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Epitaxial Bain paths and metastable phases from first-principles total-energy calculations
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A systematic two-stage procedure for finding metastable phases from first-principles total-energy calcula-
tions is derived and applied to tetragonal structures. In the first stage we calculate the system’s epitaxial Bain
path~EBP! in the tetragonal plane, whose coordinates are the tetragonal lattice constants; the EBP is defined so
that it goes through all tetragonal energy minima. In the second stage we prove or disprove metastability by
evaluating the elastic constants at the minima and checking the stability conditions. Application of the proce-
dure to some metallic elements and compounds has led to a substantial number of metastable phases, many of
them new, which exist in addition to the ground state. A generalization to finite hydrostatic pressure permits
finding metastable phases under pressure, but a third stage must be added which converts the energy to a free
energy whose minima now give the phases. Various properties of EBP’s are described, including the existence
of inherently unstable states along the EBP which cannot be stabilized by application of external stresses, and
determination of the point on the EBP at which a thermodynamic phase transition between tetragonal phases
occurs that is produced by epitaxial strain.
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I. INTRODUCTION

Metastable phases of a material of given composition
essentially new materials, which may have properties v
different from the ground-state phase, e.g., metastable
mond and graphite. Much effort has been made to find o
phases of a material by applying pressure, changing temp
ture, and varying concentrations of components. These
perimental procedures can change the ground-state phas
different phase. This different phase may at ambient con
tions be a metastable phase, which is locally stable aga
small perturbations, although higher in energy than
ground state at ambient conditions. Hence experiment
sometimes indicate possible metastable phases. Stabiliz
of these different phases can then be sought to confirm t
metastability experimentally. This paper shows how mod
electronic theory can find metastable phases systemati
from first principles, and can both confirm and extend
experimental indications.

Modern first-principles electronic theory has given us
reliable theoretical procedure for finding total energies
crystalline materials, although there are computational li
tations on the number of atoms allowed in the unit ce
Band-structure programs, such asWIEN97,1 can calculate to-
tal energies for any configuration of atoms in the unit ce
Hence we can search for metastable phases by looking
energy minima that are locally stable, i.e., configurations
which the energy increases forall small displacements of th
atoms in the unit cell.

When discussion is limited to crystals with just one ba
atom in the unit cell~a Bravais lattice!, the structure space t
be searched has at most six dimensions~the three sides and
0163-1829/2002/66~6!/064111~8!/$20.00 66 0641
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three angles of the parallelopiped unit cell!; a second basis
atom adds three more degrees of freedom, so that the s
ture space then has at most nine dimensions. However s
metry reduces the number of structural degrees of freed
This paper makes the computational burden practicable
considering just body-centered tetragonal lattices, eithe
Bravais lattices or as the related lattices with two basis ato
such as the CsCl and the Cu-Au lattice (L10) with the sec-
ond basis atom at the body center. Symmetry then limits
structure space to just two dimensions.

It will be shown that calculation of energies along
unique path through tetragonal states, the epitaxial Bain p
~EBP!, locates all the states that can be tetragonal metast
phases of the given crystal. Calculation of the elastic c
stants of these states then determines whether the state
fact metastable. In this way 13 metastable tetragonal ph
in addition to the ground state have been found in 16 meta
crystals. A table of stabilities of tetragonal phases of th
metallic crystals is given, which includes several magne
phases for each magnetic element.

Other useful properties of the EBP are described: the E
gives the states that are maintained stable by applied iso
pic epitaxial ~biaxial! stress; it shows the nonlinear elast
behavior as phases are strained; it finds states that are in
ently unstable and cannot be stabilized by applied stres
and it can be generalized to find metastable phases u
hydrostatic pressure, and also generalized to apply to st
tures with symmetries other than tetragonal.

In Sec. II we define the EBP and describe its propert
and applications. In Sec. III we list and classify the stabilit
of the tetragonal metastable phases of some elements
binary compounds. In Sec. IV we discuss the value of
©2002 The American Physical Society11-1
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EBP approach to tetragonal metastable phases and exten
of that approach; some comments are made on the lang
used for discussing phases and questions are raised fo
ther study.

II. DEFINITION, PROPERTIES, AND APPLICATIONS OF
THE EBP

A. Tetragonal phases and Bain paths

The structure space for the body-centered tetragonal~bct!
crystals considered here~lattice constanta for the square
base andc for the height of the two-atom cell! is the tetrag-
onal plane, which has coordinatesa and c or, equivalently,
c/a and the volume per atomV5ca2/2. At every point in the
tetragonal plane there is a self-consistent solution of
Kohn-Sham equations,2 which we will call a state of the
system. The solution provides the total energy per at
E(a,c) and the first derivatives ofE(a,c) provide the in-
plane @~001! plane# stressess15s2 and the out-of-plane
~@001# direction! stresss3 . We seek the states at the minim
of E(a,c) ~referred to as tetragonal minima!, which will be
called equilibrium states because the stresses vanish for
states—saddle points ofE(a,c) are also equilibrium states
but are always unstable. The tetragonal minima are not n
essarily stable or metastable because breaking the tetrag
symmetry might decrease the energy.

Almost always there are two minima in the tetragon
plane and a saddle point between them; the minima co
spond either to dominant binding between~001! planes
~smallc/a! or to dominant binding in the~001! planes~large
c/a!. We show later by symmetry arguments that an elem
in bct structuremusthave at least two minima. However th
two-atom crystal with the Cu-Au structure need not have t
minima, although it usually does. Note that at small and la
c/a, E will increase strongly, since atoms will begin to ove
lap.

A systematic procedure for finding tetragonal minim
consists of calculating first a particular path in the tetrago
plane thatmustgo through the tetragonal minima. That pa
is the EBP. The tetragonal minima are then at the minima
that path, as will now be shown. A Bain path meant ori
nally a path through tetragonal states between equilibr
bcc and fcc structures.3 This original definition implicitly
assumed that at both cubic structures there were minim
E(a,c). However, total-energy calculations have shown t
the tetragonal minima are not necessarily both at cubic4–6

structures. Hence a more appropriate definition of a B
path is a path in the tetragonal plane that goes through
tetragonal minima, whether the corresponding structures
cubic or not. There are still many Bain paths, but note tha
constant-volume path, which is frequently called a Ba
path,4,7 does not in general satisfy the definition, since t
tetragonal minima usually have different volumes.

The EBP is the unique Bain path which is defined as
path along which the stress in the@001# or c direction van-
ishes. This condition is satisfied on epitaxial films with
vacuum interface and defines the EBP even when ther
06411
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only one tetragonal minimum, as can be the case for
Cu-Au structure. The EBP is calculated by finding at eaca
the c at which5,6

s35
2

a2 S ]E~a,c!

]c D
a

50. ~1!

Satisfaction of Eq.~1! gives directlycEBP and EEBP at a,
hence also the in-plane stressess15s2 from ]E(a,c)/]a at
the point (a,cEBP) andVEBP5cEBPa2/2. For convenience of
discussion we use a standard model of the EBP, which
two minima and a maximum of energy between them;
will mention explicitly if the standard model does not app

At a minimum ofEEBP(a), coordinates (a0 ,c0), the first
derivative ofE(a,c) vanishes in two directions in the tetrag
onal plane: along@001# by construction of the EBP and alon
the EBP, since the point (a0 ,c0) is at a minimum of
EEBP(a). Hence the derivative ofE(a,c) at (a0 ,c0) must
vanish in all directions so that at (a0 ,c0) the stressess1
5s25s350 and

S ]E~a,c!

]a D
a0 ,c0

5S ]E~a,c!

]c D
a0 ,c0

50. ~2!

Thus (a0 ,c0) is an extremum ofE(a,c) and, as stated
above,EEBP(a) must go through all minima ofE(a,c), and
also through all maxima and saddle points, i.e., through
equilibrium points. The stability of the state at (a0 ,c0) must
then be tested to determine if it is a metastable phase.

Figure 1 illustrates the EBP functions for vanadium. F
ure 1~a! is a plot ofEEBP@cEBP(a)/a#, which shows the stan
dard model with two minima and a maximum between; v
nadium has cubic symmetry at the first minimum~the bcc
ground state! and also at the fcc maximum~which is a saddle
point in the tetragonal plane!, but has noncubic tetragona
symmetry at the second minimum. Figure 1~b! is a plot of
VEBP@cEBP(a)/a#, which gives the equilibrium values o
V(a,c) at the two minima ofEEBP ~pointsA andE!; Fig. 1~c!
is a plot of cEBP@cEBP(a)/a#; Fig. 1~d! shows the in-plane
stresss1

EBP along the EBP as a function ofcEBP(a)/a. The
figures were made by using the power-series expansion
total tetragonal energies by Sliwko, Mohn, Schwarz, a
Blaha.7

B. Conditions for metastability

As noted above, the tetragonal energy minima are
necessarily metastable states, because a deformation
breaks tetragonal symmetry could lower the energy. The
of local stability against all small deformations is given b
four stability conditions expressed in terms of the six elas
constants of a tetragonal structure.8 The conditions are de
rived from the requirement that the strain energy be posi
definite for all small strains of the state at the minimum. W
write these conditions in the form

C8[
~c112c12!

2
.0, ~3a!
1-2
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Y8[c111c122
2c13

2

c33
.0, ~3b!

c44.0, ~3c!

c66.0. ~3d!

Some assumptions have been made in writing Eq.~3! com-
pared to the cases considered by Nye8—namely, we assume

FIG. 1. Functions along the EBP defined in Sec. II A plott
againstcEBP(a)/a for vanadium.~a! EEBP(cEBP/a) in mRy/atom: A
marks the bcc phase, B marks the thermodynamic phase-trans
point, C marks the stability limit of the bcc phase, D marks t
stability limit of the bct phase, E marks the bct phase, and F ma
the thermodynamic transition point coupled to B;~b! VEBP(cEBP/a)
in bohr3; ~c! cEBP(cEBP/a) in bohr; ~d! s1

EBP(cEBP/a) in mRy/bohr3.
The letters mark the same points for all the functions.
06411
thatc12 andc33 are always greater than zero. These assum
tions simplify the determination of stability and have nev
been violated in any of the tetragonal structures we h
studied. Also for the tetragonal lattice we add Eq.~3d! to the
hexagonal structure stability conditions given by Nye.

The instabilities that we find for minima of the EBP a
come from violations of Eqs.~3a!, ~3c!, or ~3d!; the condi-
tion ~3b! is always satisfied at tetragonal minima because
curvature at the minima, which givesY8, is positive since

Y85
1

c0
S d2EEBP~a!

da2 D
a0

. ~4!

In addition toY8 the EBP also determines

c13

c33
52

1

2 S dcEBP~a!

da D
a0

. ~5!

Condition ~3a! can be checked by calculatingC8 from

C8[
c112c12

2
5

1

2c0
S ]2E@a1 ,a2~a1!,c#

]a1
2 D

a0 ,a0 ,c0

, ~6a!

where a1 and a2 designate the in-plane tetragonal latti
constants separately and

a2~a1!52a02a1 . ~6b!

In Eq. ~6a! E is regarded as a function of the three sides
the tetragonal cell separately, buta2 is coupled toa1 . The
tetragonal symmetry is broken by the deformation to give
orthorhombic cell. Equations~6a! and~6b! are equivalent to
the usual combination shear strain«152«2 .

The shear constantsc44 andc66 are evaluated from strain
which change the angleu23 between the sidesa2 and a3
[c and the angleu12 between the sidesa1 anda2 , respec-
tively; with u in radians, we have9

c445
2

c0a0
2 S ]2E~a,c,u23!

]u23
2 D

a0 ,c0 ,p/2

, ~7!

c665
2

c0a0
2 S ]2E~a,c,u12!

]u12
2 D

a0 ,c0 ,p/2

~8!

As for Eq. ~6!, the deformations in Eqs.~7! and ~8! also
break tetragonal symmetry; the deformation forc44 produces
a monoclinic cell and forc66 an orthorhombic cell.

For cubic symmetryc335c11 andc135c12 and the stabil-
ity conditions~3! reduce to8

C8.0, ~9a!

c1112c12.0, ~9b!

c44.0, ~9c!

since then Eq.~3b! becomes

ion

s

1-3
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Y85
~c1112c12!~c112c12!

c11
.0. ~10!

Then Eq.~9b! is satisfied ifc11 andc12 are greater than zero
and Eq.~9a! then follows from Eq.~10!. Hence only viola-
tions of Eq.~9c! can produce instability at a minimum wit
cubic symmetry.

C. Symmetry theorems and special properties of cubic
structures

An element with the bct Bravais lattice has two structu
with cubic symmetry: bcc atc/a51 and fcc atc/a5&.
Note that the Cu-Au structure has cubic symmetry only
c/a51. There are two useful symmetry theorems for tetr
onal deformations of states of cubic symmetry.

The first theorem is that the EBP must have an extrem
in energy at all structures with cubic symmetry. This res
follows because (]E/]c)a5(]E/]«3)/c50, where «3
5dc/c, at all points of the EBP by construction; then at
point on the EBP with cubic symmetry]E/]«15]E/]«2
5]E/]«3 , where «15da1 /a, «25da2 /a, so that
(]E/]a1)a,c5(]E/]a2)a,c also vanish. HenceE must have a
vanishing derivative at that point in the tetragonal plane
all directions, including the direction along the EBP.

The second theorem is that on paths in the tetrago
plane on which the volumeV5ca2/2 is constant,E as a
function of a or c/a is an extremum at points of cubic sym
metry. At such points, as noted above,]E/]«15]E/]«2
5]E/]«3 ; then at constantV we havedE5(]E/]«1)«1
1(]E/]«2)«21(]E/]«3)«35(]E/]«1)(«11«21«3)50,
sincedV/V5«11«21«350.

The first theorem has the interesting consequence tha
elements in bct structure, which always includes two str
tures with cubic symmetry, there must be at least two
trema on the EBP. But then there must be at least three—
minima and a maximum between, as in the standard mo
because the EBP rises for both small and largec/a. Two of
the extrema have cubic symmetry; the third then has non
bic tetragonal symmetry.

There are three possible configurations, since the non
bic extremum can be in three positions with respect to
cubic extrema. All three configurations occur in the eleme
discussed in Sec. III. However for the binary compound
Cu-Au structure, which always has just one cubic struct
~CsCl!, the cubic structure has three positions with respec
two noncubic extrema~if there are two minima!. If there is
only one minimum, i.e., an EBP curve different from th
standard model, that minimum must be atc/a51. The
type-1 antiferromagnetic bct structure of a magne
element10 also has just one cubic structure, hence the E
also has three configurations of one cubic and two noncu
extrema.

The second symmetry theorem says thatE for elements
on all constantV paths in the tetragonal plane also must ha
at least two minima and a maximum. Again three configu
tions are possible, as was the case along the EBP. IfV0

5c0a0
2/2 is the volume of a tetragonal minimum, the

EV0
(a) will also have a minimum ata0 ; if V is close toV0 ,
06411
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EV(a) will have a minimum close toa0 . A useful extension
of this property ofEV(a) to tetragonal systems under pre
sure is given in Sec. II E.

D. Properties of the EBP away from the minima

Section II C considered properties of the EBP at t
minima, including the elastic constants and stabilities of
phases at the minima. These phases might be called un
strained phases to distinguish them from phases under
taxial stress. We can regard the EBP as an analytic con
tion between two unconstrained phases. Going away fr
the minima along the EBP, the phases come under isotr
epitaxial stress. Then for the point~a,c! on the EBP

s15s25
2

ca S ]E~a1 ,a2 ,c!

]a1
D

a,a,c

5
1

ca S ]E~a,c!

]a D
a,c

, ~11a!

s35
2

a2 S ]E~a,c!

]c D
a,c

50. ~11b!

In Eq. ~11a! the notation indicates that the in-plane stress c
be calculated either by changing just one side of the squ
base or by changing both sides of the base by equal amo

As the state moves away from one minimum toward
other minimum along the EBP, the in-plane stressess1
5s2 change in magnitude, initially increasing from zero.
state will be reached at which a thermodynamic transition
the other phase, also under stress, is favored. This trans
state can be located by defining a free energy for the epit
ally strained states along the EBP. This free energy will a
show that the system state can be driven beyond the the
dynamic transition state into a ‘‘superheating’’ region, whi
persists until a state is reached which is inherently unsta
and hence can be expected to break up, i.e., a stability li
The range of inherently unstable states extends to the st
ity limit of the other phase~see Figs. 2 and 3!.

These various stages in a first-order transition betw
tetragonal phases can be derived and explained by the
taxial free energy~at zero temperature! that we now define
along the EBP,11

GEBP~a![EEBP~a!1s1
EBP~a!U~a!2TS, ~12!

whereT is absolute temperature,S is entropy, and

U~a![2E
a0

a

acEBP~a!da. ~13!

We drop the entropy term inG by considering behavior only
at T50. The quantityU(a) along the EBP defined in Eq
~13! is an extensive variable conjugate tos1 ~U replaces the
similar quantityS in Ref. 11 to avoid confusion with entropy
but has the opposite sign to simplify its relation toG!. Then
at a point~a,c! on the EBP,
1-4
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dEEBP5S ]E~a,c!

]a
1

]E~a,c!

]c

dcEBP~a!

da Dda

5s1
EBPcada52s1

EBPdU, ~14!

since ]E/]c50 on the EBP,]E/]a5s1
EBPca from Eq.

~11a!, anddU52cEBP(a)ada from Eq. ~13!. In analogy to
a system under hydrostatic pressure the stresss1

EBP is analo-
gous top andU is analogous to volumeV. Then from Eqs.
~12! and ~14!,

dGEBP5dEEBP1s1
EBPdU1Uds1

EBP5Uds1
EBP. ~15!

ThusGEBP is constant in a transformation at constants1
EBP.

A calculation ofGEBP, s1
EBP, andU as functions ofs1

EBP

along the EBP of vanadium appears in Fig. 2; Fig. 2~a! plots
GEBP(s1

EBP) and Fig. 2~b! plots U(s1
EBP), the derivative of

GEBP(s1
EBP). The figure shows the sequence of states

tween the unconstrained phases corresponding to the
minima ofE ~at pointsA andE!. We note these features. Th
curvesGEBP(s1

EBP) have three branches. The first and th
branches cross at as1

EBP which corresponds to the thermo
dynamic transition~between pointsB andF!. Note that mak-
ing the phase transition and then continuing in the new ph

FIG. 2. ~a! The free-energy functionGEBP(s1) in mRy/atom,
which is defined in Eq.~12! at points on the EBP of vanadium as
function of the in-plane isotropic stress at those points.~b! The
functionU defined in Eq.~13! as a function of in-plane stress alon
the EBP in bohr3, whereU(s1)5dGEBP/ds1 . The letters corre-
spond to those in Fig. 1. The vertical dashed lines join the equ
rium states A and E wheres150 and the thermodynamic transitio
states B and F whereGEBP has equal values.
06411
-
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se

gives lower values ofG compared to continuing in the origi
nal phase, e.g., for increasingc/a the sequence ABFG in Fig
2~a! gives lowerG values than the sequence ABC on t
original branch. Similarly for decreasingc/a compare FBA
to FED. The intersections of the first and third branches w
the second branch show a characteristic cusp or poin
discontinuous curvature when a phase goes inherently
stable; the second branch contains the inherently unst
states. The states at the cusps also correspond to the c
tion that the second-order differential of energy loses po
tive definiteness for small tetragonal strains around the c
states.11

There is a complete analogy in the behavior of a tetra
nal system under epitaxial stress to the first-order phase t
sition between liquid and vapor states of a van der Waals
the analogy is discussed in detail in Ref. 11. The funct
s1

EBP(U) is analogous to the equation of statep(V) along an
isotherm. A common-tangent construction on the first a
third branches ofEEBP(U) gives the strained phases that a
in equilibrium ~Fig. 3a!, as does the equal-area constructi
~Fig. 3b! on the functions1

EBP(U), which is the negative of
the derivative ofEEBP(U); this construction corresponds t
the Maxwell construction onp(V) for liquid and vapor
phases in equilibrium.

However, there is a significant conceptual difference

-

FIG. 3. ~a! EEBP(U) for vanadium showing the thermodynam
transition between B and F by the common-tangent construc
~dashed line!; ~b! s1

EBP(U) showing the thermodynamic transitio
by the equal-area~Maxwell! construction~dashed line!. s1

EBP(U)
for the epitaxially strained system is analogous to the equation
statep(V) for the vapor-liquid system.
1-5
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tween the phase transition described by the EBP and the
described by the van der Waals equation. The latter is
empirical equation of qualitative validity, whereas the EBP
based on first-principles calculations of good known reliab
ity, although the phase transition is described within a me
field approximation.

The GEBP(s1
EBP) function shows clearly three kinds o

instability in epitaxially strained tetragonal phases. For
initial tetragonal deformations from equilibrium, applicatio
of an external epitaxial stress maintains the state as a
strained phase. For deformations beyond the phase-trans
point, hence in the ‘‘superheating range,’’ the external str
may maintain the state, but an abrupt transition to a stat
lower free energy is possible and could be nucleated. H
ever when the deformation goes beyond the stability lim
the strained phase can be expected to break up, since a
away situation exists analogous to the states on thep(V)
curve where increase ofp increases V; here increase of ep
itaxial tension in the inherently unstable states decreasea,
which further increases the tension.

E. EBP’s under hydrostatic pressure

Generalization of the EBP for systems under hydrost
pressurep requires two changes in the procedures used
p50. The first change consists of substituting for the con
tion ~1! ~i.e., thats350! the new condition thats352p, so
that at everya,

S ]E~a,c!

]c D
a

52
a2

2
p. ~16!

The condition ~16! produces the functionsEEBP(a;p),
VEBP(a;p), andcEBP(a;p), where the notation indicates tha
the functions containp as a parameter.

The second change consists in introducing a Gibbs
energy per atom~at zero temperature so that the entropy te
vanishes! defined throughout the tetragonal plane by

G~a,c;p![E~a,c!1pV~a,c!. ~17!

Then at any point~a,c! on the EBP for pressurep,

S ]G~a,c;p!

]c D
a

5S ]E~a,c!

]c D
a

1pS ]V~a,c!

]c D
a

52
a2

2
p1

a2

2
p50, ~18!

where Eq.~16! andV5ca2/2 have been used. Now from Eq
~17! the functionG along the EBP atp is given by

GEBP~a;p!5EEBP~a;p!1pVEBP~a;p!. ~19!

Let (a0 ,c0) be the tetragonal lattice parameters of a mi
mum of GEBP(a;p). Then at (a0 ,c0) the derivative of
G(a,c) vanishes both along the EBP and by Eq.~18! along
c, hence just as for the casep50, where the derivative ofE
vanishes in all directions@see Eq.~2!#, the derivative ofG at
(a0 ,c0) vanishes in all directions in the tetragonal plane. T
in-plane stresses at (a0 ,c0) are then given by
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s15s25
1

a0c0
S ]E~a,c!

]a D
a0 ,c0

5
1

a0c0
S ]G~a,c!

]a D
a0 ,c0

2
1

a0c0
S ]pV~a,c!

]a D
a0 ,c0

52p. ~20!

In Eq. ~20! ]G/]a50 at (a0 ,c0) and V5ca2/2 have been
used. Sinces352p by construction of the EBP atp, the
state at (a0 ,c0) is under hydrostatic pressurep.

It is also possible to find an equilibrium state under h
drostatic pressure from the constant-volume energy func
EV(a). At a minimum ofEV(a) the pressure is shown to b
hydrostatic by transforming the variables from~a,V! to vari-
ables ~a,c! and evaluating the stresses. Then at any po
(a,c),

s15s25
1

ca S ]E

]a D
c

5
1

ca S ]E

]a D
V

1S ]E

]VD
a

, ~21a!

s35
2

a2 S ]E

]c D
a

5S ]E

]VD
a

. ~21b!

Since at the minimum ofEV(a) (]E/]a)V50, Eqs. ~21a!
and ~21b! give

s15s25s35S ]E

]VD
a

52p ~22!

and the tetragonal system is under hydrostatic pressure a
assumed volumeV. However we do not know the value ofp
at the givenV. If the V is c0a0

2/2, then thatp is the value
used for determiningGEBP(a;p).

Thus an equilibrium state with volume per atomV can be
found from minima ofEV(a). To determine the correspond
ing pressure requires the equation of statep(V), which can
be found fromE(V) evaluated at the minima ofEV(a) asV
varies. This property ofEV(a) is a generalization of the sec
ond theorem of Sec. II C to systems under pressure, wh
now includes cases in which the minimum ofEV(a) does not
necessarily have a cubic structure.

For a closed system, such as a crystal in vacuum,dE
50 for small changes in structure around the equilibriu
structure. This flatness ofE around equilibrium correspond
to the system being at an extremum ofE. However if the
crystal is in an open system, such as a system at cons
hydrostatic pressure, thendE52pdV for changes in struc-
ture anddE does not vanish, but nowdG50 for small
changes in structure; equilibrium for the system now cor
sponds to an extremum ofG. Of course for stability the
extremum must be a minimum and the system under pres
will achieve equilibrium by minimizingG.

Metastable phases under pressure are found by a th
stage process: First calculateEEBP(a;p). Second find
GEBP(a:p) and its minima. The minima are tetragon
phases under hydrostatic pressure and may be metast
Third find the elastic constants from the second derivati
of G with respect to strain at the minima to check stabili
Note that the minima ofEEBP(a;p) cannot be phases unde
1-6
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hydrostatic pressure, because the in-plane stress vanish
the direction along the EBP. An application of EBP’s und
pressure has been made to ferromagnetic~FM! iron, which
shows that the bcc phase becomes unstable at 1500 kb
pressure and that a new bct phase comes into existen
1300 kbar and becomes stable at 1825 kbar and above.12

III. EXAMPLES OF TETRAGONAL MINIMA ON THE EBP

The procedure described in Sec. II for locating possi
metastable phases by use of the EBP and then testing
stabilities has been applied to 16 metallic crystals in bo
centered tetragonal structure; the results are tabulate
Table I. There are enough energy minima to suggest regu
ties in the occurrence of stable and unstable phases.
total-energy calculations were made withWIEN97,1 usually
with both LSDA and GGA assumptions. In the table differe
magnetic phases of Fe are counted as different materials.
table gives only thesignsof the shear constants which dete
mine the stability@C8, c44 andc66 for non-cubic~N! minima,
C8 andc44 for cubic ~C! minima#—there is no entry forc66,
since it is equal toc44. The local spin-density approximatio
and generalized gradient approximation results agree in s
although they may differ in magnitude.

All the EBP’s of these materials conformed to the sta
dard model, including CuZn. However a slight increase in
concentration above 50% gives an EBP with just o

TABLE I. Stabilities at tetragonal minima. Column 1 identifie
the crystalline structure; AF1 is antiferromagnetic of the first ki
~Ref. 10!, FM is ferromagnetic, and NM is nonmagnetic. Colum
2–4 classify the configuration of extrema from smallc/a to large
c/a in the order first minimum, maximum, and second minimu
where C is cubic and N is noncubic structures. Columns 5–7 g
the signs ofC8[(c11–12)/2, c44, andc66 for the first minimum;c66

is omitted for cubic structures. Columns 8–10 give the signs of
same quantities for the second minimum. The minimum of low
energy is indicated by~L!.

Material
Extremum
sequence

First
minimum
C8 c44 c66

Second
minimum
C8 c44 c66

Co~FM! N C C 2 1 1 1 1 ...~L!

Cu N C C 2 1 1 1 1 ...~L!

CuZn C N N 1 1 ...~L! 1 1 1

Fe~AF1! N C N 1 1 1 1 1 1~L!

Fe~FM! C C N 1 1 ...~L! 1 1 2

Fe~NM! N C C 2 1 1 1 1 ...~L!

K C N C 1 1 ... 1 1 ...~L!

Li C N C 1 1 ... 1 1 ...~L!

Mg N C C 1 1 ...~L!

Mn~AF1! N C N 2 1 1 1 1 1~L!

Pd N C C 2 1 1 1 1 ...~L!

Rb C N C 1 1 ... 1 1 ...~L!

Sr C N C 1 1 ...~L! 1 1 ...
Ti N C C 2 1 1 1 1 ...~L!

V C C N 1 1 ...~L! 1 1 2

Zn N C C 2 1 1 1 2 ...~L!
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minimum.13 In column 2 the table gives the cubic or nonc
bic character of the three extrema in the sequence: first m
mum ~at low c/a!, maximum, and second minimum~at high
c/a!. Then the signs of the elastic constants at the first m
mum are given, which are followed by the signs of the el
tic constants at the second minimum. The minimum with
lower energy is marked by~L!. All three configurations of
two cubic extrema and one noncubic extremum occur~CNC,
CCN, NCC!. The compound CuZn and the antiferromagne
~AF! phases AF1-Fe, AF1-Mn show two of the three possi
configurations of one cubic and two noncubic extrem
~CNN, NCN!.

The 16 crystals have 31 EBP minima; the first minimu
for Mg is too shallow for reliable computation of the elast
constants and is omitted. The 31 minima show 21 sta
phases and 10 unstable phases. All minima are called ph
whether stable or unstable. The designation stable is use
both ground-state phases and metastable phases.

The 20 minima with cubic symmetry have 19 stab
phases and one unstable phase. The unstable cubic p
~fcc, Zn! hasc44,0 in agreement with the conclusion at th
end of Sec. II B about Eq.~9c!. The 11 noncubic phases hav
two stable phases and nine unstable phases. The instab
of the phases at the first minimum are all due toC8,0; the
instabilities of the phases at the second minimum~both cubic
and noncubic! are all due toc66,0; this includes fcc Zn,
which hasc445c66,0. Only one material has two unstab
tetragonal minima~Zn!.

The number of metastable phases is not completely d
nite, because the ground-state phase must be known and
tracted from the count if it is one of the tetragonal phas
There are 13 metastable phases if we assume that the gro
state phases of Co, Li, Mg, Mn, and Ti are not tetragona
experiment indicates. Also we count all the stable minima
AF1-Fe and nonmagnetic~NM!-Fe as metastable, since th
ground state is FM-bcc.

The stability of fcc Co, Mg, and Ti could be expecte
because fcc and hcp are both close-packed phases, bu
instability of fcc Zn is unexpected. A paper by Mu¨ller et al.14

finds the instability of fcc Zn for rhombohedral~trigonal!
deformation along@111# and uses the instability to explai
the behavior of Al-Zn alloys. The stability ofN2 CuZn ~N2
means the noncubic second minimum! and of N2 AF1-Mn
are interesting because thea phase of CuZn alloys has bee
observed only up to 35 at. % Zn and not at 50% Zn, a
tetragonal AF1-Mn has been made only with 10% or mo
impurities that increase the electron density.

IV. DISCUSSION

The procedure for finding metastable phases from
EBP described in Sec. II and applied in Sec. III has be
highly productive, demonstrating the existence of about
metastable phases for the 16 materials studied. A valu
feature of these results is that they have been obtained
first-principles calculations, which have a known good re
ability, unlike empirical potentials.

The results of the stability of the tetragonal phases in
cate some regularities, such as the fact that cubic phase
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almost always stable, whereas noncubic phases are us
unstable. TheC8 shear constant$@110# shear in the~001!
plane% determines the stability of the first minimum ofE ~at
or near bcc structure!; the c66 shear constant~@100# shear in
the ~001! plane! determines the stability of the second min
mum ~at or near fcc structure!. Almost all materials have a
least one locally stable tetragonal phase when both grou
state phases and metastable phases are included.

The EBP procedure for finding metastable phases for
crystal lattices clearly extends directly to hexagonal-clo
packed ~hcp! and trigonal crystal lattices, since they al
have just two degrees of freedom. However they requir
more elaborate calculation, since they have additional n
equivalent atoms in the unit cell. The extra atoms do
strain homogeneously and must be independently rela
Although the usual unit cell of the bct lattice also has
extra atom in the unit cell, it has enough symmetry so tha
can be strained homogeneously; the bct lattice of an elem
is a Bravais lattice.

Pressure provides a large extension of the domain of
istence of metastable phases, which can be explored by
EBP procedure, generalized as in Sec. II E. It seems v
likely that the number of metastable phases is very la
since so many have been found just in tetragonal struct
of elements at zero pressure. Under pressure with additi
symmetries and additional basis atoms many more m
stable phases should occur.

The language used here for describing phases arose
the procedure. All tetragonal structures have a solution of
Kohn-Sham equations, which we call a state. Each such
culation is really a constrained ground-state calculation
the state is in general under applied stress. The special s
at tetragonal minima do not have applied stresses and
stable under all smalltetragonaldeformations. Hence it is
natural to call the states at the minima tetragonal phase
tetragonal equilibrium phases. When the states at th
minima prove unstable with respect to strains that break
te

on

n
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tetragonal symmetry, these minima are called unsta
phases. This usage extends the meaning of the term ph
but calls attention to the special character of these state
tetragonal minima and retains the idea that they might
stabilized in some way.

The states produced by putting a tetragonal equilibri
phase under epitaxial stress are properly called constra
phases, which is the common usage, e.g., a phase unde
drostatic pressure. The term phase applies beyond the re
of linear elastic behavior and applies also as the strai
material changes its elastic constants. An interesting ques
that could be studied from first principles by the methods
this paper is whether the constrained phases starting fro
stable phase could become unstable even before the regi
inherently unstable states. However when the region of
herently unstable states is reached, the characterization
phase should be dropped. These states no longer have a
cial connection to the original equilibrium phase and lie b
tween two tetragonal equilibrium phases.

The existence of regions of inherently unstable states
the tetragonal plane separating the regions of constra
phases suggests that structure space may be generall
vided into regions of constrained phases separated by reg
of inherently unstable states. Then each constrained p
has a unique ‘‘mother’’ phase from which it is generated
stress. Further study of metastable phases should clarify
description of structure space.
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