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Critical properties of thin quantum and classical Heisenberg films
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The dependence of the critical temperatureTc( l ,D) on film thicknessl and ratio of surface (Js) to bulk (Jb)
exchange interaction strengthsD[Js /Jb21 in quantum and classical Heisenberg models are studied by using
the effective-field theory within the framework of the differential operator technique. It is found that forD
,Dc ~whereDc depends on the specific model!, the critical temperatureTc( l ,D) of the film is smaller than the
corresponding bulk critical temperatureTc

b of the infinite system and asl is increased,Tc also increases
approachingTc

b for large values ofl. However, in the case ofD.Dc , Tc is larger than both the bulkTc
b and

the surfaceTc
s critical temperatures of the corresponding semi-infinite systems and, as the film thicknessl

further increases,Tc decreases and approaches, for large value ofl, the surface magnetic transitionTc
s .

DOI: 10.1103/PhysRevB.66.064417 PACS number~s!: 64.60.Ak, 64.60.Fr, 68.35.Rh
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I. INTRODUCTION

Recently, the study of magnetic multilayer has attrac
considerable attention and has been stimulated by re
technological progresses. In particular, modern high-vacu
techniques, such as the epitaxial growth ones, allow u
fabricate very thin magnetic films of controllable thicknes1

The increasing technological importance of nanome
scaled magnets results from the general trend of miniatur
tion in technical applications. These interesting magne
properties of magnets on a nanometer scale provide
interesting opportunities for technology and questions for
sic research.

On the other hand, from both the experimental and th
retical points of view, one particularly important phenom
enon is the dependence of the transition temperature
respect to several parameters, such as the film thicknes~l!,
the geometrical structure or the composition of the film a
magnetic excitation.A technique or physical complication i
some ultrathin films is the fact that experimentally it h
been observed thatTc is finite ~not null! only when l
. l min , @an example is Ni films on Cu~100!,2 where a mono-
layer film l 51 is nonmagnetic#. Thus the search for mono
layer film of elements which are nonmagnetic in bulk ma
rial remains a topic of considerable interest. Moreover,
dimensionality~two or three dimensions! in the thin films is
not well established, therefore we can explore and test
universality hypothesis.

Theoretically, to fit the experimental results of the critic
temperature in thin films, the following scaling relation h
been used:3–5

Tc~ l !5TC~`!S 12
A

l lD , ~1!

whereTC(`) is the Curie temperature of the bulk and t
parametersA andl depend on the thickness of the films. Th
constantA may be interpreted as the number of monolay
under which the Curie temperature vanishes.

Some authors have employed an Ising model to study
dependence ofTc as a function ofl.6–9 The scaling theory
0163-1829/2002/66~6!/064417~6!/$20.00 66 0644
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predicts in Eq.~1! l51/n, wheren is the correlation length
exponent for the bulk system@three dimensional~3D!#. For
example, the expectedl values for the 3D Ising and Heisen
berg models arel51/0.629451.5884,10 and l51/0.7048
51.419,11 respectively. The Heisenberg model in thin film
and superlattices has also been previously treated in
literature.12–14 In this case, the Mermin-Wagner theorem15

requires the transition temperature to vanish for the tw
dimensional isotropic Heisenberg limit. However, it has be
shown that even a very small amount of anisotropy may l
to magnetic order with substantial finite transitio
temperature16,17 even for two dimensions.

Another interesting aspect in the study of magnetic fil
is concerning the dimensionality crossover region, whel
changes froml 5 l min ~2D! to l 5 l 1 ~nearly 3D!. Usually, l 1
56 monolayers. One expects that near the surface of a
the couplings are somewhat weaker than in the bulk. Co
parison of critical temperatures for films obtained by theor
ical models19 with experimental data measured on ultrath
films of Ni~001! grown on the Cu~001! substrate and Ni~111!
on W~110! ~Ref. 20! have shown thatTc( l ) is higher than the
experimental results. More importantly, it rises too fast w
increasingl in the region of dimensionality crossover. Th
discrepancy can be ascribed to the fact that the excha
coupling was assumed to be uniform throughout the film a
also to the use of the Ising model to simulate the experim
tal data. In addition, in Ni~111! films the magnetization is in
plane and therefore is more appropriately described by
XY model, while the ultrathin Ni~001! films, the magnetiza-
tion is normal to the plane and the use of the Ising mo
should be justified~used as a first approximation! a priori,
but the fact thatTc@Ni(111)#.Tc@Ni(001)# physically im-
plies that the use of this Ising model to simulate the Ni~001!
films is not adequate. To theoretically describe the exp
mental data of the magnetic Ni~001! films the Heisenberg
model should be more appropriate sinceTc(XY).Tc
~Heisenberg!.

From the theoretical point of view, one of the mode
more widely used to study the magnetic properties of s
faces is the Ising model. In this paper, the quantum and c
sical Heisenberg thin films are treated by the framework
©2002 The American Physical Society17-1
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the effective-field theory~EFT!. The EFT is based on the us
of rigorous correlation identities as a starting point and u
lizes a differential operator technique, introduced by Ho
mura and Kaneyoshi.21 Although without introducing math-
ematical complexities, this approach, which is conceptu
as simple as the standard mean-field approximation~MFA!,
shares with other methods a great versatility. These me
may explicitly and systematically include correlation effec
Here, the formalism is illustrated by employing its simple
approximation version, in which spin-spin correlations a
neglected.

Owing to its simplicity, the EFT has been exhaustive
used to study a very large variety of problems such as
colation, ordered and disordered classical and quantum
models, bulk and surface critical behavior of spin mode
and, more recently, also the quantum Heisenberg model,22–24

n-vector model,25,26 Ising thin films,8,9,13,14and semi-infinite
quantum spin-12 Heisenberg model.27–29In all the cases stud
ied so far, it has turned out that this simple method lead
quite good results for the critical coupling even when t
cluster sizes are taken by just using the simplest choice.
the other hand, the values of the critical exponents are
classical.

Our major concerns are the dependence of the trans
temperature on the thickness of individual constituents in
cell and the influence of the value of the spinS~1

2 finite or `!
on the phase-transition temperature. In Sec. II we outline
formalism and derive the equation that determines the c
cal temperatures of the film as function of interactions, sp
and film thickness. The phase diagrams of the film are
cussed in Sec. III. Finally, Sec. V is devoted to a brief co
clusion.

II. MODEL AND FORMALISM

The aim of this work is to investigate the phase diagr
of quantum and classical Heisenberg thin films consisting
l two-dimensional layers on a simple cubic~001! lattice. The
reduced Hamiltonian of the system is given by

H52bH5(̂
i j &

Ki j Si .Sj , ~2!

where b51/kBT, kB the Boltzmann constant, Si
5(Si

x ,Si
y ,Si

z) are spin-12 operators and spin vectors ofn1/2

~n53 for the Heisenberg model! length at sitei for the quan-
tum and classical systems, respectively, andKi j 5bJi j repre-
sents the reduced exchange interaction between all pair^ij &
of nearest-neighboring sites. We choose the following val
for the parameterKi j : if the sitesi and j are at the surface
planes ~labeled asp50 and p5 l , respectively!, we take
Ki j 5Ks ~surface exchange interactionJs!; for all other
neighboring sites,Ki j 5Kb ~bulk exchange interactionJb!.

The thermal expectation value of a general function
spin componentsVN can be obtained by the exact gener
ized Callen-Suzuki identity,30–32

^VN&5 K TrNVN exp~HN!

TrN exp~HN! L , ~3!
06441
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where the partial trace TrN is taken over the set ofN spins
variables specified by a finite system HamiltonianHN , VN
is a thermodynamic quantity which is a function of all theN
spins of the cluster, and̂̄ & indicates the canonical therma
average taken over the ensemble defined by the comp
HamiltonianH.

In order to apply the EFT to the present model, we co
sider a simple cluster with two spins located at eachpth
layer (p50, 1, 2••, l ). The Hamiltonian for this cluster then
reads

H2
~p!5KpS1p•S2p1a1pS1p

z 1a2pS2p
z , ~4!

whereajp5KpSdSd
z1Kp11Sj (p11)

z 1Kp21Sj (p21)
z , d labels

the nearest neighbors of the spinSjp
z in thepth layer,Sj (p61)

z

is the corresponding nearest neighbor of the spinSjp
z in the

(p61)th layer, respectively, andK05Kl5Ks , Kp5Kb for
pÞ0, l andK2150.

Using Eq.~4! in Eq. ~3! in the axial approximation,22,23

and also the differential operator technique~see Ref. 22!, the
average magnetization at thepth layer mp5^(S1p

z 1S2p
z )/2&

is expressed by

mp5^exp~a1pDx1a2pDy!&gp~x,y!ux,y50 , ~5!

with

gp~x,y!5
sinh~x1y!

cosh~x1y!1exp~22Kp!coshA~x2y!214Kp
2

~6!

for the quantum case and

gp~x,y!5
sinh~x1y!

cosh~x1y!1f~Kp!cosh~x2y!
~7!

for the classical Heisenberg model, wheref(x)5@1
2L(3x)#/@11L(3x)# andL(x)5coth(x)21/x is the Lange-
vin function.

To evaluate the exponential factors appearing in Eq.~5!
we use the van der Waerden identity for the two-state s
system @i.e., exp(lSi

z)5cosh(l)1Si
zsinh(l)# to express the

layer magnetizationmp (p502 l ) in terms of multisite cor-
relation functions. However, it is clear that if we try to tre
exactly all the boundary spin-spin correlations present in
~5!, the problem becomes unmanageable. Here, in
effective-field theory,23 we use a decoupling procedure th
ignores all high-order spin correlations on both right-ha
sides of Eq.~5! ~implicit way!, namely

^Sip
z
•Sjp

z
¯Skp

z &.mp•mp¯mp , ~8!

where iÞ j Þ¯Þk and mp[^Sip
z &. The approximation~8!

neglects correlations between different spins but takes
actly into account self-correlations such as^(Sip

z )2&51. In
the usual mean-field approximation~MFA! all the self- and
multispin correlations are neglected. From this approach
get the following set of equations for the layer magnetiz
tions in a simple cubic lattice,
7-2
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m05~asx1m0bsx!
3~ax1m1bx!

3~asy1m0bsy!
3~ay1m1by!g0~x,y!ux,y50 , ~9!

for the zeroth surface magnetization (p50),

m15~ax1m1bx!
3~ax1m0bx!~ay1m1by!3~ay1m0by!

3~ax1m2bx!~ay1m2by!g1~x,y!ux,y50 , ~10!

for the first layer magnetization, and

ml5~asx1mlbsx!
3~ax1ml 21bx!

3~asy1mlbsy!
3~ay1ml 21by!gl~x,y!ux,y50 ,

~11!

for the l th surface magnetization (p5 l ), where an

5cosh(Kb Dn), bn5sinh(KbDn), asn5cosh(KsDn), bsn

5sinh(KsDn), andgl(x,y) corresponds to Eqs.~6! and~7! for
the quantum and classical Heisenberg models, respectiv

Equations~9!–~11! give, self-consistently, the layer mag
netizations for any temperature. However, as we are in
ested in the calculation of the ordering near the transition,
usual argument that the layer magnetizationmp tends to zero
as the temperature approaches its critical value allows u
consider only linear terms inmp . In this case, we obtain th
following set of simultaneous equations:

mo53Bsm01B1m1 , ~12!

m153B2m11B2m01B2m2 , ~13!

•

•

ml53Bsml1Bsml 21 , ~14!

with

Bs52asx
3 asy

2 bsyaxaygo~x,y!ux,y50 , ~15!

B152asx
3 asy

3 byaxg~x,y!ux,y50 , ~16!

and

B252ax
4ay

4bxg~x,y!ux,y50 . ~17!

By performing a tedious but straightforward calculation, t
coefficientsBs , B1 , andB2 can be determined by the use
the relation exp(aDx1bDy)f(x,y)5f(x1a,y1b).

In a matricial notation Eqs.~12!–~14! can be rewritten in
the form

AS m0

m1

•

•

ml 21

ml

D 50, ~18!

with
06441
y.
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e

to

A5S a 1 0 0 • • •

1 b 1 0 • • •

0 1 b 1 0 • •

• • • • • • •

• • • • • • •

• • • • 1 b 1

• • • • • 1 a

D
l 3 l

, ~19!

where a5(3Bs21)/B1 and b5(3B221)/B2 . This set of
equations can be satisfied by nonzero magnetizationsmp
only if the determinant of the matrixA is zero, namely
detA50. This condition yieldsl different solutions for the
critical temperature. The largest solution is interpreted as
Curie temperature of the thin film.33

On the other hand, to obtain the bulk and surface criti
temperatures of the semi-infinite (l→`) classical and quan
tum Heisenberg models, we follow the same procedure
Refs. 26 and 27 to get a new set of equations given by

mo53Bsm01B1m1 , ~20!

m153B2m11B2m01B2m2 , ~21!

and

mp53B2mp1B2mp211B2mp11 , p>2. ~22!

Assuming now thatmp115lmp for p>2,34 we have the
following secular equation:

AsS m0

m1
D5S W1 1

1 W21l
D S m0

m1
D50, ~23!

where W15(3Bs21)/B1 , W25(3B221)/B2 , and l
5(2W22AW2

224)/2. Note thatW2,0, thereforel,1, so
we have an exponential decrease for the magnetizationmp.1
in the ordered phase.

III. PHASE DIAGRAMS

Let us first consider the limitl→`. In this case the semi
infinite system exhibits three different types of phas
namely: the bulk phase~B! where both bulk and free surfac
are magnetized; the surface phase~S! where only the free
surface is magnetized; and the paramagnetic phase~P! where
both bulk and surface are disordered. For a sufficiently h
surface coupling enhancementD.Dc (D5Js /Jb21) there
exists aS-P phase transition in addition to the usualB-P
phase transition, andD5Dc corresponds to the special pha
transition whereS and B order simultaneously occur. Th
bulk transition temperature is obtained by settingmp
5mp115mb ( l→`) in Eq. ~22!. In this way we have the
same results previously obtained in Ref. 22. The redu
bulk transition temperatureTc

b[Kc
2155.031 and 4.891 for

the classical and quantum Heisenberg models, respecti
are comparable toTc

b54.329 ~Ref. 11! and 3.35~Ref. 35!
obtained by Monte Carlo simulation~here, and in what fol-
lows, we are measuring the temperature in units ofJb /kB ,
7-3
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i.e., T[K21!. The present formalism also shows the corr
qualitatively resultTc

b(classical).Tc
b(quantum). The critical

frontier separating the paramagnetic-ordered surface ph
is determined from the condition detAs50, namely

W1~W21l!51. ~24!

The multicritical point atDc is obtained from the above
equation withT5Tc

b which givesDc50.332 and 0.349 for
the classical and quantum Heisenberg models, respecti
These values ofDc have not been only calculated in th
literature for the case of the semi-infinite classical Heis
berg model, but also the semi-infinite quantum Heisenb
model has been recently analyzed by the present E
method in Refs. 27 and 28.

For thin films Eq.~19! can be solved numerically in orde
to get the critical temperatureTc( l ) as a function of the
thicknessl of the film. Taking the limitl→` we find: ~i! the
same values of the bulk critical temperatureTc

b above re-
ported for the classical and quantum Heisenberg models
simple cubic lattice (z56) for D,Dc and~ii ! the same sur-
face critical temperatureTc

s(D) as given by Eq.~24! for D
.Dc . Figure 1 shows the reduced critical temperatureTc as
a function ofl for different values of the surface interactio
D in thin films with infinite @classical Heisenberg, Fig. 1~a!#

FIG. 1. Reduced critical temperatureTc( l ) as a function of the
film thicknessl for several values of the surface to bulk exchan
ratio D. The dotted line corresponds to bulk critical temperature.~a!
Classical Heisenberg,~b! quantum Heisenberg.
06441
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andfinite @quantum Heisenberg, Fig. 1~b!# spins. We can see
that now the phase diagrams are quite different from
corresponding ones for the semi-infinite systems~see Refs.
26 and 27!. The main difference is that in the film instead
the possibility of the existence of the critical temperaturesTc

b

andTc
s ~surface critical temperature! we get only a well de-

fined film critical temperatureTc which depends on the film
thickness. The new multicritical point (Dc) can be defined as
that particularD value at which the film critical temperatur
Tc( l ) does not depend on film thickness. The numeri
value ofDc is the same as those found for the semi-infin
system. Furthermore, according to the definition ofDc , it
can be expected that the crossover point in Fig. 1 sho
define also the critical temperature of the three-dimensio
infinite bulk system, where the surface and theD parameter
are of no importance. The bulkTc

b critical temperature is
represented by the dotted line. Figure 1 shows also that
D,Dc the critical temperatureTc( l ) of the film is smaller
than the bulk critical temperatureTc

b . It increases with the
film thickness l and approachesTc

b asymptotically as the
number of layers becomes large. ForD5Dc the critical tem-
peratureTc( l ) is independent ofl, and equal toTc

b . When
D.Dc , the critical temperature of the film is greater tha

FIG. 2. Reduced critical temperatureTc( l ) as a function of the
surface to bulk exchange ratioJs /Jb for several values of the thick
nessl. The dashed and dotted lines corresponds to results in
limit l→` ~semi-infinite system! and bulk temperature, respec
tively. ~a! Classical Heisenberg,~b! quantum Heisenberg.
7-4
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both the bulkTc
b and the surfaceTc

s critical temperatures of
the corresponding semi-infinite systems and decreasesl
gets larger.

In Fig. 2 we present the dependence of the reduced c
cal temperature on the surface-to-bulk ratioJs /Jb for several
film thicknessesl for the classical@Fig. 2~a!# and quantum
@Fig. 2~b!# Heisenberg thin films. Up to the critical value o
surface exchange enhancement~black point in Fig. 2!, Dc
50.332 and 0.349 for the semi-infinite classical and qu
tum Heisenberg models, respectively, the transition temp
ture increases with increasing the film thickness while ab
it, it decreases. This is ascribed to the fact that the ratio
surface spins to bulk spins decreases with increasing the
thickness and the importance of the difference in excha
interactions within the surfaceJs and bulkJb in determining
the overall ordering temperature is progressively reducedl
increases. At the multicritical pointD5Dc , Tc( l ) is inde-
pendent ofl and equal toTc

b . This is really the case, which
can be seen also in Fig. 2, where the bulkTc

b and the surface
Tc

s critical temperatures of the corresponding semi-infin
systems are represented by the dotted and dashed line
spectively. In particular, the critical curve forTc

s presented in
Fig. 2 for the semi-infinite quantum Heisenberg model is
same result as that previously obtained in Refs. 26 and

IV. CONCLUDING REMARKS

In this paper we have extended to the classical and qu
tum spin-12 Heisenberg thin films a type of effective-fiel
theory previously developed to the usual Ising thin films.7–9

We have generated a set of formal relations which are s
a

.

y
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able to explicitly incorporate correlations through some s
of successive approximation scheme. The method is her
lustrated in its simplest approximation version, in which c
relations are neglected. Within this framework we discuss
temperature dependence as function of the numberl of spin
layers in the film. The formalism of transition temperatu
derivation obtained above is general and can be used in
study of thin film of various thicknesses and lattice stru
tures. We treat in the present study the simple cubic latt
and a critical valueDc512(Js /Jb)c has been found in the
phase diagram in the (T,Js /Jb) plane for various thickness
whereDc corresponds the common point of all the critic
curves. The value ofDc obtained is the same as that of th
corresponding semi-infinite system. The film has one criti
temperature which is lower than the bulk critical temperat
for D,Dc and larger than both theTc

b and the surfaceTc
s

critical temperatures forD.Dc . We observe that forD
,Dc , Tc( l ) increases with the increasing of the film thic
nessl to approachTc

b , and for D.Dc , Tc( l ) decreases to
approach asymptotically the surface critical temperatureTc

s .
Finally, owing to its simplicity, the EFT method deve

oped here can be used to study the thin film with other
ordination number, interlayer exchange coupling depende
with respect to pairs of layers, effect of dilution, etc. R
search in this direction is now in progress.
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