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Changes of the geometry and band structure of SiC along the orthorhombic high-pressure
transition path between the zinc-blende and rocksalt structures
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Using the first principles pseudopotential plane-wave method and the full-potential linearized muffin-tin
orbital method, we study how the geometry and the electronic structures change along the orthorhombic
transition paths of zinc blend&B) to rocksalt(RS) under high pressure. Two different paths, called the fixed
strain (force-freg path and the fixed positiothydrostatic streggpath, pass both through the same transition
state at any pressure. The actual transition point, however, depends on pressure. The force free path shows a
turning point where the atoms jump to the RS positions. A stronger response to changes in either the intersu-
blattice displacement or the strain is observed near the transition state than near the end phases. A phenom-
enological model helps to reveal that the transition staf® is the result of the long-range periodic depen-
dence of the energy on the order parameter whereas the turning point is the result of the local dependence
around RS. The band structures show that the TS is metallic although both ZB and RS are semiconductors.
This explains the softening of the optical phonons under large strains and why the energy barrier for the
relative movements of the sublattices is very low when the strains are kept at the TS.
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[. INTRODUCTION that the path might not be unique and the system can trans-
form from one phase to the other by passing through various
Density-functional DFT) calculations have played an im- closely related paths. A recent workhowed that metal epi-
portant role in the study of high-pressure phase structure@xial films undergo a bcc to fcc transformation through vari-
and transition pressures. Recefitiit has become possible 0us Bain paths, and how it can be controlled by the external
to also study the transition path that connects the original an@onditions. While an isotropic stress or strain is imposed in
final states via the changes of the unit cell and the displacdhe (001) plane accompanied by vanishing stress perpendicu-
ment of the atoms within the cell. These works vary from thel tolthe plane, the transition goes through the epitaxial Bain
simple tetragonal Bain pathsor the bcc to fec transitions path: On the other hand, if the stress is uniaxial along the
for metals to the more complex paths applicable to thJOOI]_ams accompan!ed_by Zero stress in 0e1) plane, the
wurtzite and zinc blende to rocksalt transitidrisfor some path is called the unl?%(lal Bain patfi. .
semiconductors. Continuous path studies assume a coopera-ln a recent commeriton Ref. 7, we pointed out that for a

tive movement of the atoms that keeps the translational syrnt-ranSItIon with the relaxation of both the unit cell and the

) . . internal coordinates, the path could vary even if the external
r_netry and thus neglect the effects of |mpur_|t|es and OllS'Ioca'condition is fixed by a macroscopic hydrostatic pressure. The
tions. The fact that there is a large hysteresis cycle and that o, that was studied in Ref. 7 chose fixed atomic positions
is greater in pure or thermally treated crystals and especiallyg allowed lattice vectors to relax. A path with a chosen
in the first hysteresis cydlaeveals the existence of a large imposed strain and relaxed atomic positions was proposed in
activation energy, which indicates the cooperative movemeny s comment® Both of these paths pass through the same
of the atoms during the transition. transition statéTS) at which the barrier height is maximum.

The transition from the zinc blend&B) structure to the A further study of the position of the TS, how it is changed
rocksalt(RS) structure is very common for ionic semicon- with the external pressure and on which structure factors it
ductors at high pressure. As stated in Ref. 9, group-IV andiepends, is of interest. Besides these, how the geometry and
-11I-V semiconductors usually undergo a transition from ZB the electronic structure change when the system goes
to B-Sn structure. But x-ray-diffraction investigations of SiC through the transition paths, especially around the TS, is also
at high pressur@*indicate a ZB to RS transition at a pres- important for understanding the mechanism of the transition.
sure above 100 GPa. This is in fact consistent with the higlDOn the other hand, it is not possible to choose the favored
ionicity of SiC in spite of being a IV-IV compound which path solely by comparing their enthalpies along the path. To
arises from the unusual behavior of the energy levels of theonfirm the strain driven mechanism proposed in our
second row of the Periodic TabléRecently, a path with an comment:® we need to study the whole landscape of the
orthorhombic intermediate state has been revealed by enthalpy in the relevant parameter space.
molecular-dynamics simulation for silicon carbidgSiC), In this paper, we present computational results for SiC on
and further studied in more detail by least-enthalpy calculathe transition paths from ZB to RS under various external
tions employing a periodic linear combination of atomic or- pressures, including the position and the properties of the
bitals method in conjunction with the density-lowest- transition state. The changes of the geometry and the elec-
combinations of atomic orbitals functional method. tronic structures along the paths are also presented. To gain

The problem that complicates these phase transitions i&irther insight, a phenomenological model is developed that
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mimics the behavior of the first-principles computational re-
sults. The analytic solutions of this model provide important
insights into various aspects of the transition. The optimum
choice among the paths described is discussed on the basis
the enthalpy landscape.

The presentation is organized as follows. The computa-
tional methods used will first be briefly introduced in Sec. Il.
In the presentation of the resultSec. Il)), we first (Sec.

[l A) show the enthalpy curves versus bat@nda and point

out that the choice of the path cannot be determined solely
by their enthalpy comparison. Then the enthalpy landscape:
in the wholez anda parameter space are presented for three @) ®

different pressures: 0 GPa, 63 GPa and 93 GPa. The paths in _ _ )

z—a space are marked and the positions of TS are shown. In FIG. 1. Unit cell used for the calculations shown in the two end
Sec. 11 B the force and the stress equilibrium conditions areructurest@ ZB and(b) RS.

described in detail with the help of a phenomenological

model that displays the periodic dependence of the energy o§bgroup of F43m and Fm3m, and was determined as
z The model is also used to discuss the changes of the 9@ mnpp in Ref. 7. The associated unit cell is chosenaas
ometry and the properties of the TS point. Some further de— a(1/2,1/2,0),b=a(—1/2,1/2,0), anc=2a(0,0,1) with re-
tails on the model are described in Appendixes A and Bsgpect to the conventional cubic axes and in terms of the cubic
Finally, in Sec. Il C the electronic densities of states along|attice parametea (see Fig. L Placing the Si atoms at the
the path and the band structures for ZB, RS, and the TS al§rigin and ata(0,1/2,1/2) and the C atoms af1/4,1/4,1/4)
presented and their significance for the transition mechanisrgq a(—1/4,1/4,3/4), the path consists of changing theo-
is discussed. The conclusions are summarized in Sec. IV. rdinates of the C atoms from 1/4 to 1/2 and 3/4 to 1. In
practice ten equal steps were chosen. At each step, the lattice
Il. COMPUTATIONAL METHOD vectors were relaxed by a variation of the enthalpy, while
maintaining the orthorhombic symmetry but allowing one to
break the original tetragonal symmetry, until identical stress
is obtained for all three directions of the orthorhombic cell.
But, as shown in our commefitthe intermediate structure is
r}alctually body-centered-othorhombic and the corresponding
space group is Im2. The volumeV and thec/b anda/b

The structural optimization in this article is based on a
modified variable-cell-shap®dynamics which changes the
positions of the ions and the components of the mdthe
dot products between the lattice vectors of the simulatio
cell). Troulliers-Martins pseudopotentidlsand the plane-

Wa\;gitb?gsn%rel %Soedhghle ;frz rfacrjn@arr? dz'sgbﬁ‘ floss _é?"dt ratios(or equivalentlya,b, andc) are the free lattice param-
porbita’s a ~uU a ' or S-andp orbitals. 1es eters, anaz is the only free parameter of the atom position.
calculations r_evealed that an adequate cutoff_ energy for the For the transition path, we first follow Ref. 1 and optimize
plane Waves 1s 60 Ry, andikamesh of.4><4><4 IS found to the enthalpy versus the lattice vectors at each fixed carbon
be sufficient for the ZB, RS, and the intermediate structurezZosition along the path. The calculation is performed at the
The total energy was convezri%ed t0 5 mev with .the abov alculated transition pressure of 63 GPa. We define this path
parameters. The Perdew-Wanhgyeneralized gradient ap- as a fixed position patkFPB. A barrier of 0.73 eV is ob-

proxim_ation(GGA) is used for the (_exchange and Correk%ﬂontained atz=0.34. The changes of the lattice constants versus
potential and energy. The electronic structures are studied bi’are found to be in good agreement with those of Ref. 1

a I;llldlg%tentla}: dImear t?ﬂf'n;'? f Orbt'.tc?%lq(FP'LMTf) Next we fully relax the atom positions with lattice constants
method.™ So-calied Smoo anket TUNCUomsare Used as g, o4 4t the previous optimized values. We will call this path
envelope functions instead of ordinary Hankel func'uons.the fixed strain patfFSP. Figure 2a) shows how the en-
This allows for a smaller basis set to be used. A un'formthalpy changes with th lattice parametefand hence strajn

mesh in real space is used to describe the smoath part of tI?Sr the FPP and FSP. The barrier height has not been changed

Yx?;rit{ttijglcrt:aogri]cs)h tq_iighpi?;gsr?g{'o%Zdemgtszgaﬁ:gs'ggg%ince both paths pass through the same saddle point, but the
pletely, which is important here to enable us to treat theenthalpy difference at any given point along the different

structures under continuous transformation in which the in-paths can be as large as 0125 eV. This does not indicate that
terstitial region drastically changes shape and fractional voIEhe.FSP. Is favored energetically over FPP be(;ause the com-
ume of the total volume parison is made at the same strain. If enthalpies for the two
' paths are compared for the samealue then the curve of the

relaxed path lies above that of the unrelaxed psee Fig.

ll. RESULTS AND DISCUSSIONS 2(b)]. Thus the enthalpy comparison along the path does not
tell us which one is more favored.

o In principle, to study the geometry of the FSP, one should

The Zb and RS structures are cubic with the space groupserform calculations with one fixed lattice constant and fully

of F43m and Fm3m, respectively. The space group of the relax the other two and the atom position. This requires a

intermediate structure that connects the ZB and RS is theonstraint optimization. To test the validity of keeping the

A. Changes of geometry along the path
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maximum along the direction of the path. The paths that do
not pass through the TS should also be considered but they
usually correspond to high energy. Of course, in reality, the
§ system can go through any path but with a probability
weighted by a Boltzman factor for the corresponding energy.
Figure 4 shows the total enthalpy as a contour plot as a
1 function ofzanda. The FSP and FPP are also plotted in the
figure. It should be noticed that for the parameter space with
: any values ofz anda, b andc are kept as those in the FPP
] path. It is a good approximation around both the FPP and
: FSP pathgsee Fig. 3. A large deviation will occur for the
‘ region far away from the above two paths, but those regions
* are not interesting anyway. One might define an optimum
ol v vy o L path by the condition of the lowest slope of the enthalpy.
55 80 85 70 03 04 05 Neither the FSP or FPP correspond to this optimum path.
a 2=0.5-u Instead, the FSP is a path such thais at its minimum as a
FIG. 2. Enthalpy va andz for both the fixed strain pattFSP func_tlc_)n of the atom pc_)SItlon, and the_ FPP Is S.UCh Hhat at .
(solid line) and fixed position patFPP (dotted ling at the transi- aminimum as a functl_on of the strains. The ideal path with
tion pressure. Iea_st slope should b(_e in between the FSP and the FPP. At a
region close to ZB, it is close to the FSP because the en-
thalpy derivative versug is much larger than that versas

lattice constants of the FSP the same as the values of the FRP.andc. It can be seen in Fig. 4 that the contour lines are

we perform a full optimization for all the lattice constants mqre dense in the direction than in the direction, indicat-

and atom position at the transition pressure, but at each stgpy that the enthalpy increases faster in that direction. Of
set the value of back to its original value. By testing sev- cqyrse, to interpret the spacing of the contours the scales of
eral original geometries and using a smaller step size, Wehe two directions must match. If the lattice is kept fixed, the
obtain the relaxeth andc that are very close to those of the change ofz from 0.25 to 0.5 corresponds to the atom move-
FPP. We show the results in Fig. 3. The valuesaadbr the ot by 0.2, whereas the change afcorresponds t§1

sample points are 5.5,5.8,6.2,6.4,6.8, and 7.0. These are dif_-(1/ 2)]c or about 0.8. The corres : -

. . N .8. ponding ratio is about
ferent from the values of the sample points for the FPP. Th'?he same as shown in Fig. 4. The preference for strain over
shows that the relaxelolandc are very close to those of the atomic position changes near the ZB minimum is also con-

lFPP solthat itis a ggoq aﬁproximation to a@ssnﬁ]me':;h;t tEistent with the fact that acoustic phonons have lower energy
attice always responds |n_t € same way as In the ' than the optic phonons around the center of the Brillouin
The saddle point remains the same for the FSP and th

FPP. The corresponding state is usually called the transition
state(TS). This point is a minimum as a function of strain
and as a function of the the atom positianBut it is a

0.7 |-
06 |-
05

0.4 -

AH

0.3 |-
02
01 |-

0.0 -

The basic difference between relaxed and fixed position
paths is whether the strain is the driving factor and the mo-
tion of the atoms is barely a response to it, or conversely the
atom movement is the driving factor and the strains respond

QT T T T T T T T T accordingly. As we argued, the strain corresponds to the
g acoustic phonons around the center of the Brillouin zone,
751 i whereas the relative movements of the atom correspond to
- ——FPPD the optic phonons. The former have a much smaller excita-
o e FPPc . ;
sol O full relax b | tion energy. The long-range fluctuations and the local defor-
E B full relax ¢ | mations can also cause the required strain and the locally
. non-hydrostatic stress.
L8 B T Figure. 4 clearly shows that the FSP and FPP paths have
S g . 1 three common points, the ZB, the RS, and the TS. Interest-
Q g0} ’, . ingly, in the region witha<6.25, z changes only slightly
L ] | from its ideal position for the ZB structure, and, in the region
55| . ) a>6.75,z jumps to the ideal value of 0.5 for the RS struc-
o o - ] ture. Only in the small region in between do the atom posi-
8 tions change quickly. The slight changes of the atom position
sor ° ] around ZB and RS can be viewed as the response intersub-

lattice displacement to the deformation of the lattice vec-
tors from the ideal ZB and RS structures. It is worth to no-
ticing that the changes of the lattice breaks the tetrahedral
FIG. 3. b andc vs a for FPP and full relaxation. The smooth Symmetry of ZB and the original atom positions are no
solid and dotted curves are splined curves for FPP and the open af@nger determined by symmetry, i.e., free to move in the
the crossed squares are points for full relaxation. direction. But for RS, although the octahedral symmetry is
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broken, the atoms maintain their high-symmetry positionsstructure is more resistant to a change in shape than the ZB
Because of that, the atoms remain unchanged for fairly largstructure. For small strains, the responsectf to a/b is
lattice deformations in the RS structure. A similar behaviorclosely related to the Poisson ratio for these particular direc-
was also found for the lattice constants in the FPP. That isjons. Apparently, this Poisson ratio depends on pressure.
when the atomic position is slightly changed from the ZB or  Figure 6 shows the energy dependence on the atom posi-
RS positions, the lattice parameters at first do not changgons while the strains or lattice constants are those for the
appreciably. Inspection of the Figstbd and 4c) shows that ZB, RS, and TS states at the transition pressure. By ZB and
while the pressure increases, the “resistance towardstrains, here we mean the strains of the orthorhombic unit
change” of the RS structure becomes stronger while that otell which lead to the ZB and RS structures if the atoms are
the ZB becomes weaker. Correspondingly the transitiomelaxed. Here we wish to study the energy of these strained
point moves closer and closer to the ZB side. unit cells for any position of the two sublattices in it. Note
A similar resistance against change can also be seen that this means that the volume is different for each curve but
Fig. 5, which shows the dependence of tiib ratio on the  stays constant along the curve. Only the right panel corre-
a/b ratio. Interestingly, this resistance is very weak undersponds to the region in which the transition occurs between
zero external pressure. Thgb ratio changes with tha/b ZB and RS, but the left part is important to derive a complete
ratio almost linearly. With increasing pressure, the curvesnodel for the energy behavior as a function ©fAs ex-
become more s shaped, indicating th&4b can maintain its pected, the curves are periodic. The periodicity for the “ZB
value over some range @/b values. Apparently, the RS strain” is half of that for the “RS strain.” Since the energy
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other words, the optical phonon is strongly softened while
the strains along the FSP path are imposed. Combining this
with the strain-driven mechanism at the beginning of the
path, we now obtain the whole picture of the transition pro-
cedure. The transition is induced by lattice fluctuations that
become softer under high pressure. The atoms move accord-

ingly in response but with a large resistance. When large
strains are imposed, however, the optical phonon becomes
- strongly softened and the atoms pass over the TS position
and go quickly to the RS position. This will further cause the
relaxation of the lattice toward its RS form.

c/b

12

B. Equilibrium conditions and the transition state
10 |

. The TS curve in Fig. 6 is representative of all the inter-

mediate states between the ZB and RS structures. Approxi-
mately, the TS curve is the superposition of the ZB and RS
curves, plus an additional down shift caused by the lattice
relaxation. Inspired by this observation, we assume that the
enthalpy for the points in between the two extreme structures

will just be a linear combination of those two with coeffi-

Latther that?] thgéenth;lllgyslstd(teplctt?[cihhgre, theret_ls a d!ﬁ?rem(ﬁents which depend linearly on the strain. In this way, we
etween the an states at their respective minima. ko4 ce the coupling between the strains and the internal

V\?etr\:verehtol Switch t% enthalpyt, thtere V‘;lo,tﬂd tS|mpI);hbe a_shlft arametew. After adding the elastic contribution in a qua-
of the whole curve by a constant such that now the miNiMay,sic form, we obtain a model enthalpy of the form

of the curves line up.

Interestingly, the ZB curve fits very well to a cosine func-
tion with a period of 0.5. The deviation is so small that it can
hardly be seen in Fig. 6. On the other hand, there is a larger
difference between the RS curve and the cosine function (1)
which has the same height and periodicity. The difference is
more obvious when the system moves to the ZB positiongn Which »"=(7,7,73) is the strain vector that contains
The real RS curve is lower than the ideal cosine curve. In th@nly the diagonal elements of the strain tenfmecause we
following, we will first neglect this difference and set up a maintain orthorhombic symmetry such that the orthorhombic
phenomenological model based on a linear combination okxes are the principal axes of the strain teps@r is the
the two cosine functions that define the periodic behavior oflastic constant matrix in Voigt notation, appropriate for this
the total energies as function for unit cells corresponding choice of axes; and™=(aBy) is the coupling coefficient
to the ZB and RS strains, respectively. Later on, we willbetweeru and the strains. It is also assumed that0, while
discuss the effect of the above omission. the system is in the RS structure ane 7,5 while in the ZB

The TS curve is very flat in the right panel, indicating that structure. While Fig. 6 displayed energies, here we return to
the relative movements of the two sublattices becomes mucénthalpies at the transition pressure. Thus the elastic con-
easier while the strains are imposed to form the TS lattice. Iistants and the straing are defined with respect to the RS

enthalpy and lattice parameters.

FIG. 5. c/b ratio vsa/b ratio under various external pressures.

1
AH= EnTanLAnTg cos 4mru

+B(n"¢é— nyé)cos 2mu—(A+B) 7'¢,

54D - T j - - ] The first-order derivatives versus the strains give the total
D : " 1 stress in the three directions of the orthorhombic cell and the
' Na —&— Transition State derivative versusi gives the force on the atoms. At equilib-
186 | Ng e : —&— Rocksalt _ . .
B : e Acos(dm) rium, both stresses and forces should be zero:
187 | " N Beos(2x) ]
. 188 N d oH
€ jpq [T \a\m Q/ﬁ — =Cn+A¢cosdru+ B¢ cos 2mu—(A+B)E=0,
wo NN Jd
> AN 7 ] n
-19.0 ». PE, 4
I \é\\‘ Sa 6/4} ] 2
9.4 | N : Bge :
"~ g J
e $\‘*\@ el emtl N rAyTEsindru— 2B (pE— nl€)sin 2mu=0
193 | \W/ ] Ju ay g e 1z & '
o0 o Y o5 o *® Usually, the two equilibrium conditions cannot be satisfied

simultaneously. In the whole parameter space, only three
FIG. 6. The total energy versudor strains of the orthorhombic  points can have both zero stress and zero force. They are the

cell corresponding to ZB, RS, and TS lattices. The short dashed anititial ZB, the final RS, and the TS. These three states are

dotted lines are the fitted cosine functions. minima for both strains and, but the ZB and RS are minima
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in all directions while the transition state is a saddle point ' ' ' ' ' ' '
because it exhibits a maximum along the direction of the '* [ 1

path. Along the FPP, the stress is zero but large forces remai oo .
on the atoms. On the other hand, for the FSP, the forces ar '® |- 70475 -
zero but stresses exist and are generally unequal along th r Toas 1

three directions. The trace of the stress matrix divided by s -
three gives the deviation from the transition pressure, which -
will be assumed to stay zero, so that the stress matrix musg e
remain traceless. However, as long as it has nonzero compc L
nents there is a deviation from hydrostatic stress. As dis- , L
cussed in Sec. Il A, both paths pass through TS point.

The parameterd)\,B, and¢ can be determined by fitting )
the results of the model to the calculated values of ZB and
TS states. But, as we will show in the following, the absolute
values of these parameters are irrelevant to the position o _ _ . . _ _ .
the TS as well as that of the turning point. In the RS state =20 -15 -10 -5 0 5 10 15
u=0 and»=0, and thus the equilibrium condition is obvi- Energy (eV)
ously satisfied. In the ZB stata=1/4. From the first condi-
tion, one obtains

FIG. 7. Density of states along the FPP.

in which AH=H,z—Hpgg. Details are given in Appendix A.

Cnz=(2A+B)¢. @  Ata pressure higher than the transition pressité >0, so
B/A>2. This will reduce the value of cos2 in Eq. (4) as
cos 2ru depends orB/A almost linearly with a negative
?:Iope. The result is a larger or smallerz, which explains
that the TS moves toward ZB at a pressure higher than the
transition pressure. The increase of BY& ratio is also con-
firmed by the calculations.

The turning point, i.e., the point at which the system
jumps to the ideal for the RS structure along the fixed-
strain path, is different from the TS point. Here instead of

3B 1 B B satisfying both the stress and force equilibrium conditions,
cos2mu=—gr+tg\|a| 325 64 @ the system satisfies the force equilibrium conditig/Ju
=0 and the turning point conditiof?H/Ju?= 0 which gives

This indicates that the position of the transition state depends
only on theB/A ratio at the transition pressure. BIA=2, 16AnTécosdmu—B(n'é—8)n'écos2mu=0. (6)
then cos Zu=0.686 andu=0.13. It is interesting that the o ] ) o
position of the TS depends only on tB#A ratio but not on Combmlng the above equation W|th the f_orce equilibrium
the elastic properties of the lattice. This is the result of thd Ed- (2)] givesu=0 as the only solution which corresponds
linear coupling and the harmonic approximation. It reveald© the RS structure. Thus in this model there is no turning
that the position of the TS is defined mainly by the Symme_pomt. Ho.vvever,. a slight m0(_j|f|cat|on of the model will lead
try. The effects of the deviation of the RS curve from ato a tu_rnlng pomt at a strain vglue sllghtly before the RS
cosine function in Fig. 6 can be seen from their crossing witfPhase is attained, as discussed in Appendix B.
the ZB curve. Since the enthalpy for a general value of the
strain is a linear combination of the ZB and RS strain enthal- C. Electronic structure in transition
pies, the TS, which by definition corresponds to the highest

As shown in Appendix A, the condition of having equal en-
thalpies for ZB and RS at the transition pressure leads t
Cnz=4A¢. Combining this with the above equation gives
B=2A. This is approximately true for the energy potential
curves in Fig. 6.

The TS can be obtained by generally solving E). The
resultant equation for the TS is

As shown in Fig. 6, the energy barrier becomes very shal-
low while the strains are kept the same as those for the TS.

. ) . Shis indicates that the bonds are significantly softened. It is
tion moves the crossing point and the TS toward the RS. Thi erefore interesting to investigate how the electronic struc-

is consistent with the fact that the model gives a TS closer t?ure changes along the path. For this purpose, we perform
RS than the first-principles calculation gives. band-structure calculations using the FP-LMTO method for

Next we consider the effects of pressure de\_/latmg from[he states along the transition paths. The geometries are
the transition pressure. Generally, the enthalpy difference be

tween the ZB and RS structuréiee., both strains and val- adopted from the pseudopotential calculations at the transi-

. tion pressure. Figure 7 shows the density of stéi¥3S) at
ues corresponding to ZB and R&an be related to tha and differFZent points %Iong the EPP. The tv)\//o DOS's \)/vith
B parameters as follows: j

=0.25 and 0.5 correspond to the ZB and the RS structures,
respectively. Because the RS structure is more dense than the
B—2A ZB structure, the valence bands are widened for RS. The gap

— T
AH= 2 728, ® at around— 10 eV for ZB separates the two subgroups of
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Si p orbitals. In the ZB structure they are very well separated

the valence bands. The lower group comprises mostly C W 7
bonding states with S and Sip orbitals whereas the upper /\ )XA/ 0
subgroup are mostly composed ofp®onding with Sis and 54 3 \Q

A

because of the breaking of the inversion symmetry. While

changing to RS structure, this gap gradually decreases an% ° >

closes around the TS state. The fundamental gap between trg
valence and conduction bands exists for both ZB and RSz 5]
structures, indicating that both structures are semiconductors*
Interestingly, this gap closes around the TS state, indicatinc -104
that the TS is metallic. Although the gap closes, there re-

mains a dip structure. So the TS can be identified as & >

N

N
AN

“poor” metal. The DOS changes along the FSP are similar,
since it goes through the same TS state as the FPP.
To see what happened to the gap, we show the FP-LMTC (a)

band structure for ZB, TS, and RS structures in Fig. 8. For

comparison, all three cases are shown in a simple orthorhom 10
bic Brillouin zone. The notation of the symmetry points fol-
lows Bradley and Cracknefl It can be seen that at the tran- 59

WA

—
-
N
—

1

sition pressure, the ZB and RS are still semiconductors with j
(GGA) band gaps of 1.5 and 0.75 eV, respectively. But the 0
TS is metallic with a band overlap of more than 2 eV. Note = = ]
that the ZB band gap here appears to be direct, while ZB SlC; 5]
is well known to have an indirect gap &t This is because
the X minimum of the ZB structure has been folded to the
point in the present orthorhombic Brillouin zoriBZ). The
major change in the TS is the band overlap. Also the triplet
degeneracy of the valence band maximum is broken by the 7 /
symmetry breaking. Although the local density approxima-

tion (LDA) or the GGA has a tendency to underestimate the -20
band gaps, this large overlap rules out the possibility of be-
ing an artifact of the GGA. The band overlap happens merely ()
around thd™ point. The rest of the band structure still has a
close resemblance to the bands in the ZB and RS structure:

N
VAN
VAN

\»@ﬁﬁﬂ J

\

!
x
w
—
<
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!

y

IV. CONCLUSIONS

In conclusion, we have investigated the changes of thez
geometry and electronic structures of SiC along the transi-‘é
tion paths from ZB to RS using both the pseudopotential &
plane-wave and FP-LMTO methods. Although there are vari-
ous nonequivalent paths to consider, the most adequate patt
should pass through the transition state. The TS state corre
sponds to both a force and stress equilibrium. The fixed -151
strain path(FSP corresponds to a force equilibrium only and
the fixed position patliFPP corresponds to a stress equilib- 20
rium. These equilibrium conditions are satisfied throughout ©)
the paths. Besides the TS, there is a turning point for the FSP
at which the atoms jump to their ideal RS positions. Both  FIG. 8. The LDA band structure fai) ZB, (b) RS, and(c) TS
paths show a strong resistance against deviation from thi@a a common orthorhombic Brillouin zone. The labels for the ZB
ideal ZB and RS structures when small perturbations frontase correspond to the ZB BZ.
the latter are considered. When the pressure increases, the TS
state moves toward ZB. A phenomenological model is prosystem is metallic around the TS, which explains the soften-
posed, in which the strains and the periodic function of thang of the bonds in that state.
internal structural parameter are coupled. The TS is found to Although the system can go through many paths connect-
be the result of the long-range periodic structure, whereas thieg ZB and RS structures, it favors the paths close to FSP,
turning point is the result of the nonlinear dependencewhich is consistent with the fact that the fluctuation of the
around the RS structure. The band structure reveals that ttstrains requires less energy than the fluctuation of the atom
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positions. While large strains are achieved, the optical phowhich is the stress equilibrium condition at the ZB point. So
non is significantly softened and the atoms can easily movaow the enthalpy depends on the strains measured from the
from the ZB- to RS-type internal position. After it goes ZB structure. This shows that within our model the elastic
through the TS state, the atom quickly moves toward its R®onstants of ZB defined as second derivatives versus strain

position and causes a further relaxation of the lattices.
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APPENDIX A: THE MODEL IN THE RS AND ZB LIMITS
In the RS limit,u=0,7=0,

Hrs= —Bnzé, (A1)
while in the ZB limitu=1/4,7= », and
H L JCnz—Anzé—(A+B) 7 (A2)
28=5 12072 UbiS 72§
At the transition pressuré{;g=Hgrs. So that
7;C1z=4An¢E. (A3)

If the strains are kept as those of RS, i2=0 thenH is a
function ofu only:
H=—B7J&cos 2ru. (A4)

Otherwise, if the strains are kept as those for ZB, .,
=7z, then

1
H=3 n7Cnz+Ansé cosdru— (A+B) nré.  (A5)

On the other hand, if the atoms are kept at their ideal RS
positions, i.e.,u=0, the enthalpy depends only on the

strains:

1 T T
H=5n Cn=Bnzg. (A6)

Or if u=1/4, the atoms are in their ZB positions, then
1
H=27"Cn=An"é~(A+B)7'¢ (A7)

This equation can be rewritten around ZB strains as
1 T T T
H=35(n =52)C(n—nz)+ 7 Cnz

1
=5 12Cn=Ay'E—(A+B) ¢

1 T T 1 T
=5 (n = 12)C(n=nz) = 5 1zCnz. (A8)
The second step is because
7'Cnz=An"é+(A+B)y'é (A9)

of the enthalpy at fixed positiom= 1/4 are the same as those
of RS. The actual elastic constants of ZB should, however,
be defined in terms of the ZB enthalpy relaxed versus the
internal parameter, and will therefore be lower. In fact,
within the model, we obtain the same elastic constants as for
RS all along the FPP. This approximation may not corre-
spond exactly to reality, and derives from our use of a model
which attempts to describe the “global” behavior as a func-
tion of u while as function ofy it assumes a quadratic ex-
pansion around RS and a linear coupling between the two
which strictly is only valid for smally. However, it is im-
portant to note that the position of the TS and the turning
point do not depend on the values @fnor on the coupling
constantst. As shown in the main text, it is the result of the
long range periodicity and depends only on &/ ratio.

APPENDIX B: MODIFICATION OF THE ENTHALPY
DEPENDENCE AND THE TURNING POINT

In this appendix, it is shown that a turning point, i.e., a
point where the structure jumps discontinuously from the ZB
to the RSu value before the strain corresponding to the RS
phase is achieved. To do this, we modify our model enthalpy
to include the effect of the deviation from the cosine function
for the “RS strain” term. The RS curve in Fig. 6 shows that
the energy changes slower than the ideal cosine function,
which also indicates a weaker coupling between the strains
and the internal parameter. To include this fact, we assume
an extra linear coupling term around the RS structure in the
model enthalpy with a negative slope,

1
H=3 7'Cn+An'écos4ru

+B(7"¢é— n3é)(cos 2mu—au)— (A+B) 7'¢,
(B1)

0.00

FIG. 9. The turning point position as a function of the linear
coupling coefficienta.
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in which «>0. This linear coupling term breaks the period-  The turning point condition ig?H/du?=0 which gives
icity and also the mirror symmetry at the RS point. It should o 1 o 1 -

only be assumed to be valid in the right panel of Fig. 6. The —167°An &cos4mu—4m°B(7n &~ 5z§)cos 2mu=0.
corresponding stress and force equilibrium conditions are (B4)
Combining it with the force equilibrium condition and after

Cr+Agcos dmu+BEcos2mu—aBiu—(A+B)¢=0 some simplifications, one obtains

(B2)
@ COS 4aru— 7 Sin 41U €OS 2mru + 277 Sin 27ru cos 4ru=0.
(B5)
Teai T T i
—4mAn gsindmu—2mB(7 £~ nz§)sin 2mu Theu versusa curve is plotted in Fig. 9. It can be seen that
— aB(#Té— nTE)=0. B3 a small value ofx can induce a turning p_omt evidently away
aB(n &= nz¢) (B3) from the RS structure. But becomes quickly saturated and
The general solution for the TS is very complex. But as wecan never be larger than 1/8. In conclusion, a linear coupling
argued in the text, this negative coupling term will move theterm not only moves the TS toward the ZB but also explains

and

TS toward the ZB. the origin of the turning point.
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