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Changes of the geometry and band structure of SiC along the orthorhombic high-pressure
transition path between the zinc-blende and rocksalt structures

M. S. Miao, Margarita Prikhodko, and Walter R. L. Lambrecht
Department of Physics, Case Western Reserve University, Cleveland, Ohio 44106-7079

~Received 6 May 2002; published 15 August 2002!

Using the first principles pseudopotential plane-wave method and the full-potential linearized muffin-tin
orbital method, we study how the geometry and the electronic structures change along the orthorhombic
transition paths of zinc blende~ZB! to rocksalt~RS! under high pressure. Two different paths, called the fixed
strain ~force-free! path and the fixed position~hydrostatic stress! path, pass both through the same transition
state at any pressure. The actual transition point, however, depends on pressure. The force free path shows a
turning point where the atoms jump to the RS positions. A stronger response to changes in either the intersu-
blattice displacement or the strain is observed near the transition state than near the end phases. A phenom-
enological model helps to reveal that the transition state~TS! is the result of the long-range periodic depen-
dence of the energy on the order parameter whereas the turning point is the result of the local dependence
around RS. The band structures show that the TS is metallic although both ZB and RS are semiconductors.
This explains the softening of the optical phonons under large strains and why the energy barrier for the
relative movements of the sublattices is very low when the strains are kept at the TS.

DOI: 10.1103/PhysRevB.66.064107 PACS number~s!: 61.50.Ah, 61.50.Ks, 81.30.Hd
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I. INTRODUCTION

Density-functional~DFT! calculations have played an im
portant role in the study of high-pressure phase structu
and transition pressures. Recently1–7 it has become possibl
to also study the transition path that connects the original
final states via the changes of the unit cell and the displa
ment of the atoms within the cell. These works vary from t
simple tetragonal Bain paths1 for the bcc to fcc transitions
for metals to the more complex paths applicable to
wurtzite and zinc blende to rocksalt transitions5–7 for some
semiconductors. Continuous path studies assume a coo
tive movement of the atoms that keeps the translational s
metry and thus neglect the effects of impurities and dislo
tions. The fact that there is a large hysteresis cycle and th
is greater in pure or thermally treated crystals and espec
in the first hysteresis cycle8 reveals the existence of a larg
activation energy, which indicates the cooperative movem
of the atoms during the transition.

The transition from the zinc blende~ZB! structure to the
rocksalt ~RS! structure is very common for ionic semicon
ductors at high pressure. As stated in Ref. 9, group-IV a
-III-V semiconductors usually undergo a transition from Z
to b-Sn structure. But x-ray-diffraction investigations of S
at high pressure10,11 indicate a ZB to RS transition at a pre
sure above 100 GPa. This is in fact consistent with the h
ionicity of SiC in spite of being a IV-IV compound which
arises from the unusual behavior of the energy levels of
second row of the Periodic Table.12 Recently, a path with an
orthorhombic intermediate state has been revealed b
molecular-dynamics13 simulation for silicon carbide~SiC!,
and further studied in more detail by least-enthalpy calcu
tions employing a periodic linear combination of atomic o
bitals method in conjunction with the density-lowes
combinations of atomic orbitals functional method.7

The problem that complicates these phase transition
0163-1829/2002/66~6!/064107~9!/$20.00 66 0641
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that the path might not be unique and the system can tr
form from one phase to the other by passing through vari
closely related paths. A recent work1 showed that metal epi
taxial films undergo a bcc to fcc transformation through va
ous Bain paths, and how it can be controlled by the exter
conditions. While an isotropic stress or strain is imposed
the ~001! plane accompanied by vanishing stress perpend
lar to the plane, the transition goes through the epitaxial B
path.1 On the other hand, if the stress is uniaxial along t
@001# axis accompanied by zero stress in the~001! plane, the
path is called the uniaxial Bain path.14

In a recent comment15 on Ref. 7, we pointed out that for
transition with the relaxation of both the unit cell and th
internal coordinates, the path could vary even if the exter
condition is fixed by a macroscopic hydrostatic pressure. T
path that was studied in Ref. 7 chose fixed atomic positi
and allowed lattice vectors to relax. A path with a chos
imposed strain and relaxed atomic positions was propose
our comment.15 Both of these paths pass through the sa
transition state~TS! at which the barrier height is maximum
A further study of the position of the TS, how it is change
with the external pressure and on which structure factor
depends, is of interest. Besides these, how the geometry
the electronic structure change when the system g
through the transition paths, especially around the TS, is
important for understanding the mechanism of the transiti
On the other hand, it is not possible to choose the favo
path solely by comparing their enthalpies along the path.
confirm the strain driven mechanism proposed in o
comment,15 we need to study the whole landscape of t
enthalpy in the relevant parameter space.

In this paper, we present computational results for SiC
the transition paths from ZB to RS under various exter
pressures, including the position and the properties of
transition state. The changes of the geometry and the e
tronic structures along the paths are also presented. To
further insight, a phenomenological model is developed t
©2002 The American Physical Society07-1
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MIAO, PRIKHODKO, AND LAMBRECHT PHYSICAL REVIEW B 66, 064107 ~2002!
mimics the behavior of the first-principles computational
sults. The analytic solutions of this model provide importa
insights into various aspects of the transition. The optim
choice among the paths described is discussed on the ba
the enthalpy landscape.

The presentation is organized as follows. The compu
tional methods used will first be briefly introduced in Sec.
In the presentation of the results~Sec. III!, we first ~Sec.
III A ! show the enthalpy curves versus bothz anda and point
out that the choice of the path cannot be determined so
by their enthalpy comparison. Then the enthalpy landsca
in the wholez anda parameter space are presented for th
different pressures: 0 GPa, 63 GPa and 93 GPa. The pat
z2a space are marked and the positions of TS are shown
Sec. III B the force and the stress equilibrium conditions
described in detail with the help of a phenomenologi
model that displays the periodic dependence of the energ
z. The model is also used to discuss the changes of the
ometry and the properties of the TS point. Some further
tails on the model are described in Appendixes A and
Finally, in Sec. III C the electronic densities of states alo
the path and the band structures for ZB, RS, and the TS
presented and their significance for the transition mechan
is discussed. The conclusions are summarized in Sec. IV

II. COMPUTATIONAL METHOD

The structural optimization in this article is based on
modified variable-cell-shape16 dynamics which changes th
positions of the ions and the components of the metric~the
dot products between the lattice vectors of the simulat
cell!. Troulliers-Martins pseudopotentials17 and the plane-
wave basis are used. The core radii are 2.50 Å for Sis and
p orbitals and 1.50 and 1.54 Å for Cs andp orbitals. Test
calculations revealed that an adequate cutoff energy for
plane waves is 60 Ry, and ak-mesh of 43434 is found to
be sufficient for the ZB, RS, and the intermediate structu
The total energy was converged to 5 meV with the abo
parameters. The Perdew-Wang18 generalized gradient ap
proximation~GGA! is used for the exchange and correlati
potential and energy. The electronic structures are studie
a full potential linear muffin-tin orbital ~FP-LMTO!
method.19 So-called smooth Hankel functions20 are used as
envelope functions instead of ordinary Hankel functio
This allows for a smaller basis set to be used. A unifo
mesh in real space is used to describe the smooth part o
wave functions, the charge density, and the potential in
interstitial region. This procedure avoids empty spheres c
pletely, which is important here to enable us to treat
structures under continuous transformation in which the
terstitial region drastically changes shape and fractional
ume of the total volume.

III. RESULTS AND DISCUSSIONS

A. Changes of geometry along the path

The Zb and RS structures are cubic with the space gro
of F4̄3m and Fm3̄m, respectively. The space group of th
intermediate structure that connects the ZB and RS is
06410
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subgroup ofF4̄3m and Fm3̄m, and was determined a
Pmm2 in Ref. 7. The associated unit cell is chosen asa
5a(1/2,1/2,0),b5a(21/2,1/2,0), andc5a(0,0,1) with re-
spect to the conventional cubic axes and in terms of the cu
lattice parametera ~see Fig. 1!. Placing the Si atoms at th
origin and ata(0,1/2,1/2) and the C atoms ata(1/4,1/4,1/4)
anda(21/4,1/4,3/4), the path consists of changing thez co-
ordinates of the C atoms from 1/4 to 1/2 and 3/4 to 1.
practice ten equal steps were chosen. At each step, the la
vectors were relaxed by a variation of the enthalpy, wh
maintaining the orthorhombic symmetry but allowing one
break the original tetragonal symmetry, until identical stre
is obtained for all three directions of the orthorhombic ce
But, as shown in our comment,15 the intermediate structure i
actually body-centered-othorhombic and the correspond
space group is Imm2. The volumeV and thec/b and a/b
ratios~or equivalentlya,b, andc) are the free lattice param
eters, andz is the only free parameter of the atom positio

For the transition path, we first follow Ref. 1 and optimiz
the enthalpy versus the lattice vectors at each fixed car
position along the path. The calculation is performed at
calculated transition pressure of 63 GPa. We define this p
as a fixed position path~FPP!. A barrier of 0.73 eV is ob-
tained atz50.34. The changes of the lattice constants ver
z are found to be in good agreement with those of Ref.
Next we fully relax the atom positions with lattice constan
fixed at the previous optimized values. We will call this pa
the fixed strain path~FSP!. Figure 2~a! shows how the en-
thalpy changes with thea lattice parameter~and hence strain!
for the FPP and FSP. The barrier height has not been cha
since both paths pass through the same saddle point, bu
enthalpy difference at any given point along the differe
paths can be as large as 0.25 eV. This does not indicate
the FSP is favored energetically over FPP because the c
parison is made at the same strain. If enthalpies for the
paths are compared for the samez value then the curve of the
relaxed path lies above that of the unrelaxed one@see Fig.
2~b!#. Thus the enthalpy comparison along the path does
tell us which one is more favored.

In principle, to study the geometry of the FSP, one sho
perform calculations with one fixed lattice constant and fu
relax the other two and the atom position. This require
constraint optimization. To test the validity of keeping th

FIG. 1. Unit cell used for the calculations shown in the two e
structures~a! ZB and ~b! RS.
7-2
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CHANGES OF THE GEOMETRY AND BAND STRUCTURE . . . PHYSICAL REVIEW B 66, 064107 ~2002!
lattice constants of the FSP the same as the values of the
we perform a full optimization for all the lattice constan
and atom position at the transition pressure, but at each
set the value ofa back to its original value. By testing sev
eral original geometries and using a smaller step size,
obtain the relaxedb andc that are very close to those of th
FPP. We show the results in Fig. 3. The values ofa for the
sample points are 5.5,5.8,6.2,6.4,6.8, and 7.0. These are
ferent from the values of the sample points for the FPP. T
shows that the relaxedb andc are very close to those of th
FPP so that it is a good approximation to assume that
lattice always responds in the same way as in the FPP.

The saddle point remains the same for the FSP and
FPP. The corresponding state is usually called the trans
state~TS!. This point is a minimum as a function of stra
and as a function of the the atom positionz. But it is a

FIG. 2. Enthalpy vsa andz for both the fixed strain path~FSP!
~solid line! and fixed position path~FPP! ~dotted line! at the transi-
tion pressure.

FIG. 3. b and c vs a for FPP and full relaxation. The smoot
solid and dotted curves are splined curves for FPP and the open
the crossed squares are points for full relaxation.
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maximum along the direction of the path. The paths that
not pass through the TS should also be considered but
usually correspond to high energy. Of course, in reality,
system can go through any path but with a probabi
weighted by a Boltzman factor for the corresponding ener

Figure 4 shows the total enthalpy as a contour plot a
function ofz anda. The FSP and FPP are also plotted in t
figure. It should be noticed that for the parameter space w
any values ofz anda, b andc are kept as those in the FP
path. It is a good approximation around both the FPP a
FSP paths~see Fig. 3!. A large deviation will occur for the
region far away from the above two paths, but those regi
are not interesting anyway. One might define an optim
path by the condition of the lowest slope of the enthal
Neither the FSP or FPP correspond to this optimum pa
Instead, the FSP is a path such thatH is at its minimum as a
function of the atom position, and the FPP is such thatH is at
a minimum as a function of the strains. The ideal path w
least slope should be in between the FSP and the FPP.
region close to ZB, it is close to the FSP because the
thalpy derivative versusz is much larger than that versusa,
b, andc. It can be seen in Fig. 4 that the contour lines a
more dense in thez direction than in thea direction, indicat-
ing that the enthalpy increases faster in that direction.
course, to interpret the spacing of the contours the scale
the two directions must match. If the lattice is kept fixed, t
change ofz from 0.25 to 0.5 corresponds to the atom mov
ment by 0.25c, whereas the change ofa corresponds to@1
2(1/A2)#c or about 0.3c. The corresponding ratio is abou
the same as shown in Fig. 4. The preference for strain o
atomic position changes near the ZB minimum is also c
sistent with the fact that acoustic phonons have lower ene
than the optic phonons around the center of the Brillo
zone.

The basic difference between relaxed and fixed posit
paths is whether the strain is the driving factor and the m
tion of the atoms is barely a response to it, or conversely
atom movement is the driving factor and the strains resp
accordingly. As we argued, the strain corresponds to
acoustic phonons around the center of the Brillouin zo
whereas the relative movements of the atom correspon
the optic phonons. The former have a much smaller exc
tion energy. The long-range fluctuations and the local de
mations can also cause the required strain and the loc
non-hydrostatic stress.

Figure. 4 clearly shows that the FSP and FPP paths h
three common points, the ZB, the RS, and the TS. Inter
ingly, in the region witha,6.25, z changes only slightly
from its ideal position for the ZB structure, and, in the regi
a.6.75,z jumps to the ideal value of 0.5 for the RS stru
ture. Only in the small region in between do the atom po
tions change quickly. The slight changes of the atom posit
around ZB and RS can be viewed as the response inter
lattice displacementz to the deformation of the lattice vec
tors from the ideal ZB and RS structures. It is worth to n
ticing that the changes of the lattice breaks the tetrahe
symmetry of ZB and the original atom positions are
longer determined by symmetry, i.e., free to move in thz
direction. But for RS, although the octahedral symmetry
nd
7-3
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FIG. 4. Contour plot of the enthalpy as function ofa andz at ~a!
63 GPa,~b! 0 GPa, and~c! 93 GPa. The solid line and dashed line
indicate the FSP and FPP paths, respectively.
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broken, the atoms maintain their high-symmetry positio
Because of that, the atoms remain unchanged for fairly la
lattice deformations in the RS structure. A similar behav
was also found for the lattice constants in the FPP. Tha
when the atomic position is slightly changed from the ZB
RS positions, the lattice parameters at first do not cha
appreciably. Inspection of the Figs. 4~b! and 4~c! shows that
while the pressure increases, the ‘‘resistance towa
change’’ of the RS structure becomes stronger while tha
the ZB becomes weaker. Correspondingly the transit
point moves closer and closer to the ZB side.

A similar resistance against change can also be see
Fig. 5, which shows the dependence of thec/b ratio on the
a/b ratio. Interestingly, this resistance is very weak und
zero external pressure. Thec/b ratio changes with thea/b
ratio almost linearly. With increasing pressure, the cur
become more s shaped, indicating thatc/b can maintain its
value over some range ofa/b values. Apparently, the RS
06410
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structure is more resistant to a change in shape than the
structure. For small strains, the response ofc/b to a/b is
closely related to the Poisson ratio for these particular dir
tions. Apparently, this Poisson ratio depends on pressure

Figure 6 shows the energy dependence on the atom p
tions while the strains or lattice constants are those for
ZB, RS, and TS states at the transition pressure. By ZB
strains, here we mean the strains of the orthorhombic
cell which lead to the ZB and RS structures if the atoms
relaxed. Here we wish to study the energy of these strai
unit cells for any position of the two sublattices in it. No
that this means that the volume is different for each curve
stays constant along the curve. Only the right panel co
sponds to the region in which the transition occurs betw
ZB and RS, but the left part is important to derive a compl
model for the energy behavior as a function ofz. As ex-
pected, the curves are periodic. The periodicity for the ‘‘Z
strain’’ is half of that for the ‘‘RS strain.’’ Since the energ
7-4
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CHANGES OF THE GEOMETRY AND BAND STRUCTURE . . . PHYSICAL REVIEW B 66, 064107 ~2002!
rather than the enthalpy is depicted here, there is a differe
between the ZB and RS states at their respective minim
we were to switch to enthalpy, there would simply be a sh
of the whole curve by a constant such that now the mini
of the curves line up.

Interestingly, the ZB curve fits very well to a cosine fun
tion with a period of 0.5. The deviation is so small that it c
hardly be seen in Fig. 6. On the other hand, there is a la
difference between the RS curve and the cosine func
which has the same height and periodicity. The differenc
more obvious when the system moves to the ZB positio
The real RS curve is lower than the ideal cosine curve. In
following, we will first neglect this difference and set up
phenomenological model based on a linear combination
the two cosine functions that define the periodic behavio
the total energies as function ofz for unit cells corresponding
to the ZB and RS strains, respectively. Later on, we w
discuss the effect of the above omission.

The TS curve is very flat in the right panel, indicating th
the relative movements of the two sublattices becomes m
easier while the strains are imposed to form the TS lattice

FIG. 5. c/b ratio vsa/b ratio under various external pressure

FIG. 6. The total energy versusz for strains of the orthorhombic
cell corresponding to ZB, RS, and TS lattices. The short dashed
dotted lines are the fitted cosine functions.
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other words, the optical phonon is strongly softened wh
the strains along the FSP path are imposed. Combining
with the strain-driven mechanism at the beginning of t
path, we now obtain the whole picture of the transition p
cedure. The transition is induced by lattice fluctuations t
become softer under high pressure. The atoms move acc
ingly in response but with a large resistance. When la
strains are imposed, however, the optical phonon beco
strongly softened and the atoms pass over the TS pos
and go quickly to the RS position. This will further cause t
relaxation of the lattice toward its RS form.

B. Equilibrium conditions and the transition state

The TS curve in Fig. 6 is representative of all the inte
mediate states between the ZB and RS structures. Appr
mately, the TS curve is the superposition of the ZB and
curves, plus an additional down shift caused by the latt
relaxation. Inspired by this observation, we assume that
enthalpy for the points in between the two extreme structu
will just be a linear combination of those two with coeffi
cients which depend linearly on the strain. In this way,
introduce the coupling between the strains and the inte
parameteru. After adding the elastic contribution in a qua
dratic form, we obtain a model enthalpy of the form

DH5
1

2
hTCh1AhTj cos 4pu

1B~hTj2hZ
Tj!cos 2pu2~A1B!hTj, ~1!

in which hT5(h1h2h3) is the strain vector that contain
only the diagonal elements of the strain tensor~because we
maintain orthorhombic symmetry such that the orthorhom
axes are the principal axes of the strain tensor!; C is the
elastic constant matrix in Voigt notation, appropriate for th
choice of axes; andjT5(abg) is the coupling coefficient
betweenu and the strains. It is also assumed thath50, while
the system is in the RS structure andh5hZB while in the ZB
structure. While Fig. 6 displayed energies, here we return
enthalpies at the transition pressure. Thus the elastic c
stants and the strainsh are defined with respect to the R
enthalpy and lattice parameters.

The first-order derivatives versus the strains give the to
stress in the three directions of the orthorhombic cell and
derivative versusu gives the force on the atoms. At equilib
rium, both stresses and forces should be zero:

]H

]hT
5Ch1Aj cos 4pu1Bj cos 2pu2~A1B!j50,

~2!

]H

]u
524pAhTj sin 4pu22pB~hTj2hZ

Tj!sin 2pu50.

Usually, the two equilibrium conditions cannot be satisfi
simultaneously. In the whole parameter space, only th
points can have both zero stress and zero force. They are
initial ZB, the final RS, and the TS. These three states
minima for both strains andu, but the ZB and RS are minima

nd
7-5
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in all directions while the transition state is a saddle po
because it exhibits a maximum along the direction of
path. Along the FPP, the stress is zero but large forces rem
on the atoms. On the other hand, for the FSP, the forces
zero but stresses exist and are generally unequal along
three directions. The trace of the stress matrix divided
three gives the deviation from the transition pressure, wh
will be assumed to stay zero, so that the stress matrix m
remain traceless. However, as long as it has nonzero com
nents there is a deviation from hydrostatic stress. As
cussed in Sec. III A, both paths pass through TS point.

The parameters,A,B, andj can be determined by fitting
the results of the model to the calculated values of ZB a
TS states. But, as we will show in the following, the absolu
values of these parameters are irrelevant to the positio
the TS as well as that of the turning point. In the RS st
u50 andh50, and thus the equilibrium condition is obv
ously satisfied. In the ZB state,u51/4. From the first condi-
tion, one obtains

ChZ5~2A1B!j. ~3!

As shown in Appendix A, the condition of having equal e
thalpies for ZB and RS at the transition pressure leads
ChZ54Aj. Combining this with the above equation give
B52A. This is approximately true for the energy potent
curves in Fig. 6.

The TS can be obtained by generally solving Eq.~2!. The
resultant equation for the TS is

cos 2pu52
3

8

B

A
1

1

8
AS B

AD 2

132
B

A
164. ~4!

This indicates that the position of the transition state depe
only on theB/A ratio at the transition pressure. IfB/A52,
then cos 2pu50.686 andu50.13. It is interesting that the
position of the TS depends only on theB/A ratio but not on
the elastic properties of the lattice. This is the result of
linear coupling and the harmonic approximation. It reve
that the position of the TS is defined mainly by the symm
try. The effects of the deviation of the RS curve from
cosine function in Fig. 6 can be seen from their crossing w
the ZB curve. Since the enthalpy for a general value of
strain is a linear combination of the ZB and RS strain enth
pies, the TS, which by definition corresponds to the high
enthalpy along the path as function ofu, must be near the
crossing point. One can see that using the ideal cosine f
tion moves the crossing point and the TS toward the RS. T
is consistent with the fact that the model gives a TS close
RS than the first-principles calculation gives.

Next we consider the effects of pressure deviating fr
the transition pressure. Generally, the enthalpy difference
tween the ZB and RS structures~i.e., both strains andu val-
ues corresponding to ZB and RS! can be related to theA and
B parameters as follows:

DH5
B22A

2
hZ

Tj, ~5!
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in which DH5HZB2HRS. Details are given in Appendix A
At a pressure higher than the transition pressure,DH.0, so
B/A.2. This will reduce the value of cos 2pu in Eq. ~4! as
cos 2pu depends onB/A almost linearly with a negative
slope. The result is a largeru or smallerz, which explains
that the TS moves toward ZB at a pressure higher than
transition pressure. The increase of theB/A ratio is also con-
firmed by the calculations.

The turning point, i.e., the point at which the syste
jumps to the idealu for the RS structure along the fixed
strain path, is different from the TS point. Here instead
satisfying both the stress and force equilibrium conditio
the system satisfies the force equilibrium condition]H/]u
50 and the turning point condition]2H/]u250 which gives

16AhTj cos 4pu2B~hTj2d!hTj cos 2pu50. ~6!

Combining the above equation with the force equilibriu
@Eq. ~2!# givesu50 as the only solution which correspond
to the RS structure. Thus in this model there is no turn
point. However, a slight modification of the model will lea
to a turning point at a strain value slightly before the R
phase is attained, as discussed in Appendix B.

C. Electronic structure in transition

As shown in Fig. 6, the energy barrier becomes very sh
low while the strains are kept the same as those for the
This indicates that the bonds are significantly softened. I
therefore interesting to investigate how the electronic str
ture changes along the path. For this purpose, we perf
band-structure calculations using the FP-LMTO method
the states along the transition paths. The geometries
adopted from the pseudopotential calculations at the tra
tion pressure. Figure 7 shows the density of states~DOS! at
different points along the FPP. The two DOS’s withz
50.25 and 0.5 correspond to the ZB and the RS structu
respectively. Because the RS structure is more dense tha
ZB structure, the valence bands are widened for RS. The
at around210 eV for ZB separates the two subgroups

FIG. 7. Density of states along the FPP.
7-6
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the valence bands. The lower group comprises mostlys
bonding states with Sis and Sip orbitals whereas the uppe
subgroup are mostly composed of Cp bonding with Sis and
Si p orbitals. In the ZB structure they are very well separa
because of the breaking of the inversion symmetry. Wh
changing to RS structure, this gap gradually decreases
closes around the TS state. The fundamental gap betwee
valence and conduction bands exists for both ZB and
structures, indicating that both structures are semiconduc
Interestingly, this gap closes around the TS state, indica
that the TS is metallic. Although the gap closes, there
mains a dip structure. So the TS can be identified a
‘‘poor’’ metal. The DOS changes along the FSP are simi
since it goes through the same TS state as the FPP.

To see what happened to the gap, we show the FP-LM
band structure for ZB, TS, and RS structures in Fig. 8.
comparison, all three cases are shown in a simple orthorh
bic Brillouin zone. The notation of the symmetry points fo
lows Bradley and Cracknell.21 It can be seen that at the tran
sition pressure, the ZB and RS are still semiconductors w
~GGA! band gaps of 1.5 and 0.75 eV, respectively. But
TS is metallic with a band overlap of more than 2 eV. No
that the ZB band gap here appears to be direct, while ZB
is well known to have an indirect gap atX. This is because
theX minimum of the ZB structure has been folded to theG
point in the present orthorhombic Brillouin zone~BZ!. The
major change in the TS is the band overlap. Also the trip
degeneracy of the valence band maximum is broken by
symmetry breaking. Although the local density approxim
tion ~LDA ! or the GGA has a tendency to underestimate
band gaps, this large overlap rules out the possibility of
ing an artifact of the GGA. The band overlap happens me
around theG point. The rest of the band structure still has
close resemblance to the bands in the ZB and RS structu

IV. CONCLUSIONS

In conclusion, we have investigated the changes of
geometry and electronic structures of SiC along the tra
tion paths from ZB to RS using both the pseudopoten
plane-wave and FP-LMTO methods. Although there are v
ous nonequivalent paths to consider, the most adequate p
should pass through the transition state. The TS state co
sponds to both a force and stress equilibrium. The fix
strain path~FSP! corresponds to a force equilibrium only an
the fixed position path~FPP! corresponds to a stress equili
rium. These equilibrium conditions are satisfied through
the paths. Besides the TS, there is a turning point for the
at which the atoms jump to their ideal RS positions. Bo
paths show a strong resistance against deviation from
ideal ZB and RS structures when small perturbations fr
the latter are considered. When the pressure increases, th
state moves toward ZB. A phenomenological model is p
posed, in which the strains and the periodic function of
internal structural parameter are coupled. The TS is foun
be the result of the long-range periodic structure, whereas
turning point is the result of the nonlinear dependen
around the RS structure. The band structure reveals tha
06410
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system is metallic around the TS, which explains the soft
ing of the bonds in that state.

Although the system can go through many paths conn
ing ZB and RS structures, it favors the paths close to F
which is consistent with the fact that the fluctuation of t
strains requires less energy than the fluctuation of the a

FIG. 8. The LDA band structure for~a! ZB, ~b! RS, and~c! TS
in a common orthorhombic Brillouin zone. The labels for the Z
case correspond to the ZB BZ.
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MIAO, PRIKHODKO, AND LAMBRECHT PHYSICAL REVIEW B 66, 064107 ~2002!
positions. While large strains are achieved, the optical p
non is significantly softened and the atoms can easily m
from the ZB- to RS-type internal position. After it goe
through the TS state, the atom quickly moves toward its
position and causes a further relaxation of the lattices.
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APPENDIX A: THE MODEL IN THE RS AND ZB LIMITS

In the RS limit,u50,h50,

HRS52BhZ
Tj, ~A1!

while in the ZB limit u51/4,h5hZ and

HZB5
1

2
hZ

TChZ2AhZ
Tj2~A1B!hZ

Tj. ~A2!

At the transition pressure,HZB5HRS. So that

hZ
TChZ54AhZ

Tj. ~A3!

If the strains are kept as those of RS, i.e.,h50 thenH is a
function of u only:

H52BhZ
Tj cos 2pu. ~A4!

Otherwise, if the strains are kept as those for ZB, i.e.h
5hZ , then

H5
1

2
hZ

TChZ1AhZ
Tj cos 4pu2~A1B!hZ

Tj. ~A5!

On the other hand, if the atoms are kept at their ideal
positions, i.e.,u50, the enthalpy depends only on th
strains:

H5
1

2
hTCh2BhZ

Tj. ~A6!

Or if u51/4, the atoms are in their ZB positions, then

H5
1

2
hTCh2AhTj2~A1B!hTj. ~A7!

This equation can be rewritten around ZB strains as

H5
1

2
~hT2hZ

T!C~h2hZ!1hTChZ

2
1

2
hZ

TChZ2AhTj2~A1B!hTj

5
1

2
~hT2hZ

T!C~h2hZ!2
1

2
hZ

TChZ . ~A8!

The second step is because

hTChZ5AhTj1~A1B!hTj ~A9!
06410
-
e

S

.

S

which is the stress equilibrium condition at the ZB point. S
now the enthalpy depends on the strains measured from
ZB structure. This shows that within our model the elas
constants of ZB defined as second derivatives versus s
of the enthalpy at fixed positionu51/4 are the same as thos
of RS. The actual elastic constants of ZB should, howev
be defined in terms of the ZB enthalpy relaxed versus
internal parameter, and will therefore be lower. In fa
within the model, we obtain the same elastic constants as
RS all along the FPP. This approximation may not cor
spond exactly to reality, and derives from our use of a mo
which attempts to describe the ‘‘global’’ behavior as a fun
tion of u while as function ofh it assumes a quadratic ex
pansion around RS and a linear coupling between the
which strictly is only valid for smallh. However, it is im-
portant to note that the position of the TS and the turn
point do not depend on the values ofC nor on the coupling
constantsj. As shown in the main text, it is the result of th
long range periodicity and depends only on theA/B ratio.

APPENDIX B: MODIFICATION OF THE ENTHALPY
DEPENDENCE AND THE TURNING POINT

In this appendix, it is shown that a turning point, i.e.,
point where the structure jumps discontinuously from the
to the RSu value before the strain corresponding to the R
phase is achieved. To do this, we modify our model entha
to include the effect of the deviation from the cosine functi
for the ‘‘RS strain’’ term. The RS curve in Fig. 6 shows th
the energy changes slower than the ideal cosine funct
which also indicates a weaker coupling between the stra
and the internal parameter. To include this fact, we assu
an extra linear coupling term around the RS structure in
model enthalpy with a negative slope,

H5
1

2
hTCh1AhTj cos 4pu

1B~hTj2hZ
Tj!~cos 2pu2au!2~A1B!hTj,

~B1!

FIG. 9. The turning point position as a function of the line
coupling coefficienta.
7-8
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CHANGES OF THE GEOMETRY AND BAND STRUCTURE . . . PHYSICAL REVIEW B 66, 064107 ~2002!
in which a.0. This linear coupling term breaks the perio
icity and also the mirror symmetry at the RS point. It shou
only be assumed to be valid in the right panel of Fig. 6. T
corresponding stress and force equilibrium conditions ar

Ch1Aj cos 4pu1Bj cos 2pu2aBju2~A1B!j50
~B2!

and

24pAhTj sin 4pu22pB~hTj2hZ
Tj!sin 2pu

2aB~hTj2hZ
Tj!50. ~B3!

The general solution for the TS is very complex. But as
argued in the text, this negative coupling term will move t
TS toward the ZB.
s

e

o

p
t,

06410
e

e

The turning point condition is]2H/]u250 which gives

216p2AhTj cos 4pu24p2B~hTj2hZ
Tj!cos 2pu50.

~B4!

Combining it with the force equilibrium condition and afte
some simplifications, one obtains

a cos 4pu2p sin 4pu cos 2pu12p sin 2pu cos 4pu50.
~B5!

The u versusa curve is plotted in Fig. 9. It can be seen th
a small value ofa can induce a turning point evidently awa
from the RS structure. Butu becomes quickly saturated an
can never be larger than 1/8. In conclusion, a linear coup
term not only moves the TS toward the ZB but also expla
the origin of the turning point.
ings

.

ht,

of

th.

f

1P. Alippi, P.M. Marcus, and M. Scheffler, Phys. Rev. Lett.78,
3892 ~1997!.

2A. Martı́n Penda´s, V. Luaña, J.M. Recio, M. Flo´rez, E. Francisco,
M.A. Blanco, and L.N. Kantorovich, Phys. Rev. B49, 3066
~1994!.

3C.E. Sims, G.D. Barrera, N.L. Allan, and W.C. Mackrodt, Phy
Rev. B57, 11 164~1998!.

4M.A. Blanco, J.M. Recio, A. Costales, and R. Pandey, Phys. R
B 62, 10599~2000!.

5S. Limpijumnong and W.R. Lambrecht, Phys. Rev. Lett.86, 91
~2001!.

6S. Limpijumnong and W.R. Lambrecht, Phys. Rev. B63, 104103
~2001!.

7M. Catti, Phys. Rev. Lett.87, 035504~2001!.
8A. Lacam and J. Peyronneau, J. Phys.~Paris! 34, 1047~1973!.
9J.R. Chelikowsky and J.K. Burdett, Phys. Rev. Lett.56, 961

~1986!.
10M. Yoshida, A. Onodera, M. Ueno, K. Takemura, and O. Shim

mura, Phys. Rev. B48, 10587~1993!.
11T. Sekine and T. Kobayashi, Phys. Rev. B55, 8034~1997!.
12W. R. L. Lambrecht, inDiamond, SiC, and Nitride Wide Bandga

Semiconductors, edited by C. H. Carter, Jr., G. Gildenbla
.

v.

-

S. Nakamura, and R. J. Nemanich, MRS Symposia Proceed
No. 339~Materials Research Society, Pittsburgh, 1994!, pp. 565-
582.

13F. Shimojo, I. Ebbsjo¨, R.K. Kalia, A. Nakano, J.P. Rino, and P
Vashishta, Phys. Rev. Lett.84, 3338~2000!.

14F. Milstein, H. Fang, and J. Maschall, Philos. Mag. A70, 621
~1994!.

15M. S. Miao, Margarita Prikhodko, and Walter R. L. Lamberec
Phys. Rev. Lett.88, 189601~2002!.

16I. Souza and J.L. Martins, Phys. Rev. B55, 8733~1997!.
17N. Troullier and J.L. Martins, Phys. Rev. B43, 1993~1991!.
18J.P. Perdew and Y. Wang, Phys. Rev. B45, 13244~1992!.
19M. Methfessel, M. van Schilfgaarde, and R. A. Casali, inElec-

tronic Structure and Physical Properties of Solids, the Uses
the LMTO Method, edited by Hugues Dreysse´, Springer Lecture
Notes, Workshop Mont Saint Odille, France, 1998~Springer,
Berlin, 2000!, pp. 114-147.

20E. Bott, M. Methfessel, W. Krabs, and P.C. Schmidt, J. Ma
Phys.39, 3393~1998!.

21C. J. Bradley and A. P. Cracknell,The Mathematical Theory o
Symmetry in Solids~Clarendon, Oxford, 1972!.
7-9


