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Simple lattice models of ion conduction: Counter ion model versus random energy model
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The role of the Coulomb interaction between mobile particles in ionic conductors is still under debate. To
clarify this aspect we perform Monte Carlo simulations on two simple lattice mddeisiter ion model and
random energy modelvhich contain the Coulomb interaction between positively charged mobile particles,
moving on a static disordered energy landscape. We find that the nature of static disorder plays an important
role if one wishes to explore the impact of the Coulomb interaction on the microscopic dynamics. This
Coulomb-type interaction impedes the dynamics in the random energy model, but enhances dynamics in the
counter ion model in the relevant parameter range.
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I. INTRODUCTION sites of distance. The distance for a single jump is limited
to a, and occupied positions are forbidden. All mobile par-
Many disordered insulating materials show universal beticles have the same positive charge. In contrast to other
havior in their ionic dc and ac conductivity. Two prominent works on the CIM:**2the strength of the Coulomb interac-
examples are the Arrhenius temperature dependence of thien between the mobile particles can be varied indepen-
dc conductivity and the fact that ac conductivity data fordently from the strength of static disorder by an appropriate
different temperatures can be scaled onto a single mastselection of parameters, as is also possible for the REM; see
curve. This curve is similar for most materials. This observedbelow for precise definitions. This variation is essential to
universality*?> has stimulated research to find a commonelucidate the effect of the Coulomb interaction among the
mechanism for ion conductivity in these materials. A differ- mobile particles on their dynamics. There are two energy
ent type of system is disordered Anderson insulators, diseontributions to the total Hamiltonian: mobile particles mov-
playing electron transport. They are denoted Coulombng on a time-dependent potential surfggenerated by the
glasses. In contrast to ion conductors nonlocalized dynamicalarticles themselvgsand on a time-independent potential
processes play an important role in these systems. The nosurface. We call the first dynamic and the latter static. The
localized dynamics gives rise to a very different temperaturglynamic part has the same form in both models and the
dependence of the dc conductivity at low temperaturestHamiltonian for the cation-cation interaction is
which turns out to be proportional to €xp(Ty/T)¥4]

(Mott's law®) or to exg—(To/T)*?] (Efros-Shklovskii lav). 1 I
. . ithi’
Similar computational approaches have been chosen to Heam s 2 . (1)
investigate both types of problems and various theoretical 275

models have been developed in this confeXtThe focus of

this work lies on the effect of the Coulomb interaction on theA configuration with sites is described by the occupation
microscopic dynamics in ion conductors. We chose two simiiumbersn;=1 for occupied sites and;=0 for empty sites.

lar lattice models to investigate the relevant microscopic dy-The omitted factor 4e, is taken into account by use of
namics: the counter ion modéf? (CIM) and the random ~appropriate units. The mean nearest-neighbor interaction in a
energy model with cation-cation interactiéREM),*> which ~ system with randomly distributed cations can be written as
has some features in common with the Coulomb glass model

used for the second group of disordered solithThe CIM o2

and REM are designed to reflect important aspects of vitre- Ve=—. 2

ous ion conductors, which are a high degree of disorder and
mobile charged ions in a fixed glass network. The model
differ in the way the time-independeitstatio disorder is
realized. In this paper we analyze the effects of the Coulom
interaction among mobile ions and show that the nature of

the disorder has great influence on the dynamics. In Sec. Il [ 3
we present the models as well as computational details, rs= amc’
while in the Sec. Il the results are presented and discussed.

Furthermore we introduce the dimensionless paranietgr

?—|ererS is the mean distance of nearest neighbors in such a
gystem with cation concentratiar=N/I3,

()

I. MODELS AND COMPUTATIONAL DETAILS via
A. Similarities of both models
2
Both models are based on a single type of mobile particles Fcatzi __°© ) (4)
restricted to discrete sites in a simple cubic lattice with ksT kgTrs
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FIG. 1. One-dimensional illustration of the static potential land-

scape in the random energy model. The arrows indicate possible FIG. 2. One-dimensional illustration of the static potential land-
jumps. scape in the counter ion model. The arrows indicate the possible

jumps.
In the literature this parameter is already established for the ) )
REM (Ref. 13 and we use it for the CIM to ensure compa- Parameter I's;;; adequate to control the interaction
rability. The Hamiltonian for the cation interaction can thus Strength between cations and anions. It is defined in analogy

be rewritten as toI'c4¢ @s

HCat HCat :@
kBT ZFcat VC . (5) Fstat kBT . (9)

strength between the cations relativeki . teraction. Foﬂ;ca= 1 and thusl'.,=I"s15: ONe recovers the
standard choice of parameters for the CIM. In contrast to

previous works we wish to break with charge neutrality and

rather interpretHg;,; as a general static-disordered energy
The REM features a straightforward approach of the prinfandscape. Thud'g,; can be varied in analogy tar,,

ciple of representing complexity by randomness. Eachisite thereby modifying the strength of the disorder. The total

gets a random energy taken from a Gaussian distributioMamiltonian for the CIM is

with standard deviatiorr, and mean value 0. The Hamil-

tonian for the static disorder becomes H Heat Hqtat

kB—T=FcatV—C+TstatV—c- (10

B. Static disorder in the random energy model

Hotar= 2 NiEF@. (6
' D. Computational settings

The model is fully determined by two dimensionless param-  The number of lattice sites in one dimension was set to 20
eters:g, is connected to the standard deviation of the ranfor all data throughout this work. For simulating bulk prop-

dom site energies by erties we apply periodic boundary conditions and the mini-
mum image conventiotf. As shown in Fig. 3 the smallness

of the finite-size effects justifies our choice of 20 lattice sites
per dimension. All presented data were calculated with a
) o cation concentration of 0.03. The number of anions for gen-
In changingo, one can change the strength of static disordelgrating the static energy landscape in the CIM was kept iden-

relative to temperature in the system. As before, the secongg) to the number of cations. The contributions of the Cou-
parameter I';,; determines the cation-cation interaction

O¢

Oy

Strength. The tOtaI Hamiltonian reads 100 E T TTIT T IIIIIIII T TTTI] T TTTII] T TTTTI] LI =
f Hea H AT N
_ cat cat + stat. (8) 10 ? E
kBT Vc kBT ﬁ n REM: o=4, [=40, =15, 20, 25 ]
. ] o 310_2 L " "-, + CIM:T, =4,T_=16,1=15,20,2y —
In Fig. 1 the potential landscape of the REM is illustrated. ~T 0 E "--,._ 3
Y0tk ., .
C. Static disorder in the counter ion model F B e, 3
o : 10 By il vl ool 1ol s e
|n the CIM Statlc dlSOrder IS generated by randomly plac_ —OI L 1I L 2I L 3I L 4I L 5I L 6—
10 10 10 10 10 10 10

ing negatively charged particles at centers of cubic lattice

cells. As for cations these anions cannot occupy the same
site. The resulting potential landscajsee Fig. 2is different FIG. 3. Typical errors and finite-size effects for both models.

from that seen in Fig. 1. As for the REM we us&d, t0  The largest errors are of the size of the symbols and occur at
control the interaction strength among cations and defined @rget.

t
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lomb interaction were calculated via Ewald summation. The 10°

EY
number of different starting configurations ranges from 5 to 10D x aal
10. This rather small number made it possible to simulate a | - - - f!’:;’a;,nf":it
large range of parameters. For model systems witt0.03 010_35 ¥ 3 .l : - :
ande?=1, which were used throughout this paper, one has & [o LAt
V.=0.501. 101 g
Cc 5 [—<m
107 © g
Ill. RESULTS 10| ;
107 5 L T R Wi

The diffusion constants are taken fr@nf(t))/t data. Fig-
ure. 3 shows some examples. Each curve begins with a short-

time plateau changes into a dispersive regime ft@rto t_2 FIG. 4. Left: dependence of the low-frequency diffusion con-
and forms a long-time plateau beyond In the dispersive  giantp . on o, in the REM. The lines correspond to exponential
regime between, andt, the curve follows a Jonscher-ty3e fits; the data foro,=0 are omitted. The dotted line describes the
power law temperature dependence bfy. for a constant quotientr, /T .,
, =0./V.=0.05. The errors are smaller than the symbol size. Right:
(ré(t)/(6t)~t< 1. (11)  dependence of the slope di.,,. The data match the theoretical
limit at I'.,,=0.

0 20 40 60 80
r

cat

The following relations are used to determine the diffusion
constants:
IN[6Dyc]=—(ayo, +asl cartazo [eay)- (12)
—/r2
DO ={r ()/t, The slope of the fits in Fig. 4left) can be expressed
6D o= lim ,(r(t))/t according to Eq(12) asa;+asl 5. Figure 4(right) illus-
de ' ' trates this dependence. The three coefficients turn out to be

t—
a;=1.41, a,=0.063, andaz=0.015. The nonvanishing
6D 4= lim(r?(t))/t. value of az is of particular interest since it contradicts the
-0 conclusions of Maasst al’ They showed that foc=0.01

The high-frequency diffusion constaBt,, was also calcu- the low-temperature behavior is activated, i.e[6M]cc1/T

lated from the average hopping ra&w)=6D,.. For de- when varying the temperature. Singex1/T and ", 1/T,

tails on the general behavior of the REM and the CIM, seéh's statement 1s |dent|qal tag=0. We have. m_cluded a
Refs. 13.12, and 16. curve in Fig. 4(left) which represents a variation of the

In the REM the presence of a cation-cation interactiontcmperature only; this curve shows a proportionality\@

2 . .
leads to a significant decrease in diffusion and an increase i;gB/T (A,B>0). In contrast to this result experimental data

7 .
dispersion® A quantitative analysis of the behavior can be r low tgmperatures show no curvatb'reor opposﬁe
found in Ref. 17. For a REM without a long-range Coulomb curvature'® This temperature dependence is also very differ-
interaction, i.e..I'.,=0, the activation energg, can be ent to that observed in Coulomb glass for which, if at all, a

» LEolcat™ Yy a

calculated as the difference between the Fermi energy anq]escnptmn withB<0 would be appropriate for a limited

the critical percolation enerdy’ For a concentration of 0.03 temperature regime in order to recover the Efros-Shklovskii

. : . . law
the Fermi energy is- 1.88r, and the percolation energy is
—0.49r,. Hence the activation energy is-0.49%, Furthermore we also analyzed the dependende gfon

+1.880.=1.3% . This reasoning is only valid for low tem- {hStat a_ndé“_cathl%urE ° shovxt/_s Idfita fdD 4 Itn analogy :o
peratureso,>1. For high temperatures, <1 it can be f OSS n _'r?] e;] t.h xgopen 1a |tsgre no astalccg.rt?zas
showrt’ that the activation energy is roughly equal to Or Dgc. 1houg € dafa cannot be accurately fitted as

o./\m=0560,. Here we analyze the REM including the stra|g_ht lines anhapprOXIrr]natedds_lope IS t()de;regsmg with in-
long-range Coulomb interaction for which this analytical creasingl'cq;. ThusDyc has a different behavior as com-
treatment is no longer possible. Simulated data for variougared t0D e

I';ar and o, are shown in Fig. 4left). The data forl';,; 1
=0 correspond to a vanishing cation-cation interaction and

the regression for the low-temperature regime leads to an
activation energy of 1.4#, which is in good agreement with

| X . <10 E
the theoretical value resulting from percolation arguments; a E
see above. One can easily see that the low-temperature part C
of all curves can be approximated fairly well by straight 102

lines. The first data point fos, =0 is omitted for alll" ;.
Interestingly, the change of slope at high temperatures, i.e.,
small o, as predicted fol';5,=0, seems to hold for the
large cation-cation interaction, too. The data shown in Fig. 4 FIG. 5. Dependence of the high-frequency diffusion constant
(left) can be fitted with the activation energy dependent orD,. on o, in the REM. The lines are exponential fits and serve as
oy, I'cat, @and a cross term .07, , guides to the eye. The errors are within the symbol size.
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FIG. 6. Dependencé&CIM) of the low-frequency diffusion con-
stantD 4. onT'c4¢. The maximum [¢ae may) shifts to larged” ., for
higher values of ;. The errors are smaller than the symbols.

The analysis for the CIM was performed in a similar way.
The first surprising feature is the increase in mobility of the
cations forDy. (Fig. 6) and D,. (Fig. 7) when increasing
I' .4 from O with fixedI'g4;. This is the completely opposite
behavior as compared to the REM. Increaslhg,; further
leads to an increase in diffusion until a maximum is reached

FIG. 8. Correlation between static potential and mean value of
the dynamic potential for the CIMleft: I'.,;=10, I'g;5=10) and
the REM (right: I'.,;=40,0,=4). Each site is represented by a
single diamond symbol (Z0for each graph In the CIM a strong
correlation is observed; the slope is close to 1. In the REM no
significant correlation is observed.

relation in Fig. 8(left) indicates a correlation ofl.,; and

H.n; high cation-cation energy corresponds to low static en-
ergy and vice versa. It could be shown that the three regions
bbserved in the CIM correspond to three different types of

from this maximum the diffusion decreases and the slopéattice sites. There are sites with no, one, or two adjacent
becomes constant in a logarithmic plot. Obviously, a simpleanions, i.e., anions with a distance @ (a/2). No such cor-

functional form such as Eq.12) cannot be found for the
CIM. A difference betweemD 4. andD, is thatI' ;4 max fOr
Dy, is approximately equal tb g, wheread . 4¢ max for Dy

relation is observed for the REM.

increase$ more rapidly_ Withlsq 70. The contour lines represent
The different behavior of the REM as compared to the Loglz}={0, 1, 2. 3 fs 6.7.8)
CIM can be rationalized by a closer inspection of the differ- & 50. A
ences in the potential surfaces. Comparing Fig. 1 and Fig. 2 & 5,
and taking the definitions of the models into account, it is %:) '
evident that the static potential of a lattice site in the CIM & 10.
surface is spatially correlated, whereas in the REM no cor- % .
. . . . . I oy -10.
relation among adjacent sites exists. This correlation in the 3
CIM has a direct consequence: Figure 8 illustrates a correla- -30.
tion of the static potential of a lattice site with the mean ”
value of the dynamic potential. For a single starting configu- 50, 40, -30. -20. -10. 0. _10. 20. 30. 40. so.
ration the static energy of each site is constant during simu- (a) AEgic/(kg T)
lation, being denoted aEg;.iic/KgT in Fig. 8. The mean
value of the dyljamic ener@dynamicat some site i; gener- . Thercontour linesTepiesert
ated by averaging over all energies which a particle at this Loglz={0, 1,2, 3,4, 5,6,7, 8}
site has due tdd,, during a simulation. The observed cor- & —
cat g E 20 P ———
3
£ 20
a
5
< 0.
-20.
220, -10. 0. 10. 20. 30. 40.
(b) AEstatic / (kB T)

cat

FIG. 7. DependencéCIM) of the high-frequency diffusion con-
stantD . onT'¢,¢. The maximum [¢ae may) shifts to larged” ., for
higher values of ;. The errors are smaller than the symbols.

FIG. 9. Matrices of successful and unsuccessful trial jumps in
the CIM (top, I'cai=Ts1a=10) and the REM(bottom, o,=4,
I'ca=40) resolved for static and dynamic jump energiess a
counter of how many jumps happen per energy interval during a
simulation run. The choice of parameters has no influence on the
qualitative picture.

064301-4



SIMPLE LATTICE MODELS OF ION CONDUCTION. . . PHYSICAL REVIEW B 66, 064301 (2002

disorder of the energy landscape. The second term is intro-
duced by a cage effect as mentioned above. The cross term
on the other hand has no single microscopic origin Dy
andD,.. ForD. it may arise from relaxation of the system
to a small perturbatiofi.e., a cation jump By a jump pro-
cess a cation may have left a well-adjusted environment and
is surrounded by an energetically unfavorable environment.
Apart from jumping back the total system may also adjust to
I this new situation as already formulated in the concept of
mismatch and relaxation by Funle al>? The situation at
FIG. 10. Radial density functiog(r) for the CIM(left) and the  the new position improves energetically after some time due
REM(right). For the CIM the parameters are chosen to show theg the subsequent relaxation of the adjacent particles, thereby
temperature dependence and for the REM the dependerg@pf  requcing the probability of a backjump with time. In the
onTca. The errors are within the size of the symbols. presence of disorder this neighbor relaxation is, of course,
much slower since also the neighbors experience the effect
To elucidate the impact of this correlation on the ion dy-of static disorder. Therefore it is more likely for the central
namics, all occurring trial jumps, accepted or not by the Me-particle to jump back, giving rise to a decreasédgf due to
tropolis algorithm, were recorded during a Monte Carlothe simultaneous effect of static disorder and the cation-
simulation with respect to their statid E¢;41j0) and dynamic  cation interaction. FoD,. an increase ifl'.,; reduces the
(AEgynamio jump energy differencegFig. 9. The sum of dependence ow, and therefore the above argumentation
AEgatic and AEgynamic is the total energy difference for a fails. For no cation interaction and in the limit of zero tem-
jump. One apparent effect of the correlation for the CIM isperature the cations occupy only thelowest sites in static
quite obvious: a high-energy contribution from the static en-energy. By introducing a cation interaction the emerging lig-
ergy is accompanied by a low-energy contribution from theuid structure forces the particles to occupy also some sites
dynamic energy and vice versa. Therefore to first approximawhich are higher in static energjput lower in total energy
tion the total energy does not change during a jump, givinghis would lead to the observed reductionap dependence.
rise to faster dynamics. The REM does not show this behav-
ior. For the REM both contributions are independent and
both impede the cation dynamics. A consequence is a differ- IV. SUMMARY

ent jump energy distribution in the CIM as compared to the . . o .
REM. To further explore the reasons for this behavior the The REM and CIM display major qualitative differences

radial density functiorg(r) of both models is illustrated in In their dependences d@,; andDqc on the system param-

Fig. 10. Obviously, the cations in the REM have a structure'eters' We gave qualitative reasoning by taking a closer view

they prefer a certain distance to each other which returnb]c the microscopic origins as the effects of caging, relax-

eriodically in the graph. This structure is very similar to thatation’ screening, and disorder were observed. We have also
P y grapn. y shown that the conduction in the REM does not show simple

found in Slm_ple IquI_d systems. The CIM dpes not show .SUCh rrhenius behavior and despite their similarities the REM
a structure; instead it shows an unusual high concentration ehaves quite differently as compared to the Coulomb glass
ga“oﬂts in vlery ;hort dlhstzn(;(_ahs afnd t()jey?neltS the t.’u"( due to the different nature of the trial moves. The results of
%TS' y ISI arc;a y frea?he .b € %UE hS ruc u.rel,-s tgr:veerJEo his work give rise to a new important variable in disordered
sibie explanations for the observed benaviors. In the olids: the spatial correlation of the potential energy hyper-

each catnon IS dsurrOLiEded by a Cg??ti of other catlotns, and th rface. Currently we are analyzing the energy hypersurface
cage slows down the movem ecause most MOVES ¢ oy jon conductors to extract this important piece of in-

would increaseH .,;. In the CIM the cations prefer to popu- formation

late low-energy positions around the anions, which results in '

an effective screening of the anion charge. This screening

flattens the overall energy landscape and thus gives rise to

increased mobility. Increasindf.,; reduces the clustering

due to cation-cation repulsion but also supports screening We wish to acknowledge the support of the DF&FB

due to higher cation charge. These two effects compete arb8 as well as helpful discussions with R. Banhatti,

may account for the observed behavior; see Fig. 6 and Fig. P. Maass, and B. Roling. We acknowledge additional support
We are now able to reason the parameter dependence by B. Roling for providing us the Ewald summation pro-

Eqg. (12 for the REM. The first term arises from the static gram.
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