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Spin-Peierls phases in pyrochlore antiferromagnets
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In the highly frustrated pyrochlore magnet spins form a lattice of corner-sharing tetrahedra. We show that the
tetrahedral ‘‘molecule’’ at the heart of this structure undergoes a Jahn-Teller distortion when lattice motion is
coupled to the antiferromagnetism. We extend this analysis to the full pyrochlore lattice by means of Landau
theory and argue that it should exhibit ‘‘spin-Peierls’’ phases with bond order but no spin order. We find a range
of Néel phases, with collinear, coplanar, and noncoplanar order. While collinear Ne´el phases are easiest to
generate microscopically, we also exhibit an interaction that gives rise to a coplanar state instead.
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I. INTRODUCTION

The study of highly frustrated magnets began with Wa
nier and Houtappel’s realization that the triangular latt
Ising antiferromagnet is paramagnetic at any nonzero t
perature and exhibits a macroscopic entropy even at
temperature.1,2 This canonical example illustrates the defi
ing characteristics of such systems—their failure to orde
temperatures of the order of the exchange constant, em
cally derivable from the high-temperature Curie suscepti
ity, and a large low-temperature entropy.3,4

The advent of the cuprate superconductors led to serio
renewed interest in these systems in the hope of findin
quantum spin liquid—the zero-temperature state of a qu
tum magnet that fails to order. Subsequently their study
blossomed, driven by an increasing list of materials that
hibit highly frustrated antiferromagnetism, and is driven
much in hope of finding unusual ordering at low tempe
tures. An appealing, if optimistic, analogy is to the quantu
Hall system, where the magnetic field frustrates the kine
energy and produces a macroscopic degeneracy, whic
then lifted by residual terms in the Hamiltonian to produc
rich phase diagram with various orderings.

The most promising system in this regard is the near
neighbor Heisenberg system on the ‘‘pyrochlore’’ lattice
network of corner-sharing tetrahedara~Fig. 1!. The idealized
system has a vast ground-state degeneracy in the clas
limit of infinite spin and there is a large and growing list
materials that approximate this to varying degrees, includ
doped variants that superconduct or display behavior re
niscent of heavy fermions.

In this paper we limit ourselves to the insulating magne
Here it is known5 that the classical system doesnot exhibit
order by disorder and remains a~cooperative! paramagnet
down toT50. On general grounds one expects that quan
fluctuations will select an ordering at sufficiently large sp
in a spin-wave treatment about the classical ground sta6
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At smaller values of spin, the situation is unsettled with so
form of singlet order likely.7,8

Recently, building on work of Yamashita and Ueda,9 we
have shown that in the presence of a coupling to the latt
a different mechanism of degeneracy lifting is likely
operate.10 This involves a version of the Jahn-Teller effect
which the lattice distorts to gain exchange energy~the ‘‘spin-
Teller’’ effect! and thereby relieves the frustration. As ma
netoelastic couplings are ubiquitous and lead to a transi
even at infinite spin, this mechanism will dominate over t
purely quantum selection effect, likely starting at modest v
ues of the spin.11 Also noteworthy in this problem is the
likelihood of a finite-temperature bond-ordered phase p
ceding the eventual establishment of Ne´el order.

In this paper we present a detailed account of our anal
of the Jahn-Teller effect for Heisenberg magnets on the
rochlore lattice. Parts of this work have already been su
marized in a short paper.10 In Sec. II we begin with the
symmetry analysis of the Jahn-Teller distortion of a sin
tetrahedron in the classical limit and then extend it toq50
phonons for the infinite lattice. Having identified the ord
parameter for lattice distortions~bond ordering! in this fash-
ion, in Sec. III we construct a Landau theory of the transiti
into the bond ordered state which we contrast with the L
dau theory of the spin-Peierls transition in quasi-on
dimensional systems. Finally we turn to the establishmen

FIG. 1. The ‘‘pyrochlore’’ lattice. Magnetic ions are situated
the corners of tetrahedra.
©2002 The American Physical Society03-1
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Néel order which we discuss with the insight gained fro
analyzing bond order~Sec. IV!. Such ordering is most natu
rally collinear but symmetry permits coplanarity and in A
pendix A we describe an interaction that would bring
about. Appendix B gives the quantum theory of the Ja
Teller effect in a single tetrahedron. The experimental sit
tion with regard to structure is briefly discussed in our co
cluding remarks in Sec. V. We will discuss the dynamic
signatures of various phases in a forthcoming publication

II. JAHN-TELLER EFFECT

A. Single tetrahedron

The structural unit of the pyrochlore antiferromagnet is
tetrahedral ‘‘molecule’’ with four spins in the corners. I
high symmetry and the degeneracy of the ground state
the two prerequisites for the Jahn-Teller effect: the tetra
dron is distorted in its ground state. The tendency of in
vidual tetrahedra to deform induces a coherent distortion
the entire crystal. We will describe the Jahn-Teller effect
a single tetrahedron in detail to understand which aspects
relevant for the description of the spin-Peierls effect on
entire lattice.

The energy of four spins on a regular tetrahedron is

E05J(
i , j

Si•Sj5
J

2
~S11S21S31S4!222JS~S11!. ~1!

In a ground state, the total spin is 0. For quantum spins
lengthS, there are 2S11 linearly independent ground state
which can be constructed as follows. The total spin of
pair S1 and S2 can be 0,1,2, . . . ,2S, and likewise for the
other pairS3 andS4. An overall spin singlet can be forme
by combining two singlets, two triplets, and so on, giving
total of 2S11 physically different singlet states.

The problem of quantum spins on an elastic tetrahed
can be solved straightforwardly and is treated in detail
Appendix B. As the degeneracy and hence the Jahn-Te
distortion survive at arbitrarily large values of spin, the o
come ~with the exception of the extreme quantum caseS
51/2) can be understood by looking at the simpler probl
with classical spins. In essencethis spin-Peierls effect is
classical, in contrast with the usual cases where it goes aw
in that limit.

For classical spins (S→`), the degeneracy of the groun
state becomes continuous. In addition to a trivial rigid ro
tion of all four spins, there are two parameters that can
used for characterization of a ground state~Fig. 2!: the angle
2u between spins 1 and 2 and the angle 2f between the
planes 12 and 34. These two parameters determine thebond
variablesin a ground state,

S1•S25S3•S45S2cos 2u,

S2•S35S1•S45S2~sin2u cos 2f2cos2u!, ~2!

S3•S15S2•S452S2~sin2u cos 2f1cos2u!.

At the heart of the effect lies the dependence of the
change interaction on the relative positions of spins. For
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ample, ifJi j depends strictly on the distance between spini
and j, the contribution of this pair to the exchange energy

Ei j 5@J1~dJ/dr !dr i j 1•••#~Si•Sj !,

generally has a term linear in the relative displacementdr i j .
Therefore, spinsi and j exert on each other a forc
2(dJ/dr)(Si•Sj ), which is repulsive or attractive dependin
on the angle between the spins. In a generic ground s
~Fig. 2!, angles between spins are unequal, so that dispa
forces cause a deformation of the tetrahedron.

More generally, the exchange interaction may depend
only on the distances between spins, but also on the an
between the bonds. We therefore write the magnetic
elastic energies of the spins in the most general form

E5E01 (
a,i , j

~]Ji j /]xa!~Si•Sj !xa1(
a,b

kabxaxb/2. ~3!

Here E0 is the energy of a ground state,x1 , . . . ,x12 are
Cartesian displacements of the spins, andkab are the appro-
priate elastic constants. To reduce the number of indepen
coordinates and forces, it is convenient to classify them
terms of irreducible representations of the symmetry gro
Td of the tetrahedron. Using the appropriate linear combi
tions of coordinatesxra and forcesf ra ~wherer labels irre-
ducible representations anda enumerates its component!
one obtains a simpler result

E5E01(
r,a

@2Jr8 f raxra1krxra
2 /2#. ~4!

Six vibrational modes may affect the exchange energy
singletA1, a doubletE, and a tripletT2. The breathing mode
A1 uniformly rescales exchange interactions on all bonds
does not discriminate between different ground states; th
fore it can be left out of consideration. A component of t
vector tripletT2 stretches and contracts by the same amo
two bonds opposite each other~Fig. 3!. As can be inferred
from Eq. ~2!, such bonds are equally satisfied~or equally

FIG. 2. Four spins of a tetrahedron in a ground state~zero total
spin!.
3-2
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frustrated! in any ground state. Therefore stretching one a
contracting the other to the same extent cancels the lin
term in magnetic energy, making the triplet mode ineffect
in relieving frustration via the Jahn-Teller mechanism. On
one irreducible representation causes the Jahn-Teller ef
the doublet E whose components are tetragonal a
orthorombic distortions of the tetrahedron~Fig. 3!. Since no
other representations will be dealt with, we will suppress
representation subscriptr5E in what follows.

The six bond variablesSi•Sj contain the same represe
tations. The singletA1 is the symmetric sum, which is noth
ing but the energy of the undistorted ground state~1!, i.e., a
constant that does not favor any particular ground state.
triplet T2 contains the differences of forces onopposite
bonds,

S1•S32S2•S4 , S1•S42S2•S3 , S1•S22S3•S4 . ~5!

As already mentioned, these differences vanish in a gro
state. The remaining forces form a doubletE showing the
disparities between adjacent bonds:

f 15@~S11S2!•~S31S4!22S1•S222S3•S4#/A12,

f 25~S12S2!•~S32S4!/2. ~6!

The componentf 1 shows by how much bonds 12 and 34 a
stronger than the rest~Fig. 4!; f 2 compares bonds 13 and 2
versus 23 and 14. The domain of possible values of the v
tor f5( f 1 , f 2)5( f cosa,f sina) is an equilateral triangle. Its
perimeter is made of coplanar ground states; the three
ners correspond to the three distinct collinear ground sta
The two components off, like the two angles in Fig. 2, can
be used to parametrize degenerate classical ground state
tetrahedron; in fact, f 152S2(123 cos2u)/A3,f 2
52S2sin2u cos 2f.

After these simplifications, the energy of the system h
the form

E5E02J8f•x1kx2/2, ~7!

where x5(x1 ,x2) are amplitudes of the tetragonal an
orthorombic distortions.J8 andk are the magnetic and elast

FIG. 3. Vibrational modes of a tetrahedral molecule.
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constants appropriate for theE representation. The energy
minimized with respect tox whenkx5J8f, so that

Emin5E02J82f 2/2k. ~8!

One can view the2 f 2 term as a quartic spin interaction

2
J82f 2

2k
52

J82

3k (
i . j

~Si•Sj !
21const ~9!

induced by ‘‘integrating out’’ the phonons.12 It evidently pre-
fers collinear ground states with four maximally satisfi
bonds and two maximally frustrated bonds. The result
distortion of the tetrahedron is tetragonal. It flattens or elo
gates along one of itsC2 axes, depending on the sign of th
derivativeJ8.

Modulo global rotations of the spins, there are three
generate collinear ground states~Fig. 4!. Their opposites are
coplanar states with four frustrated bonds; such ground st
appear in a model with more general spin interactions, e
four-spin cyclic exchanges. See Appendix A for details.

A consideration of quantum spins in the Appendix
yields essentially the same result: the energy is minimi
when two opposite bonds~e.g., 12 and 34! have the highest
spins 2S each. Such states are the quantum analog of par
spins. In contrast to the spin-Peierls effect on a Heisenb
chain, this one is a classical affair: instead of forming sp
singlet on stronger bonds, Heisenberg spins of a tetrahe
form the highest spin on two weak bonds.

B. Pyrochlore lattice: qÄ0 phonons

An attempt to extend this calculation to an infinite ne
work of tetrahedra runs into a substantial problem: all p

FIG. 4. The domain of the bond vectorf5( f 1 , f 2)
5( f cosa,f sina) is bounded by an equilateral triangle in th
( f 1 , f 2) plane. Also shown are six extremal spin configuration
collinear ~solid circles! and coplanar~open circles!. Strong~weak!
bonds are denoted by solid~dashed! lines.
3-3
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sible phonon modes, the number of which is proportiona
the number of tetrahedra, couple to bond variables, and
one of them may thus lead to a magnetoelastic distortion
order to describe the basic physics of the Jahn-Teller ef
on the full lattice, in this section we restrict ourselves to t
~over!simplified version with only a few participating
phonons. As a result of this crude approximation, ‘‘integr
ing out’’ the phonons produces an infinite-range interact
between vectorsf of different tetrahedra. In a realistic mod
including phonons of all wavelengths, such forces will ha
a finite radius. However, the structure of the ground stat
often insensitive to such details.

We specialize to the case of phonons with wave vec
q50. In effect, this restricts all tetrahedra of the same o
entation to have the same distortion~Figs. 5 and 6!. The
existence of two types of tetrahedra~labeled in what follows
A andB), which differ by orientation, is the only new degre
of freedom. The symmetry group of the lattice~with equiva-
lent tetrahedra identified! is extended fromTd to I 3Td
[Oh by the operation of inversion on any site, which e
changes tetrahedraA and B. Irreducible representations ar
those ofTd labeled by an additional quantum number, par
under inversion. The relevant phonons areEg andEu , which
are, respectively, uniform or staggered distortions of the
tice. For example, the first component ofEg stretches all
tetrahedra along thez direction ~resulting in a macroscopic
distortion of the crystal!, whereas the first component ofEu
stretches tetrahedraA and squeezes tetrahedraB along the
same axis~leaving the crystal dimensions unaltered to lea
ing order!. The resulting distortions of tetrahedraA and B
can be written

xA5~xg1xu!/A2, xB5~xg2xu!/A2.

The sum of elastic and magnetic energies,

FIG. 5. The Ne´el state obtained in the magnetoelastic mo
with q50 phonons. TheEg phonon mode dominates. The distortio
weakens bonds in the horizontal plane on all tetrahedra.
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E52J8~ fA•xA1fB•xB!1
kguxgu2

2
1

kuuxuu2

2
,

is readily minimized with respect to the phonon variables

Emin52
J8ufA1fBu2

4kg
2

J8ufA2fBu2

4ku
. ~10!

The minimized energy thus consists of two terms. The fi
term is diagonal infA and fB :

2J8~kg
211ku

21!~ f A
21 f B

2 !/4.

It puts tetrahedra of both types into one of the three collin
states, thus defining a three-state Potts model. The cross

2J8~kg
212ku

21!~ fA•fB!/2

introduces a coupling between the Potts states on the
sublattices. A softer even phonon (kg,ku) yields the ground
state of a ferromagnetic Potts model: all tetrahedra distor
the same way. A softer odd phonon (kg.ku) produces a
ground state with alternating distortions on the two sub
tices.

Translated back into spin language, the two ground sta
are shown in Figs. 5 and 6. The latter, in fact, describes
Néel state observed in YMn2 and MgV2O4, compounds with
spontaneous structural distortions.

III. LANDAU THEORY

Our simple model of classical spins on an elastic lattice
tetrahedra appears to be reasonably successful in expla
ground-state properties of some frustrated magnets. Can
also gain some understanding of phase transitions in th
materials?

To start with, we need to identify the relevant phases.
high temperatures, we have a symmetric paramagnetic s
with no spin or bond order and no lattice distortions. T

l FIG. 6. Same as Fig. 5 but with the dominantEu phonon. Bonds
in the two vertical planes are weakened alternatively.
3-4
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ground state (T50) is a Néel phase with a distorted lattice
The two phases are distinguished, for example, by spin
erageŝ Si& and by the disparities in bond lengths. In gener
there may~and in certain cases will! exist an intermediate
spin-Peierls phase. It is distinct from the Ne´el phase by the
absence of spin order (^Si&50). It is also different from the
paramagnetic phase by the presence of lattice distortions
unequal spin correlationŝSi•Sj& between various neares
neighbors, with a concomitant lowered symmetry. In su
cases, we expect two phase transitions: first, a h
temperature spin-Peierls transition, which partially reliev
frustration of spins, then, at a lower temperature, a transi
into a Néel state. Such a scenario is permitted by symme
and the frustration makes it easier to generate fluctuat
that destablize the Ne´el state without destroying the bon
order.

In this section, we will discuss the spin-Peierls transiti
using Landau theory. By analogy with spin chains, we w
identify the relevant order parameter and discuss poss
phase transitions in the framework of the Landau theory.

A. Dimerized chain

To introduce method and notation, we start with a famil
example: namely, the Landau theory of the spin-Peierls tr
sition in antiferromagnetic chains coupled to thre
dimensional phonons. The paramagnetic and dimeri
phases can be distinguished using the order parameter

f 5^S2n11•S2n2S2n•S2n21&. ~11!

It vanishes in the paramagnetic phase, since all bonds
equivalent. Spontaneous dimerization increases the prob
ity of finding a singlet on half of the bonds, which leads to
nonzero value off. Expansion of the free energy~per spin! in
powers of the order parameter contains even powersf
only:

F~ f ,T!5F~0,T!1a~T! f 21c~T! f 41•••. ~12!

Assuming thata becomes negative belowT5Tc , so that
a(T)'a(T2Tc), while c.0 and roughly constant, one ob
tains the standard scenario of a second-order phase tr
tion: the minimum of the free energy shifts continuous
from f 50 aboveTc to f 56AauT2Tcu/2c below Tc .

The continuity of the transition depends crucially on t
absence of a cubic term in the expansion~12!. With chains,
its absence is guaranteed by symmetry: states withf differing
only by a sign are physically equivalent~Fig. 7!; hence only
even powers off are allowed.

Formally, the fate of anf 3 term is decided by its symme
try properties. The symmetry group of an undistorted ch
includes inversion on a site, which takesf °2 f . Likewise,
f 3°2 f 3. Since, however, free energy must be invariant u
der all symmetry transformations, anf 3 term is forbidden.

In contrast, we will find that a cubic term is allowed
certain cases for the spin-Peierls order parameter on the
rochlore lattice. In such cases, the spin-Peierls transitio
expected to be discontinuous.
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B. Pyrochlore lattice:
Order parameter and broken symmetries

What order parameters would characterize a spin-Pe
phase in a network of tetrahedra? The smallest unit of
lattice, a tetrahedron, contains six bond variables, so
there are six averages^Si•Sj& and five differences betwee
them, all of which could serve as order parameters. From
symmetry viewpoint, they can be divided into irreducib
representations of the tetrahedron group. One of them is
doubletf5( f 1 , f 2), where

f 15
^~S11S2!•~S31S4!22S1•S222S3•S4&

A12
,

f 25
^~S12S2!•~S32S4!&

2
. ~13!

The other is a triplet—see Eq.~5!. In the paramagnetic
phase, both the doublet and triplet order parameters m
vanish~all nearest-neighbor bonds have the same streng!.
In a spin-Peierls phase, either the doublet or the triplet~or,
potentially, both! will have nonzero expectation values. Th
energy considerations of Sec. II suggest that the driving fo
of this transition is the doublet.

The two-component order parameterf can be the same fo
all tetrahedra, in which case only the rotational symmetry
the lattice will be broken. Symmetry with respect to inve
sion on a site can also be violated if the order parameterf is
not the same on tetrahedra of different orientations. L
translational symmetry of the lattice can also be brokenf
varies among equivalent tetrahedra forming a commensu
wave.

C. Pyrochlore lattice: qÄ0 phonons

We restrict the analysis to situations when the trans
tional symmetry of the lattice remains intact, as we did p
viously in Sec. II B. In this case, any two tetrahedra of t
same orientation distort in the same way reducing the sp
group of the pyrochlore lattice to the octahedral point gro
Oh[I 3Td ~inversionI exchanges tetrahedra of different or
entations!. Despite this rather drastic simplification, we w
see that we can account for the experimentally observed
havior of a number of compounds, at least qualitative
Phonons at other points in the Brillouin zone may drive

FIG. 7. Spontaneous dimerization of a spin chain.
3-5
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spin-Peierls transition as well, leading to ordered states w
larger and often more complex unit cells.

The order parameter has~potentially unequal! valuesfA
andfB on tetrahedra of inequivalent orientations. Their sy
metric and antisymmetric combinationsg5fA1fB and u
5fA2fB are irreducible doublets of the groupOh . In the
paramagnetic phase,g5u50. In various spin-Peierls phase
one or both of these order parameters are nonzero.

For classical spins, the domain of possible values of
order parametersf5( f 1 , f 2) is the familiar triangle shown in
Fig. 4. In view of the threefold symmetry~more precisely,
permutation groupS3), the two-dimensional vectorf can be
interpreted as a color.13 The extremal points represent th
red, blue, and green states with collinear spins. In the p
magnetic statef50, theS3 symmetry is manifest: the thre
primary colors are represented equally. In any spin-Pei
phase, the global color symmetryS3 is spontaneously bro
ken.

1. Landau free energy

The Oh symmetry of the high-temperature phase allo
the following terms in the Landau free energy:

F~g,u!5agg21bgg3cos 3ug1cgg41••• ~14a!

1auu21cuu41duu6cos 6uu1••• ~14b!

1buu2gcos~2uu1ug!1•••. ~14c!

Hereg5(g cosug ,gsinug) with an analogous definition ofu
anduu . The first~second! line contains the leading terms fo
the even~odd! distortion; the third line represents the lowes
order coupling betweeng and u. The constantsa–e in this
expression cannot be determined by symmetry consi
ations alone; when convenient, one can try to determine t
likely sign by taking recourse to microscopic model Ham
tonians for the spin-lattice system.

Omitted higher-order terms are assumed to be positive
stability. Landau theory is of course strictly to be appli
only for small values of the order parameters. However,
shape of the range of the vectorf ~Fig 4! encodes some
information about where the order parameter, once clos
saturation, may point.

This form of the free energy permits a number of distin
ordered states. Generally, the symmetry of the lattice is
duced from cubic to tetragonal. In addition, the presence
an odd distortion (uÞ0, or fAÞfB) also breaks the symmetr
of inversion through a site, exchanging tetrahedraA and B.
Note that, whenever a staggered distortionu is present, the
coupling term~14c! generates a subdominant uniform disto
tion g of the crystal.

The phase transitions can be first or second order, dep
ing on the mode driving the transition: the free energy of
even modeg may have a cubic term~14a!, which generally
leads to a discontinuous jump. The odd modeu does not
have its own cubic term~14b!, but is instead coupled non
linearly to g ~Eq. 14c!. This difference has the following
physical origin. When an even distortion is present, all te
hedra have, say, four strong and two weak bonds. Chan
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the sign of the order parameterg would give a state with two
strong and four weak bonds on every tetrahedron, wh
need not have the same free energy,F(g,0)ÞF(2g,0).
Hence ag3 term is allowed. On the other hand, in a sta
with a pure odd distortion, tetrahedraA andB are distorted in
opposite ways~e.g.,A is elongated, whereasB is squashed!
and switching the sign ofu is a symmetry (A is squashed and
B is elongated!, so thatF(0,u)5F(0,2u). Hence, there is no
u3 term.

2. Spin-Peierls phases

In the high-temperature paramagnetic phasesag.0 and
au.0, the minimum of the free energy lies atg5u5fA
5fB50. At low enough temperatures, one or both of the
coefficients may become negative—see Eq.~10!. The nature
of the resulting phase transition depends sensitively on
order in whichag and au turn negative, as well as on th
signs of the Taylor coefficientsbu ,bg ,du . Our results for the
Heisenberg model~Sec. II! are compatible with the choice
bu.0, which we will assume in what follows. Below w
describe six scenarios depicted in Fig. 8.

~a! In the simplest case, the even modeg becomes un-
stable, while the odd mode remains suppressed at all t
peratures. The transition is discontinuous because of the
bic term in the free energy~14a!. For bg.0, minima of the
free energy are atug5p,6p/3. As u50, distortions are the
same on all tetrahedra,fA5fB5g/2. Thus each tetrahedro
shows the same tetragonal distortion with four strong a
two weak bonds.

~b! Same as~a! but bg,0. The minima are atug50,
62p/3, states with a tetragonal distortion of the oppos
sense, two strong and four weak bonds on all tetrahedra

~c! As the even order parameterg grows, it modifies the
quadratic term of the odd mode through the nonlinear c
pling ~14c!. Onceau2bug vanishes, scenarios~a! and~b! are
modified: a second, continuous transition occurs into a s

FIG. 8. Development of the order parametersfA andfB in the six
scenarios of the spin-Peierls phase transition.f50 in the paramag-
netic state.~a!, ~b! A first-order transition is driven by theEg pho-
non and is discontinuous.fA5fBÞ0. ~c!, ~d! As a result of that
transition, theEu phonon softens and triggers a subsequent seco
order transition into a phase withfAÞfB . ~e!, ~f! A second-order
transition is driven by theEu phonon. TheEg order parameter is
also induced, so thatfAÞ2fB .
3-6
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where bothgÞ0 anduÞ0, so thatfAÞfB . The directions of
g and u are correlated: 2uu1ug5p. For bg.0 ~a!, u is
parallel tog; therefore, vectorsfA and fB still point towards
one of the corners of the triangle, but their lengths diff
Distortions of tetrahedraA andB remain tetragonal, but ar
unequal in strength. The symmetry of inversion is broken

~d! When the odd mode softens forbg,0 ~b!, u is per-
pendicular tog. The lattice distortion acquires a stagger
component—in addition to an existing uniform one. Disto
tions of individual tetrahedra are no longer purely tetragon
there is an orthorombic component. Because the latter h
staggered nature, the lattice as a whole retains tetrag
symmetry. The symmetry of inversion is broken.

Caveat: because the high-temperature transitions in c
~c! and~d! are discontinuous, the intermediate phase may
skipped completely. In that case, instead of a successio
two transitions, there will be a single, discontinuous tran
tion directly into the final state withfAÞfB .

~e! The transition can also be driven by the odd phon
in which case it is expected to be continuous. The ini
direction of the vectoru is determined by the sign of th
sixth-order anisotropydu . For du,0, uu5np/3, wheren is
an integer; vectorsfA andfB point in opposite directions. The
nonlinear coupling term~14c! generates a subdominant ord
parameterg5O(u2) parallel to u. This parasitic order pa
rameter enhances the order parameter on one sublattice
reduces it on the other. Individual distortions are tetragon

~f! Odd phonon withdu.0. The free energy~14b! has a
minimum for uu5(2n11)p/6. Initially, distortions of tetra-
hedraA andB are orthorombic, e.g., alongf 2. The parasitic
componentg5O(u2) and—perpendicular tou—bends fA
and fB towards the corners and makes the individual dist
tions mostly tetragonal~along orthogonal axes in real space!.
Note that the final state is the same as in~d!.

D. Relation to three-state Potts models

As we have already mentioned, the symmetry of the bo
variablesf ~permutation groupS3) invokes a similarity to the
Potts model withq53 states14 with energy

E5J(̂
i j &

dsisj
, ~15!

si51,2,3 being Potts states. Indeed, a similar tw
component order parameter has been introduced for thq
53 Potts model by Ono.15 The pure Potts states correspo
to collinear spin configurations. In the current context,
order parameter resides on tetrahedra, which form a th
dimensional diamond lattice. It is entirely plausible that t
spin-Peierls transitions described in this paper should
analogous to phase transitions in Potts models with sh
range interactions.

To this end, we can identify the simplest scenario@Fig.
8~a!# with the ferromagnetic Potts model. The latter is know
to have a first-order transition in three dimensions,14 which is
consistent with our mean-field result.

Transitions shown in Figs. 8~e! and 8~f! have their analogs
in the antiferromagnetic three-state Potts model. Res
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~mostly numerical! for lattices ind53 dimensions have bee
obtained fairly recently.16–18 Banavaret al.16 have studied
the model on the simple cubic lattice and found at low te
peratures an ordered state with a broken sublattice symm
~BSS!. As the name suggests, the two sublattices are
equivalent: spins on one sublattice are primarily in one P
state, while the other sublattice is dominated by the rema
ing spin states in equal proportions. More recently, Ros
gren and Lapinskas predicted the existence of another ph
with permutationally symmetric sublattices~PSS’s!, where
sublatticesA and B are dominated by two different Pott
states.17 Their Monte Carlo simulations suggest that t
three-state Potts antiferromagnet on the diamond lattice
ders into the PSS phase.19 In both cases, the phase transitio
appears to be continuous, with critical properties of theXY
model ind53.

IV. NÉEL PHASES

The spin-Peierls transition, whether in chains or in thre
dimensional magnets, is driven by the desire of spins to
duce frustration. In the bond-ordered phase, excha
strength varies from bond to bond because of the distort
Thus frustration is relieved and the classical ground s
becomes unique, modulo global spin rotations. In three
mensions, we can expect a spin-ordered state at zero
perature. As argued before, the transition into a Ne´el state
need not coincide with the spin-Peierls transition. Therefo
generally there will be three separate phases: paramagn
spin-Peierls, and Ne´el. ~In those cases when the spin-Peie
transition is discontinuous, the system may go directly in
the Néel phase, bypassing the spin-Peierls stage.!

Néel orders

Particulars of the Ne´el order on a distorted lattice obvi
ously depend on details of the distortion, which strength
some bonds and weakens others. Because precise know
of spin interactions is rarely available~even for the undis-
torted state!, one can try an alternative route: namely, to i
clude spin averageŝSi& in the Landau theory develope
above for a spin-Peierls phase.

To keep technical details to a minimum, we will restri
the discussion to Ne´el states that do not break translation
symmetry of the crystal; i.e., spin averages^Si& will be as-
sumed to be identical for all tetrahedra of the same orien
tion. Put another way,̂Si& is the average spin on thei th
sublattice, i 51, . . . ,4. Evidently, this parametrization ad
equately describes only a fraction of possible antiferorm
netic orders. For example, one of the Ne´el ground states
obtained in our simple magnetoelastic model~Fig. 6! is al-
ready beyond its scope. More generally, evenq50 bond-
ordered states with different strengths on the pair of bond
inequivalent tetrahedra related by inversion cannot be tra
lated into aq50 spin state.

Undistorted lattice

Let us construct the Landau free energy for spins on
undistorted lattice. Using the order parameterssi5^Si& one
obtains the following expansion for the free energy:
3-7
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F~$si%!5
a0

4 (
i 51

4

si
21a1S (

i 51

4

si D 2

1
b0

4 (
i 51

4

si
41•••.

~16!

In an antiferromagnet,a1.0; for stability, we takeb0.0.
Whena0 becomes negative, the minimum of the free ene
shifts away fromsi50 and the system will enter a Ne´el state.
The free energy is minimized byany configuration of spin
averages satisfying( i 51

4 si50; the length of the averages
given bysi

252a0/2b0. The Néel pattern is thus not unique
as expected for a frustrated magnet.

In addition to the quartic term shown in Eq.~19!, the free
energy expansion may contain one more quartic invarian

b1(
i . j

~si•sj !
2. ~17!

This term, in fact, will break the degeneracy of the Ne´el
states. In the caseb1,0, the Néel phase has collinear spin
~any one of the three collinear states in Fig. 4; note that th
states also break the bond symmetry.! Whenb1.0, the spin
averages point at equal angles of arccos(21/3)'109° to one
another.

Distorted lattice

A lattice distortion, however small, breaks the cubic sy
metry, so that additional, less symmetric terms will appea
the free energy. For a distortion that, symmetrywise, belo
to the irreducible doubletE, the lowest-order perturbatio
will be of the form

a2~ f•f!5a2~ f 1f11 f 2f2!, ~18!

wheref is the familiar spin-Peierls order parameter descr
ing the distortion. The spin partf($si%) should therefore also
be a doublet of the same symmetry:

f15@~s11s2!•~s31s4!22s1•s222s3•s4#/A12,

f25~s12s2!•~s32s4!/2. ~19!

Apart from global rotations of all four spins, these two va
ables uniquely determine the relative directions of the f
vectorssi satisfying the constraint( i 51

4 si50. It is conve-
nient to separate the direction and length of the spin avera
in the free energy:f5s2f̂. The free energy then takes th
following form:

F~s,f̂!5a0s21a2~ f•f̂!s21b0s41b1~f̂•f̂!s4. ~20!

The last term is simply Eq.~17!; we have also dropped th
term (( i 51

4 si)
2 assuming that the minimization is done ov

antiferromagnetic states.
Minimization can now be done separately over the len

s and direction variablesf̂. The minimization with respect to
s at a fixedf̂ is straightforward, giving a minimum

F~f̂!5 inf
s

F~s,f̂!52
@a01a2~ f•f̂!#2

2@b01b1~f̂•f̂!#
. ~21!
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The minimization with respect tof̂ is done over the trian-
gular domain shown in Fig. 4. The outcome is decided b
competition between the biquadratic exchange~17! and the
coupling to the spin-Peierls order~18!. Generally, a distor-
tion f pulls the vectorf̂ in the same direction~if a0,0 and
a2,0), whereas the biquadratic coupling attempts to mi
mize (b1.0) or maximize (b1,0) its length.

Figure 9 shows the appropriate phase diagram of the
tiferromagnetic ordering for the case of a uniform tetrago
distortion. When the influence of the distortion dominat
we find two Néel phases. For a distortion that produces fo
strong bonds per tetrahedron, the spins are collinear~e.g.,
s15s252s352s4); a distortion of the opposite sense~four
weak bonds! stabilizes a coplanar state with twoorthogonal
pairs of spins~e.g.,s152s2 ,s352s4, while s1•s350, Fig.
10!. In an intermediate state, where the biquadratic coup
dominates, the spins are no longer coplanar. For a pos
biquadratic couplingb1, they gradually interpolate betwee
the collinear and orthogonal orientations as the strength
the distortion varies. In the shaded region (b1,0), a uniform
tetragragonal phase becomes unstable: the distortion acq
an orthorombic component at the onset of the Ne´el order; in
addition, spin averagessi break the translational symmetry o
the crystal, as in Fig. 6.

V. CONCLUSION

In this paper, we have presented a theory of the sp
Peierls transition in a frustrated magnetic system, the Heis
berg antiferromagnet on the ‘‘pyrochlore’’ lattice. Several a
pects distinguish this effect from its counterpart in sp
chains ~e.g., CuGeO3). ~1! The magnetic system is man
festly three dimensional, initially possessing a cubic symm
try. ~2! The effect is classical: the quantum mechanics
spins plays no significant role.~3! The order parameter~dis-

FIG. 9. Néel order in the presence of a tetragonal distortion,
given by Landau theory. The abscissa is the distortion amplit
(a2 /a0) f 1; the ordinate is the biquadratic couplingb1 /b0. The four
Néel phases are described in the text.
3-8
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parity of spin correlations! has rather nontrivial symmetr
properties: its components form an irreducible doublet of
tetrahedral symmetry group.

What drives this spin-Peierls transition? From the kin
matical viewpoint, the vectorsf, Eq. ~6!, can be viewed as
coordinates in the manifold of ground states. The onset
bond order thus lifts the large accidental degeneracy of
ground state. The dynamical reason for the transition is
Jahn-Teller effect occurring in the building blocks of th
‘‘pyrochlore’’ lattice, tetrahedra of magnetic ions. Unlike
many cubic spinels, where the Jahn-Teller distortion
caused by anorbital degeneracy, here it is driven by thespin
degrees of freedom. An isolated tetrahedron~whether with
quantum or classical spins! undergoes a tetragonal distortio
along one of the three orthogonal symmetry axes, produc
four strong and two weak bonds — or vice versa, depend
on the sense of the distortion.~The residual threefold degen
eracy of the spin-and-phonon ground state relates this p
lem to the three-state Potts model.!

A study of the spin-driven distortion of an isolated tetr
hedron provides clues to the simplest description of the s
Peierls effect on the lattice of corner-sharing tetrahedra
particular the form of the order parameter. Depending on
parity of the phonon responsible for the transition, Land
theory predicts a first- or second-order spin-Peierls tra
tion. It is gratifying to see that these predictions are con
tent with known properties of the three-state Potts mode
the diamond lattice, onto which our problem can be mapp

Although a distortion of the lattice reduces the geome
frustration, there is no reason to expect that it induces a N´el
order immediately atTc . With the exception of strongly dis
continuous spin-Peierls transitions, spin order will genera
set in at a lower temperature than bond order. A transit
between a spin-Peierls and Ne´el phases has been analyz
above, again in the framework of Landau theory, which p
dicts collinear, coplanar, and more general antiferromagn
orders at the lowest temperatures.

Are there experimental realizations of the bond-order

FIG. 10. Aq50 Néel state with orthogonal spins. The distortio
is created by the sameEg phonon as in Fig. 5 but with the opposit
sign.
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transition described in this work? The spinel compou
ZnCr2O4, in which Cr31 ions (S53/2) form the tetrahedra
network, appears to be a good candidate for a Heisen
antiferromagnet on the ‘‘pyrochlore’’ lattice. Indeed, it exhi
its a magnetic transition atTc512 K accompanied by a
structural distortion.20,21 Néel order is observed atT<Tc ,
which is not surprising given that the transition is discontin
ous. Another spinel MgV2O4 shows a sequence of tw
transitions:22 a structural one occurs atTc2565 K, and Ne´el
order appears atTc1542 K. However, because of an orbita
degeneracy~the outer electrons in V31 are 3s2p6d2), the
upper transition may well be triggered by the ordinary Ja
Teller effect common to spinels. Therefore, we cannot po
tively identify it as a spin-Peierls transition. Neverthele
the Néel order in this compound~and also in YMn2) agrees
with the prediction of a simple magnetoelastic model giv
here~Fig. 6!. Last, a recently discovered second-order str
tural phase transition23,24 in the metallic pyrochlore
Cd2Re2O7 at Tc5194 K may turn out to be a closely relate
Peierls transition, whose symmetry properties are identic

We have presented a bare-bones theoretical descriptio
the spin-Peierls transition in a ‘‘pyrochlore’’ antiferromagne
Only the simplest ordering patterns have been discus
namely, those that do not break the translational symmetr
the crystal. An obvious extension of this work would be
include bond and spin orders at nonzero commensurate w
vectors. E.g., a phonon withq5(p,p,p) appears to be re
sponsible for the distortion in ZnCr2O4.
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APPENDIX A: A MODEL WITH A COPLANAR GROUND
STATE

In addition to pairwise spin exchange, which gives rise
the Heisenberg interactionSj•Sj , spins can be involved in
longer exchange cycles, such as 123°231 and 312. The cy-
clic exchange of three spins induces the same pairw
Heisenberg interaction, which has already been conside
The next nontrivial contribution comes from four-spin cycl
exchange

P12345~S1•S3!~S2•S4!1~S1•S4!~S2•S3!

2~S1•S2!~S3•S4!,

which — for S51/2 — moves spin states clockwise or cou
terclockwise around the loop 1234~Fig. 11!. For localized
spins, this interaction is weaker than pairwise exchange
can be considered as a perturbation. Nevertheless, its s
ture has apparently been detected25 in the spin-wave spec
trum of La2CuO4.

A tetrahedron has three loops of length 4: 1234, 1324,
1243. QuantitiesP1234,P1324, and P1243 contain the trivial
representationA1 and the doubletE.
3-9
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The sumP12341P13241P1243, being invariant under al
symmetry operations, can enter an expression for the en
on its own. In the subspace of the ground states of
Heisenberg Hamiltonian, this perturbation can be written a
biquadratic term

J4(
i . j

~Si•Sj !
25

3J4f 2

2
1const.

The outcome depends on the sign of the coupling cons
J4. If the constant is negative, it prefers the largest mag
tude of f and selects the three collinear spin states~solid
circles in Fig. 4!. A positive J4 suppressesf, selecting the
f50 state with all bonds equivalent; spin averages m
angles of arccos(21/3)'109° with each other.

The two differences betweenP1234, P1324, and P1243
form an irreducible doubletE. They can therefore couple t
the phonon doublet of the same symmetry adding this m
netoelastic term to the energy:

J48S P13241P124322P1234

A6
x11

P13242P1243

A2
x2D ,

whereJ48 describes variation of the cyclic exchanges unde
tetragonal or orthorombic distortion. After adding an elas
term kx2/2 and minimizing with respect to the phonon va
ablesx, one obtains the following contribution to the energ

2
2J48

2

3k
$@~S1•S2!22~S2•S3!2#21@~S2•S3!22~S3•S1!2#2

1@~S3•S1!22~S1•S2!2#2%. ~A1!

The energy is lowered by the greatest amount in copla
states with spins, making angles of 90° and 180° with o
another. These states have two pairs of frustrated bonds
are marked as open circles in Fig. 4.

As the two physical forces described above — the fo
spin exchange and its coupling to the phonons — favor
ferent ground states, the outcome is decided by their rela
strengths. In particular, the ground state has orthogonal s
@Fig. 11~d!# when the four-spin exchange is very sensitive
atomic displacements~and therefore the distortion is large!.
The reason for this effect can be understood as follows
strong tetragonal distortion enhances the four-spin excha
around one loop and suppresses the same around the re
ing two. When the latter are completely switched off, we a
dealing with a square, and for a square the four-spin cy
exchange produces a ground state with orthogonal spins26

FIG. 11. ~a!–~c! Cyclic exchange of four spins.~d! A ground
state with two orthogonal pairs of~classical! spins.
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APPENDIX B:
SINGLE TETRAHEDRON—QUANTUM SPINS

Quantum spins coupled to classical distortions of the
rahedron have the following Hamiltonian in the subspace
ground states:

H52J8f•x1kx2/2, ~B1!

which is formally the same as the classical energy~7!. For a
fixed ‘‘direction’’ of the distortion,

n̂5x/x5~cosa,sina!,

the operatorf•n̂5 f 1cosa1f2sina has 2S11 eigenvalues
ls ,s50, . . . ,2S in the ground-state manifold. The Hami
tonian ~B1! has the following energy levels:

Es~x,n̂!52J8lsx1kx2/2.

Minimization with respect to the magnitude of the distortio
x gives the following result:

Es~ n̂!5 infxEs~x,n̂!52J82ls
2/2k.

The energy is lowest in a spin state with the largest~in ab-
solute terms! eigenvaluels of the operatorf•n̂. The final
step is minimization with respect to the directionn̂.

Let us illustrate the minimization procedure using t
classical problem of Sec. II A as an example. To this end,
show classically allowed values of the vectorln̂5(f•n̂)n̂ as
shaded areas in Fig. 12~the values off fill the interior of the
regular triangle shown in dashed lines!. The largest magni-
tude uln̂u5ulu is found in the directionsa5p,6p/3,

FIG. 12. Solid lines: eigenvaluesls of the operator f•n̂
5 f 1cosa1f2sina in polar coordinates (ls ,a) for several spin
lengthsS. Shaded area: the classical result forS→` ~properly re-
scaled!.
3-10
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which correspond to the three collinear states. In the qu
tum case,ls has a discrete spectrum; therefore allowed v
ues oflsn̂ will show as lines on the same graph.

The main subtlety of the quantum problem is the nonco
mutativity of the bond operatorsf 1 and f 2,

@ f 1 , f 2#522A3ix, ~B2!

wherex is the operator of chirality:

x5S1•~S23S3!52S1•~S23S4!5•••.

Therefore eigenvalues off•n̂ cannot be constructed from
those off 1 and f 2, but rather must be determined for eve
direction n̂.

1. Matrix elements of the operator f

In the (2S11)-dimensional subspace of singlet grou
states we choose the basis$us&%, s50, . . . ,2S being the
s
on
m
-

s
ve

06440
n-
l-

-

total spin of pair 12.~The spin of pair 34 must be the same
order to form a total spin of 0.! The operatorf 1 is also
diagonal in this basis because

f 15@S12•S342S12
2 2S34

2 14S~S11!#/A12.

Its eigenvalues are

f 15@4S~S11!23s~s11!#/A12. ~B3!

The operatorf 2 is off-diagonal. To compute its matrix
elements, write out an expression for the singletus&:

us&5
1

A2s11
(

m52s

s

~21!s2mus,m&12us,2m&34.

Here us,m&12 is the state of pair 12 with total spins and its
projectionm onto a chosen axis. Then, by definition,
^s8u f 2us&5
1

2A~2s811!~2s11!
(

m852s8

s8

(
m52s

s

~21!s1s82m2m8^s8,2m8u~S32S4!us,2m&34•^s8,m8u~S12S2!us,m&12

5
1

2A~2s811!~2s11!
(

m852s8

s8

(
m52s

s

^s,mu~S12S2!us8,m8&12•^s8,m8u~S12S2!us,m&12. ~B4!
s:

n
n,
gs.
In simplifying this expression, we have replaced indice
and 4 with 2 and 1 because the matrix elements involve
pair at a time. Also, we have used the properties of ti
reversal27 to simplify the first matrix element in the sum
mand.

The last line of Eq.~B4! contains matrix elements ofS1
2S2, which is ~a! a vector, and~b! antisymmetric in 1↔2.
These lead to a selection rule

^s8u f 2us&50 unlesss85s61. ~B5!

Completeness of the basis$us8,m8&% allows us to further
simplify the right-hand side at the expense of producing a
of 2S11 coupled equations. This is done by summing o
s8 with appropriate weights:

(
s850

2S A2s811

2s11
^s8u f 2us&

5
1

4s12 (
m52s

s

^s,mu~S12S2!2us,m&12

52S~S11!2
1

2
s~s11!.

Solving these gives the matrix elements off 2.
3
e

e

et
r

The operatorf has the following nonzero matrix element

^su f 1us&5
4S~S11!23s~s11!

A12
, ~B6!

^s21u f 2us&5^su f 2us21&5
s@~2S11!22s2#

2A4s221
.

~B7!

2. Eigenvalues of the operator f"n̂

For S51/2, we have

f•n̂5
A3

2 S cosa sina

sina 2cosa D . ~B8!

The eigenvaluesl56A3/2 are independent of the directio
n̂. Thus there is no preferred direction for the distortio
unless one introduces some additional, nonlinear couplin
This fact was noted previously by Yamashita and Ueda.9

For S51,
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f•n̂5
1

A3 S 4 cosa 4 sina 0

4 sina cosa A5sina

0 A5sina 25 cosa
D . ~B9!

Its eigenvalues are given by the equation

l327l1
20 cos 3a

3A3
50.

The largest eigenvalue is attained whena5p or 6p/3, i.e.,
whenn̂ points towards one of the corners of the triangle~the
three tetragonal distortions!. Foru5p, the total spin of bond
12 iss52 ~the same goes for bond 34!. For other choices of
y

e

h

n

:
i

064403
a, the highest spin is found on other pairs of opposite bon
We have checked higher spin valuesS<10 and always

found that the lowest energy is obtained for a tetragonal d
tortion, when two opposite bonds have the highest spinS
and are thus most strongly frustrated. One can use pertu
tion theory to show thata5p is at least a local maximum of
ul2Su for any S.1/2:

l2S~a!

l2S~0!
512

2S21

4S21
a21O~a4!.

As the value ofS increases, eigenvaluesls fill the classical
region ~three overlapping shaded circles in Fig. 12!.
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