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Elastic anomalies in Ag-Zn alloys
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Ab initio total energy calculations, based on theexact muffin-tin orbitals theory, are used to determine elastic
properties of Ag12cZnc random alloys in the face-centered and body-centered cubic crystallographic phases.
The compositional disorder is treated within the framework of thecoherent potential approximation. The cubic
elastic constantsB, C8, andC44 and the Debye temperatures are calculated for the whole range of concentra-
tions, 0<c<1. Experimental data are in very good agreement with the present results. Rapid variations ofC8
and C44 are observed at high Zn concentrations, which contradicts the common empirical observation that
alloying has only minor effects on elastic properties.
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I. INTRODUCTION

An important aspect ofab initio electron structure calcu
lations in solids is that they can be applied to conditio
which are inaccessible to experiments. In many cases
have reached an accuracy comparable to that of experim
and thus can give new insight into the physics of solids. O
early such example is the systematic calculation of the ela
constants of metallic elements1,2 in face-centered-cubic~fcc!
and body-centered-cubic~bcc! lattices. In contrast, very little
is known about the elastic properties ofA-B binary metallic
alloys for the entire range of concentrations of the eleme
A andB in a given lattice structure. The solubility ofA in B,
and vice versa, is usually limited~cf. Fig. 1!, and even in the
thermodynamically stable range of concentrations the exp
mental information is meagre.3 At the theoretical level, mos
investigations of random alloys have been limited to
study of the energy differences of competing crystallograp
phases and the bulk modulus. Recent progress4 in the ab
initio description of metallic alloys has made it possible
extend the calculations of elastic constants from orde
structures to the case of random substitutional alloys of
concentration. These theoretical developments allow on
study the thermodynamically stable and metastable phas
random alloys and facilitate to achieve a deep understan
of the dynamical stability and instability at different conce
trations of alloying elements.

It is the purpose of this paper to give a detailed accoun
the elastic properties of Ag-Zn binary alloys. The Ag-Zn a
loy is a prototype of the noble-metal–divalent-metal~Zn,
Cd! Hume-Rothery systems. The crystal structures and
solubility limits of Hume-Rothery intermediate phases we
proposed5 to correlate with the number of the valence ele
trons per atom~1 for the noble metal and 2 for Zn, Cd!.
Thus, an extensive study of the Ag-Zn binary alloy can p
mote a general description and comprehension of the p
erties of this important class of material. Here we present
0163-1829/2002/66~6!/064210~7!/$20.00 66 0642
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elastic constants of Ag12cZnc for 0<c<1 in the fcc and bcc
lattice structures. A very good agreement with experiment
obtained for the thermodynamically stable phases—i.e.,
fcc phase forc&0.4 and bcc phase forc'0.5; cf. Fig. 1. In
ranges of concentrations that cannot be reached experim
tally we find large and rapid variations in elastic she
moduli. This result contradicts the empirical observation t
alloying has only a small effect on elastic properties, exc
for some magnetic systems.3 Another important aspect is tha
of dynamical ~mechanical! stability. For instance, pure Ag
crystallizes in the fcc structure. Many models in materi
science assume that other structures, e.g., the bcc
hexagonal-close-packed~hcp! lattices, would represent pos
sible thermodynamically metastable phases of Ag. We fi
that bcc Ag12cZnc is dynamically unstable under shear f
c*0.76 and is almost unstable for smallc. Similarly, the fcc

FIG. 1. The essential parts of the Ag-Zn phase diagr
~Ref. 39!.
©2002 The American Physical Society10-1
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phase is at the verge of being dynamically unstable at
Zn-rich end.

The presentab initio total energy study is based on th
density functional theory.6 The Kohn-Sham equations7 are
solved using the recently developedexact muffin-tin orbitals
theory,8–13 and the problem of substitutional disorder
treated within thecoherent potential approximation.4,14–16

For the total energy calculation we employ thefull charge
densitytechnique.13,17

The rest of the paper is divided into two main sectio
and a conclusion. Section II presents the theoretical to
This includes a brief description of the elastic properties a
lattice stability, an overview of theab initio electronic struc-
ture calculation method, and the most important details
the numerical simulations. The results are presented and
cussed in Sec. III.

II. THEORY

A. Elastic properties

The elastic properties of crystals are described by the
ementsCi j of the elasticity tensor. In the case of cubic latti
symmetry, there are three independent elastic constantsC11,
C12, and C44. Often elastic data are presented as the b
modulusB5(C1112C12)/3 and the two shear moduliC44
and C85(C112C12)/2. Dynamical ~mechanical! stability
requires18 that

C44.0, C8.0, B.0. ~1!

The elastic anisotropy can be described by the anisotr
parameter

AE5
C112C1222C44

C112C44
, ~2!

introduced by Every.19 For an isotropic crystalAE50. From
the three elastic constants one obtains the sound velo
ns(u,f) for the longitudinal (s5L) and the two transvers
(s5T1 ,T2) branches. The average ofns

23(u,f) over all di-
rections (u,f) gives the sound velocitynD , viz.,

nD
235

1

12p (
s
E ns

23~u,f!sinududf,

which is used in the conventional Debye model with t
Debye temperature defined as

uD5~6p2/Va!1/3~\/kB!nD . ~3!

HereVa is the atomic volume, and\ andkB are the Planck
and Boltzmann constants, respectively. This Debye temp
ture determines, e.g., the low-temperature limit of the h
capacity per atom,CD(T)5(12p4/5)kB(T/uD)3. However,
in thermodynamic applications one is usually interested
high-temperature properties. Then the entropyS—and hence
also the Helmholtz energyF—depends on the logarithmi
average of all the phonon frequencies. In a Debye-mo
description ofS one should use the logarithmic averagen log
of the sound velocitiesns(u,f) and an entropy-related De
bye temperature20
06421
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uD,log5~6p2/Va!1/3~\/kB!n log . ~4!

Only in the simplest textbook version of a Debye model
uD5uD,log.

At concentrations where the stability requirements~1! are
violated, uD and uD,log cannot be defined. Letccrit be the
concentration where the lattice becomes unstable. If one
proachesccrit from the stable region, the divergence of th
averagens

23(u,f) makesuD→0. However, a logarithmic
singularity is so weak thatuD,log has a finite limit asc
→ccrit .

B. Ab initio calculation

Theexact muffin-tin orbitals~EMTO! theory and the self-
consistent implementation of this theory, within the spheri
cell approximation, may be found in Refs. 8–11 and 12,
respectively. A comprehensive description of the total ene
calculation method, based on thefull charge density
technique17 and the EMTO theory, is presented in Ref. 1
The application of thecoherent potential approximation
~CPA!14,15 to the compositional and/or magnetic disord
formulated in the framework of the EMTO theory, is dem
onstrated in Refs. 4 and 16. Here we overview the m
relevant features of the EMTO-CPA method and outli
some important numerical details.

The EMTO theory is an improvedscreened Korringa-
Kohn-Rostoker (KKR)method, where the exact one-electro
potential is represented by large overlapping poten
spheres. Inside the potential spheres the potential is sp
cally symmetric, and it is constant between the spheres.
using overlapping spheres one describes more accuratel
exact crystal potential, when compared with the conventio
muffin-tin or nonoverlapping approach. The radii of the p
tential spheres, the spherical potentials inside the sphe
and the constant value from the interstitial are determined
minimizing ~a! the deviation between the exact and overla
ping potentials and~b! the errors coming from the overla
between spheres.

The EMTO’s are defined for each lattice site and for ea
angular momentum quantum numberL[( l ,m) with l< l max
~usually l max53). They are constructed from thescreened
spherical waves, which are solutions of the wave equatio
with boundary conditions given in conjunction with nonove
lapping hard spheres.8 Inside the potential spheres the low
l ( l< l max) projections of the orbitals onto the spherical ha
monicsYL( r̂ ) are the partial waves.8 The matching between
the screened spherical waves and the partial waves is
ized by additional free-electron solutions.8

The Kohn-Sham equations are solved for the optimiz
overlapping potential using the Green function formalism.
the case of substitutionally disordered alloys the average
loy density of states for the energyz is determined from the
average Green function4

^G~z!&5g̃~z!Ṡ~z!2(
i

ci@gi~z!Ḋ i~z!1G0
i ~z!#, ~5!

whereci is the concentration of the alloy componenti. For
the sake of simplicity the site and angular momentum indi
0-2
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ELASTIC ANOMALIES IN Ag-Zn ALLOYS PHYSICAL REVIEW B 66, 064210 ~2002!
in Eq. ~5! have been omitted.Ṡ(z) and Ḋ i(z) denote the
energy derivative of the slope matrix and the logarithm
derivative function of the alloy componenti, respectively.
G0

i (z) is the on-site component of the EMTO Green fun
tion. For definitions see Refs. 8 13, and 16. The cohe
Green functiong̃(z) and the Green functions for alloy com
ponents,gi(z), are determined from the self-consistent so
tion of the CPA equations.4 In Eq. ~5! the first term corre-
sponds approximately to the average density of states f
the interstitial, while the second term gives the contribut
from the spheres centered on each alloy component. N
that the first term has a multicenter form16 and is not pro-
jected onto the alloy components. Within the single-site
proximation to the impurity problem, the EMTO-CPA Gree
function ~5! leads to an exact density of states for the op
mized overlapping potential.

The complete nonspherically symmetric charge density
each alloy component is represented in one-center f
around the lattice sites, i.e.,

ni~r !5(
L

nL
i ~r !YL~ r̂ !. ~6!

The above one-center expansion can formally be obta
from the real-space expression of the average Green f
tion, ^G(z,r ,r )&5( ic

iGi(z,r ,r ). To this end one needs t
transform the interstitial term from Eq.~5! to one-center
form. However, due to this transformation, the angular m
mentum expansion ofGi(z,r ,r ), and thus ofni(r ), will in-
clude the high-l terms as well. In practice these terms a
truncated atl max

h 58 –12.
Finally, the total energy of the random alloy is calculat

as4

Etot5
1

2p i R z^G~z!&dz2(
i

ciE vo
i ~r !ni~r !dr

1F inter@ni #1(
i

ci~F intra
i @ni #1Exc

i @ni # !

2(
i

ci
ac

w S Qi2(
i

ciQi D 2

, ~7!

wherevo
i (r ) is the overlapping potential for the alloy com

ponenti, andF inter is the average Madelung energy.F intra
i and

Exc
i are the electrostatic and exchange-correlation energie

the alloy componenti due to the charges from the Wigne
Seitz cell. The last term in Eq.~7! is the correction to the
electrostatic energy calculated within thescreened impurity
model,22 ac'0.6, w is the average atomic radius, andQi

denotes the total number of electrons inside the cell for
alloy componenti. The individual energy functionals ar
evaluated using the full charge density technique.17

The accuracy of the EMTO-CPA method has been de
onstrated for the ground state properties of metals, semi
ductors and oxides,23–26 and binary-ordered12 and random
alloys.4
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C. Details of the numerical calculations

In the present application of the EMTO-CPA method
the Ag-Zn binary system the one-electron equations w
solved within the scalar-relativistic and frozen-core appro
mations. We note that the semicore states of Ag (4p6) and
Zn (3p6) are far below the valence states~Ag 4d,5s and Zn
3d,4s). Therefore, we expect that the errors due to the un
laxed core states are negligible in the equilibrium proper
of Ag-Zn alloys. The Green function was calculated for
complex energy points distributed exponentially on a se
circular contour.

In the EMTO basis set we includeds, p, d, andf orbitals
and in the one-center expansion of the full charge den
~6!, we usedl max

h 510. The total energy functional was evalu
ated by the shape function technique.17 The conventional
Madelung energy was calculated forl max

m 58. The exchange-
correlation term was treated within the local density appro
mation ~LDA !.27 Finally, to obtain the accuracy needed f
the calculation of elastic constants in the irreducible wed
of the Brillouin zones we used 30 000–50 000k points, de-
pending on the particular crystal symmetry.

At each concentration the theoretical equilibrium volum
and the bulk modulus were determined from an exponen
Morse-type function28 fitted to theab initio total energies of
fcc and bcc structures for five different atomic volumes.
order to obtainC8 and C44 we used volume conserving te
tragonal and orthorhombic deformations, i.e.,

D t5S 11« t 0 0

0 11« t 0

0 0
1

~11« t!
2

D ,

Do5S 11«o 0 0

0 12«o 0

0 0
1

12«o
2

D , ~8!

respectively. We calculated the total energiesE(« t) and
E(«o) for five tetragonal,« t520.02,20.01, . . . ,0.02, and
six orthorhombic, «o50.00,0.01, . . . ,0.05, distortions. In
Fig. 2 we showDE(«o

2)[E(«o)2E(0) in the case of pure
Ag, Zn and Ag0.1Zn0.9, Ag0.9Zn0.1 alloys in the bcc crystal
phase, respectively. While for Ag-rich alloys the«o

2 depen-
dence is nearly linear, the curvature of the total energy in
cates a trend towards negative values ofC44 for Zn-rich al-
loys. Therefore, theC44 elastic constants were determine
from a second-order polynomial in«o

2 fitted to the total en-
ergy differencesDE(«o

2). In the case ofD t , which is an
asymmetric deformation, we used a third-order polynom
fit to DE(« t)[E(« t)2E(0).

III. RESULTS AND DISCUSSION

In this section we demonstrate the application of t
EMTO-CPA method to the Ag12cZnc random alloys. We
0-3
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compare our theoretical results for the equilibrium volum
elastic constants, Every anisotropy, and Debye tempera
to the available experimental data. The quoted experime
values for the elastic constants and Debye temperature
Ref. 29 have been extrapolated toT50 K by using the ob-
served temperature dependences below 300 K.3,29

In Figs. 3 and 4 we present the theoretical lattice para
etersa and bulk moduliB calculated for the Ag12cZnc alloys
in the fcc and bcc phases. For comparison, former theore
results30,31 and experimental data for the lattice constant32

and bulk moduli29 are also shown. The errors in the theor
ical ground-state parameters are typical for what has b
obtained for simple metals and transition metals23,33 in con-
junction with the local density approximation for th

FIG. 2. The effect of orthorhombic distortion («o) on the total
energy of the Ag12cZnc alloys in the bcc crystal structure. Th
slope ofDE(«o

2) at«o
250 is proportional to theC44 elastic constant.

FIG. 3. Theoretical lattice constants of Ag12cZnc alloys in the
fcc and bcc structures, calculated using the EMTO-CPA met
~Ref. 4!. The present values are compared with the experime
data~Ref. 32!. For pure Ag and Zn the full potential results from
Refs. 30 and 31 are also shown.
06421
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exchange-correlation energy functional. The agreement
tween our results for fcc Ag and Zn and those calcula
using thelinear augmented plane-wave~LAPW! method30,31

is reasonable. The relative differences ina and B are 1.3%
and 24.3% for Ag and 0.3% and210.9% for Zn, respec-
tively. We note that for pure Ag the calculated volume p
atom is 0.3% larger for the bcc lattice compared with that
the fcc lattice. For pure Zn the corresponding difference
0.7%.

The theoretical and experimental elastic constantsC8 and
C44 are shown in Fig. 5. The open symbols refer to expe
mental data from the Landolt-Bo¨rnstein tables3 (a phase!
and Murakami and Kachi29 (b phase!. For both elastic con-
stants the present results are in excellent agreement with
experimental values. For pure Ag the theoretical elastic
rameters calculated using the full potential LAPW andlinear
muffin-tin orbitals~LMTO! methods2,30,34are also included.
If we take, as the error connected with such calculations,
difference between the LAPW and LMTO results, i.e
;5 GPa forC8 and ;9 GPa forC44, the agreement be
tween the present and former theoretical results is very go

The variation of the bulk modulus with the Zn concentr
tion is smooth in both crystal structures. However, a qu
different behavior is observed in the case ofC8 andC44. For
instance,Cbcc8 is drastically reduced abovec'0.78, where, in
fact, this system reaches a dynamical instability. At the sa
time, at large Zn content the fcc Ag-Zn is strongly stabiliz
against tetragonal shear. On the other hand,C44 has almost
constant values forc&0.5 andc&0.7 in the fcc and bcc
structures, respectively. Above these concentration ran
C44 shows rapid variation in both structures, describing
trend from stable structures~Ag end! towards unstable~bcc!
or barely stable~fcc! structures~Zn end!. The instability of
fcc Zn against orthorhombic deformations has also been
ported in other theoretical investigations.31

When a comparison can be made between experim

d
al

FIG. 4. Theoretical bulk moduli of Ag12cZnc alloys in the fcc
and bcc structures, calculated using the EMTO-CPA method~Ref.
4!. The present values are compared with the experimental
extrapolated to 0 K~Ref. 29!. For pure Ag and Zn the full potentia
results from Refs. 30 and 31 are also shown.
0-4
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ELASTIC ANOMALIES IN Ag-Zn ALLOYS PHYSICAL REVIEW B 66, 064210 ~2002!
and our results for the elastic constants, the agreeme
very good. We therefore have confidence in our data a
when they show an anomalous behavior. The abruptnes
the variations inC8 and C44 is more pronounced than ha
been reported in any experiments for nonmagnetic soli3

The often-used ‘‘law of mixing’’ for the shear moduli, i.e.,
linear variation between the values at the end members in
alloy, definitely fails in the case of Ag-Zn alloys. Rapid, b
smaller, variations of elastic constants as a function of co
position or temperature have been noted for sev
transition-metal alloys3 and attributed to topological Ferm
surface transitions.35

The enthalpy of formation of Ag12cZnc alloy for an arbi-
trary crystal structure is calculated as

DH~c!5E~Ag12cZnc!2~12c!Efcc~Ag!2cEhcp~Zn!,
~9!

where all the energies are obtained for the calculated e
librium volume and expressed per atom.Efcc(Ag) and
Ehcp(Zn) are the total energies of fcc Ag and hcp Zn, resp
tively. The solid solution of the Ag-Zn system is forme

FIG. 5. Theoretical elastic constants (C8 andC44) of Ag12cZnc

alloys in the fcc and bcc structures, calculated using the EMT
CPA method~Ref. 4!. The present values are compared with t
experimental data extrapolated to 0 K~Ref. 29!. For pure Ag and Zn
the full potential results from Ref. 2~LMTO! and Ref. 34~LAPW!
are also shown.
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when DH(c),0. In Fig. 6 we presentDH fcc(c) and
DHbcc(c) as functions of the alloy composition. For refe
ence, we also include the enthalpy of formation calcula
for the experimentale and h phases@DHhcp(c)#. These
phases are observed for 0.66&c&0.89 and forc.0.95, and
have hcp structure with c/a'1.56, and c/a'1.8,
respectively.36 A comparison between the bcc, fcc, and h
enthalpies shows the relative stability of the fcc phase be
0.4 and of the hcp phases above 0.6 Zn content. This i
qualitative agreement with the phase diagram from Fig.
However, we note that entropy effects must also be con
ered in a full account of the high temperature phase diagr
Analyzing Figs. 1 and 6 we point out that the bcc structure
concentrationsc;0.4 will be further stabilized over the fcc
structure at high temperatures by the entropy contribution
the configurational part of the Gibbs energy.

In studies1,2 of elastic constants of transition metals,
correlation betweenC8 and the energy difference betwee
the bcc and fcc structures,DEbcc-fcc[Ebcc2Efcc , was pro-
posed. In the case of Ag-Zn alloysDEbcc-fcc(c) first de-
creases from 0.9 mRy (c50) to 20.5 mRy (c50.6) and
then increases to 3.6 mRy (c51). This trend correlates rea
sonably well with bothCfcc8 and 2Cbcc8 . However, a much
better correlation exists betweenDEbcc-fcc(c) and the differ-
ence between the two tetragonal shear moduli. At small
concentrationsCfcc8 decreases andCbcc8 increases withc, sug-
gesting the stabilization of the bcc phase against the
phase. In the region between 45 and 65 at. % Zn theCbcc8
becomes slightly larger than theCfcc8 , showing a pronounced
energy minimum for the bcc phase. Above 65 at. % Zn o
has Cfcc8 .Cbcc8 , and a restabilization of the fcc structur
relative to the bcc structure, occurs.

In the upper panel of Fig. 7 the Every anisotropies a
shown for the fcc and bcc structures. The open symbols r
to experimental data for thea ~Ref. 37! andb ~Refs. 29 and
38! phases. For Ag-rich alloys the theoretical anisotropi
calculated from Eq.~2!, are in good agreement with the ex
perimental values. The somewhat worse agreement for

-

FIG. 6. The enthalpy of formation of Ag12cZnc alloys in the
fcc, bcc, and hcp structures calculated using the EMTO-C
method~Ref. 4!.
0-5
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bcc structure may be due to the fact that the experime
values were measured for ordered phases. The extreme
ues of anisotropies are observed at;50 and;70 at. % Zn
for the fcc and bcc structures, respectively. For theh phase
we find almost isotropic values in both structures. We n
that the bcc structure, for all concentrations, has a lar
anisotropy when compared with the fcc structure.

The lower panel of Fig. 7 presents the Debye tempe
tures as calculated from Eqs.~3! and~4!. Since these Debye
temperatures are not defined for dynamically unstable
tices, they are shown only forc&0.76 in the case of the bc
structure. For reference, the available low-temperature
perimental values are also included for the fcc~Ref. 37! and
bcc ~Ref. 29! structures. The agreement between experim

FIG. 7. Theoretical elastic anisotropies~upper panel! and Debye
temperatures~lower panel! of Ag12cZnc alloys in the fcc and bcc
structures calculated using the EMTO-CPA method~Ref. 4!. The
lower curves for the Debye temperature (uD) refer to the values
obtained from the average of the sound velocities, Eq.~3!, and the
upper curves (uD,log) to the values obtained from the logarithm
average of the sound velocities, Eq.~4!. The low-temperature ex
perimental data are taken from Refs. 37~for the fcc structure! and
29 ~for the bcc structure!.
s.

f

a
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tal and theoretical Debye temperatures, including the c
centration dependence, is very good. The quantityuD goes to
zero as one approachesccrit , while uD,log has a finite limiting
value. The difference is due to the fact thatuD is essentially
obtained from the average ofv23, while uD,log from the
average of lnv, wherev denotes the vibrational frequencie
This behavior ofuD and uD,log is mathematically exact for
harmonic vibrations. In a real system it will be somewh
modified because also the vibrational displacement diver
at ccrit , thus giving rise to anharmonic effects at concent
tions nearccrit . However, it is striking in Fig. 7 how narrow
the region of rapid variation inuD anduD,log is.

The vibrational Gibbs energyG, at high temperatures, de
pends primarily on lnuD,log.21 ThereforeG is still well be-
haved nearccrit . As a consequence, a phase diagram will n
show any anomalies nearccrit that relate to the correspondin
unstable phase.21

IV. CONCLUSIONS

Using the EMTO-CPAab initio total energy method we
have determined the elastic properties of the random Ag
binary alloys. Good agreement is found with the availa
experimental data. We obtain rapid variations in theC8 and
C44 elastic constants of high Zn content alloys. The fcc str
ture shows strong elastic anisotropy at concentrations aro
50 at. % Zn, and the bcc structure becomes approxima
isotropic only near the Zn end. We predict that the bcc Ag-
alloys with high Zn concentrations are dynamically unsta
and the corresponding fcc alloys are just barely stable.
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