PHYSICAL REVIEW B 66, 064417 (2002

Critical properties of thin quantum and classical Heisenberg films
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The dependence of the critical temperattigél,A) on film thicknesd and ratio of surfaceJ;) to bulk (Jp)
exchange interaction strengths=J./J,— 1 in quantum and classical Heisenberg models are studied by using
the effective-field theory within the framework of the differential operator technique. It is found that for
<A, (whereA. depends on the specific moglehe critical temperatur&.(l,A) of the film is smaller than the
corresponding bulk critical temperatuﬂ'@ of the infinite system and akis increased,T, also increases
approachingT'g for large values of. However, in the case af>A., T, is larger than both the buIlKE and
the surfaceT; critical temperatures of the corresponding semi-infinite systems and, as the film thitkness
further increasesT, decreases and approaches, for large value tbe surface magnetic transitidry .
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I. INTRODUCTION predicts in Eq(1) A=1/v, wherev is the correlation length
exponent for the bulk systefthree dimensional3D)]. For
Recently, the study of magnetic multilayer has attractedexample, the expectedvalues for the 3D Ising and Heisen-
considerable attention and has been stimulated by receberg models arex=1/0.6294=1.5884%° and \ =1/0.7048
technological progresses. In particular, modern high-vacuurs- 1.419** respectively. The Heisenberg model in thin films
techniques, such as the epitaxial growth ones, allow us tand superlattices has also been previously treated in the
fabricate very thin magnetic films of controllable thicknéss. literature'>4 In this case, the Mermin-Wagner theorém
The increasing technological importance of nanometerrequires the transition temperature to vanish for the two-
scaled magnets results from the general trend of miniaturizadimensional isotropic Heisenberg limit. However, it has been
tion in technical applications. These interesting magnetiGhown that even a very small amount of anisotropy may lead
properties of magnets on a nanometer scale provide botlo magnetic order with substantial finite transition
interesting opportunities for technology and questions for batemperatur®!” even for two dimensions.
sic research. Another interesting aspect in the study of magnetic films
On the other hand, from both the experimental and theois concerning the dimensionality crossover region, when
retical points of view, one particularly important phenom- changes from =1, (2D) to =1, (nearly 3D. Usually, |,
enon is the dependence of the transition temperature witk-6 monolayers. One expects that near the surface of a film
respect to several parameters, such as the film thickiess the couplings are somewhat weaker than in the bulk. Com-
the geometrical structure or the composition of the film andparison of critical temperatures for films obtained by theoret-
magnetic excitationA technique or physical complication in ical model® with experimental data measured on ultrathin
some ultrathin films is the fact that experimentally it hasfilms of Ni(001) grown on the C(001) substrate and N111)
been observed thal. is finite (not null) only whenl  onW(110 (Ref. 20 have shown that (1) is higher than the
> min, [an example is Ni films on G&00),”> where a mono-  experimental results. More importantly, it rises too fast with
layer film =1 is nonmagnetic Thus the search for mono- increasingl in the region of dimensionality crossover. This
layer film of elements which are nonmagnetic in bulk mate-discrepancy can be ascribed to the fact that the exchange
rial remains a topic of considerable interest. Moreover, theoupling was assumed to be uniform throughout the film and
dimensionality(two or three dimensionsn the thin films is  also to the use of the Ising model to simulate the experimen-
not well established, therefore we can explore and test theal data. In addition, in NiL11) films the magnetization is in
universality hypothesis. plane and therefore is more appropriately described by the
Theoretically, to fit the experimental results of the critical XY model, while the ultrathin NDO2) films, the magnetiza-
temperature in thin films, the following scaling relation hastion is normal to the plane and the use of the Ising model
been used:® should be justifiedused as a first approximatipa priori,
but the fact thafT [ Ni(111)]>T.[Ni(001)] physically im-
plies that the use of this Ising model to simulate théOR1)
Tc(l):TC(“’)(l_ |_>\)' @ films is not adequate. To theoretically describe the experi-
mental data of the magnetic (901 films the Heisenberg
where T() is the Curie temperature of the bulk and the model should be more appropriate sindg(XY)>T,
parameteré and\ depend on the thickness of the films. The (Heisenbery
constantA may be interpreted as the number of monolayers From the theoretical point of view, one of the models
under which the Curie temperature vanishes. more widely used to study the magnetic properties of sur-
Some authors have employed an Ising model to study th&ces is the Ising model. In this paper, the quantum and clas-
dependence of . as a function of.6=° The scaling theory sical Heisenberg thin films are treated by the framework of
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the effective-field theoryEFT). The EFT is based on the use where the partial trace Jris taken over the set dfl spins
of rigorous correlation identities as a starting point and uti-variables specified by a finite system HamiltonidR,, Qy
lizes a differential operator technique, introduced by Hon-is a thermodynamic quantity which is a function of all the
mura and KaneyosHt: Although without introducing math-  spins of the cluster, and--) indicates the canonical thermal
ematical complexities, this approach, which is conceptuallyaverage taken over the ensemble defined by the complete
as simple as the standard mean-field approximatidRA), Hamiltonian.
shares with other methods a great versatility. These method In order to apply the EFT to the present model, we con-
may explicitly and systematically include correlation effects.sider a simple cluster with two spins located at eath
Here, the formalism is illustrated by employing its simplestlayer (p=0, 1, 2- -, ). The Hamiltonian for this cluster then
approximation version, in which spin-spin correlations arereads
neglected.

Owing to its simplicity, the EFT has been exhaustively H(ZP>:Kpslp.32p+ a1pSi,+ a2y, (4)
used to study a very large variety of problems such as per-
colation, ordered and disordered classical and quantum spimnherea;, =K sS5+ KpHSjZ(pH)Jr Kp,lsjz(p_l), é labels
models, bulk and surface critical behavior of spin modelsthe nearest neighbors of the s;Sj’g in the pth Iayer,SjZ(pﬂ)
and, more recently, also the quantum Heisenberg nf6d&, s the corresponding nearest neighbor of the SHinin the
n-vector modef>**Ising thin films?“****and semi-infinite  (p+1)th layer, respectively, antl,=K,=K, K,=K, for
quantum spirg Heisenberg modél’~*°In all the cases stud- p0, | andK ,=0. P
ied so far, it has turned out that this simple method leads to Using Eq.(4) in Eq. (3) in the axial approximatiof?®

quite good results for the critical coupling even when theand also the differential operator techniqsee Ref. 22 the

cluster sizes are taken by just using the simplest choice. Ofyerage magnetization at theh layer m,=((S?,+ S5,)/2)
the other hand, the values of the critical exponents are alk expressed by P P

classical.
Our major concerns are the dependence of the transition m,={(exp(ay,D,+a,,D))g0(X,Y)]| 4 vo (5)
temperature on the thickness of individual constituents in the p= (EXHA1pDxF 820D,)) Gp( X,y |X'y_0
cell and the influence of the value of the s@if finite oree)  with
on the phase-transition temperature. In Sec. Il we outline the
formalism and derive the equation that determines the criti- sinh(x+y)
cal temperatures of the film as function of interactions, spingp(X,y)= > >
and film thickness. The phase diagrams of the film are dis- costix+y) +exp — 2Ky)coshy(x—y)?+ 4K

cussed in Sec. lll. Finally, Sec. V is devoted to a brief con- ®
clusion. for the quantum case and
Il. MODEL AND FORMALISM (xy) sinh(x+y) 0
Op(X,Y)=
The aim of this work is to investigate the phase diagram P coshix+y) + ¢(Kp)costix—y)

of quantum and classical Heisenberg thin films consisting of ;. the classical Heisenberg model, whewg(x)=[1

| two-dimensional layers on a simple culti0l) lattice. The  _ L(3x)]/[1+L(3x)] andL(x) = coth®)—L/x is the Lange-
reduced Hamiltonian of the system is given by vin function.

To evaluate the exponential factors appearing in &g.

H=—BH=D, KiiS.S, (2)  we use the van der Waerden identity for the two-state spin

(i) system[i.e., expiS)=coshd)+S sinh(\)] to express the
layer magnetizatiom, (p=0—1) in terms of multisite cor-
relation functions. However, it is clear that if we try to treat
exactly all the boundary spin-spin correlations present in Eq.
(5), the problem becomes unmanageable. Here, in the
effective-field theory> we use a decoupling procedure that
'ggnores all high-order spin correlations on both right-hand
Sides of Eq.(5) (implicit way), namely

where B=1/kgT, kg the Boltzmann constant, S
=(S,9,S) are spins operators and spin vectors af/?
(n=3 for the Heisenberg moddkength at site for the quan-
tum and classical systems, respectively, Knd= 8J;; repre-
sents the reduced exchange interaction between all figirs
of nearest-neighboring sites. We choose the following value
for the parameteK;; : if the sitesi andj are at the surface
planes (labeled asp=0 and p=1, respectively, we take
Kij=Ks (surface exchange interactiody); for all other

neighboring sitesK;; =K, (bulk exchange interactiody,). wherei#j#---#k and mp5<3|2p>_ The approximation(8)

The thermal expectation value of a general function Ofegiects correlations between different spins but takes ex-
spin component$), can be obtained by the exact general-

. N. ap_ actly into account self-correlations such &S7,)%)=1. In

ized Callen-Suzuki identitf~>* the usual mean-field approximatighlFA) all tr?e self- and

TryQy exp(H) multispin corrglations are negl_ected. From this approach we

<QN>:<M>, 3) get the following set of equations for the layer magnetiza-
Try exp(H ) tions in a simple cubic lattice,

(S Shy Sty =My My =M, (8)

064417-2



CRITICAL PROPERTIES OF THIN QUANTUM AND . ..

PHYSICAL REVIEW B56, 064417 (2002

My = (agyt mOBsx)3( ay+myfBy) alo0ao0
X (asy+ moﬁsy)s( a’y+ mlBy)go(X1Y)|x,y=0: (9) 1b10
for the zeroth surface magnetizatiop=0), 01b10
3 3 A= , (19
My = (ay+myBy) (ay+ moﬂx)(ay_l' mlﬁy) (ay+ mOﬂy)
X(ax+m2:8x)(ay+mZBy)gl(Xay)|x,y=Ov (10) 1 b 1
for the first layer magnetization, and 1 al
My = (@gyt M Bsy) (aytm_1By) where a=(3B,—1)/B; and b=(3B,—1)/B,. This set of
3 equations can be satisfied by nonzero magnetizatiops
X (asyt M Boy) *(ayTmi-18)8i(X.Y)lxy-o, only if the determinant of the matrid is zero, namely
(11 detA=0. This condition yieldd different solutions for the
for the Ith surface magnetization p&l), where «, (g:jtg::lt;;m%?;?lgtrl;eb:&iI?r:%ezitﬁ?olutlon Is interpreted as the
=cosh,D,), B,=sinh(,D,), as,=coshkD,), B, g '

e On the other hand, to obtain the bulk and surface critical
=sinh{.D,), andg, (x,y) corresponds to Eq$5) and(7) for temperatures of the semi-infinité-{o) classical and quan-

the quantum and classical Heisenberg models, respectively{.um Heisenberg models, we follow the same procedure of

I_Equ_atlons(9)—(ll) give, self-consistently, the layer Mag- pefs. 26 and 27 to get a new set of equations given by
netizations for any temperature. However, as we are inter-

ested in the calculation of the ordering near the transition, the

. . m0:3Bsmo+ Blml, (20)
usual argument that the layer magnetizatigntends to zero
as th_e tempergture approqches its c_:ritical value aIIo_vvs us to my = 3B,m; + B,my+ B,m,, (21)
consider only linear terms imj,. In this case, we obtain the
following set of simultaneous equations: and
my=3Bsmy+Bim,, (12 m,=3B,m,+B,m,_;+B,my.q, p=2. (22
M = 3B+ Bomat Bom (13  Assuming now thatm,.,=\m, for p=22* we have the
! 2T 2ot e following secular equation:
Mo W, 1 (m0>
A = =0, 23
S( m; 1 Wo+N/\Myg @3
_ here W;=(3Bs—1)/B;, W,=(3B,—1)/B,, and X\
m,=3Bgm+Bm,_1, 149 W 1 s 1 Wo 2 2
_ s Ee 19 =(—W,— yW2—4)/2. Note that,<0, therefore <1, so
with we have an exponential decrease for the magnetizatjpn
3 2 in the ordered phase.
Bs= Zasxasyﬁsyaxaygo(xyy) | X,y=01 (15
Bl=2a§Xa§yﬁyaxg(x,y)|X,y:o, (16) ll. PHASE DIAGRAMS
d Let us first consider the limit—oe. In this case the semi-
an infinite system exhibits three different types of phases,
B,=2a%a’B,g(x,y)] (17) namely: the bulk phas@) where both bulk and free surface
2= x“yPx ’ X,y=0-

are magnetized; the surface phdSg where only the free
By performing a tedious but straightforward calculation, thesurface is magnetized; and the paramagnetic pfRjsehere
coefficientsB, B;, andB, can be determined by the use of both bulk and surface are disordered. For a sufficiently high
the relation exD,+bD,)f(x,y)=f(x+ay+b). surface coupling enhancemeat-A, (A=J,/J,—1) there
In a matricial notation Eq912)—(14) can be rewritten in  exists aS-P phase transition in addition to the usugdP
the form phase transition, anti= A corresponds to the special phase
transition whereS and B order simultaneously occur. The
mg bulk transition temperature is obtained by settimg,

m, =m,,1=m, (I—) in Eq. (22). In this way we have the
same results previously obtained in Ref. 22. The reduced
bulk transition temperaturg?=K_'=5.031 and 4.891 for
the classical and quantum Heisenberg models, respectively,
are comparable td’2=4.329(Ref. 11) and 3.35(Ref. 35
obtained by Monte Carlo simulatiofimere, and in what fol-
lows, we are measuring the temperature in units ofkg,

(18)

with
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FIG. 1. Reduced critical temperatufe(l) as a function of the
film thicknessl for several values of the surface to bulk exchange
ratio A. The dotted line corresponds to bulk critical temperat(ae.
Classical Heisenbergh) quantum Heisenberg.

FIG. 2. Reduced critical temperatufg(l) as a function of the
surface to bulk exchange ratlq/J,, for several values of the thick-
nessl. The dashed and dotted lines corresponds to results in the
limit | —o (semi-infinite systemand bulk temperature, respec-

i.e., T=K™1). The present formalism also shows the correctt'vely' (&) Classical Heisenbergb) quantum Heisenberg.

qualitatively resulfr>(classicaly>T2(quantum). The critical N _ _ _
frontier separating the paramagnetic-ordered surface phas@gdfinite [quantum Heisenberg, Fig(t] spins. We can see

is determined from the condition d&t=0, namely that now the phase diagrams are quite different from the
corresponding ones for the semi-infinite systeisse Refs.
Wy (Wo+N)=1. (24) 26 and 27. The main difference is that in the film instead of

the possibility of the existence of the critical temperatl]FEs

The multicritical point atA, is obtained from the above andTg (surface critical temperatureve get only a well de-
equation withT=TE which givesA,=0.332 and 0.349 for fined film critical temperaturd& . which depends on the film
the classical and quantum Heisenberg models, respectivelfpickness. The new multicritical poinfi¢) can be defined as
These values ofA; have not been only calculated in the that particularA value at which the film critical temperature
literature for the case of the semi-infinite classical HeisenTc(l) does not depend on film thickness. The numerical
berg model, but also the semi-infinite quantum Heisenberyalue of A is the same as those found for the semi-infinite
model has been recently analyzed by the present EF$ystem. Furthermore, according to the definitionAqf, it
method in Refs. 27 and 28. can be expected that the crossover point in Fig. 1 should

For thin films Eq.(19) can be solved numerically in order define also the critical temperature of the three-dimensional
to get the critical temperatur@,(l) as a function of the infinite bulk system, where the surface and th@arameter
thicknesd of the film. Taking the limit —o we find: (i) the ~ are of no importance. The bulk® critical temperature is
same values of the bulk critical temperatF above re- represented by the dotted line. Figure 1 shows also that for
ported for the classical and quantum Heisenberg models on&<A. the critical temperaturd(l) of the film is smaller
simple cubic lattice £=6) for A<A. and(ii) the same sur- than the bulk critical temperatufE>. It increases with the
face critical temperatur@Z(A) as given by Eq(24) for A film thickness| and approached b asymptotically as the
>A.. Figure 1 shows the reduced critical temperaffgas  number of layers becomes large. Por A the critical tem-

a function ofl for different values of the surface interaction peratureT.(l) is independent of, and equal toT*C’. When
A in thin films with infinite [classical Heisenberg, Fig(ad] = A>A., the critical temperature of the film is greater than
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both the bquTE and the surfac@? critical temperatures of able to explicitly incorporate correlations through some sort
the corresponding semi-infinite systems and decreasés a®f successive approximation scheme. The method is here il-
gets larger. lustrated in its simplest approximation version, in which cor-
In Fig. 2 we present the dependence of the reduced critirelations are neglected. Within this framework we discuss the
cal temperature on the surface-to-bulk ratidJ, for several temperature dependence as function of the nurhlbérspin
film thicknessed for the classicalFig. 2(a)] and quantum layers in the film. The formalism of transition temperature
[Fig. 2(b)] Heisenberg thin films. Up to the critical value of derivation obtained above is general and can be used in the
surface exchange enhancemébliack point in Fig. 2, A.  study of thin film of various thicknesses and lattice struc-
=0.332 and 0.349 for the semi-infinite classical and quantures. We treat in the present study the simple cubic lattice,
tum Heisenberg models, respectively, the transition temperaand a critical valueA.=1—(Js/Jy). has been found in the
ture increases with increasing the film thickness while abovg@hase diagram in theT(J¢/J,) plane for various thickness,
it, it decreases. This is ascribed to the fact that the ratio ofvhere A, corresponds the common point of all the critical
surface spins to bulk spins decreases with increasing the filourves. The value oA . obtained is the same as that of the
thickness and the importance of the difference in exchangeorresponding semi-infinite system. The film has one critical
interactions within the surfacg and bulkJ, in determining  temperature which is lower than the bulk critical temperature
the overall ordering temperature is progressively reducéd asfor A<A. and larger than both théE and the surfacd?;
increases. At the multicritical poilk=A., T¢(l) is inde-  critical temperatures fod>A.. We observe that foA
pendent ofl and equal toT‘C’. This is really the case, which <A_, T(l) increases with the increasing of the film thick-
can be seen also in Fig. 2, where the b1]§<and the surface nessl to approachT?, and forA>A., T.(l) decreases to
T: critical temperatures of the corresponding semi-infiniteapproach asymptotically the surface critical temperaliire
systems are represented by the dotted and dashed lines, re-Finally, owing to its simplicity, the EFT method devel-
spectively. In particular, the critical curve faf presented in  oped here can be used to study the thin film with other co-
Fig. 2 for the semi-infinite quantum Heisenberg model is theordination number, interlayer exchange coupling dependence
same result as that previously obtained in Refs. 26 and 27with respect to pairs of layers, effect of dilution, etc. Re-
search in this direction is now in progress.

IV. CONCLUDING REMARKS

In this paper we have extended to the classical and quan-
tum spins Heisenberg thin films a type of effective-field
theory previously developed to the usual Ising thin filfrs. We would like to thank CNP¢Brazilian Agency for fi-
We have generated a set of formal relations which are suithancial support.
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