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Simple lattice models of ion conduction: Counter ion model versus random energy model

J. Reinisch and A. Heuer
Westfa¨lische Wilhelms-Universita¨t Münster, Institut fu¨r Physikalische Chemie and SFB 458, Schlossplatz 4/7, 48149 Mu¨nster, Germany

~Received 21 December 2001; published 2 August 2002!

The role of the Coulomb interaction between mobile particles in ionic conductors is still under debate. To
clarify this aspect we perform Monte Carlo simulations on two simple lattice models~counter ion model and
random energy model! which contain the Coulomb interaction between positively charged mobile particles,
moving on a static disordered energy landscape. We find that the nature of static disorder plays an important
role if one wishes to explore the impact of the Coulomb interaction on the microscopic dynamics. This
Coulomb-type interaction impedes the dynamics in the random energy model, but enhances dynamics in the
counter ion model in the relevant parameter range.
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I. INTRODUCTION

Many disordered insulating materials show universal
havior in their ionic dc and ac conductivity. Two promine
examples are the Arrhenius temperature dependence o
dc conductivity and the fact that ac conductivity data
different temperatures can be scaled onto a single ma
curve. This curve is similar for most materials. This observ
universality1,2 has stimulated research to find a comm
mechanism for ion conductivity in these materials. A diffe
ent type of system is disordered Anderson insulators,
playing electron transport. They are denoted Coulo
glasses. In contrast to ion conductors nonlocalized dynam
processes play an important role in these systems. The
localized dynamics gives rise to a very different temperat
dependence of the dc conductivity at low temperatur
which turns out to be proportional to exp@2(TM /T)1/4#
~Mott‘s law3! or to exp@2(T0 /T)1/2# ~Efros-Shklovskii law4!.

Similar computational approaches have been chose
investigate both types of problems and various theoret
models have been developed in this context.5–10The focus of
this work lies on the effect of the Coulomb interaction on t
microscopic dynamics in ion conductors. We chose two si
lar lattice models to investigate the relevant microscopic
namics: the counter ion model11,12 ~CIM! and the random
energy model with cation-cation interaction~REM!,13 which
has some features in common with the Coulomb glass m
used for the second group of disordered solids.9,10 The CIM
and REM are designed to reflect important aspects of vi
ous ion conductors, which are a high degree of disorder
mobile charged ions in a fixed glass network. The mod
differ in the way the time-independent~static! disorder is
realized. In this paper we analyze the effects of the Coulo
interaction among mobile ions and show that the nature
the disorder has great influence on the dynamics. In Se
we present the models as well as computational det
while in the Sec. III the results are presented and discus

II. MODELS AND COMPUTATIONAL DETAILS

A. Similarities of both models

Both models are based on a single type of mobile partic
restricted to discrete sites in a simple cubic lattice withl 3
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sites of distancea. The distance for a single jump is limite
to a, and occupied positions are forbidden. All mobile pa
ticles have the same positive charge. In contrast to o
works on the CIM,11,12 the strength of the Coulomb interac
tion between the mobile particles can be varied indep
dently from the strength of static disorder by an appropri
selection of parameters, as is also possible for the REM;
below for precise definitions. This variation is essential
elucidate the effect of the Coulomb interaction among
mobile particles on their dynamics. There are two ene
contributions to the total Hamiltonian: mobile particles mo
ing on a time-dependent potential surface~generated by the
particles themselves! and on a time-independent potenti
surface. We call the first dynamic and the latter static. T
dynamic part has the same form in both models and
Hamiltonian for the cation-cation interaction is

Hcat5
1

2 (
iÞ i 8

nini 8e
2

r ii 8

. ~1!

A configuration with sitesi is described by the occupatio
numbersni51 for occupied sites andni50 for empty sites.
The omitted factor 4pe0 is taken into account by use o
appropriate units. The mean nearest-neighbor interaction
system with randomly distributed cations can be written

Vc5
e2

r s
. ~2!

Here r s is the mean distance of nearest neighbors in suc
system with cation concentrationc5N/ l 3,

r s53A 3

4pc
. ~3!

Furthermore we introduce the dimensionless parameterGcat
via

Gcat5
Vc

kBT
5

e2

kBTrs
. ~4!
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In the literature this parameter is already established for
REM ~Ref. 13! and we use it for the CIM to ensure comp
rability. The Hamiltonian for the cation interaction can th
be rewritten as

Hcat

kBT
5Gcat

Hcat

Vc
. ~5!

In what follows Vc is regarded as a constant for a giv
concentration. HereGcat}e2 is a measure for the interactio
strength between the cations relative tokBT.

B. Static disorder in the random energy model

The REM features a straightforward approach of the p
ciple of representing complexity by randomness. Each si
gets a random energy taken from a Gaussian distribu
with standard deviationse and mean value 0. The Hami
tonian for the static disorder becomes

Hstat5(
i

niEi
static . ~6!

The model is fully determined by two dimensionless para
eters:s r is connected to the standard deviation of the r
dom site energies by

s r5
se

kBT
. ~7!

In changings r one can change the strength of static disor
relative to temperature in the system. As before, the sec
parameter Gcat determines the cation-cation interactio
strength. The total Hamiltonian reads

H

kBT
5Gcat

Hcat

Vc
1

Hstat

kBT
. ~8!

In Fig. 1 the potential landscape of the REM is illustrated

C. Static disorder in the counter ion model

In the CIM static disorder is generated by randomly pla
ing negatively charged particles at centers of cubic lat
cells. As for cations these anions cannot occupy the s
site. The resulting potential landscape~see Fig. 2! is different
from that seen in Fig. 1. As for the REM we usedGcat to
control the interaction strength among cations and define

FIG. 1. One-dimensional illustration of the static potential lan
scape in the random energy model. The arrows indicate pos
jumps.
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parameter Gstat adequate to control the interactio
strength between cations and anions. It is defined in ana
to Gcat as

Gstat5
kcaVc

kBT
. ~9!

The factorkca has been introduced to vary the strength of t
cation-anion interaction separately from the cation-cation
teraction. Forkca51 and thusGcat5Gstat one recovers the
standard choice of parameters for the CIM. In contrast
previous works we wish to break with charge neutrality a
rather interpretHstat as a general static-disordered ener
landscape. ThusGstat can be varied in analogy tos r ,
thereby modifying the strength of the disorder. The to
Hamiltonian for the CIM is

H

kBT
5Gcat

Hcat

Vc
1Gstat

Hstat

Vc
. ~10!

D. Computational settings

The number of lattice sites in one dimension was set to
for all data throughout this work. For simulating bulk pro
erties we apply periodic boundary conditions and the m
mum image convention.14 As shown in Fig. 3 the smallnes
of the finite-size effects justifies our choice of 20 lattice si
per dimension. All presented data were calculated with
cation concentration of 0.03. The number of anions for g
erating the static energy landscape in the CIM was kept id
tical to the number of cations. The contributions of the Co

-
le FIG. 2. One-dimensional illustration of the static potential lan
scape in the counter ion model. The arrows indicate the poss
jumps.

FIG. 3. Typical errors and finite-size effects for both mode
The largest errors are of the size of the symbols and occu
large t.
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lomb interaction were calculated via Ewald summation. T
number of different starting configurations ranges from 5
10. This rather small number made it possible to simulat
large range of parameters. For model systems withc50.03
ande251, which were used throughout this paper, one
Vc50.501.

III. RESULTS

The diffusion constants are taken from^r 2(t)&/t data. Fig-
ure. 3 shows some examples. Each curve begins with a s
time plateau changes into a dispersive regime fromt1 to t2
and forms a long-time plateau beyondt2. In the dispersive
regime betweent1 andt2 the curve follows a Jonscher-type15

power law

^r 2~ t !&/~6t !;tk821. ~11!

The following relations are used to determine the diffus
constants:

6D~ t !5^r 2~ t !&/t,

6Ddc5 lim
t→`

,^r 2~ t !&/t,

6Dac5 lim
t→0

^r 2~ t !&/t.

The high-frequency diffusion constantDac was also calcu-
lated from the average hopping ratea2^w&56Dac . For de-
tails on the general behavior of the REM and the CIM, s
Refs. 13,12, and 16.

In the REM the presence of a cation-cation interact
leads to a significant decrease in diffusion and an increas
dispersion.13 A quantitative analysis of the behavior can
found in Ref. 17. For a REM without a long-range Coulom
interaction, i.e.,Gcat50, the activation energyEa can be
calculated as the difference between the Fermi energy
the critical percolation energy.7,17 For a concentration of 0.03
the Fermi energy is21.88se and the percolation energy is
20.49se . Hence the activation energy is20.49se
11.88se51.39se . This reasoning is only valid for low tem
peraturess r@1. For high temperaturess r!1 it can be
shown17 that the activation energy is roughly equal
se /Ap50.56se . Here we analyze the REM including th
long-range Coulomb interaction for which this analytic
treatment is no longer possible. Simulated data for vari
Gcat and s r are shown in Fig. 4~left!. The data forGcat
50 correspond to a vanishing cation-cation interaction a
the regression for the low-temperature regime leads to
activation energy of 1.41se which is in good agreement with
the theoretical value resulting from percolation argumen
see above. One can easily see that the low-temperature
of all curves can be approximated fairly well by straig
lines. The first data point fors r50 is omitted for allGcat .
Interestingly, the change of slope at high temperatures,
small s r , as predicted forGcat50, seems to hold for the
large cation-cation interaction, too. The data shown in Fig
~left! can be fitted with the activation energy dependent
s r , Gcat , and a cross termGcats r ,
06430
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ln@6Ddc#52~a1s r1a2Gcat1a3s rGcat!. ~12!

The slope of the fits in Fig. 4~left! can be expressed
according to Eq.~12! asa11a3Gcat . Figure 4~right! illus-
trates this dependence. The three coefficients turn out to
a151.41, a250.063, and a350.015. The nonvanishing
value of a3 is of particular interest since it contradicts th
conclusions of Maasset al.17 They showed that forc50.01
the low-temperature behavior is activated, i.e., ln@6D#}1/T
when varying the temperature. Sinces r}1/T andGcat}1/T,
this statement is identical toa350. We have included a
curve in Fig. 4 ~left! which represents a variation of th
temperature only; this curve shows a proportionality toA/T
1B/T2(A,B.0). In contrast to this result experimental da
for low temperatures show no curvature17 or opposite
curvature.18 This temperature dependence is also very diff
ent to that observed in Coulomb glass for which, if at all
description withB,0 would be appropriate for a limited
temperature regime in order to recover the Efros-Shklov
law.

Furthermore we also analyzed the dependence ofDac on
Gstat and Gcat . Figure 5 shows data forDac in analogy to
those in Fig. 4~left!. Exponential fits are not as accurate
for Ddc . Though the data cannot be accurately fitted
straight lines an approximated slope is decreasing with
creasingGcat . Thus Dac has a different behavior as com
pared toDdc .

FIG. 4. Left: dependence of the low-frequency diffusion co
stantDdc on s r in the REM. The lines correspond to exponent
fits; the data fors r50 are omitted. The dotted line describes t
temperature dependence ofDdc for a constant quotients r /Gcat

5se /Vc50.05. The errors are smaller than the symbol size. Rig
dependence of the slope onGcat . The data match the theoretica
limit at Gcat50.

FIG. 5. Dependence of the high-frequency diffusion const
Dac on s r in the REM. The lines are exponential fits and serve
guides to the eye. The errors are within the symbol size.
1-3
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The analysis for the CIM was performed in a similar wa
The first surprising feature is the increase in mobility of t
cations forDdc ~Fig. 6! and Dac ~Fig. 7! when increasing
Gcat from 0 with fixedGstat . This is the completely opposit
behavior as compared to the REM. IncreasingGcat further
leads to an increase in diffusion until a maximum is reach
from this maximum the diffusion decreases and the sl
becomes constant in a logarithmic plot. Obviously, a sim
functional form such as Eq.~12! cannot be found for the
CIM. A difference betweenDdc andDac is thatGcat,max for
Ddc is approximately equal toGstat whereasGcat,max for Dac
increases more rapidly withGstat .

The different behavior of the REM as compared to t
CIM can be rationalized by a closer inspection of the diff
ences in the potential surfaces. Comparing Fig. 1 and Fi
and taking the definitions of the models into account, it
evident that the static potential of a lattice site in the C
surface is spatially correlated, whereas in the REM no c
relation among adjacent sites exists. This correlation in
CIM has a direct consequence: Figure 8 illustrates a corr
tion of the static potential of a lattice site with the me
value of the dynamic potential. For a single starting config
ration the static energy of each site is constant during si
lation, being denoted asEstatic /kBT in Fig. 8. The mean
value of the dynamic energyĒdynamic at some site is gener
ated by averaging over all energies which a particle at
site has due toHcat during a simulation. The observed co

FIG. 6. Dependence~CIM! of the low-frequency diffusion con-
stantDdc on Gcat . The maximum (Gcat,max) shifts to largerGcat for
higher values ofGstat . The errors are smaller than the symbols.

FIG. 7. Dependence~CIM! of the high-frequency diffusion con
stantDac on Gcat . The maximum (Gcat,max) shifts to largerGcat for
higher values ofGstat . The errors are smaller than the symbols.
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relation in Fig. 8~left! indicates a correlation ofHcat and
Han ; high cation-cation energy corresponds to low static
ergy and vice versa. It could be shown that the three regi
observed in the CIM correspond to three different types
lattice sites. There are sites with no, one, or two adjac
anions, i.e., anions with a distance ofA3(a/2). No such cor-
relation is observed for the REM.

FIG. 9. Matrices of successful and unsuccessful trial jumps
the CIM ~top, Gcat5Gstat510) and the REM~bottom, s r54,
Gcat540) resolved for static and dynamic jump energies.z is a
counter of how many jumps happen per energy interval durin
simulation run. The choice of parameters has no influence on
qualitative picture.

FIG. 8. Correlation between static potential and mean value
the dynamic potential for the CIM~left: Gcat510, Gstat510) and
the REM ~right: Gcat540,s r54). Each site is represented by
single diamond symbol (203 for each graph!. In the CIM a strong
correlation is observed; the slope is close to 1. In the REM
significant correlation is observed.
1-4



y
e

rlo

a
is
n

th

in
a
n

ffe
th
th

re
rn
a
c
n

o
EM
t

s
-
s
in
e

in
a

g.
e
ic

tro-
term

and
nt.

t to
of

ue
reby
e

rse,
ffect
al

on-

on
-

iq-
ites

s
-
iew
x-
also
ple
M

lass
of

ed
er-
ace
in-

ti,
ort
-

th

SIMPLE LATTICE MODELS OF ION CONDUCTION: . . . PHYSICAL REVIEW B 66, 064301 ~2002!
To elucidate the impact of this correlation on the ion d
namics, all occurring trial jumps, accepted or not by the M
tropolis algorithm, were recorded during a Monte Ca
simulation with respect to their static (DEstatic) and dynamic
(DEdynamic) jump energy differences~Fig. 9!. The sum of
DEstatic and DEdynamic is the total energy difference for
jump. One apparent effect of the correlation for the CIM
quite obvious: a high-energy contribution from the static e
ergy is accompanied by a low-energy contribution from
dynamic energy and vice versa. Therefore to first approxim
tion the total energy does not change during a jump, giv
rise to faster dynamics. The REM does not show this beh
ior. For the REM both contributions are independent a
both impede the cation dynamics. A consequence is a di
ent jump energy distribution in the CIM as compared to
REM. To further explore the reasons for this behavior
radial density functiong(r ) of both models is illustrated in
Fig. 10. Obviously, the cations in the REM have a structu
they prefer a certain distance to each other which retu
periodically in the graph. This structure is very similar to th
found in simple liquid systems. The CIM does not show su
a structure; instead it shows an unusual high concentratio
cations in very short distances and beyondr'3 the bulk
density is already reached. The found structures give p
sible explanations for the observed behaviors: In the R
each cation is surrounded by a cage of other cations, and
cage slows down the movement19 because most move
would increaseHcat . In the CIM the cations prefer to popu
late low-energy positions around the anions, which result
an effective screening of the anion charge. This screen
flattens the overall energy landscape and thus gives ris
increased mobility. IncreasingGcat reduces the clustering
due to cation-cation repulsion but also supports screen
due to higher cation charge. These two effects compete
may account for the observed behavior; see Fig. 6 and Fi

We are now able to reason the parameter dependenc
Eq. ~12! for the REM. The first term arises from the stat

FIG. 10. Radial density functiong(r ) for the CIM~left! and the
REM~right!. For the CIM the parameters are chosen to show
temperature dependence and for the REM the dependence ofg(r )
on Gcat . The errors are within the size of the symbols.
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disorder of the energy landscape. The second term is in
duced by a cage effect as mentioned above. The cross
on the other hand has no single microscopic origin forDdc
andDac . For Ddc it may arise from relaxation of the system
to a small perturbation~i.e., a cation jump!. By a jump pro-
cess a cation may have left a well-adjusted environment
is surrounded by an energetically unfavorable environme
Apart from jumping back the total system may also adjus
this new situation as already formulated in the concept
mismatch and relaxation by Funkeet al.5,2 The situation at
the new position improves energetically after some time d
to the subsequent relaxation of the adjacent particles, the
reducing the probability of a backjump with time. In th
presence of disorder this neighbor relaxation is, of cou
much slower since also the neighbors experience the e
of static disorder. Therefore it is more likely for the centr
particle to jump back, giving rise to a decrease ofDdc due to
the simultaneous effect of static disorder and the cati
cation interaction. ForDac an increase inGcat reduces the
dependence ons r and therefore the above argumentati
fails. For no cation interaction and in the limit of zero tem
perature the cations occupy only theN lowest sites in static
energy. By introducing a cation interaction the emerging l
uid structure forces the particles to occupy also some s
which are higher in static energy~but lower in total energy!;
this would lead to the observed reduction ins r dependence.

IV. SUMMARY

The REM and CIM display major qualitative difference
in their dependences ofDac andDdc on the system param
eters. We gave qualitative reasoning by taking a closer v
of the microscopic origins as the effects of caging, rela
ation, screening, and disorder were observed. We have
shown that the conduction in the REM does not show sim
Arrhenius behavior and despite their similarities the RE
behaves quite differently as compared to the Coulomb g
due to the different nature of the trial moves. The results
this work give rise to a new important variable in disorder
solids: the spatial correlation of the potential energy hyp
surface. Currently we are analyzing the energy hypersurf
of real ion conductors to extract this important piece of
formation.
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