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Ab initio total energy calculations, based on thect muffin-tin orbitals theonare used to determine elastic
properties of Ag_.Zn. random alloys in the face-centered and body-centered cubic crystallographic phases.
The compositional disorder is treated within the framework ofcibleerent potential approximatioihe cubic
elastic constant, C’, andC,, and the Debye temperatures are calculated for the whole range of concentra-
tions, O<c=<1. Experimental data are in very good agreement with the present results. Rapid variatns of
and C,, are observed at high Zn concentrations, which contradicts the common empirical observation that
alloying has only minor effects on elastic properties.
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. INTRODUCTION elastic constants of Ag .Zn, for 0=<c=<1 in the fcc and bcc
_ o lattice structures. A very good agreement with experiments is
An important aspect ob initio electron structure calcu- obtained for the thermodynamically stable phases—i.e., the
lations in solids is that they can be applied to conditionsfcc phase for=<0.4 and bee phase far~0.5; cf. Fig. 1. In
which are inaccessible to experiments. In many cases thenges of concentrations that cannot be reached experimen-
have reached an accuracy comparable to that of experimentgjly we find large and rapid variations in elastic shear
and thus can give new insight into the physics of solids. Ongnoduli. This result contradicts the empirical observation that
early such example is the systematic calculation of the elastigjioying has only a small effect on elastic properties, except
constants of metallic elementsin face-centered-cubiicc)  for some magnetic systerfigsnother important aspect is that
and body-centered-cubibco lattices. In contrast, very little o gynamical(mechanical stability. For instance, pure Ag
is known about the elastic propertiesAfB binary metallic ¢y stajlizes in the fcc structure. Many models in materials
alloys for the entire range of concentrations of the elemem§cience assume that other structures, e.g., the bcc or

A andB in a given lattice structure. The solubility éfin B, hexagonal-close-packeticp lattices, would represent pos-

and vice versa, is usually limite(@f. Fig. 1), and.even in the sible thermodynamically metastable phases of Ag. We find
thermodynamically stable range of concentrations the experiy -+ bee Ag_.Zn. is dynamically unstable under shear for

_menta_l mf_ormatlon is meagreAt the theoretical _Ie\_/el, mOSt -~ .76 and is almost unstable for smallSimilarly, the fcc
investigations of random alloys have been limited to the

study of the energy differences of competing crystallographic

phases and the bulk modulus. Recent prodrésshe ab 1300 ' ' ' '

initio description of metallic alloys has made it possible to

extend the calculations of elastic constants from orderec

structures to the case of random substitutional alloys of any 4,49

concentration. These theoretical developments allow one tc

study the thermodynamically stable and metastable phases ¢

random alloys and facilitate to achieve a deep understandinge

of the dynamical stability and instability at different concen- 2 900

trations of alloying elements. =
It is the purpose of this paper to give a detailed account of

the elastic properties of Ag-Zn binary alloys. The Ag-Zn al-

loy is a prototype of the noble-metal—divalent-metzh,

Cd) Hume-Rothery systems. The crystal structures and the

solubility limits of Hume-Rothery intermediate phases were

proposea to correlate with the number of the valence elec- 500

trons per atom(1 for the noble metal and 2 for Zn, Cd

Thus, an extensive study of the Ag-Zn binary alloy can pro-

mote a general description and comprehension of the prop- FIG. 1. The essential parts of the Ag-Zn phase diagram

erties of this important class of material. Here we present théRef. 39.
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Err]]argéahise na(g[ the verge of being dynamically unstable at the ﬁDvlog:(6W2/Qa)1/3(ﬁ/k8)ylog_ (4
-ri .

The presentb initio total energy study is based on the
density functional theot§ The Kohn-Sham equatiohsre 5= 0p,jog- ) - )
solved using the recently developegact muffin-tin orbitals At concentrations where the stability requireme(isare

theory8=13 and the problem of substitutional disorder is Violated, 65 and fp g cannot be defined. Let; be the
treated within thecoherent potential approximatight4-16 concentration where the lattice becomes unstable. If one ap-

For the total energy calculation we employ thdl charge proacheszc_cgt from the stable region, the divergencg of.the

densitytechnique'®*’ averagevg °(6,¢) makes6p,—0. However, a logarithmic
The rest of the paper is divided into two main sectionssingularity is so weak thatp o4 has a finite limit asc

and a conclusion. Section Il presents the theoretical tools: Cerit-

This includes a brief description of the elastic properties and

lattice stability, an overview of thab initio electronic struc- B. Ab initio calculation

ture calcu!ation_ methpd, and the most important details O.f The exact muffin-tin orbital§EMTO) theory and the self-
the numerical simulations. The results are presented and digyhgjstent implementation of this theory, within the spherical
cussed in Sec. Il. cell approximation, may be found in Refs. 8—11 and 12,13,
respectively. A comprehensive description of the total energy
Il. THEORY calculation method, based on thiill charge density
A. Elastic properties techniqué” and the EMTO theory, is presented in Ref. 13.
i i i The application of thecoherent potential approximation
The elastic properties of crystals are described by the eI(CpA)14,15 to the compositional and/or magnetic disorder,
ementsC;; of the elasticity tensor. In the case of cubic lattice tgymylated in the framework of the EMTO theory, is dem-
symmetry, there are three independent elastic constants  gnstrated in Refs. 4 and 16. Here we overview the most
Ci2, andCyy. Often elastic data are presented as the bulkelevant features of the EMTO-CPA method and outline
modulusB=(C,;+2C;,)/3 and the two shear modul,,  some important numerical details.
and C’'=(Cy;—Cyp)/2. Dynamical (mechanical stability The EMTO theory is an improvedcreened Korringa-
requires® that Kohn-Rostoker (KKRjnethod, where the exact one-electron
potential is represented by large overlapping potential

Only in the simplest textbook version of a Debye model is

Ca>0, C'>0, B>0. @ spheres. Inside the potential spheres the potential is spheri-
The elastic anisotropy can be described by the anisotropgally symmetric, and it is constant between the spheres. By
parameter using overlapping spheres one describes more accurately the
exact crystal potential, when compared with the conventional
A Cpyy—Cpp—2Cy, @ muffin-tin or nonoverlapping approach. The radii of the po-
B C;;—Cu tential spheres, the spherical potentials inside the spheres,

) 9 ) . _ and the constant value from the interstitial are determined by
introduced by Every? For an isotropic crystahz=0. From minimizing (a) the deviation between the exact and overlap-

the three elastic constants one obtains the sound velocitmng potentials andb) the errors coming from the overlap
vs(6,¢) for the longitudinal 6=L) and the two transverse peaiween spheres.

— 3 i ' Lo
(s=Ty,T) branches. The average of °(6,¢) over all di- The EMTO’s are defined for each lattice site and for each
rections @, ¢) gives the sound velocityp, viz., angular momentum quantum numbes (1,m) with 1<l .,
1 (usually I ,ax=3). They are constructed from theereened
vpi=—e >, f v53(6,¢)sinodod ¢, spherical waveswhich are solutions of the wave equation
127 <5 with boundary conditions given in conjunction with nonover-

lapping hard spherésinside the potential spheres the low-
I (I=<Il,a) projections of the orbitals onto the spherical har-

monicsY, (r) are the partial wavesThe matching between
0p=(67%Q ) (hilKg) vp . (3)  the screened spherical waves and the partial waves is real-
_ _ ized by additional free-electron solutiofis.
Here(), is the atomic volume, anfl andkg are the Planck The Kohn-Sham equations are solved for the optimized
and Boltzmann constants, respectively. This Debye temperg;erjapping potential using the Green function formalism. In
ture determines, e.g., the low-temperature limit of the heaf,s case of substitutionally disordered alloys the average al-

; — 4 3
capacity per atomCp(T)=(127"/5)kg(T/6p)". HOwever, = 4y gensity of states for the energyis determined from the
in thermodynamic applications one is usually interested INverage Green functién

high-temperature properties. Then the entr8syand hence

also the Helmholtz energif—depends on the logarithmic - . L :

average of all the phonon frequencies. In a Debye-model (G(2))=9(2)S(2)— X c'[g'(2)D'(2)+Gy(2)], (5)
description ofS one should use the logarithmic averagg, . '

of the sound velocities (6, ¢) and an entropy-related De- wherec' is the concentration of the alloy componentor

bye temperatur8 the sake of simplicity the site and angular momentum indices

which is used in the conventional Debye model with the
Debye temperature defined as
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in Eq. (5) have been omittedS(z) and D'(z) denote the C. Details of the numerical calculations

energy derivative of the slope matrix and the logarithmic  |n the present application of the EMTO-CPA method to

derivative function of the alloy componet respectively.  the Ag-Zn binary system the one-electron equations were
Go(2) is the on-site component of the EMTO Green func-solved within the scalar-relativistic and frozen-core approxi-

tion. For definitions see Refs. 8 13, and 16. The coherenmnations. We note that the semicore states of Ag®4and

Green functiorg(z) and the Green functions for alloy com- Zn (3p°) are far below the valence statgy 4d,5s and Zn
ponentsg'(z), are determined from the self-consistent solu-3d,4s). Therefore, we expect that the errors due to the unre-
tion of the CPA equation$.In Eq. (5) the first term corre- laxed core states are negligible in the equilibrium properties
sponds approximately to the average density of states frof Ag-Zn alloys. The Green function was calculated for 16
the interstitial, while the second term gives the contributioncomplex energy points distributed exponentially on a semi-
from the spheres centered on each alloy component. Notgrcular contour.
that the first term has a multicenter foftrand is not pro- In the EMTO basis set we includexip, d, andf orbitals
jected onto the alloy components. Within the single-site apand in the one-center expansion of the full charge density
proximation to the impurity problem, the EMTO-CPA Green (6), we used .= 10. The total energy functional was evalu-
function (5) leads to an exact density of states for the opti-ated by the shape function technigideThe conventional
mized overlapping potential. Madelung energy was calculated 1¢t,,= 8. The exchange-
The complete nonspherically symmetric charge density otorrelation term was treated within the local density approxi-
each alloy component is represented in one-center forrmation (LDA).?’ Finally, to obtain the accuracy needed for
around the lattice sites, i.e., the calculation of elastic constants in the irreducible wedge
of the Brillouin zones we used 30 000-50 OR@oints, de-
) , ~ pending on the particular crystal symmetry.
n'(r)=2> nL(NY(r). (6) At each concentration the theoretical equilibrium volume
- and the bulk modulus were determined from an exponential

The ab i . ¢ v be obtai %orse-type functioff fitted to theab initio total energies of
€ above one-center expansion can formally be oblaineg.. -4 hoe structures for five different atomic volumes. In

from the real-space expression of the average Green fungqer 6 gptainC’ and C44 We used volume conserving te-
tion, (G(z,r,r))_:Eic'_G_'(z,r,r). To this end one needs to tragonal and orthorhombic deformations, i.e.
transform the interstitial term from Ed5) to one-center T

form. However, due to this transformation, the angular mo- 1+e O 0
mentum expansion d&'(z,r,r), and thus ofn'(r), will in-
clude the high- terms as well. In practice these terms are 0 1+e 0

truncated at" =8-12. D= 1 '
Finally, the total energy of the random alloy is calculated 0 0 >
as (1+ey)
l+ey, O 0
1 . .
Ewot=5— j; 2(G(2))dz— 2>, le vo(r)n'(r)dr 0 l-¢, O
o 1 1
i i i i i i 0 0 2
+Fimel ']+ 2 ¢(Fiyd n']+ Exdn']) 1-e}
5 respectively. We calculated the total energieés;) and
_z Ciﬂ(Qi_E CiQi) ’ 7) E(e,) for five tetragonal,e,=—0.02,-0.0%...,0.02, and
i w i six orthorhombic, £,=0.00,0.01. . .,0.05, distortions. In

_ Fig. 2 we showAE(sg)EE(so)—E(O) in the case of pure
whereuv(r) is the overlapping potential for the alloy com- Ag, Zn and Ag :Zny e, AgyeZny, alloys in the bec crystal
ponenti, andF . is the average Madelung ener@y.,.,and  phase, respectively. While for Ag-rich alloys tké depen-
E|. are the electrostatic and exchange-correlation energies dience is nearly linear, the curvature of the total energy indi-
the alloy component due to the charges from the Wigner- cates a trend towards negative value<gj for Zn-rich al-
Seitz cell. The last term in Eq7) is the correction to the loys. Therefore, theC,, elastic constants were determined
electrostatic energy calculated within teereened impurity from a second-order polynomial lsfﬁ fitted to the total en-
modef”* a.~0.6, w is the average atomic radius, a@ ergy differencesAE(s2). In the case ofD,, which is an
denotes the total number of electrons inside the cell for th%symmetric deformation, we used a third-order polynomial
alloy componenti. The individual energy functionals are fit to AE(e;)=E(e;) —E(0).
evaluated using the full charge density technifue.

The accuracy of the EMTO-CPA method has been dem-
onstrated for the ground state properties of metals, semicon-
ductors and oxide® 2% and binary-orderédd and random In this section we demonstrate the application of the
alloys? EMTO-CPA method to the Ag .Zn. random alloys. We

III. RESULTS AND DISCUSSION
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FIG. 4. Theoretical bulk moduli of Ag .Zn. alloys in the fcc
and bcc structures, calculated using the EMTO-CPA metiied.
4). The present values are compared with the experimental data
extrapolated to 0 KRef. 29. For pure Ag and Zn the full potential

. e results from Refs. 30 and 31 are also shown.
compare our theoretical results for the equilibrium volume,

elastic constants, Every anisotropy, and Debye temperatugchange-correlation energy functional. The agreement be-
to the available experimental data. The quoted experimentalveen our results for fcc Ag and Zn and those calculated
values for the elastic constants and Debye temperature frogising thelinear augmented plane-waveAPW) method®3!
Ref. 29 have been extrapolatedTe-0 K by using the ob- s reasonable. The relative differencesairand B are 1.3%
served temperature dependences below 36G%. and —4.3% for Ag and 0.3% and-10.9% for Zn, respec-

In Figs. 3 and 4 we present the theoretical lattice paramtively. We note that for pure Ag the calculated volume per
etersa and bulk moduliB calculated for the Ag .Zn. alloys  atom is 0.3% larger for the bcc lattice compared with that of

in the fcc and bce phases. For comparison, former theoreticghe fcc lattice. For pure Zn the corresponding difference is
result$®3! and experimental data for the lattice consténts 0.79.

and bulk moduﬁg are also shown. The errors in the theoret- The theoretical and experimenta| elastic const&itand

ical ground-state parameters are typical for what has beeg,, are shown in Fig. 5. The open symbols refer to experi-
obtained for simple metals and transition metafSin con-  mental data from the Landolt:Bastein tabled (« phase
junCtion with the local denSity apprOXimatiOI’] for the and Murakami and Kac?ﬁ (B phase_ For both elastic con-
stants the present results are in excellent agreement with the

FIG. 2. The effect of orthorhombic distortiorz{) on the total
energy of the Ag_.Zn. alloys in the bcc crystal structure. The
slope ofA E(sg) atsgz 0 is proportional to th& 4, elastic constant.

5.5 ' ' ' ' experimental values. For pure Ag the theoretical elastic pa-
rameters calculated using the full potential LAPW dinéar
@ fcc: EMTOCPA muffin-tin orbitals(LMTO) method$°3%3*are also included.
M bec: EMTO-CPA If we take, as the error connected with such calculations, the
sl Do exm. | difference between the LAPW and LMTO results, i.e.,
. Afec: LAPW ~5 GPa forC' and ~9 GPa forC,,, the agreement be-

tween the present and former theoretical results is very good.
The variation of the bulk modulus with the Zn concentra-

tion is smooth in both crystal structures. However, a quite

different behavior is observed in the caseddfandC,,. For

instanceC/. is drastically reduced abowe=0.78, where, in

fact, this system reaches a dynamical instability. At the same

time, at large Zn content the fcc Ag-Zn is strongly stabilized

against tetragonal shear. On the other halyj, has almost

25 . s . s constant values for=0.5 andc=0.7 in the fcc and bcc

0 20 40 60 80 100 structures, respectively. Above these concentration ranges

At-% Zn C44 shows rapid variation in both structures, describing a

FIG. 3. Theoretical lattice constants of AgZn. alloys in the  trend from stable structuréég end towards unstabléoco

fcc and bec structures, calculated using the EMTO-CPA methodr barely stablgfcc) structures(Zn end. The instability of

(Ref. 4. The present values are compared with the experimentaicC Zn against orthorhombic deformations has also been re-

data(Ref. 32. For pure Ag and Zn the full potential results from ported in other theoretical investigatiotis.

Refs. 30 and 31 are also shown. When a comparison can be made between experiments

a(A)

W

35 k

| R
e LB = SN
L e
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L_..__,__l__.‘:‘_tgu__r/‘l\ FIG. 6. The enthalpy of formation of AchnC alloys in the
\ fcc, bee, and hcp structures calculated using the EMTO-CPA
\ method(Ref. 4.
60y i 1%
& 4 \ £ when AH(c)<0. In Fig. 6 we presentAH(c) and
<) <] . "
3 3 AHp.{c) as functions of the alloy composition. For refer-
Q © ence, we also include the enthalpy of formation calculated
S 30 f JeEiTo-cea 15 2 for the experimentale and » phases[AHc{c)]. These
e o phases are observed for 0:66=<0.89 and forc>0.95, and
Mbee: EMTO-CPA have hcp structure withc/a~1.56, and c/a=1.8,
Clbec: expt respectively’® A comparison between the bcc, fcc, and hep
0 . . . 15 enthalpies shows the relative stability of the fcc phase below
0 0 4 60 80 100 0.4 and of the hcp phases above 0.6 Zn content. This is in

At.—% Zn

qualitative agreement with the phase diagram from Fig. 1.

FIG. 5. Theoretical elastic constants’(andC,,) of Ag;_.Zn, However, we note that entropy effects must also be consid-
; . . Py (

alloys in the fcc and bcc structures, calculated using the EMTO<ered in a full account of the high temperature phase diagram.
CPA method(Ref. 4. The present values are compared with the Analyzing Figs. 1 and 6 we point out that the bcc structure at
experimental data extrapolated to QRef. 29. For pure Agand Zn  concentrations~0.4 will be further stabilized over the fcc
the full potential results from Ref. @ MTO) and Ref. 34LAPW)  strycture at high temperatures by the entropy contribution to
are also shown. the configurational part of the Gibbs energy.

. ~In studies$”? of elastic constants of transition metals, a
and our results for the elastic constants, the agreement igyrelation betweer€’ and the energy difference between
very good. We therefore have confidence in our data alsghe bce and fec structures\Epee o= Epee— Ereer WAS pro-
when they show an anomalous behavior. The abruptness gsed. In the case of Ag-Zn alloySE,..«dcC) first de-
the variations inC’ and C,4 is more pronounced than has creases from 0.9 mRyc&0) to —0.5 mRy €=0.6) and
been reported in any experiments for nonmagnetic sdlidsthen increases to 3.6 mRyg £ 1). This trend correlates rea-
The often-used “law of mixing” for the shear moduli, i.e., a ; / _c’
linear variation between the vgalues at the end members in t sonably well with bothCyg and - Cye. However, a much

@ e - tter correlation exists betwe&E.....{C) and the differ-
alloyl,l definitely fails in ':he case of Ag-Zn alloys. Rapid, but gce petween the two tetragonal shear moduli. At small Zn
smaller, variations of elastic constants as a function of com- ; , ro :
position or temperature have been noted for sever oncentration€y,; decreases anty., increases wittt, sug-

o . : . “gesting the stabilization of the bcc phase against the fcc
transition-metal alloySand attributed to topological Fermi- .
o phase. In the region between 45 and 65 at.% ZnGhe
surface transition®> b liahtlv | than t howi d

The enthalpy of formation of Ag .Zn, alloy for an arbi- ecomes signtly farg?]r ban }%‘?C’ S %ngg prong)unce

trary crystal structure is calculated as energy minimum for the bcc phase. Above 65 at.% Zn one
has C;..>C/.., and a restabilization of the fcc structure,
relative to the bcc structure, occurs.

In the upper panel of Fig. 7 the Every anisotropies are
shown for the fcc and bcc structures. The open symbols refer
where all the energies are obtained for the calculated equio experimental data for the (Ref. 37 and 8 (Refs. 29 and
librium volume and expressed per atorBq(Ag) and 38) phases. For Ag-rich alloys the theoretical anisotropies,
Enci(Zn) are the total energies of fcc Ag and hcp Zn, respecealculated from Eq(2), are in good agreement with the ex-
tively. The solid solution of the Ag-Zn system is formed perimental values. The somewhat worse agreement for the

AH(c)=E(Ag;-¢Zn;) —(1—C)Es(AQ) — CEth(Zn),
9
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FIG. 7. Theoretical elastic anisotropi@gper pangland Debye
temperatureglower panel of Ag;_.Zn. alloys in the fcc and bcc
structures calculated using the EMTO-CPA meth&&f. 4. The
lower curves for the Debye temperaturép) refer to the values
obtained from the average of the sound velocities, (Bg.and the
upper curves €p o) to the values obtained from the logarithmic
average of the sound velocities, B4). The low-temperature ex-
perimental data are taken from Refs. @@r the fcc structurpand
29 (for the bcc structune

PHYSICAL REVIEW B 66, 064210 (2002

tal and theoretical Debye temperatures, including the con-
centration dependence, is very good. The quarkitgoes to
zero as one approacheg;;, while 6 1,4 has a finite limiting
value. The difference is due to the fact titgt is essentially
obtained from the average @b 3, while Op,iog from the
average of Inv, wherew denotes the vibrational frequencies.
This behavior ofdp and 6p o4 is mathematically exact for
harmonic vibrations. In a real system it will be somewhat
modified because also the vibrational displacement diverges
at c.;, thus giving rise to anharmonic effects at concentra-
tions nearc;;. However, it is striking in Fig. 7 how narrow
the region of rapid variation i, and o iS.

The vibrational Gibbs energ$, at high temperatures, de-
pends primarily on Irﬂmog.21 ThereforeG is still well be-
haved neac.;;. As a consequence, a phase diagram will not
show any anomalies nee,; that relate to the corresponding
unstable phas#.

IV. CONCLUSIONS

Using the EMTO-CPAab initio total energy method we
have determined the elastic properties of the random Ag-Zn
binary alloys. Good agreement is found with the available
experimental data. We obtain rapid variations in @eand
C,4 elastic constants of high Zn content alloys. The fcc struc-
ture shows strong elastic anisotropy at concentrations around
50 at.% Zn, and the bcc structure becomes approximately
isotropic only near the Zn end. We predict that the bcc Ag-Zn

bcc structure may be due to the fact that the experimentadlloys with high Zn concentrations are dynamically unstable
values were measured for ordered phases. The extreme valnd the corresponding fcc alloys are just barely stable.

ues of anisotropies are observed~ab0 and~70 at.% Zn
for the fcc and bcc structures, respectively. For thphase
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