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Epitaxial Bain paths and metastable phases from first-principles total-energy calculations
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A systematic two-stage procedure for finding metastable phases from first-principles total-energy calcula-
tions is derived and applied to tetragonal structures. In the first stage we calculate the system'’s epitaxial Bain
path(EBP) in the tetragonal plane, whose coordinates are the tetragonal lattice constants; the EBP is defined so
that it goes through all tetragonal energy minima. In the second stage we prove or disprove metastability by
evaluating the elastic constants at the minima and checking the stability conditions. Application of the proce-
dure to some metallic elements and compounds has led to a substantial number of metastable phases, many of
them new, which exist in addition to the ground state. A generalization to finite hydrostatic pressure permits
finding metastable phases under pressure, but a third stage must be added which converts the energy to a free
energy whose minima now give the phases. Various properties of EBP’s are described, including the existence
of inherently unstable states along the EBP which cannot be stabilized by application of external stresses, and
determination of the point on the EBP at which a thermodynamic phase transition between tetragonal phases
occurs that is produced by epitaxial strain.
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[. INTRODUCTION three angles of the parallelopiped unit ¢elhk second basis
atom adds three more degrees of freedom, so that the struc-

Metastable phases of a material of given composition ar¢éure space then has at most nine dimensions. However sym-
essentially new materials, which may have properties verynetry reduces the number of structural degrees of freedom.
different from the ground-state phase, e.g., metastable didrhis paper makes the computational burden practicable by
mond and graphite. Much effort has been made to find otheconsidering just body-centered tetragonal lattices, either as
phases of a material by applying pressure, changing temper&ravais lattices or as the related lattices with two basis atoms
ture, and varying concentrations of components. These exuch as the CsCl and the Cu-Au lattidelg) with the sec-
perimental procedures can change the ground-state phase tord basis atom at the body center. Symmetry then limits the
different phase. This different phase may at ambient condistructure space to just two dimensions.
tions be a metastable phase, which is locally stable against It will be shown that calculation of energies along a
small perturbations, although higher in energy than theunique path through tetragonal states, the epitaxial Bain path
ground state at ambient conditions. Hence experiment cafEBP), locates all the states that can be tetragonal metastable
sometimes indicate possible metastable phases. Stabilizatipfases of the given crystal. Calculation of the elastic con-
of these different phases can then be sought to confirm thegtants of these states then determines whether the state is in
metastability experimentally. This paper shows how moderract metastable. In this way 13 metastable tetragonal phases
electronic theory can find metastable phases systematicallp addition to the ground state have been found in 16 metallic
from first principles, and can both confirm and extend thecrystals. A table of stabilities of tetragonal phases of these
experimental indications. metallic crystals is given, which includes several magnetic

Modern first-principles electronic theory has given us aphases for each magnetic element.
reliable theoretical procedure for finding total energies of Other useful properties of the EBP are described: the EBP
crystalline materials, although there are computational limi-gives the states that are maintained stable by applied isotro-
tations on the number of atoms allowed in the unit cell.pic epitaxial (biaxial) stress; it shows the nonlinear elastic
Band-structure programs, such\agEN97 ! can calculate to- behavior as phases are strained; it finds states that are inher-
tal energies for any configuration of atoms in the unit cell.ently unstable and cannot be stabilized by applied stresses;
Hence we can search for metastable phases by looking fand it can be generalized to find metastable phases under
energy minima that are locally stable, i.e., configurations fothydrostatic pressure, and also generalized to apply to struc-
which the energy increases fall small displacements of the tures with symmetries other than tetragonal.
atoms in the unit cell. In Sec. Il we define the EBP and describe its properties

When discussion is limited to crystals with just one basisand applications. In Sec. Il we list and classify the stabilities
atom in the unit cel(a Bravais latticg the structure space to of the tetragonal metastable phases of some elements and
be searched has at most six dimensitthe three sides and binary compounds. In Sec. IV we discuss the value of the
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EBP approach to tetragonal metastable phases and extensiamdy one tetragonal minimum, as can be the case for the
of that approach; some comments are made on the langua@ai-Au structure. The EBP is calculated by finding at each
used for discussing phases and questions are raised for fuhe ¢ at whicl?®

ther study.

JE(a,c)

2
2\ ac

a

=0. (1)

a

O3=

Il. DEFINITION, PROPERTIES, AND APPLICATIONS OF
THE EBP Satisfaction of Eq.(1) gives directlycE8P and EFB® at a,

hence also the in-plane stressgs= o, from JE(a,c)/da at
the point @,cF8") and VEBP=cFBPa?/2. For convenience of

The structure space for the body-centered tetragdwdl  discussion we use a standard model of the EBP, which has
crystals considered herg@attice constanta for the square two minima and a maximum of energy between them; we
base anda for the height of the two-atom cells the tetrag- ~ will mention explicitly if the standard model does not apply.
onal plane, which has coordinatasand c or, equivalently, At a minimum of E¥®%(a), coordinates &,,Cy), the first
c/a and the volume per atoivi=ca?/2. At every point in the ~ derivative ofE(a,c) vanishes in two directions in the tetrag-
tetragonal plane there is a self-consistent solution of th@nal plane: alon§001] by construction of the EBP and along
Kohn-Sham equatiorfswhich we will call a state of the the EBP, since the pointag,co) is at a minimum of
system. The solution provides the total energy per atonEEB_P(a); Hence the derivative oE(a,c) at (ag,Co) must
E(a,c) and the first derivatives oE(a,c) provide the in- vanish in all directions so that atf,c,) the stressesr;
plane [(001) pland stressess;=o, and the out-of-plane —“2=0¢3=0 and
([001] direction stresso;. We seek the states at the minima
of E(a,c) (referred to as tetragonal minimavhich will be
called equilibrium states because the stresses vanish for these
states—saddle points &(a,c) are also equilibrium states,
but are always unstable. The tetragonal minima are not nedhus (@g,cy) is an extremum ofE(a,c) and, as stated
essarily stable or metastable because breaking the tetragor@iove,EF®”(a) must go through all minima d&(a,c), and
symmetry might decrease the energy. also through all maxima and saddle points, i.e., through all

Almost always there are two minima in the tetragonalequilibrium points. The stability of the state &ty(,co) must
plane and a saddle point between them; the minima corr¢hen be tested to determine if it is a metastable phase.
spond either to dominant binding betwe¢@01) planes Figure 1 illustrates the EBP functions for vanadium. Fig-
(smallc/a) or to dominant binding in thé001) planes(large  ure 1@ is a plot of E=*c=*"(a)/a], which shows the stan-
c/a). We show later by symmetry arguments that an elemeniard model with two minima and a maximum between; va-
in bct structuremusthave at least two minima. However the nadium has cubic symmetry at the first minimuthe bcc
two-atom crystal with the Cu-Au structure need not have twddround stateand also at the fcc maximuwhich is a saddle
minima, although it usually does. Note that at small and largd0int in the tetragonal planebut has noncubic tetragonal
c/a, E will increase strongly, since atoms will begin to over- Symmetry at the second minimum. Figurébjlis a plot of
lap. VEBR cEBR(a)/a], which gives the equilibrium values of

A systematic procedure for finding tetragonal minimaV(&,c) at the two minima oE=" (pointsA andE); Fig. 1(c)
consists of calculating first a particular path in the tetragonais @ plot of ¥ ¢®®(a)/a]; Fig. 1(d) shows the in-plane
plane thatmustgo through the tetragonal minima. That path stresso;>- along the EBP as a function af®7(a)/a. The
is the EBP. The tetragonal minima are then at the minima offigures were made by using the power-series expansions of
that path, as will now be shown. A Bain path meant origi-total tetragonal energies by Sliwko, Mohn, Schwarz, and
nally a path through tetragonal states between equilibriunlB|<’:1h<’:1.7
bcc and fec structuresThis original definition implicitly
assumed that at both cubic structures there were minima of B. Conditions for metastability

E(a,c). However, total-energy calculations have shown that .
As noted above, the tetragonal energy minima are not

the tetragonal minima are not necessarily both at éabic X )
ecessarily metastable states, because a deformation that

structures. Hence a more appropriate definition of a Bai
path is a path in the tetragonal plane that goes through botpf€aks tetragonal symmetry could lower the energy. The test
[f local stability against all small deformations is given by

tetragonal minima, whether the corresponding structures a > 9! : , 4
cubic or not. There are still many Bain paths, but note that dour stability conditions expressed in terms of the six elastic
’ constants of a tetragonal structfr@he conditions are de-

constant-volume path, which is frequently called a Bain™ X X .
pathf” does not in general satisfy the definition, since the”Ved from the requirement that the strain energy be positive

tetragonal minima usually have different volumes. definite for all small strains of the state at the minimum. We
The EBP is the unique Bain path which is defined as thé"ite these conditions in the form

path along which the stress in th@01] or c direction van-

ishes. This condition is satisfied on epitaxial films with a Cre (Cr1— C12)>0 (33

vacuum interface and defines the EBP even when there is 2 '

A. Tetragonal phases and Bain paths

JE(a,c)
Ja

JE(a,c)
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thatcq, andcgs are always greater than zero. These assump-
tions simplify the determination of stability and have never
been violated in any of the tetragonal structures we have
studied. Also for the tetragonal lattice we add E2g) to the
hexagonal structure stability conditions given by Nye.

The instabilities that we find for minima of the EBP all
come from violations of Eqd.3a), (3¢), or (3d); the condi-
tion (3b) is always satisfied at tetragonal minima because the
curvature at the minima, which givé§', is positive since

- 1 dZEEBP(a) A
- C_O da2 . (4)
0
In addition toY' the EBP also determines
ciz 1[dc™Ta) 5
csz 2| da ©)
Condition(3a) can be checked by calculatir@ from
,_Cu—cCp 1 [0°E[a;,a,(ay).c]
N (63
ao,ao,co

where a; and a, designate the in-plane tetragonal lattice
constants separately and

ax(a;)=2ap—ay. (6b)

In Eq. (6a) E is regarded as a function of the three sides of
the tetragonal cell separately, bay is coupled toa,. The
tetragonal symmetry is broken by the deformation to give an
orthorhombic cell. Equationg6a and (6b) are equivalent to
the usual combination shear straip=—¢,.

The shear constants, andcgg are evaluated from strains
which change the anglé,; between the sidea, and aj
=c and the angl#¥,, between the sides; anda,, respec-
tively; with 6 in radians, we have

2
Cods

, )

ag,Cq, 2

9°E(a,c, 053
Csa

9654

FIG. 1. Functions along the EBP defined in Sec. Il A plotted

againstcF®7(a)/a for vanadium.(a) EFBR(cFB"a) in mRy/atom: A
marks the bcc phase, B marks the thermodynamic phase-transition Cs6
point, C marks the stability limit of the bcc phase, D marks the

stability limit of the bct phase, E marks the bct phase, and F marks

the thermodynamic transition point coupled to(B) VEB?(cEB7a)
in boh?; (c) cEBR(cEBFa) in bohr; (d) o527 (cEB7a) in mRy/boh?.
The letters mark the same points for all the functions.

2c2,

Y,EC11+ Clz_ _>O, (3b)
Cs3

C44>0, (39

Cec>0. (3d)

Some assumptions have been made in writing (Bgcom-

2
- Coal

®

9°E(a,c, 01,) )
a6,

ag.Cq, w2

As for Eqg. (6), the deformations in Eq47) and (8) also
break tetragonal symmetry; the deformation dégx produces
a monoclinic cell and forgg an orthorhombic cell.

For cubic symmetnga;=cq; andc3=cC4, and the stabil-
ity conditions(3) reduce t8

C'>0, (93)
C111+2C15>0, (9b)
C4.>0, (90

pared to the cases considered by Ny@amely, we assume since then Eq(3b) becomes
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(C11+2C1)(C11—C10) Ey(a) will have a minimum close tag. A useful extension
Y'= >0. (10 of this property ofE,/(a) to tetragonal systems under pres-
sure is given in Sec. Il E.

Cn

Then Eq.(9b) is satisfied ifc,, andc,, are greater than zero,
and Eq.(9a) then follows from Eq.(10). Hence only viola- D. Properties of the EBP away from the minima
tions of Eqg.(9¢) can produce instability at a minimum with

cubic symmetry. Section IIC considered properties of the EBP at the

minima, including the elastic constants and stabilities of the
. . . phases at the minima. These phases might be called uncon-
C. Symmetry theorems and special properties of cubic strained phases to distinguish them from phases under epi-
structures taxial stress. We can regard the EBP as an analytic connec-
An element with the bct Bravais lattice has two structureion between two unconstrained phases. Going away from
with cubic symmetry: bcc at/a=1 and fcc atc/a=v2.  the minima along the EBP, the phases come under isotropic
Note that the Cu-Au structure has cubic symmetry only a€pitaxial stress. Then for the poif,c) on the EBP
c/a=1. There are two useful symmetry theorems for tetrag-

onal deformations of states of cubic symmetry. 2 [dE(a,a,,C)
The first theorem is that the EBP must have an extremum 917927 Ja,
in energy at all structures with cubic symmetry. This result aae
follows because dE/dc),=(dE/des)/c=0, where &3 1 (9E(a,c)
= 4cl/c, at all points of the EBP by construction; then at a “cal oga | (113
point on the EBP with cubic symmetryE/de,=JE/de, ac
=0Elde5, where g;=0da,/a, .82=5a2/a, so that 2 [9E(ac)
(c?E(f9§1)a,c= (.(9E/_z9a2)a,C also vgmgh. HencE must have a _ 3=~ ey Y (11b
vanishing derivative at that point in the tetragonal plane in a Y

all directions, including the direction along the EBP. o _

The second theorem is that on paths in the tetragondn Ed. (118 the notation indicates that the in-plane stress can
plane on which the volum&=ca?2 is constantE as a be calculated either by changing just one side of the square
function ofa or c/a is an extremum at points of cubic sym- base or by changing both sides of the base by equal amounts.

metry. At such points, as noted abovéE/de,=dE/de, As the state moves away from one minimum toward the
=0Elde4; then at constan¥ we have SE=(JE/de )e,  Other minimum anng the .E!S.P, the |n—pI.ane stressgs

+ (0Elde,) e+ (9El de3)e3=(IElde1) (e1+ €5+ £3) =0, =0, change in magnitude, initially increasing from zero. A

sinceSV/IV=g,+&,+&3=0. state will be reached at which a thermodynamic transition to

The first theorem has the interesting consequence that fdhe other phase, also under stress, is favored. This transition
elements in bct structure, which always includes two strucstate can be located by defining a free energy for the epitaxi-
tures with cubic symmetry, there must be at least two ex.a”y strained states along the EBP. This free energy will also
trema on the EBP. But then there must be at least three—tw®10W that the system state can be driven beyond the thermo-
minima and a maximum between, as in the standard modeflynamic transition state into a “superheating” region, which
because the EBP rises for both small and lastge Two of persists until a state is reached which is inherently unstable
the extrema have cubic symmetry; the third then has nonciand hence can be expected to break up, i.e., a stability limit.
bic tetragonal symmetry. The range of inherently unstable states extends to the stabil-

There are three possible configurations, since the noncdty limit of the other phasésee Figs. 2 and)3
bic extremum can be in three positions with respect to the These various stages in a first-order transition between
cubic extrema. All three configurations occur in the elementdetragonal phases can be derived and explained by the epi-
discussed in Sec. Ill. However for the binary compound intaxial free energyat zero temperatuyethat we now define
Cu-Au structure, which always has just one cubic structurélong the EBP;

(CsC), the cubic structure has three positions with respect to

two noncubic extremdif there are two minima If there is GFBRa)=EFBRa)+ o5PRa)U(a)— TS, (12
only one minimum, i.e., an EBP curve different from the

standard model, that minimum must be ata=1. The WhereT is absolute temperatur&,is entropy, and

type-1 antiferromagnetic bct structure of a magnetic

element® also has just one cubic structure, hence the EBP Utar=— [ ace® ard 13
also has three configurations of one cubic and two noncubic ()= aoac (a)da. (13
extrema.

The second symmetry theorem says thafor elements  We drop the entropy term iG by considering behavior only
on all constanV paths in the tetragonal plane also must haveat T=0. The quantityU(a) along the EBP defined in Eq.
at least two minima and a maximum. Again three configura{13) is an extensive variable conjugateds (U replaces the
tions are possible, as was the case along the EBRyIf similar quantitySin Ref. 11 to avoid confusion with entropy,
=Cpay/2 is the volume of a tetragonal minimum, then but has the opposite sign to simplify its relationGp. Then
Ev,(a) will also have a minimum aay; if V is close toVy, at a point(a,c) on the EBP,
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FIG. 2. (a) The free-energy functio&5®"(o;) in mRy/atom,

which is defined in Eq(12) at points on the EBP of vanadium as a

function of the in-plane isotropic stress at those poifis. The

U

FIG. 3. (a) EFBP(U) for vanadium showing the thermodynamic
transition between B and F by the common-tangent construction

functionU defined in Eq(13) as a function of in-plane stress along (dashed ling (b) aEBP(U) showing the thermodynamic transition

the EBP in boht, where U(o)=dGF®/da,. The letters corre-

by the equal-aredMaxwell) construction(dashed ling o5°F(U)

spond to those in Fig. 1. The vertical dashed lines join the equilibfor the epitaxially strained system is analogous to the equation of
rium states A and E where,; =0 and the thermodynamic transition statep(V) for the vapor-liquid system.

states B and F wher@®®F has equal values.

JE(a,c) . JE(a,c) dcFB(a)

EBP_
dE da Jc da
=g cada= — ¢T2dU, (14)

since 9E/gc=0 on the EBP,JE/da=or>ca from Eq.
(113, anddU= —cFB*a)ada from Eq.(13). In analogy to
a system under hydrostatic pressure the sw&S8 is analo-
gous top andU is analogous to volum¥. Then from Egs.
(12) and (14),

dGFBP=dEFBP+ o EBFdU+ UdefPP=Udo5BP. (15

ThusGEBP is constant in a transformation at constafit'" .
A calculation ofGEBP, ¢5B7 andU as functions ofr55P
along the EBP of vanadium appears in Fig. 2; Fi@) dlots

GFBR(¢EBP) and Fig. 2b) plots U(a529), the derivative of

gives lower values o6 compared to continuing in the origi-
nal phase, e.g., for increasinga the sequence ABFG in Fig.
2(a) gives lowerG values than the sequence ABC on the
original branch. Similarly for decreasirga compare FBA

to FED. The intersections of the first and third branches with
the second branch show a characteristic cusp or point of
discontinuous curvature when a phase goes inherently un-
stable; the second branch contains the inherently unstable
states. The states at the cusps also correspond to the condi-
tion that the second-order differential of energy loses posi-
tive definiteness for small tetragonal strains around the cusp
states'!

There is a complete analogy in the behavior of a tetrago-
nal system under epitaxial stress to the first-order phase tran-
sition between liquid and vapor states of a van der Waals gas;
the analogy is discussed in detail in Ref. 11. The function
o5B7(V) is analogous to the equation of statg/) along an
isotherm. A common-tangent construction on the first and

GEBR(0T"h). The figure shows the sequence of states bethird branches oEFB?(U) gives the strained phases that are
tween the unconstrained phases corresponding to the twin equilibrium (Fig. 33, as does the equal-area construction
minima of E (at pointsA andE). We note these features. The (Fig. 3b on the functionoEF(U), which is the negative of

1

curvesGEBR(oT") have three branches. The first and thirdthe derivative ofEEBR(U); this construction corresponds to

branches cross at @->"

dynamic transitior{between point8 andF). Note that mak-

which corresponds to the thermo- the Maxwell construction omp(V) for liquid and vapor

phases in equilibrium.

ing the phase transition and then continuing in the new phase However, there is a significant conceptual difference be-
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tween the phase transition described by the EBP and the one 1 [JE(a,c) 1 [dG(a,c)
described by the van der Waals equation. The latter is an 1= 02T oA T ac\  oa

- . . . .- . obo obo
empirical equation of qualitative validity, whereas the EBP is ay,Co ay,Co
based on first-principles calculations of good known reliabil- 1 {9pV(a,c)
ity, although the phase transition is described within a mean- _ = [PViac) =—p. (20)
field approximation. AoCo 9 e

The GEB(¢5"9) function shows clearly three kinds of 5
instability in epitaxially strained tetragonal phases. For thdn Ed- (200 9G/9a=0 at (a,Co) andV=ca“/2 have been
initial tetragonal deformations from equilibrium, application US€d- Sincess=—p by construction of the EBP at, the
of an external epitaxial stress maintains the state as a coftat€ at &o,Co) is under hydrostatic pressupe
strained phase. For deformations beyond the phase-transition 't IS @lso possible to find an equilibrium state under hy-
point, hence in the “superheating range,” the external stresgrostatic pressure from the constant—volumg energy function
may maintain the state, but an abrupt transition to a state dfv(®)- At a minimum ofE (&) the pressure is shown to be
lower free energy is possible and could be nucleated. HowYdrostatic by transforming the variables fr¢enV) to vari-
ever when the deformation goes beyond the stability limit;20les(a,0) and evaluating the stresses. Then at any point
the strained phase can be expected to break up, since ar ),
away situation exists analogous to the states onpf\é)

) . i ) 1 [0E 1 [0E JE
curve where increase @f increases Y here increase of ep- 01=0y=— | —| =—| — +<_) . (219
itaxial tension in the inherently unstable states decreases ca\da/ cal\dal, \dV/]
which further increases the tension.
2 [9E JE
E. EBP’s under hydrostatic pressure 7372 %)a_(W) . (21b

Generahzatl(_)n of the EBP for systems under hydrostati ince at the minimum of(a) (JE/da)y=0, Egs. (213
pressurep requires two changes in the procedures used nd(21b) give

p=0. The first change consists of substituting for the condi-

tion (1) (i.e., thato3=0) the new condition that;= —p, so JE
that at everya, O1=0,=03= ( N - p (22
a
2
@ - & p. (16) and the tetragonal system is under hydrostatic pressure at the
ac /, 2 assumed volum¥. However we do not know the value pf

The condition (16) produces the functionEEE8R(a:p), at the givenV. If the V is cqap/2, then thatp is the value

H EBP/ .
VEBR(a;p), andcFB™(a;p), where the notation indicates that used for determinings=""(a;p).
the functions contaip as a parameter. Thus an equ_lllbrlum state with volum_e per atdhrcan be
The second change consists in introducing a Gibbs freéOund from minima ofEy(a). To determine the correspond-

energy per atonfat zero temperature so that the entropy term"d Pressure requires the equation of sfat¥), which can
vanishes defined throughout the tetragonal plane by be found fromE(V) evaluated at the minima d&(a) asV
varies. This property oEy(a) is a generalization of the sec-

G(a,c;p)=E(a,c)+pV(a,c). (17) ond theorem of Sec. Il C to systems under pressure, which
) now includes cases in which the minimumgj(a) does not
Then at any pointa,c) on the EBP for pressure, necessarily have a cubic structure.
) For a closed system, such as a crystal in vacudi,
9G(a,c:p) - JE(a,c) +p M =0 for small changes in structure around the equilibrium
dc a Jac /. Jac |, structure. This flatness d&& around equilibrium corresponds
) 5 to the system being at an extremum EBf However if the
_ a_p+ a_p:0 (18) crystal is in an open system, such as a system at constant
2 2 ’ hydrostatic pressure, thetE= —pdV for changes in struc-

0 ture anddE does not vanish, but nowlG=0 for small
g%ﬁf?ﬁ%gic?:g\ggﬁg {ﬁehg\éepbss?susﬁghl\g/w from Eq. changes in structure; equilibrium for the system now corre-
sponds to an extremum db. Of course for stability the
EBP 5.\ — EEBP, 5. EBP . extremum must be a minimum and the system under pressure
G ap)=E" aip)+pViap). (19 will achieve equilibrium by minimizingG.

Let (ag,Cp) be the tetragonal lattice parameters of a mini- Metastable phases under pressure are found by a three-
mum of GFBF(a;p). Then at @y,co) the derivative of stage process: First calculatE®®F(a;p). Second find
G(a,c) vanishes both along the EBP and by Etg) along GFBP(a:p) and its minima. The minima are tetragonal
¢, hence just as for the cape=0, where the derivative d  phases under hydrostatic pressure and may be metastable.
vanishes in all directionsee Eq(2)], the derivative ofG at  Third find the elastic constants from the second derivatives
(ap,cp) vanishes in all directions in the tetragonal plane. Theof G with respect to strain at the minima to check stability.
in-plane stresses atg,cy) are then given by Note that the minima oEFB"(a;p) cannot be phases under
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TABLE |. Stabilities at tetragonal minima. Column 1 identifies minimum2® In column 2 the table gives the cubic or noncu-
the crystalline structure; AF1 is antiferromagnetic of the first kind bic character of the three extrema in the sequence: first mini-
(Ref. 10, FM is ferromagnqtic, and NM is nonmagnetic. Columns mum(at low C/a), maximum, and second minimufat h|gh
2-4 classify the configuration of extrema from smzla to large  ¢/a). Then the signs of the elastic constants at the first mini-
c/a in the order first minimum, maximum, and second minimum, um are given, which are followed by the signs of the elas-
where C is cubic and N is noncubic structures. Columns 5-7 giveﬁC constants at the second minimum. The minimum with the
the signs olC"=(C1y15)/2, Caq, @ndCeg for the first minimumces  |o\er energy is marked byl). All three configurations of
is omitted for cubic structures. Columns 8—10 give the signs of thefwo cubic extrema and one noncubic extremum o¢ENC
same quantities for the second minimum. The minimum of IowerCCI\I NCO. The compound Cuzn and the antiferromagﬁetic
energy is indicated byl.). (AF) phases AF1-Fe, AF1-Mn show two of the three possible
configurations of one cubic and two noncubic extrema

First Second
Extremum minimum minimum (CNN, NCN). . i .
Material sequence C’ Cas Cs C’ Cas Cos The _16 crystals have 31_EBP minima; t_he first minimum
for Mg is too shallow for reliable computation of the elastic
Co(FM) NCC -+ + + 4.0 constants and is omitted. The 31 minima show 21 stable
Cu NCC -+ + + + . phases and 10 unstable phases. All minima are called phases,
Cuzn CNN + +..(L) + + + whether stable or unstable. The designation stable is used for
Fe(AF1) N C N + + + + 4+ +(L) both ground-state phases and metastable phases.
Fe(FM) CCN + 4+ ..(L) + + - The 20 minima with cubic symmetry have 19 stable
Fe(NM) NCC — 4+ + + .1 phases and one unstable phase. The unstable cubic phase
K CNC + o+ + + .. (fce, Zn) hasc,4<0 in agreement with the conclusion at the
Li CNC + 4+ ++ .. end of Sec. Il B about Eq9¢). The 11 noncubic phases have
Mg NCC ++ . two stable phases anq ning gnstable phases. The instabilities
Mn(AF1) NCN 4 + o+ +L) of the phases at the first minimum are all dueXo<0; the
Pd NCC 4 4. instabilities qf the phases at the seconq mlnln(bmh cubic
Rb CNC P + 4D anq noncubig are all due tocgg<O; th|_s includes fcc Zn,
sr CNC 4L L4 which hasc44_=_cf,6<0. Only one material has two unstable
- NCC R + 4+ tetragonal minimaZn). _ _
v CCN ++ .. P _ The number of metastable phases is not completely defi-
7n NCC Ly Lo nite, because the ground-state phase must be known and sub-

tracted from the count if it is one of the tetragonal phases.
There are 13 metastable phases if we assume that the ground-

hydrostatic pressure, because the in-plane stress vanishesStite phase_s OT Co, Li, Mg, Mn, and Ti are not tetragqnal as
the direction along the EBP. An application of EBP's under&Xperiment indicates. AI;o we count all the stable minima of
pressure has been made to ferromagn@iid) iron, which AFl—Fde and nonmagnetn(cNM)-Fe as metastable, since the
shows that the bcc phase becomes unstable at 1500 kbar %rIO_H? stalt)(?l_ls F?/If CCC': M 4T Id b d
pressure and that a new bct phase comes into existence at ' '€ stability of fcc Co, Mg, and Ti could be expected,

1300 kbar and becomes stable at 1825 kbar and alfove. P€cause fcc and hcp are both close-packed phases, but the
instability of fcc Zn is unexpected. A paper by Ner et al1*

finds the instability of fcc Zn for rhombohedréirigonal)
lll. EXAMPLES OF TETRAGONAL MINIMA ON THE EBP deformation alond111] and uses the instability to explain

The procedure described in Sec. Il for locating possibldhe behavior of Al-Zn alloys. The stability df, CuZn (N,
metastable phases by use of the EBP and then testing thélteans the noncubic second minimuemd of N, AF1-Mn
stabilities has been applied to 16 metallic crystals in bodyare interesting because thephase of CuZn alloys has been
centered tetragonal structure; the results are tabulated PPserved only up to 35 at.% Zn and not at 50% Zn, and
Table I. There are enough energy minima to suggest regularietragonal AF1-Mn has been made only with 10% or more
ties in the occurrence of stable and unstable phases. TH@purities that increase the electron density.
total-energy calculations were made withen97} usually
with both LSDA and GGA assumptions. In the table different
magnetic phases of Fe are counted as different materials. The
table gives only thaignsof the shear constants which deter-  The procedure for finding metastable phases from the
mine the stability{C’, ¢4, andcgg for non-cubic(N) minima,  EBP described in Sec. Il and applied in Sec. Ill has been
C’ andcy, for cubic (C) minimal—there is no entry focgg, highly productive, demonstrating the existence of about 13
since it is equal ta,,. The local spin-density approximation metastable phases for the 16 materials studied. A valuable
and generalized gradient approximation results agree in sigfieature of these results is that they have been obtained with
although they may differ in magnitude. first-principles calculations, which have a known good reli-

All the EBP’s of these materials conformed to the stan-ability, unlike empirical potentials.
dard model, including CuZn. However a slight increase in Zn  The results of the stability of the tetragonal phases indi-
concentration above 50% gives an EBP with just onecate some regularities, such as the fact that cubic phases are

IV. DISCUSSION

064111-7



P. M. MARCUS, F. JONA, AND S. L. QIU PHYSICAL REVIEW B56, 064111 (2002

almost always stable, whereas noncubic phases are usuattragonal symmetry, these minima are called unstable
unstable. TheC’ shear constanf{110] shear in the(001)  phases. This usage extends the meaning of the term phase,
plang determines the stability of the first minimum Bf(at ~ but calls attention to the special character of these states at
or near bec structujethe cgg shear constanf100] shear in tetra_g_onal_ minima and retains the idea that they might be
the (001) plang determines the stability of the second mini- Stabilized in some way. . o
mum (at or near fcc structureAlmost all materials have at ~ 1he states produced by putting a tetragonal equilibrium
least one locally stable tetragonal phase when both groundp_hase under epitaxial stress are properly called constrained
state phases and metastable phases are included. phases, which is the common usage, €.g., a phase under hy-

The EBP procedure for finding metastable phases for pd{rostatic pressure. The term phase applies beyond the region

crystal lattices clearly extends directly to hexagonal—close—Of linear elastic behavior and applies also as the strained

packed (hcp and trigonal crystal lattices, since they also material changes its elastic constants. An interesting question

have just two degrees of freedom. However they require %1h_at could l_)e SLUO,:'ﬁd ftrr:)m f|rsttpr!nC|(§)Ieﬁ by thetmte_tho;js of
more elaborate calculation, since they have additional non-t'sbloapﬁr IS W eld Er € cons :alt?le P af)e? S atrhlng rom af
equivalent atoms in the unit cell. The extra atoms do no able phase could become unstable even belore e region o

strain homogeneously and must be independently relaxe ‘herently unstable states. However when the region of in-
Although the usual unit cell of the bct lattice also has an erently unstable states is reached, the characterization as a

extra atom in the unit cell, it has enough symmetry so that i _hase should be dropped. These states no longer have a spe-

can be strained homogeneously; the bct lattice of an elemeﬁfal connection to the or|g_|_na! equilibrium phase and lie be-
is a Bravais lattice. tween two tetragonal equilibrium phases.

Pressure provides a large extension of the domain of eﬁ_ The existence of regions of inherently unstable states in

istence of metastable phases, which can be explored by t %e tetragonal thla'?he tsefaratltlng the regions bof constraﬁmeg
EBP procedure, generalized as in Sec. IlE. It seems verg ases suggests that structuré space may be generally dl-

likely that the number of metastable phases is very large ided into regions of constrained phases separated by regions

since so many have been found just in tetragonal structur (%f inherently unstable states. Then each constrained phase

of elements at zero pressure. Under pressure with addition gs a unique mother” phase from which it is generated by

symmetries and additional basis atoms many more metalless. Further study of metastable phases should clarify this

stable phases should occur. description of structure space.
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