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Model quantum magnet. II. Calculation of NMR line shapes
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Following an earlier lead in which we had demonstrated the role of the hyperfine interaction in both the
phase diagram and the dynamic susceptibility for a model quantum magnet such as LiHoF4, we calculate the
NMR line shape in this system. Although the nuclear quadrupolar component of the interaction is tiny com-
pared to the strength of the~dipolar! hyperfine interaction, the former turns out to be a crucial diagnostic tool,
especially near the quantum critical point. We have carried out both a stochastic treatment and anab initio
many-body calculation in order to have complementary insight into the algebraic expressions as well as the
computed NMR spectra. We hope our derived results will motivate NMR experiments on the quantum critical
phenomena in LiHoF4.
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I. INTRODUCTION

In an earlier publication~hereafter referred to as I! we
discussed in detail a rare-earth alloy LiHoF4 and argued why
this system, in the presence of a transverse magnetic
applied at right angles to the crystallinec axis, can be viewed
as a quantum magnet.1 The magnetic properties emana
from a dipolar interaction between the holmium mome
which, in the presence of a large uniaxial crystal field ter
can be truncated into a two-level Ising Hamiltonian govern
by long-range coupling, characteristic of dipolar system
Additionally, the applied magnetic field yields a term whic
does not commute with the Hamiltonian and, therefore,
composite system can be described by a transverse
model ~TIM !. The latter exhibits a quantum phase transiti
at zero temperature wherein the system transits from a fe
magnetic phase to a paramagnetic phase as the streng
the transverse field is increased.

The main feature of I was the discussion of the ubiquito
magnetic hyperfine interaction between the Ho nuclear m
ment and its own electronic spin, which makes its prese
felt especially at lower temperatures. Since it is the lo
temperature regime in which the quantum nature of the ph
transition becomes important, it is expected that the hyp
fine coupling would have a significant effect, on both t
static and dynamic properties. This was demonstrated in
detailed calculations in the mean-field theory of the ph
diagram as well as the dynamic susceptibility. Now one
the most versatile tools for probing the hyperfine interact
is nuclear magnetic resonance~NMR!. Since the main phys
ics issue in LiHoF4 is in fact the occurrence of the quantu
critical point and the associated phase transition charact
tics, it would indeed be interesting to use NMR as a pro
for investigating further the quantum phase transition in t
prototypical system. We explore this possibility by comp
ing NMR line shapes in LiHoF4, using the Ho nucleus as th
probe, and hoping thereby to spur new experiments in
system. The ensuing analysis is an extension of the calc
tional method outlined in I.

In heavy rare-earth ions such as Ho31 the dominant con-
tribution to the hyperfine field at the nucleus comes from
0163-1829/2002/66~6!/064418~9!/$20.00 66 0644
ld

s
,
d
.

e
ng

o-
of

s
-
e
-
se
r-

y
e
f
n

is-
e
s
-

is
la-

e

4 f electrons, which then leads to a quantum ‘‘entangleme
of nuclear and electronic spins in the background of an
derlying quantum phase transition. One additional featu
omnipresent in rare-earth NMR, is a quadrupolar interact
for the nuclear moments arising from the lack of spheric
in the distribution of the electronic charges around t
nucleus.

The paper is organized as follows. In Sec. II, we descr
the representative Hamiltonian of the model magnet for
study of NMR line shapes. The underlying mean-field theo
is formulated in Sec. III, whereas the line shape calculatio
presented in Sec. IV, with the aid of a stochastic model.
Sec. V we discuss anab initio many-body treatment which
provides justification for the stochastic method of Sec.
Finally, Sec. VI contains the computed spectra and th
analysis.

II. HAMILTONIAN

The appropriateness of the TIM in conjunction with h
perfine interactions, for describing the static and dynam
properties of the dipolar coupled LiHoF4, has been discusse
in great detail in I. We represented holmium moments
Ising spins making use of the fact that at the low operat
temperatures of LiHoF4 wherein the system shows a perfe
mean-field ferromagnetic transition at a temperature of 1
K, only the two lowest crystal-field-split levels are predom
nantly occupied. Thus the dipolar interaction between
holmium moments can be adequately described by an I
Hamiltonian. Although the basic structure of the Hamiltoni
remains unchanged in the present context, an important
ference arises from the need to include the quadrupolar
teraction in the Hamiltonian, especially for rare-earth allo
While the quadrupolar interaction, which is at least two
ders of magnitude smaller than the corresponding dipo
hyperfine interaction, does not significantly alter the sta
phase diagram and the dynamic susceptibility calculated
it substantially affects the NMR spectrum for the followin
reasons. A nucleus with a spin angular momentumI in a
magnetic field yields (2I 11) equally spaced values of th
magnetic field quantum numberM. An NMR experiment
©2002 The American Physical Society18-1
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normally excites transitions between adjacent levels, the
lection rule beingDM561. For a set of (2I 11) evenly
spaced levels, there would be just a single NMR frequen
but for the presence of quadrupolar interactions. Hence
rare-earth NMR, unlike most NMR, inclusion of the quadr
polar interaction is a must. Thus a good representation
LiHoF4 is the TIM with hyperfine interactions of both th
dipolar and the quadrupolar variety :

Hs52 (
i , j 51

N

Ji j s i
zs j

z2(
i 51

N

aIi
zs i

z

1Q(
i 51

N

@3~ I i
z!22I i

2#2V(
i 51

N

s i
x . ~1!

In Eq. ~1!, the interaction energyJi j for the magnetic
holmium moments, recalling its origin in dipolar coupling,
given by2,3

Ji j 5g2m2@123 cos2~u i j !#/r i j
3 , ~2!

whereg is the gyromagnetic ratio,m the Bohr magneton, and
r i j andu i j are, respectively, the magnitude and polar angle
the vector (r̄ i2 r̄ j ) connecting sitesi and j. The angleu i j is
distributed between 0 andp, causing the sign ofJi j to fluc-
tuate between positive and negative. With competing in
actions and the long-ranged nature of the dipolar interact
it is not obvious that the ground state is ferromagnetic. Ho
ever, it has been shown experimentally and theoretically
the ground-state ordering, which is determined by the lat
structure, is indeed ferromagnetic in the present instance4

The second term in Eq.~1! represents the hyperfine inte
action between the nuclear spinI i

z and the electronic spins i
z

of Ho31. For LiHoF4, the hyperfine coupling constanta has
been tabulated from electron paramagnetic resonance~EPR!
experiments to be 0.039 K.6,7 Usually the hyperfine interac
tion is isotropic, but because of the inherent spin anisotr
along thez axis (c axis!, the component of theg tensor along
this direction is at least an order of magnitude larger than
transverse component. Thus the hyperfine interaction in
~1! can be assumed to be diagonal. The validity of this
proximation has been checked in I. The third term represe
the interaction of the nuclear quadrupolar moment with
electric field gradient of the nucleus.3,8. While this term too
can be isotropic, thez component provides the domina
contribution for reasons just cited. In Ho31 the quadrupolar
interaction is smaller than the dipolar hyperfine interact
by two orders of magnitude, yet it has a nontrivial influen
on the NMR line shapes. This is because the operators i

z in
the dipolar hyperfine term can get relaxationally averaged
zero due to dynamics as well as heat bath coupling.

The last term in Eq.~1! induces tunneling effects by mix
ing the eigenstates corresponding to thesz operator. This
introduces quantum dynamics into the system, makingHs
the prototype Hamiltonian of a quantum magnet. In the
periments of Bitkoet al.,5 this is realized by the applicatio
of a magnetic fieldHt perpendicular to thec axis. This field
can cause an admixture of the crystal-field-split states, yi
06441
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ing in perturbation theory a spin Hamiltonian that depen
on sx with a prefactorV which is quadratic inHt .

III. MEAN-FIELD THEORY

As in I, in the mean-field approximation, the single-s
Hamiltonian for Eq.~1! can be written as

Hs5EQ2~aIz1H !sz2Vsx, ~3!

where we have substituted

EQ5Q@3~ I z!22I 2# ~4!

and

H5J~0!^sz&, ~5!

with J(0)5( j Ji j . The partition function is given by

Z5Tr~e2bHs!5Tr e2b[EQ2(aIz1H)sz2Vsx] . ~6!

The trace in Eq.~6! is over the electronic as well as th
nuclear spin eigenstates. Labeling the eight nuclear eig
states byuM &, we haveI zuM &5M uM &, M527/2, . . .,7/2.
Thus the partition functionZ can now be written as

Z5 (
M527/2

7/2

e2bEQ
M

Tr eb[(aM1H)sz2Vsx] , ~7!

whereEQ
M53Q(M22 21

4 ). The trace now is over the eigen
states of the electronic spinsz alone. Using the property o
Pauli matrices, Eq.~7! can be simplified as

Z5 (
M527/2

7/2

e2bEQ
M

cosh@bh~M !#, ~8!

where

h~M !5A~aM1H !21V2. ~9!

Following I, the self-consistent relation for thez component
of magnetizationmz5^sz& is given by

mz5

(
M

e2bEQ
MS aM1J~0!mz

h~M ! D sinh@bh~M !#

(
M

e2bEQ
M

cosh@bh~M !#

. ~10!

The phase diagram of the system in theV-T plane in the
presence of a dipolar hyperfine interaction was presente
I. We have checked that the phase diagram is negligibly
tered if the quadrupolar interaction term of strength 0.01a is
included in addition to the dipolar hyperfine interaction.

The Hamiltonian of Eq.~3! describes the reversible dy
namics of the system. Since the subject of investigation
NMR line shapes which are affected by the spin-spin a
spin-lattice relaxations, it is necessary to introduce irreve
ible effects leading to dissipative dynamics of the system.
in I, to include these effects we couple the system descri
by Eq. ~3! to the surrounding heat bath:

Ho5HS1HI1HB , ~11!
8-2
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whereHI describes the interaction between the spin sys
and the heat bath. In order to obtain an appropriate exp
sion for HI , it is convenient to first rotate in the angula
momentum space ofs̄ about they axis ~in a clockwise di-
rection! by an angleu5arc tan(V/H0). This is achieved by
the rotation operator

UY
R5e2 iusy

, ~12!

where

H05AH21V2. ~13!

In the rotated frame, the total Hamiltonian is

H̃05H̃S1H̃I1HB , ~14!

while the subsystem HamiltonianH̃S , which is now diago-
nal, is given by

H̃S5EQ2
aIz

H0
~HsZ1Vsx!2H0sz. ~15!

It may be noted that the transformation introduced abov
different from the one employed in I. The advantage of
present scheme is that the NMR transition operatorI x re-
mains unchanged by the rotation, although the hyperfine c
pling becomes off diagonal in the electronic system.

In the following section we present a stochastic appro
to the calculation of the resonance line shape which is ph
cal and takes explicit cognizance of the stochastic force
the system. In this stochastic picture, the hyperfine coup
nucleus-electron system is envisaged to be embedded
random environment, the randomness being the resul
spin-lattice relaxational processes which make the elect
spin feel time-fluctuating stochastic fields. Thus, followi
Clauser and Blume,9 we imagine that the subsystem Ham
tonian given by Eq.~3! is subject to pulses, the distributio
of which follows a Poisson process. The strategy adop
here is similar to the one employed in an NMR calculation
proton glasses.10

IV. RESONANCE LINE SHAPE

The NMR line shape is given by

J~v!5
1

p
lim

s→2 iv1d
Re@C̃~s!#, ~16!

whereC̃(s) is the Laplace transform of the correlation fun
tion defined as

C~ t !5^I x~0!I x~ t !&eq . ~17!

Here the angular brackets denote the appropriate quan
and statistical average. The quantitys is related to the ap-
plied frequencyv and d is a small real-valued paramete
which not only ensures convergence of Laplace transfo
but takes into account possible instrumental broadening.
would like to point out here that in I, we calculated th
electronic spin correlation function̂sz(0)sz(t)&, necessary
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for computing the dynamic susceptibility. In the present co
text, since we are interested in studying the relaxational
fects in the system on thenuclearspin via an NMR experi-
ment, the appropriate quantity to calculate must involve
off-diagonal operatorI x which causes resonance transitio
in the Hilbert space of theI spins.

The Clauser-Blume solution forC̃(s) is given by

C̃~s!5 (
MM8

u^M uI xuM 8&u2„M 8M u@Ũ~s!#avuM 8M …,

~18!

where the over bar on top of the time-development opera
indicates an average over the ‘‘electronic’’ states:

@Ũ~s!#av5(
m,n

pn„nnu@Ũ~s!#avumm…, ~19!

pn being the Boltzmann factor associated with the electro
stateun&,

pn5ebH0n@2 cosh~bH0!#21, ~20!

whereas@•••#av implies a stochastic average. Now, detail
balance of transitions require that for a spin-half system,8

Ũ̄~s!5
Ũ0~s1l!

12lŨ0~s1l!
, ~21!

wherel is a phenomenologically introduced relaxation ra
and

Ũ0~s1l!5(
nm

pn~nnu@s1l2 iLS#21umm!, ~22!

LS being the Liouville operator associated withH̃S in Eq.
~15!. Since the latter is diagonal among the angular mom
tum states of the nucleus, because it contains onlyI z, we can
further write

C̃~s!5 (
MM8

u^M uI xuM 8&u2
G̃MM8~s1l!

12lG̃MM8~s1l!
, ~23!

where

G̃MM8~s1l!5„M 8M uŨ0~s1l!uM 8M …. ~24!

In order to evaluateG̃MM8(s1l) from Eq. ~24! we have
to first rewrite the expression in Eq.~22! as an integral over
time and then use the definition for the exponential o
Liouville operator, thus obtaining
8-3
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G̃MM8~s1l!5E
0

`

dte2(s1l)t(
m,n

pn

3^nM 8uei H̃StumM 8&^mM ue2 i H̃StunM &.

~25!

Our next step is to employ the fact thatH̃S is diagonal in the
I z representation and also use the following property of
06441
e

Pauli matrices11:

exp~ i t s̄•h̄!5cos~ht!11 i sin~ht!S s̄•h̄

h
D . ~26!

After some straightforward algebra we obtain
G̃MM8~s1l!5
1

4
@~s1l!2 i ~EQ

M82EQ
M !2 i ~h1h8!#21@12AMM81BMM8tanh~bH0!#

3
1

4
@~s1l!2 i ~EQ

M82EQ
M !1 i ~h1h8!#21@12AMM82BMM8tanh~bH0!#

3
1

4
@~s1l!2 i ~EQ

M82EQ
M !2 i ~h2h8!#21@11AMM81CMM8tanh~bH0!#

3
1

4
@~s1l!2 i ~EQ

M82EQ
M !1 i ~h2h8!#21@11AMM82CMM8tanh~bH0!#, ~27!
g
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where

h5F S H01
aH

H0
M D 2

1
a2V2

H0
2 G 1/2

, ~28!

h85F S H01
aH

H0
M 8D 2

1
a2V2

H0
2 G 1/2

, ~29!

AMM85
1

hh8
F S H01

aH

H0
M D S H01

aH

H0
M 8D1

a2V2

H0
2 G ,

~30!

BMM85
1

hh8
Fh8S H01

aH

H0
M D2hS H01

aH

H0
M 8D G ,

~31!

CMM85
1

hh8
Fh8S H01

aH

H0
M D1hS H01

aH

H0
M 8D G .

~32!

With the expression forG̃MM8(s1l) at hand, the NMR
line shape can be evaluated from Eq.~16!, in which @cf. Eq.
~23!#

C̃~s!5
1

4 (
M

F ~ I 2M !~ I 1M11!
G̃M ,M11~s1l!

12lG̃M ,M11~s1l!

1~ I 1M !~ I 2M11!
G̃M ,M21~s1l!

12lG̃M ,M21~s1l!
G . ~33!
V. RESOLVENT EXPANSION

In the discussion in Sec. IV the effect of the fluctuatin
environment was tacitly taken into account via stochas
forces. In order to incorporate the effects of the heat bath
its coupling to the subsystem more explicitly we will have
go back to the full Hamiltonian of Eq.~14! and provide a
many-body treatment. The advantage of such anab initio
approach is not only to lend justification to the stochas
method but also to give proper meaning to the phenome
logical parameters such as the relaxation ratel. Before we
do that, it is necessary to model the interaction Hamilton
in the rotated frame, viz.,H̃I , which we choose to have th
following form:

H̃I5
1

2 (
q

gq$s
z~bq1bq

†!1~bqs11bq
†s2!%, ~34!

wherebq andbq
† are phonon annihilation and creation oper

tors for theqth phonon mode whiles6 are the ladder opera
tors for the electron spin. The coupling constantgq is taken
to be arbitrary.

The interaction Hamiltonian in Eq.~34! is a standard pre-
scription for treating spin lattice relaxation. Further, since
the rotated space the electronic part of the subsystem Ha
tonian is diagonal in thesz representation~barring the hy-
perfine coupling!, the interaction term causes spin flips v
the ladder operators. The latter processes lead to Glauber
kinetics of the underlying Ising model.12

It may be noted that the central quantity we need for
line shape calculation@cf. Eq. ~18!# is the Laplace transform
of the time-development operator@Ũ(s)#av , where@•••#av
now indicates the explicit average over the density ma
8-4



o

x-

in

is

n
an

tri

a
ti

rit

e

ion

on

e
la-

en-

of
ion
ume

n

MODEL QUANTUM MAGNET. II. CALCULATION O F . . . PHYSICAL REVIEW B 66, 064418 ~2002!
associated with the bath HamiltonianHB . A convenient form
of the latter is achieved by writing a resolvent expansion

@Ũ(s)#av in which the interaction termH̃I is treated
perturbatively.8 Thus we can use the following general e
pression for@Ũ(s)#av :

@Ũ~s!#av5@s2 iLS1S̃~s!#21, ~35!

whereLS is the Liouville operator associated with the sp

Hamiltonian HS , defined in Eq.~3!, and S̃(s) is the so-
called relaxation matrix, to be specified below. While it

possible to evaluateS̃(s) to arbitrary orders in perturbatio
theory, it suffices for the purpose of obtaining Markovi
dynamics to use an expansion upto second order inH̃I ,
which yields8

S̃~s!5FLI

1

s2 iLS2 iLB
LI G

av

. ~36!

The next step is the evaluation of the relaxation ma

S̃(s). We treat the heat bath in the Markovian approxim
tion, i.e., neglect the frequency dependence of the relaxa
matrix. Hence it is possible to write

S̃~s!'S̃~0!5E
0

`

dt@LI~ei (LS1LB)t!LI #av . ~37!

Using the properties of the Liouville operator8 and after
some algebra, in which we ignore the~tiny! influence of the
hyperfine interaction on the relaxation behavior, we can w

the matrix elements ofS̃(s) in the angular momentum spac
of the electronic spin as

~mnuS̃~0!um8n8!

5(
q

gq
2

4 E
0

`

dtH dmm8dnn8F(
m1

e2 iH 0t(m12n)A

1(
n1

e2 iH 0t(m2n1)BG2C2DJ , ~38!

where we have made the following substitutions:

A5^mus1um1&^m1us2um&^̂ bq~0!bq
†~ t !&&

1^mus2um1&^m1us1um&^̂ bq
†~0!bq~ t !&&,

B5^n8us1un1&^n1us2un&^̂ bq~ t !bq
†~0!&&

1^n8us2un1&^n1us1un&^̂ bq
†~ t !bq~0!&&,

C5^mus1um8&^n8us2un&@e2 iH 0t(m2n8)

3 ^̂ bq~ t !bq
†~0!&&1e2 iH 0t(m82n) ^̂ bq~0!bq

†~ t !&&#,

D5^mus2um8&^n8us1un&@e2 iH 0t(m2n8)

3 ^̂ bq
†~ t !bq~0!&&1e2 iH 0t(m82n) ^̂ bq

†~0!bq~ t !&&#.
06441
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In Eq. ~39!, ^̂ •••&& denotes bath-averaged phonon correlat
functions.

A representative element of theS̃(0) matrix can be cal-
culated as

„1,1uS̃~0!u1,1…

5(
q

gq
2E

0

1`

dt@e2iH 0t ^̂ bq~0!bq
†~ t !&&

1e22iH 0t ^̂ bq~ t !bq
†~0!&&#, ~39!

which upon using the time-symmetry property of the phon
correlation functions can be rewritten as

„1,1uS̃~0!u1,1…

5E
2`

1`

dte22iH 0t(
q

gq
2^̂ bq~ t !bq

†~0!&&. ~40!

Similarly,

„2,2uS̃~0!u2,2…

5E
2`

1`

dte2iH 0t(
q

gq
2^̂ bq

†~ t !bq~0!&&. ~41!

If the heat bath HamiltonianHB is taken to describe a fre
phonon system, it is easy to write down the phonon corre
tion functions. For instance,13

^̂ bq
†~ t !bq~0!&&5cothS 1

2
\bvqD cos~vqt !1 i sin~vqt !.

~42!

However, if the thermal energy is much larger than the
ergy of the highest phonon mode~of the order of the Debye
frequency!, as is indeed the case in the Markovian limit
the heat bath, the imaginary component of the correlat
function, as given above, can be neglected. Thus we ass
that

(
q

gq
2^̂ bq~ t !bq

†~0!&&'(
q

gq
2^̂ bq

†~ t !bq~0!&&

'(
q

gq
2^̂ bq~0!bq

†~ t !&&

'(
q

gq
2^̂ bq

†~0!bq~ t !&&[
1

4
F~ t !,

~43!

whereF(t) is real and is a symmetric function oft.
Further, we can establish the following Kubo relatio

leading to a detailed balance of transitions:

„1,1uS̃~0!u1,1…5e22bH0
„2,2uS̃~0!u2,2…. ~44!

Hence, in the Markovian approximation,

„1,1uS̃~0!u1,1…52„1,1uS̃~0!u2,2…5lp2 ,
8-5
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FIG. 1. ComputedJ(v) vs v
in the absence of a quadrupolar in
teraction.T and R have been se-
lected to be 0.1 K and 0.1, respec
tively.
e

„2,2uS̃~0!u2,2…52„2,2uS̃~0!u1,1…5lp1 ,
~45!

where the Boltzman factorsp6 are given by Eq.~20! and the
relaxation ratel is

l5E
0

`

dtF~ t !. ~46!

Therefore, the relaxation matrixS̃(0) can be expressed as

S̃~0!5l~12T !, ~47!
06441
where1 is the unit matrix andT the ‘‘transition’’ matrix with
elements given by

~mnuT um8n8!5pm8dmndm8n8 . ~48!

Combining Eq.~35! with Eq. ~47!, we have

@Ũ~s!#av5@~s1l!2 iLS2lT #21. ~49!

Recall from Eq.~19! that what we need in the line shap
-

FIG. 2. J(v) vs v in the pres-

ence of a tiny quadrupolar interac
tion term forR50.1.
8-6
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FIG. 3. J(v) vs v for R
50.95, close to the quantum criti
cal point.
n

he
ing
it-
s-
cal-

ore
in-

uc-
calculation is a further averaging of Eq.~49! over electronic
states. Developing Eq.~49! then as a Dyson series, we ca
write Eq. ~19! as

@Ũ~s!#av5Ũ0~s1l!

1l(
mn

pnS nnU 1

s1l2 iLS
T @Ũ~s!#avUmm D ,

~50!

which, upon employing the closure property of states as
06441
(
m8n8

un8m8)~n8m8u51 ~51!

and regrouping of terms, yields Eq.~21! of Sec. IV.
From this point onwards then the computation of t

NMR line shape proceeds exactly as in Sec. IV, culminat
in Eq. ~33!. We may therefore conclude this section by re
erating that theab initio resolvent expansion treatment di
cussed here not only complements the stochastic model
culation of the previous section but also provides a m
detailed rationale behind some of the basic assumptions
volved in the stochastic model. The heat-bath-induced fl
tuation effects are embodied in a parameterl, the so-called
n-
-
.

FIG. 4. J(v) vs v at the quan-
tum critical point R51.0. The
spectrum changes from a seve
line to a four-line one at the quan
tum critical point. See text of Sec
VI.
8-7
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FIG. 5. J(v) vs v above the
quantum critical point forR52.0.
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relaxation rate, the meaning of which is also amplifi
through the present discussion@cf. Eq. ~46!#.

VI. COMPUTED NMR SPECTRA AND DISCUSSION

There are four parameters which need to be defined
the computation of NMR spectra. The hyperfine constanta is
taken from the literature as 0.039 K. Since the quadrup
interaction is about two orders of magnitude less thana, we
selectQ50.01a. The parameterd has been given a sma
value of 0.0001 K. The relaxation ratel is actually the only
free parameter. For comparison with experimental data
convenient to parametrizel, although it is possible to calcu
late it from first principles using the results of Sec. V. Suc
calculation would, however, require a detailed modeling
the bath and assumptions about the nature of the phon
e.g., acoustic or optic. At the level of the NMR line shape
feel it is reasonable to simply usel as a fitting parameter
Thus we selectl to be 1 K. Small values ofl resulted in
extremely slow relaxation as opposed to the fast relaxatio
larger values ofl. The results presented are robust over
least a decade ofl values. Since hyperfine interactions a
effective only at low temperatures, we have selectedT
50.1 K ~refer to Fig 1 in I!. We defineR to be the ratio of
the transverse fieldV(T) to the critical transverse field
Vc(T) at the specific value of temperatureT.

We first study the effect of the quadrupolar interaction
the NMR spectrum. In Fig. 1, we plotJ(v) vs v @Eq. ~33!#
for R50.1 andQ50.0. As mentioned earlier in Sec. I, in th
absence of quadrupolar interactions, the (2I 11) equally
spaced hyperfine levels yield a single NMR frequency
observed from Fig. 1. Since the abscissa in Fig. 1 is ta
as v3100, it is clear why this frequency is valued ne
3.9(50.0393100). This is because when the temperaturT
is as low as 0.1 K and the transverse field is ‘‘small,’’ t
electronic spins have almost perfect ferromagnetic order
Therefore the termsz in the hyperfine interaction,aIzsz, can
06441
or

r

is

a
f
ns,

of
t

s
n

g.

be replaced by unity, and the NMR frequency equalsaM
2a(M21)5a.

The inclusion of a small quadrupolar interactionQ
50.01a results in eight unequally distributed energy leve
Since the selection rule isDM561, we observe a seven
peak structure in Fig. 2. The peak to the extreme left co
sponds to the2 7

2 →2 5
2 transition while the peak to the ex

treme right corresponds to the52 → 7
2 transitions. The

respective intensities are governed by the matrix element
the transition operatorI x.

In Figs. 3, 4, and 5, we show the effect of the transve
field on the NMR spectrum. These correspond toR50.95,
1.0, and 2.0, respectively. The transverse field, like temp
ture, is a disordering field. Hence we see that asV increases,
the system moves from the ferromagnetic to the param
netic phase. This behavior is accompanied by rapid fluct
tion of the electronic component of the spin in the hyperfi
interaction, even though the temperature is low. The poin
that the temperature controls the heat-bath-induced re
ation effects whereas it is the transverse field that triggers
motion of the electronic spin due to quantum dynami
Thus, for large values of the transverse fieldR, the hyperfine
interaction is ‘‘motionally averaged out,’’ leaving behin
merely the quadrupolar interaction@cf. Eq. ~3! and Eq.~15!#.
This phenomenon is evident in Fig. 5: the spectrum collap
into a four-line one corresponding to the eigenvalues ofEQ
@cf. Eq. ~4!#, each of which is doubly degenerate, yieldin
lines located at 0, 6Q, 12Q, and 18Q. In between, for inter-
mediate values ofR ~see Figs 3 and 4!, the lines undergo a
‘‘lifetime broadening’’ due to tunneling caused by the in
creasing value of the transverse field.

We would, however, like to point out that our mean-fie
theory is expected to break down very close to the quan
critical point wherein strong correlation effects of both cla
sical and quantum nature, neglected in our treatment,
become important. Because of the limitation of the theo
8-8
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we have restricted the line shape computation to temp
tures which in energy scales are higher than hyperfine in
actions. It will be very useful to employ quantum Mon
Carlo or similar methods to explore the region nearT
50 K and ascertain the role of the hyperfine coupling
that regime of quantum phase transition. Studies along t
lines are in progress.

It is pertinent to mention once again that all the figur
Figs. 1–5, have been drawn for a fixed value of the rel
ation ratel which has been kept sufficiently low. The ide
was to suppress thermal fluctuations but to emphasize
importance of quantal fluctuations caused by the transv
field. For the same very reason, the temperature has
kept small~but higher than the hyperfine interaction! such
that quantum phase transition effects are prominent. Inde
ag

hy

0644
ra-
r-

n
se

,
x-

he
se
en

it

is observed that the hyperfine coupling including the quad
polar interaction can be effectively used as a marker
studying the quantum phase transition in general and
quantum critical point in particular. In that sense NMR c
be employed as a very useful tool and one that is com
mentary to ac susceptibility in a quantum magnet such
LiHoF4. It is hoped that these observations would spur f
ther experimental work in this system.
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