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In the highly frustrated pyrochlore magnet spins form a lattice of corner-sharing tetrahedra. We show that the
tetrahedral “molecule” at the heart of this structure undergoes a Jahn-Teller distortion when lattice motion is
coupled to the antiferromagnetism. We extend this analysis to the full pyrochlore lattice by means of Landau
theory and argue that it should exhibit “spin-Peierls” phases with bond order but no spin order. We find a range
of Neel phases, with collinear, coplanar, and noncoplanar order. While collinealr piases are easiest to
generate microscopically, we also exhibit an interaction that gives rise to a coplanar state instead.
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[. INTRODUCTION At smaller values of spin, the situation is unsettled with some
form of singlet order likely.®
The study of highly frustrated magnets began with Wan- Recently, building on work of Yamashita and Uethae .

nier and Houtappel's realization that the triangular latticehave shown that in the presence of a coupling to the lattice,
Ising antiferromagnet is paramagnetic at any nonzero tenrR different mechanism of degeneracy lifting is likely to
perature and exhibits a macroscopic entropy even at Ze@eratel.o This involves a version of the Jahn-Teller effect in
temperaturé:? This canonical example illustrates the defin- Which the lattice distorts to gain exchange enditgy “spin-
ing characteristics of such systems—their failure to order af €ller” effect) and thereby relieves the frustration. As mag-
temperatures of the order of the exchange constant, empiffletoelastic couplings are ubiquitous and lead to a transition
cally derivable from the high-temperature Curie susceptibil-°VE" at infinite spin, th's mechanlsm will dpmmate over the
ity, and a large low-temperature entroify purely quantum selection effect, likely starting at modest val-

. ues of the spirt! Also noteworthy in this problem is the
The advent of the cuprate superconductors led to Senous'r\(kelihood of a finite-temperature bond-ordered phase pre-

renewed interest in these systems in the hope of finding geding the eventual establishment ofdNerder

guantum spin I|qU|Q—the zero-temperature state_ of a quan- In this paper we present a detailed account of our analysis
tum magnet that fails to order. Subsequently their study hag¢ ye jahn-Teller effect for Heisenberg magnets on the py-
blossomed, driven by an increasing list of materials that eXiochiore lattice. Parts of this work have already been sum-

hibit highly frustrated antiferromagnetism, and is driven asyarized in a short papd?.In Sec. Il we begin with the
much in hope of finding unusual ordering at low tempera-symmetry analysis of the Jahn-Teller distortion of a single
tures. An appealing, if optimistic, analogy is to the quantumietrahedron in the classical limit and then extend itjte0

Hall system, where the magnetic field frustrates the kinetigGhonons for the infinite lattice. Having identified the order
energy and produces a macroscopic degeneracy, which garameter for lattice distortion®ond orderingin this fash-
then lifted by residual terms in the Hamiltonian to produce aion, in Sec. Ill we construct a Landau theory of the transition
rich phase diagram with various orderings. into the bond ordered state which we contrast with the Lan-

The most promising system in this regard is the nearestdau theory of the spin-Peierls transition in quasi-one-
neighbor Heisenberg system on the “pyrochlore” lattice, adimensional systems. Finally we turn to the establishment of
network of corner-sharing tetraheddFig. 1). The idealized
system has a vast ground-state degeneracy in the classical
limit of infinite spin and there is a large and growing list of
materials that approximate this to varying degrees, including
doped variants that superconduct or display behavior remi-
niscent of heavy fermions.

In this paper we limit ourselves to the insulating magnets.
Here it is known that the classical system doret exhibit
order by disorder and remains (eooperativ¢ paramagnet
down toT=0. On general grounds one expects that quantum
fluctuations will select an ordering at sufficiently large spin  FIG. 1. The “pyrochlore” lattice. Magnetic ions are situated in
in a spin-wave treatment about the classical ground statesthe corners of tetrahedra.
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Neel order which we discuss with the insight gained from
analyzing bond orde{Sec. I\V). Such ordering is most natu-
rally collinear but symmetry permits coplanarity and in Ap-
pendix A we describe an interaction that would bring it
about. Appendix B gives the quantum theory of the Jahn-
Teller effect in a single tetrahedron. The experimental situa-
tion with regard to structure is briefly discussed in our con-
cluding remarks in Sec. V. We will discuss the dynamical
signatures of various phases in a forthcoming publication.

II. JAHN-TELLER EFFECT
A. Single tetrahedron

The structural unit of the pyrochlore antiferromagnet is a
tetrahedral “molecule” with four spins in the corners. Its
high symmetry and the degeneracy of the ground state are
the two prerequisites for the Jahn-Teller effect: the tetrahe-
dron is distorted in its ground state. The tendency of indi-
vidual tetrahedra to deform induces a coherent distortion o?p'n)'
the entire crystal. We will describe the Jahn-Teller effect for ) ) ) o
a single tetrahedron in detail to understand which aspects afé"Ple, ifJi; depends strictly on the distance between spins
relevant for the description of the spin-Peierls effect on theand], the contribution of this pair to the exchange energy,

entire lattice. _
The energy of four spins on a regular tetrahedron is Bij=[3+(dJdr)ér+---1(S-5),

FIG. 2. Four spins of a tetrahedron in a ground stago total

3 generally has a term linear in the relative displacent.
Eg=J>. S S=5(S1+S,+ S+ $,)%2—2JS(S+1). (1)  Therefore, spinsi and j exert on each other a force
i< 2 —(dJ/dr)(S-S;), which is repulsive or attractive depending
pn the angle between the spins. In a generic ground state
(Fig. 2), angles between spins are unequal, so that disparate
eforces cause a deformation of the tetrahedron.

More generally, the exchange interaction may depend not
only on the distances between spins, but also on the angles
between the bonds. We therefore write the magnetic and
elastic energies of the spins in the most general form

In a ground state, the total spin is 0. For quantum spins o
lengthS there are 3+ 1 linearly independent ground states,
which can be constructed as follows. The total spin of th
pair S; and S, can be 0,1,2...,2S, and likewise for the
other pairS; and S,. An overall spin singlet can be formed
by combining two singlets, two triplets, and so on, giving a
total of 2S5+ 1 physically different singlet states.

The problem of quantum spins on an elastic tetrahedron
can be solved straightforwardly and is treated in detail in E=Eo+ >, (5Jij/0xa)(51'5j)xa+2 KapXaXp/2. (3)
Appendix B. As the degeneracy and hence the Jahn-Teller al ab
distortion survive at arbitrarily large values of spin, the out-piare E, is the energy of a ground state;, ... x, are

come (with the exception of the extreme quantum C&€ capesian displacements of the spins, &gglare the appro-

= 1/2) can be understood by looking at the simpler probleny, a6 ejastic constants. To reduce the number of independent
with classical spins. In essendhis spin-Peierls effect is .,oginates and forces, it is convenient to classify them in
classical in contrast with the usual cases where it goes awaYerms of irreducible representations of the symmetry group

in that limit. ; . d .
. . T4 of the tetrahedron. Using the appropriate linear combina-
For classical spins§— ), the degeneracy of the ground g of coordinates,,, and forcesf ,, (wherep labels irre-

state becomes continuous. In addition to a trivial rigid rota-q  cible representations and enumerates its componehts
tion of all four spins, there are two parameters that can b%ne obtains a simpler result

used for characterization of a ground sté&e. 2): the angle
20 between spins 1 and 2 and the angl¢ Between the )
planes 12 and 34. These two parameters determinbche E=Eo+ 2 [~ 3/ uXpat K X212]. (4)

variablesin a ground state, o
S,-S,=S;-S,=SPc0s 2, Six vibrational modes may affect the exchange energy: a
singletA;, a doublett, and a triplefT,. The breathing mode
S, $;=S; - S,=SA(sint 6 cos 2p— cosb), (2)  Aquniformly rescales exchange interactions on all bonds and
does not discriminate between different ground states; there-
S;-$,=S,-S,= — S(sir0 cos 2+ cos ). fore it can be left out of consideration. A component of the

vector tripletT, stretches and contracts by the same amount
At the heart of the effect lies the dependence of the extwo bonds opposite each othé¥ig. 3). As can be inferred
change interaction on the relative positions of spins. For exfrom Eq. (2), such bonds are equally satisfi¢or equally
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triplet T,

FIG. 3. Vibrational modes of a tetrahedral molecule.

frustrated in any ground state. Therefore stretching one and
contracting the other to the same extent cancels the linear
term in magnetic energy, making the triplet mode ineffectual
in relieving frustration via the Jahn-Teller mechanism. Only
one irreducible representation causes the Jahn-Teller effect: FIG. 4. The domain of the bond vectof=(f,,f,)
the doublet E whose components are tetragonal and=(f cosa,fsina) is bounded by an equilateral triangle in the
orthorombic distortions of the tetrahedréfig. 3). Since no  (f1.f,) plane. Also shown are six extremal spin configurations:
other representations will be dealt with, we will suppress thecollinear (solid circleg and coplanafopen circleg Strong(weak
representation subscript= E in what follows. bonds are denoted by solidashed lines.

The six bond variable§;- S; contain the same represen- ) ) .
tations. The singlef\; is the symmetric sum, which is noth- constants appropriate for tfierepresentation. The energy is
ing but the energy of the undistorted ground stdbei.e., a  Minimized with respect tax whenkx=J'f, so that
constant that does not favor any particular ground state. The

_ _112¢2
triplet T, contains the differences of forces apposite Emin=Eo = J"17/2k. @
bonds, One can view the- 2 term as a quartic spin interaction
$-S,-S, $4—S,- S, S-S5, (5 J2z g2
$'%-5S, S$:5%-5S%, 5555 -5 :_ﬁ_E_(s-sj)erconst )
1>]

As already mentioned, these differences vanish in a ground
state. The remaining forces form a doubketshowing the  induced by “integrating out” the phonorié.It evidently pre-

disparities between adjacent bonds: fers collinear ground states with four maximally satisfied
bonds and two maximally frustrated bonds. The resulting
F1=[(S1+S) (S4+Sy) — 28-S, 2S5 S,1/12, distortion of the tetrahedron is tetragonal. It flattens or elon-
gates along one of it€, axes, depending on the sign of the
f,=(S—S) (S$3—5)/2. (6) derivativeJ’.

Modulo global rotations of the spins, there are three de-
The component; shows by how much bonds 12 and 34 aregenerate collinear ground stat@sg. 4). Their opposites are

stronger than the resFig. 4); f, compares bonds 13 and 24 copjanar states with four frustrated bonds; such ground states
versus 23 and 14. The domain of possible values of the vegppear in a model with more general spin interactions, e.g.,
tor f=(f;,f,)=(f cosa,fsina) is an equilateral triangle. Its  four-spin cyclic exchanges. See Appendix A for details.
perimeter is made of coplanar ground states; the three cor- A consideration of quantum spins in the Appendix B
ners correspond to the three distinct collinear ground stategjelds essentially the same result: the energy is minimized
The two components df like the two angles in Fig. 2, can \hen two opposite bond®.g., 12 and 34have the highest

be used to parametrize degenerate classical ground states of@ns 25 each. Such states are the quantum analog of parallel

tetratzwe.dron; in  fact, f;=28°(1-3co$O)/\3,f,  spins. In contrast to the spin-Peierls effect on a Heisenberg
=2S%sirfhcos 2. chain, this one is a classical affair: instead of forming spin
After these simplifications, the energy of the system hasinglet on stronger bonds, Heisenberg spins of a tetrahedron
the form form the highest spin on two weak bonds.
E=Ey—J'f-x+kx?/2, (7)

B. Pyrochlore lattice: g=0 phonons

where x=(X;,X,) are amplitudes of the tetragonal and An attempt to extend this calculation to an infinite net-
orthorombic distortions]’ andk are the magnetic and elastic work of tetrahedra runs into a substantial problem: all pos-
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FIG. 5. The Nel state obtained in the magnetoelastic model FIG. 6. Same as Fig. 5 but with the domin&tphonon. Bonds
with g=0 phonons. Th&, phonon mode dominates. The distortion in the two vertical planes are weakened alternatively.
weakens bonds in the horizontal plane on all tetrahedra.

KolXq12  KkylX,l?
ol |, Kuls

E:_J (fA‘XA+fB‘XB)+ 2 2 ,

sible phonon modes, the number of which is proportional to
the number of tetrahedra, couple to bond variables, and any ) L ) .
one of them may thus lead to a magnetoelastic distortion. I#$ réadily minimized with respect to the phonon variables:
order to describe the basic physics of the Jahn-Teller effect I iattel? I[fa—tsl?
on the full lattice, in this section we restrict ourselves to the Epp=— ———2 2 A B
(ovensimplified version with only a few participating 4kg 4k,
phonons. As a result of this crude approximation, “integrat-The minimized energy thus consists of two terms. The first
ing out” the phonons produces an infinite-range interactionerm is diagonal irf, andfg:
between vector§ of different tetrahedra. In a realistic model
including phonons of all wavelengths, such forces will have =3/ (kg '+ kg H(FAa+T3)/4.
a finite radius. However, the structure of the ground state i
often insensitive to such detalils.

We specialize to the case of phonons with wave vecto
g=0. In effect, this restricts all tetrahedra of the same ori- — 3 (K =k Y (Fa- )2
entation to have the same distortioRigs. 5 and & The g u JLATB
existence of two types of tetraheditabeled in what follows introduces a coupling between the Potts states on the two
A andB), which differ by orientation, is the only new degree sublattices. A softer even phonoky&k,) yields the ground
of freedom. The symmetry group of the lattigeith equiva-  state of a ferromagnetic Potts model: all tetrahedra distort in
lent tetrahedra identifiedis extended fromTy to IXTy  the same way. A softer odd phonoky{k,) produces a
=0y, by the operation of inversion on any site, which ex-ground state with alternating distortions on the two sublat-
changes tetrahedr& and B. Irreducible representations are tices.
those ofT, labeled by an additional quantum number, parity ~ Translated back into spin language, the two ground states
under inversion. The relevant phonons EﬁeandEu, which are shown in Figs. 5 and 6. The latter, in fact, describes the
are, respectively, uniform or staggered distortions of the latNeel state observed in YMnand MgV,0,, compounds with
tice. For example, the first component Bf, stretches all ~spontaneous structural distortions.
tetrahedra along the direction (resulting in a macroscopic
distortion of the crystal whereas the first component Bf, [ll. LANDAU THEORY
stretches tetrahedrd and squeezes tetrahedBaalong the

same axigleaving the crystal dimensions unaltered to lead- OUr Simple model of classical spins on an elastic lattice of
ing orde). The resulting distortions of tetrahedfaand B tetrahedra appears to be reasonably successful in explaining

(10

?t puts tetrahedra of both types into one of the three collinear
ptates, thus defining a three-state Potts model. The cross term

can be written ground-state properties of some frustrated magnets. Can we
also gain some understanding of phase transitions in these
materials?
Xa=(Xg+X)/\2,  Xg=(Xg—Xy)//2. To start with, we need to identify the relevant phases. At
high temperatures, we have a symmetric paramagnetic state
The sum of elastic and magnetic energies, with no spin or bond order and no lattice distortions. The
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ground state T=0) is a Nel phase with a distorted lattice.
The two phases are distinguished, for example, by spin av-
erageg'S) and by the disparities in bond lengths. In general,
there may(and in certain cases willexist an intermediate
spin-Peierls phase. It is distinct from the élghase by the
absence of spin ordef$%)=0). It is also different from the
paramagnetic phase by the presence of lattice distortions and
unequal spin correlation§S - S;) between various nearest
neighbors, with a concomitant lowered symmetry. In such
cases, we expect two phase transitions: first, a high-
temperature spin-Peierls transition, which partially relieves

frustration of spins, then, at a lower temperature, a transition FIG. 7. Spontaneous dimerization of a spin chain.
into a Neel state. Such a scenario is permitted by symmetry,

and the frustration makes it easier to generate fluctuations B. Pyrochlore lattice:

that destablize the ¢ state without destroying the bond Order parameter and broken symmetries
order.

) ) A ) ) . What order parameters would characterize a spin-Peierls
In this section, we will discuss the spin-Peierls transmonphase in a network of tetrahedra? The smallest unit of the
using Landau theory. By analogy with spin chains, we will|5¢ice 5 tetrahedron, contains six bond variables, so that
identify the relevant order parameter and discuss possiblg o e are six averagds - S;) and five differences between
phase transitions in the framework of the Landau theory.  yhem il of which could serve as order parameters. From the
symmetry viewpoint, they can be divided into irreducible
A. Dimerized chain representations of the tetrahedron group. One of them is the

To introduce method and notation, we start with a familiardOUbletf: (f1.f2), where
example: namely, the Landau theory of the spin-Peierls tran-
sition in antiferromagnetic chains coupled to three- fl:<(51+ $2) - (S3+S5) — 25, $,— 255+ Sy)

dimensional phonons. The paramagnetic and dimerized J12 ’
phases can be distinguished using the order parameter
(S1—=9) ($3—Sy))
f=(Son+1-Son—Son" Son-1)- (11 fo= 2 . (13

e other is a triplet—see Ed5). In the paramagnetic
ase, both the doublet and triplet order parameters must
vanish (all nearest-neighbor bonds have the same strength
In a spin-Peierls phase, either the doublet or the trifdet
potentially, both will have nonzero expectation values. The
energy considerations of Sec. Il suggest that the driving force
) 4 of this transition is the doublet.
F(F,T)=FOD+a(Mf+c(Mf*+---. (12 The two-component order parameteran be the same for

, ) all tetrahedra, in which case only the rotational symmetry of

Assuming thata becomes negative beloW=Tc, S0 that  he |attice will be broken. Symmetry with respect to inver-

a(T)~a(T—T,), while c>0 and roughly constant, one ob- gjon on a site can also be violated if the order paranfeier
tains the standard scenario of a second-order phase trangjs; the same on tetrahedra of different orientations. Last,

tion: the minimum of the free energy shifts continuously yangjational symmetry of the lattice can also be brokeh if
from f=0 aboveT, to f=* Ja|T—T/2c belowT,. varies among equivalent tetrahedra forming a commensurate
The continuity of the transition depends crucially on thegye.

absence of a cubic term in the expansi@g). With chains,
its absence is guaranteed by symmetry: statesfudiffiering
only by a sign are physically equivaleiig. 7); hence only
even powers of are allowed. We restrict the analysis to situations when the transla-
Formally, the fate of ari® term is decided by its symme- tional symmetry of the lattice remains intact, as we did pre-
try properties. The symmetry group of an undistorted chairviously in Sec. Il B. In this case, any two tetrahedra of the
includes inversion on a site, which takes>—f. Likewise, = same orientation distort in the same way reducing the space
3— —f3. Since, however, free energy must be invariant un-group of the pyrochlore lattice to the octahedral point group
der all symmetry transformations, @A term is forbidden. 0,=1 X Ty (inversionl exchanges tetrahedra of different ori-
In contrast, we will find that a cubic term is allowed in entation$. Despite this rather drastic simplification, we will
certain cases for the spin-Peierls order parameter on the pgee that we can account for the experimentally observed be-
rochlore lattice. In such cases, the spin-Peierls transition ibavior of a number of compounds, at least qualitatively.
expected to be discontinuous. Phonons at other points in the Brillouin zone may drive a

equivalent. Spontaneous dimerization increases the probab
ity of finding a singlet on half of the bonds, which leads to a
nonzero value of. Expansion of the free enerdger spin in
powers of the order parameter contains even powerg of
only:

It vanishes in the paramagnetic phase, since all bonds a;l)%
h

C. Pyrochlore lattice: =0 phonons
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spin-Peierls transition as well, leading to ordered states with Ha o Ha
larger and often more complex unit cells. E E E +E

The order parameter hdpotentially unequalvaluesf, ¢ £ g2
andfg on tetrahedra of inequivalent orientations. Their sym- —r <O >—>
metric and antisymmetric combinationg=f,+fg and u h h h
=f,—fg are irreducible doublets of the group,,. In the (a) ) (©)
paramagnetic phasgs=u=0. In various spin-Peierls phases, ¢ ¥ 7
one or both of these order parameters are nonzero. - 2 2 2

For classical spins, the domain of possible values of the 2gtEy E+Eg E+Eg
order parameters=(f4,f,) is the familiar triangle shown in oA | > o
Fig. 4. In view of the threefold symmetrymore precisely, f f f
permutation groufss;), the two-dimensional vectdrcan be
interpreted as a cold? The extremal points represent the (d) @ ®

red, blue, and green states with collinear spins. In the para- _ )
magnetic staté=0, the S; symmetry is manifest: the three  F!G: 8. Development of the order paramethrandfg in the six
primary colors are represented equally. In any spin-PeierIgcena“OS of the spin-Peierls phase transitfer0 in the paramag-

hase. the global color symmet8 is spontaneously bro- netic statt_a(a),_ (b)A_first-order transition is driven by thg, pho-
Een 9 y B P y non and is discontinuoug,=fg#0. (c), (d) As a result of that

transition, theE,, phonon softens and triggers a subsequent second-

order transition into a phase with#fg. (e), (f) A second-order

transition is driven by thée, phonon. TheE, order parameter is
The O,, symmetry of the high-temperature phase allowsalso induced, so thdj# —fg.

the following terms in the Landau free energy:

1. Landau free energy

the sign of the order parametgmould give a state with two

F(g,u) =ag9”+byg°cos 3y +cyg+ - - - (148 strong and four weak bonds on every tetrahedron, which
) 4 6 need not have the same free ener§yg,0)#F(—g,0).
+tayustcu’+dyutcos 6+ - - - (14b  Hence ag® term is allowed. On the other hand, in a state
with a pure odd distortion, tetrahedfaandB are distorted in
+b,u?gcog 26, + fg) + - - - (149 opposite wayge.g.,A is elongated, whereaB is squashed

and switching the sign af is a symmetry A is squashed and
B is elongatedl so that~(0,u) =F(0,—u). Hence, there is no
u® term.

Hereg= (g cos6y,gsin 6y) with an analogous definition af
andé,,. The first(second line contains the leading terms for
the evenodd) distortion; the third line represents the lowest-
order coupling betweeg andu. The constanta—e in this
expression cannot be determined by symmetry consider-
ations alone; when convenient, one can try to determine their In the high-temperature paramagnetic phasgs0 and
likely sign by taking recourse to microscopic model Hamil- a,>0, the minimum of the free energy lies g=u=f,
tonians for the spin-lattice system. =fg=0. At low enough temperatures, one or both of these
Omitted higher-order terms are assumed to be positive fogoefficients may become negative—see @d). The nature
stability. Landau theory is of course strictly to be appliedof the resulting phase transition depends sensitively on the
only for small values of the order parameters. However, therder in whichay and a, turn negative, as well as on the
shape of the range of the vectbr(Fig 4) encodes some signs of the Taylor coefficients, ,by,d, . Our results for the
information about where the order parameter, once close tbleisenberg mode(Sec. 1) are compatible with the choice
saturation, may point. b,>0, which we will assume in what follows. Below we
This form of the free energy permits a number of distinctdescribe six scenarios depicted in Fig. 8.
ordered states. Generally, the symmetry of the lattice is re- (& In the simplest case, the even mogléecomes un-
duced from cubic to tetragonal. In addition, the presence o$table, while the odd mode remains suppressed at all tem-
an odd distortion{# 0, orf,#fg) also breaks the symmetry peratures. The transition is discontinuous because of the cu-
of inversion through a site, exchanging tetrahedirandB.  bic term in the free energ§l4a. For by,>0, minima of the
Note that, whenever a staggered distortiois present, the free energy are ;= m,* /3. Asu=0, distortions are the
coupling term(14¢) generates a subdominant uniform distor- same on all tetrahedrdé,=fg=0g/2. Thus each tetrahedron
tion g of the crystal. shows the same tetragonal distortion with four strong and
The phase transitions can be first or second order, depentivo weak bonds.
ing on the mode driving the transition: the free energy of the (b) Same as(a) but by<<0. The minima are a®y=0,
even modeg may have a cubic terrfil4a), which generally +2#/3, states with a tetragonal distortion of the opposite
leads to a discontinuous jump. The odd madeloes not sense, two strong and four weak bonds on all tetrahedra.
have its own cubic ternl4b), but is instead coupled non- (c) As the even order parametgrgrows, it modifies the
linearly to g (Eq. 149. This difference has the following quadratic term of the odd mode through the nonlinear cou-
physical origin. When an even distortion is present, all tetrapling (14¢). Oncea,— b,g vanishes, scenarida) and(b) are
hedra have, say, four strong and two weak bonds. Changingrodified: a second, continuous transition occurs into a state

2. Spin-Peierls phases
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where bothg#0 andu+ 0, so thatf,#fg. The directions of ~ (mostly numericalfor lattices ind= 3 dimensions have been
g andu are correlated: &,+ 6,=m. For b,>0 (a), u is  obtained fairly recently®~® Banavaret al!® have studied
parallel tog; therefore, vector$, andfg still point towards ~the model on the simple cubic lattice and found at low tem-
one of the corners of the triangle, but their lengths differ.peratures an ordered state with a broken sublattice symmetry
Distortions of tetrahedré and B remain tetragonal, but are (BSS. As the name suggests, the two sublattices are in-
unequal in strength. The symmetry of inversion is broken. €quivalent: spins on one sublattice are primarily in one Potts
(d) When the odd mode softens fog<0 (b), u is per- state, while the other sublattice is dominated by the remain-
pendicular tog. The lattice distortion acquires a staggereding spin states in equal proportions. More recently, Rosen-
component—in addition to an existing uniform one. Distor-gren and Lapinskas predicted the existence of another phase,
tions of individual tetrahedra are no longer purely tetragonalWith permutationally symmetric sublatticé®SS'9, where
there is an orthorombic component. Because the latter hassblatticesA and B are dominated by two different Potts
staggered nature, the lattice as a whole retains tetragongiates.’ Their Monte Carlo simulations suggest that the
symmetry. The symmetry of inversion is broken. three-state Potts antiferromagnet on the diamond lattice or-
Caveat: because the high-temperature transitions in casé€rs into the PSS phadin both cases, the phase transition
(c) and(d) are discontinuous, the intermediate phase may b@ppears to be continuous, with critical properties of X%
skipped completely. In that case, instead of a succession #hodel ind=3.
two transitions, there will be a single, discontinuous transi- ,
tion directly into the final state with,#fg . IV. NEEL PHASES
(e) The transition can also be driven by the odd phonon,
in which case it is expected to be continuous. The initialdi
direction of the vectowu is determined by the sign of the d
sixth-order anisotropy, . Ford,<O0, 6,=nw/3, wheren is
an integer; vectorf, andfg point in opposite directions. The

The spin-Peierls transition, whether in chains or in three-
mensional magnets, is driven by the desire of spins to re-
uce frustration. In the bond-ordered phase, exchange
strength varies from bond to bond because of the distortion.

. . . Thus frustration is relieved and the classical ground state
nonlinear coupling ternil4c) generates a subdominant order o .o a5 unique, modulo global spin rotations. In three di-

_ 2 . .
parameterg=O(u”) parallel tou. This parasitic order pa- ongions, we can expect a spin-ordered state at zero tem-

rameter enhances the order parameter on one sublattice aﬁ rature. As argued before, the transition into ZINgtate
reduces it on the oth_er. Individual distortions are tetragonalneed not coincide with the spin-Peierls transition. Therefore,
(f) Odd phonon withd,>0. The free energy14h) has a generally there will be three separate phases: paramagnetic,

minimum for 6,=(2n+1)/6. Initially, distortions of tetra-  gyin_peierls, and M. (In those cases when the spin-Peierls
hedraA andB are orthorombic, e.g., aloniy. The parasitic  ansition is discontinuous, the system may go directly into

componentg=O(u?) and—perpendicular ta—bendsfa  he Nl phase, bypassing the spin-Peierls stage.
andfg towards the corners and makes the individual distor-

tions mostly tetragondhklong orthogonal axes in real space
Note that the final state is the same agdh

Neéel orders

Particulars of the Nel order on a distorted lattice obvi-
ously depend on details of the distortion, which strengthens
some bonds and weakens others. Because precise knowledge

As we have already mentioned, the symmetry of the bon@f spin interactions is rarely availableven for the undis-
variablesf (permutation groufs;) invokes a similarity to the  torted statg one can try an alternative route: namely, to in-
Potts model withg=3 state&* with energy clude spin averageéS) in the Landau theory developed

above for a spin-Peierls phase.
To keep technical details to a minimum, we will restrict
E:J% 5sis,-’ (15 the discussion to N& states that do not break translational
symmetry of the crystal; i.e., spin averagé®) will be as-
s,.=1,2,3 being Potts states. Indeed, a similar two-sumed to be identical for all tetrahedra of the same orienta-
component order parameter has been introduced forthe tion. Put another way(S) is the average spin on thi¢h
=3 Potts model by On& The pure Potts states correspondsublattice,i=1, ... 4. Evidently, this parametrization ad-
to collinear spin configurations. In the current context, theequately describes only a fraction of possible antiferormag-
order parameter resides on tetrahedra, which form a thredetic orders. For example, one of the éllground states
dimensional diamond lattice. It is entirely plausible that theobtained in our simple magnetoelastic modelg. 6) is al-
spin-Peierls transitions described in this paper should béeady beyond its scope. More generally, expa0 bond-
analogous to phase transitions in Potts models with shorrdered states with different strengths on the pair of bonds of
range interactions. inequivalent tetrahedra related by inversion cannot be trans-

To this end, we can identify the simplest scendfiig.  lated into ag=0 spin state.

8(a)] with the ferromagnetic Potts model. The latter is known
to have a first-order transition in three dimensibhahich is
consistent with our mean-field result. Let us construct the Landau free energy for spins on an

Transitions shown in Figs.(8) and &f) have their analogs undistorted lattice. Using the order parametgrs(S) one
in the antiferromagnetic three-state Potts model. Resultebtains the following expansion for the free energy:

D. Relation to three-state Potts models

Undistorted lattice
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2 biquadratic coupling

b, 2
+ 2 St
4 i3
(16)

In an antiferromagneta;>0; for stability, we takeb,>0.
Whena, becomes negative, the minimum of the free energy
shifts away froms =0 and the system will enter a Miestate.
The free energy is minimized bgny configuration of spin
averages SatiSfyin@?:lSZO; the length of the averages is
given bysi2= —ay/2b,. The Neel pattern is thus not unique,
as expected for a frustrated magnet.

In addition to the quartic term shown in E{.9), the free
energy expansion may contain one more quartic invariant

4
> s
i=1

4
Fish=7 3 sh+as

non—coplanar

distortion

collinear unstable

b, (5-5)2 (17)

1>]

This term, in fact, will break the degeneracy of théelNe
states. In the case; <0, the Nel phase has collinear spins _ S
(any one of the three collinear states in Fig. 4; note that these FIG. 9. Neel order in the presence of a tetragonal distortion, as
states also break the bond symmetwhenb,>0, the spin given by Landau theory. The abscissa is the distortion amplitude

averages point at equal angles of arcco$(3)~109° to one (qzlao)fl; the ordinate is the biquadratic couplibg/b,. The four
another. Neel phases are described in the text.

Distorted lattice The minimization with respect téb is done over the trian-
A lattice distortion, however small, breaks the cubic sym-gular dqr.nalréshown |nhF|%.. 4. 'I('jhe putcorr?e IS deugeﬂ by a
metry, so that additional, less symmetric terms will appear ifompetition between the biquadratic exc aiy® and the

the free energy. For a distortion that, symmetrywise, belong§°UP!ing to the spin-Peierls ordéts). Generally, a distor-
to the irreducible doubleE, the lowest-order perturbation tion f pulls the vectore in the same directiofif ap<0 and

will be of the form a,<0), whereas the biquadratic coupling attempts to mini-
mize (b;>0) or maximize p,<0) its length.
ay(f-p)y=a,(f1h1+T20,), (18 Figure 9 shows the appropriate phase diagram of the an-

wheref is the familiar spin-Peierls order parameter describ_tn‘erromagnetlc ordering for the case of a uniform tetragonal

. ; . . distortion. When the influence of the distortion dominates,
ing the distortion. The spin pai(is}) should therefore also we find two Neel phases. For a distortion that produces four
be a doublet of the same symmetry: '

strong bonds per tetrahedron, the spins are collitear.,
_ ) 9 . 9. $=S= —=—%); a distortion of the opposite senffeur
b1=l(s1+%): (+80) ~ 25,5~ 253 ,]/V12 weak bonds stabilizes a coplanar state with tvesthogonal
(e (o — pairs of spins(e.g.,s;=—$,,5=—$%, While s;-5;,=0, Fig.
$2=(517%) (S5~ s)/2. (19 10). In an intermediate state, where the biquadratic coupling
Apart from global rotations of all four spins, these two vari- dominates, the spins are no longer coplanar. For a positive
ables uniquely determine the relative directions of the foumbiquadratic coupling,, they gradually interpolate between
vectorss satisfying the constrainEf‘zlszo. It is conve- the collinear and orthogonal orientations as the strength of
nient to separate the direction and length of the spin averageke distortion varies. In the shaded regidnq €0), a uniform
in the free energyp=s2¢. The free energy then takes the tetragragonal phase becomes unstable: the distortion acquires
following form: an orthorombic component at the onset of theeN&der; in
addition, spin averages break the translational symmetry of

F(s, ) =ays2+ay(f- d)s2+bos*+ Dby (- ¢)s*. (200  the crystal, as in Fig. 6.

The last term is simply Eq.17); we have also dropped the
term (Ei‘Llsi)z assuming that the minimization is done over
antiferromagnetic states. In this paper, we have presented a theory of the spin-
Minimization can now be done separately over the lengtPeierls transition in a frustrated magnetic system, the Heisen-
sand direction variable&;. The minimization with respect to berg antiferromagnet on the “pyrochlore” lattice. Several as-

V. CONCLUSION

sata fixed;ﬁ is straightforward, giving a minimum pecf[s distinguish this effect from its .counterpart in spin
chains(e.g., CuGe@). (1) The magnetic system is mani-
. . [ag+ay(f- &)]2 festly three dimensional, initially possessing a cubic symme-
F(¢)=inf F(s,¢)=—————. (21 try. (2) The effect is classical: the quantum mechanics of
s 2[bo+bi(¢- )] spins plays no significant rol¢3) The order parametedis-
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transition described in this work? The spinel compound
ZnCr,Q,, in which CP* ions (S=3/2) form the tetrahedral
network, appears to be a good candidate for a Heisenberg
antiferromagnet on the “pyrochlore” lattice. Indeed, it exhib-
its a magnetic transition at,=12 K accompanied by a
structural distortiorf>?! Neel order is observed af<T,,
which is not surprising given that the transition is discontinu-
ous. Another spinel Mgy¥O, shows a sequence of two
transitions?? a structural one occurs @t,=65 K, and Nel
order appears at.;=42 K. However, because of an orbital
degeneracy(the outer electrons in ¥ are ¥?p®d?), the
upper transition may well be triggered by the ordinary Jahn-
Teller effect common to spinels. Therefore, we cannot posi-
tively identify it as a spin-Peierls transition. Nevertheless,
the Neel order in this compoundand also in YMn) agrees
with the prediction of a simple magnetoelastic model given
here(Fig. 6). Last, a recently discovered second-order struc-
) tural phase transitidi®* in the metallic pyrochlore

_ FIG. 10. Ag=0 Neel state with or_thogonal spin;. The distortipn Cd,Re,0; atT,=194 K may turn out to be a closely related
is created by the santg, phonon as in Fig. 5 but with the opposite pegier|s transition, whose symmetry properties are identical.
sign. We have presented a bare-bones theoretical description of

parity of spin correlationshas rather nontrivial symmetry the spin-Peierls transition in a “pyrochlore” antiferromagnet.

properties: its components form an irreducible doublet of thé@nly the simplest ordering patterns have been discussed,
tetrahedral symmetry group. namely, those that do not break the translational symmetry of

What drives this spin-Peierls transition? From the kine-the crystal. An obvious extension of this work would be to
matical viewpoint, the vector§ Eq. (6), can be viewed as include bond and spin orders at nonzero commensurate wave

coordinates in the manifold of ground states. The onset of ¥€ctors. E.g., a phonon with= (,,) appears to be re-
bond order thus lifts the large accidental degeneracy of th&Ponsible for the distortion in ZngD,.

ground state. The dynamical reason for the transition is the

Jahn-Teller effect occurring in the building blocks of the ACKNOWLEDGMENTS
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degrees of freedom. An isolated tetrahedfomether with 1 1€ Work was supported in part by NSF Grant No. DMR-
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along one of the three orthogonal symmetry axes, producing

four strong and two weak bonds — or vice versa, depending APPENDIX A: AMODEL WITH A COPLANAR GROUND

on the sense of the distortiofThe residual threefold degen- STATE

eracy of the spin-and-phonon ground state relates this prob-
lem to the three-state Potts modlel.

A study of the spin-driven distortion of an isolated tetra-
hedron provides clues to the simplest description of the spin
Peierls effect on the lattice of corner-sharing tetrahedra, iy
particular the form of the order parameter. Depending on th
parity of the phonon responsible for the transition, Landau

In addition to pairwise spin exchange, which gives rise to
the Heisenberg interactio§-S;, spins can be involved in
longer exchange cycles, such as 42331 and 312. The cy-

lic exchange of three spins induces the same pairwise
eisenberg interaction, which has already been considered.
he next nontrivial contribution comes from four-spin cyclic

theory predicts a first- or second-order spin-Peierls transi(-a)(Ch"‘mge

tion. It is gratifying to see that these predictions are consis- _

tent with known properties of the three-state Potts model on P1234= (51 59)(S2- S) (S0 $4)(S2- S)
the diamond lattice, onto which our problem can be mapped. —(5,-9)(5:-Sy),

Although a distortion of the lattice reduces the geometric
frustration, there is no reason to expect that it inducese Ne which — for S=1/2 — moves spin states clockwise or coun-
order immediately aT.. With the exception of strongly dis- terclockwise around the loop 123#ig. 11). For localized
continuous spin-Peierls transitions, spin order will generallyspins, this interaction is weaker than pairwise exchange and
set in at a lower temperature than bond order. A transitiortan be considered as a perturbation. Nevertheless, its signa-
between a spin-Peierls and &lephases has been analyzedture has apparently been deteéfemh the spin-wave spec-
above, again in the framework of Landau theory, which pretrum of LaCuQ,.
dicts collinear, coplanar, and more general antiferromagnetic A tetrahedron has three loops of length 4: 1234, 1324, and
orders at the lowest temperatures. 1243. QuantitiesP 1534, P 1324, and P,43 contain the trivial

Are there experimental realizations of the bond-orderingepresentatio\; and the doubleE.
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FIG. 11. (a)—(c) Cyclic exchange of four spingd) A ground S
state with two orthogonal pairs ¢€lassical spins.

/

The sumP o34+ P13oat+ P12as, being invariant under all : >
symmetry operations, can enter an expression for the energy
on its own. In the subspace of the ground states of the
Heisenberg Hamiltonian, this perturbation can be written as a
biguadratic term

2

+ const.

42 (S-S)?

The outcome depends on the sign of the coupling constant |
J,. If the constant is negative, it prefers the largest magni- | ; :
tude of f and selects the three collinear spin stateslid 0 0
circles in Fig. 4. A positive J, suppresse$, selecting the
f=0 state with all bonds equivalent; spin averages make FIG. 12. Solid lines: eigenvaluea, of the operatorf-n
angles of arccos{ 1/3)~109° with each other. =f,cosa+f,sine in polar coordinates N,,,«) for several spin
The two differences betweeRqyss, Pisps, and Pioss lengthsS. Shaded area: the classical result 8+ (properly re-
form an irreducible doubleE. They can therefore couple to Scaled
the phonon doublet of the same symmetry adding this mag-
netoelastic term to the energy:

APPENDIX B:
SINGLE TETRAHEDRON—QUANTUM SPINS

Piaoat Pioss 2P1o3s P1aza— Pioas Quantum spins coupled to classical distortions of the tet-
4 X1 X |, rahedron have the following Hamiltonian in the subspace of
V6 V2 ground states:
whereJ, describes variation of the cyclic exchanges under a H=—J'f-x+kx?/2, (B1)

tetragonal or orthorombic distortion. After adding an elastic
term kx?/2 and minimizing with respect to the phonon vari-
ablesx, one obtains the following contribution to the energy:

which is formally the same as the classical engigy For a
fixed “direction” of the distortion,

n=x/x=(cosa,sina),

_3_;(1{[(31‘52)2_(52'33)2]2+[(52'33)2_(33‘31)2]2 the operatorf-n=f,cosa+f,sina has S+1 eigenvalues

Ng,0=0,...,5 in the ground-state manifold. The Hamil-
+[(S5-$1)%—(S;- $,)?)2. (A1)  tonian(B1) has the following energy levels:
The energy is lowered by the greatest amount in coplanar Eg(x,ﬁ)z—J’)\ngr kx2/2.

states with spins, making angles of 90° and 180° with one . . . . . . .
another. These states have two pairs of frustrated bonds aMU'm'Zat'O” Wlth_respect to the magnitude of the distortion
X gives the following result:

are marked as open circles in Fig. 4.
As the two physical forces described above — the four- A A oo
spin exchange and its coupling to the phonons — favor dif- Eo(n)=infyE,(x,n)=—J""NG/2k.
ferent ground states, the outcome is decided by their relativéhe energy is lowest in a spin state with the larg@stab-
strengths. In particular, the ground state has orthogonal spi%m,{e termps eigenvalue\ , of the operatorf-n. The final
[Fig. 11(d)] when the four-spin exchange is very sensitive to o 7 LA
step is minimization with respect to the direction

atomic displacement&nd therefore the distortion is large L i h o d . h
The reason for this effect can be understood as follows. A et us lllustrate the minimization procedure using the

strong tetragonal distortion enhances the four-spin exchandgassical problem of Sec. Il Aas an example. To this end, we
around one loop and suppresses the same around the rema#how classically allowed values of the veckar= (f-n)n as

ing two. When the latter are completely switched off, we areshaded areas in Fig. 1the values of fill the interior of the
dealing with a square, and for a square the four-spin cycli¢egular triangle shown in dashed line3he largest magni-
exchange produces a ground state with orthogonal $pins. tude [An|=|\| is found in the directionsa=m,* 7/3,
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which correspond to the three collinear states. In the quartetal spin of pair 12(The spin of pair 34 must be the same in
tum case) , has a discrete spectrum; therefore allowed val-order to form a total spin of D.The operatorf, is also

ues of\,n will show as lines on the same graph. diagonal in this basis because
The main subtlety of the quantum problem is the noncom-
mutativity of the bond operatorf, and f,, f1=[S1o Spa— Sop— 24+ 4S(S+1) /12
[f,,f2]=—23iy, (B2) Its eigenvalues are

wherey is the operator of chirality:

X=S51(§XS)= =5 ($X )=
The operatorf, is off-diagonal. To compute its matrix
Therefore eigenvalues dfn cannot be constructed from elements, write out an expression for the sinet:

those off1 andf,, but rather must be determined for every
directionn. 1

)= g B (D Moo~ n)an

f,=[4S(S+1)—30(c+1)]/12. (B3)

1. Matrix elements of the operator f

In the (2S+1)-dimensional subspace of singlet groundHere|o,u)1, is the state of pair 12 with total spim and its
states we choose the badisr)}, o=0,...,5 being the projectionu onto a chosen axis. Then, by definition,

’
o o
1

BT DB, 2, LT S Sl e (o (S Sl )

(o'[fo]o)=

/

1
" 2J20 tD(20+1) . :E_g ,kz (o.ul(S1=S)l0" 1)1z (0", ' |(S1=S))| 0, )12 (B4)

In simplifying this expression, we have replaced indices 3 The operatof has the following nonzero matrix elements:
and 4 with 2 and 1 because the matrix elements involve one
pair at a time. Also, we have used the properties of time

reversal’ to simplify the first matrix element in the sum- 45(S+1)—30(o+1)
mand. (olfs]o)= 2 : (B6)

The last line of Eq(B4) contains matrix elements @&,
—S,, which is(a) a vector, andb) antisymmetric in 1-2.

These lead to a selection rule o[ (25+ 1)2_021
(o—1|f5|lo)=(alfslo—1)=

(o'|f5]o)=0 unlesso’'=0o=*1. (B5) 2\40°-1
(B7)
Completeness of the basf$s’,u’)} allows us to further
simplify the right-hand side at the expense of producing a set . -
of 2S5+ 1 coupled equations. This is done by summing over 2. Eigenvalues of the operator fn
o' with appropriate weights: For S=1/2, we have
2 +1<<T [f2l o) ._\3(cosa  sina
f . : (B8)
2 \ sine —cosa

o

1
“do72,2, (oul(S-S)low

The eigenvaluea = * \/3/2 are independent of the direction

1 n. Thus there is no preferred direction for the distortion,
=28(S+1)—50(o+1). unless one introduces some additional, nonlinear couplings.
This fact was noted previously by Yamashita and Ugda.
Solving these gives the matrix elementsfegf ForS=1,
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4cosa 4 sina 0 a, the highest spin is found on other pairs of opposite bonds.
1 . _ We have checked higher spin valuBs<10 and always
f-n= ﬁ 4sina - cosa JBsina |, (B9 found that the lowest energy is obtained for a tetragonal dis-
0 J5sina  —5 cosa tortion, when two opposite bonds have the highest si@n 2
and are thus most strongly frustrated. One can use perturba-

Its eigenvalues are given by the equation tion theory to show that = 7 is at least a local maximum of

. 20 cos 3 IN,g| for any S>1/2:
N°—7AN+ ———=0.
33 Nos(a)  — 25-1 .
The largest eigenvalue is attained whes 7 or = 7/3, i.e., Nos(0)  45-1 a+0(a”).

whenn points towards one of the corners of the trianghe
three tetragonal distortiond=or 6= 7, the total spin of bond As the value ofSincreases, eigenvaluas, fill the classical
12 iso=2 (the same goes for bond B4-or other choices of region (three overlapping shaded circles in Fig,).12
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