally averaged out,” leaving behind
the transverse field)(T) to the critical transverse field merely the quadrupolar interactipef. Eq.(3) and Eq.(15)].
Q.(T) at the specific value of temperatufe This phenomenon is evident in Fig. 5: the spectrum collapses
We first study the effect of the quadrupolar interaction oninto a four-line one corresponding to the eigenvalue gf
the NMR spectrum. In Fig. 1, we pld{{w) vs w [Eq. (33)]  [cf. Eqg. (4)], each of which is doubly degenerate, yielding
for R=0.1 andQ=0.0. As mentioned earlier in Sec. |, in the lines located at 0, ®, 12Q, and 1®). In between, for inter-
absence of quadrupolar interactions, thd £2) equally mediate values oR (see Figs 3 and)4the lines undergo a
spaced hyperfine levels yield a single NMR frequency aslifetime broadening” due to tunneling caused by the in-
observed from Fig. 1. Since the abscissa in Fig. 1 is takegreasing value of the transverse field.
as wX100, it is clear why this frequency is valued near We would, however, like to point out that our mean-field
3.9(=0.039x100). This is because when the temperaflire theory is expected to break down very close to the quantum
is as low as 0.1 K and the transverse field is “small,” the critical point wherein strong correlation effects of both clas-
electronic spins have almost perfect ferromagnetic orderingsical and quantum nature, neglected in our treatment, will
Therefore the terna? in the hyperfine interactiom|?c?, can  become important. Because of the limitation of the theory,
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we have restricted the line shape computation to temperas observed that the hyperfine coupling including the quadru-
tures which in energy scales are higher than hyperfine inteppolar interaction can be effectively used as a marker for
actions. It will be very useful to employ quantum Monte studying the quantum phase transition in general and the
Carlo or similar methods to explore the region néar quantum critical point in particular. In that sense NMR can

=0 K and ascertain the role of the hyperfine coupling inbe employed as a very useful tool and one that is comple-
that regime of quantum phase transition. Studies along thesfientary to ac susceptibility in a quantum magnet such as

lines are in progress. _ _ LiHoF,. It is hoped that these observations would spur fur-
It is pertinent to mention once again that all the figuresher experimental work in this system.

Figs. 1-5, have been drawn for a fixed value of the relax-
ation ratex which has been kept sufficiently low. The idea
was to suppress thermal fluctuations but to emphasize the
importance of quantal fluctuations caused by the transverse
field. For the same very reason, the temperature has been V.B. acknowledges useful discussions with R. G.
kept small(but higher than the hyperfine interactiosuch  Mendiratta and support of C.S.I.R. Grant No.(@329/01/
that quantum phase transition effects are prominent. Indeed EMR-I1.
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