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Monte Carlo renormalization group study of the dynamic scaling of hysteresis
in the two-dimensional Ising model
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Extending the Monte Carlo renormalization group technique to the two-dimensional Ising model, we find
from first principles that the dynamic scaling behavior of hysteresis originates from a rate exponent that
characterizes the response of the system to the sweep rate of the field that leads to the hysteresis. The static
hysteresis is determined and a scaling law attained. The effect of the temperature is discussed.
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Hysteresis is a ubiquitous phenomenon in natafedag-  saw-tooth®>~'” manner, the areaA enclosed in the
netic hysteresis, ferroelectric hysteresis, superconductingnagnetization-field loop may well be fitted to
hysteresis, adsorption hysteresis, and optical hysteresis are
just a few common examples of it. Glass transition essen-
tially results from it; and a characteristic feature of first-order
phase transitions goes to it. In spite of such theoretical and
technological significances, its nonlinear and nonequilibriunpver a large order of magnitude 8 whereA, andA, are
nature renders itself elusive to most scientific treatments. Theonstants independent Bf and the area exponeatdepends
past decade has been seeing, however, increasirnly slightly on temperature below the critical temperature
theoretical '8 and experiment&i~2®activities focusing on a Tc. Ay is the static hysteresis*!**>172hat is important to
new perspective upon its dynamic scaling behavior. Yetset the area exponent right and sometimes is
most results are essentially empirical, lacking a firm theoretcontroversial?'’ A previous momentum-space RG investi-
ical ground. Here, applying a Monte CarlMC) renormal-  gation has clearly shown analytically that the scaling is de-
ization group (RG) technique to a two-dimensiond2D)  termined by the zero-temperature fixed point, and the under-
Ising model, we find from first principles that the dynamic lying invariance is probably the dynamical similarity
scaling of hysteresis originates from a new exponent tha@ssociating with different rates of the drivibgBut that is on
characterizes the transformation property of the sweep rat@& somewhat unrealistiO(N) vector model with an infinite
This scaling behavior contrasts with that near the equilibriunnumber of vector componenty, i.e., the largeN model,
critical point in that the system’s character shows up fromwhich involves transverse Goldstone modes that can circum-
the behavior of its outside environment. Our results should/ent the energy barrier between the up and the down states.
thus provide convincing evidence for the scaling of hyster-The Ising model, on the other hand, has been found to belong
esis, and for the applicability of the RG theory to such first-to a different universality class, and has been used as a
order-like dynamic phenomena. They should also shed lighprimary model to fit the experimental results from magnetic
to the study of hysteresis and its related phenomena arithin films!"1923-2°50, whether the RG theory is applicable
other far-from-equilibrium systems that involve an externalto this and other more realistic classes of models is still an
driving. important issue in pursuing the scaling of hysteresis. In this
Consider the Ising model with a Hamiltonian Communication, we shall make an attempt along this line by
extending the MCRG approach.
3 H The MCRG technique was introduced by Klaand de-
H=— _E SSj— _2 S, (1)  veloped and extended by Swend$Bm analyze the critical
keT {7) keT 5 phenomena. It has since been applied successfully to the
study of, among others, critical dynamfcs,and phase
where the classical spi = * 1, the first summation is over ordering®*3! The method consists in matching correlation
all different nearest-neighbor paifgj) and the second is functions on different-sized lattices at different levels of
over all sites of a 2D lattice of lengthi.. For simplicity, we  renormalization. The renormalization was obtained by the
shall set the Boltzmann'’s constaky and the coupling con- usual majority rule. Ties are broken by random assignments
stantJ to one. Periodic boundary conditions are appliedof =1 to the coarse-grained spB™, wheremis the level of
throughout. We start with all spins pointing dowr§;(  blocking. As renormalization, the system flows with respect
=—1), and let the magnetic field = Rt with a sweep rat®  to the fixed point. As a result, one assumes that the renor-
and the timet, which is measured in units of MC steps per malizedt’'=tb~% R’=Rb", for example, where is the
spin. Each step includds’ random attempts to flip the spins length rescaling factog a dynamical exponent, amda new
using the standard Metropolis algoritfhThe system then rate exponent. One expects that after the irrelevant variables
evolves with time to the “up” statdall S=1) with a hys- are iterated away, the system becomes invariant, so that any
teresis depending oR. It has been found previously that quantity determined aftem blockings of anL XL lattice
when the field sweeps cycles by a sinusoid&t’® or  should be identical to that aften+1 blockings of another

A=Ay+A;RY )
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TABLE |. Results of successive renormalizationskof

R=0.005,L=2048,T=1.8 R=0.01,L=1024,T=1.5
z z/n z z/n

m n Ho#0 Ho#0 n Ho#0 Hy#0
1 2.492)2 1.6568) 0.6685) 2.062) 1.461) 0.7077)

1.5448) 0.6215) 1.371) 0.6637)
2 2.781) 1.8567) 0.6674) 2.402) 1.71(1) 0.7136)

1.735%7) 0.6243) 1.61(1) 0.6716)
3 3.044) 2.032) 0.6617) 2.61(3) 1.863) 0.7139)

1.902) 0.6267) 1.752) 0.6728)
4 3.065) 2.043) 0.66614) 2.737) 1.955) 0.71425)

1.91(3) 0.62413) 1.845) 0.67324)
5 2.6333 1.7520) 0.6711 2.4631) 1.7522) 0.71(13

1.6521) 0.6311) 1.6521) 0.6712)

#The standard deviations are estimated by the propagation of errors.

LbX Lb lattice in anticipation of possible finite-size effects, good statistics. However, the results are nearly independent
and continue to track each other upon further blockings. of the size of the lattices used.

Specifically, consider the nearest-neighbor correlation Table | collects the results for the large lattices of 2048
o X 2048 and 10241024 run atR=0.005 andT=1.8 andR
EM(L,Rt)= b_2 s S1(m)sl(m) , ) =0.0_l andT=1.5 with a length rescali_ng fagt¢=2,_re-
L=\ &) spectively. The most remarkable result is that is invariant

after the first blocking, which generates a very close value as
well. Although the spatial correlation functigwe used av-
erage along both andy axes at longer distances offers
C<”‘>(L,R,t,r)=<2 S(m)gnf)r>- (4)  fewer blockings, similar results are also obtained when
[ matching its minima. This result is not because of our inter-

. i ind(M (m) -
They both develop a valley as the system transitions from th@0lation by a power law to finés™ andRg™ . Other meth
down state to the up one. Then assuming exact matching, offls only yielded a variation within the statistical errors. We
finds from a series of runs at different rates on a small latticé!S0 checked the results fbr=3, in which case fewer block-
of sizeL t{"™ (the time at the minimum oE(™ or C(™. The  INgS may be performed. Another appreciable outcome is that
subscript indicates the small lattiz@nd R(sm) at which the for large rates and high temperatures, the dynamical expo-
minimum of E™ or C(™ equals the corresponding mini- nentz also reaches the fixed-point value 2 within statistical
mum att™M*V=tMp-2 and RM D=RMp" run on a large errors, which accords with that found from phase orde?ﬂﬂg,

and the spatial correlation function

lattice of sizeLb at the same temperature. Accordingly, Wh.er?G%%/stems are governed by the zero-temperature fixed
point=>="For small rates and low temperatures, whether this
z:ln(t(sm)/t(m))lln(b), is true has yet to be determined.
The reason for the invariance ofn for a given rate can
n=In(RI/RM)/In(b). 5) be seen from Fig. 1, showing the effects of renormalization

in terms of HM=RMt(M (the H value atE’s minimum)
We have neglected the effect of the temperature, which wilversusR™. H(® and R®) represent the values of the un-
be taken up towards the end of the text. To be consistentenormalized large lattice; othen+ 0 values correspond to
intrinsic properties associate with the fixed point must starthose matching values of the small lattice. It is notable that
to be invariant after some blockings that have iterated awagll but a few initial blockings converge to a single “renor-
the irrelevant variables. malized trajectory” that fits nicely ta4(M=H,+A,RMA,

In practice, as the number of renormalizationncreases, Wwith Ho=0.07Q2), 8=0.3792), andA,=2.69(2) forT
the minimum ofE and C approach 0, and become almost =1.8 andH,=0.11§2), 8=0.3212), andA,=2.82(1) for
independent of the rates after a few blockings, beyond whicA=1.5 for m=3, independent of the size of the lattices.
the present method fails. Also the bigger thethe stronger However,z/n varies withR. For examplez/n=0.75(4) and
the fluctuations due to the random assignments and so th®766) at T=1.8 and 1.5 foR=0.0001, respectively, bigger
larger the standard errors estimated by the propagation dhan those listed in Table | albeit with larger errors. This
errors. In order to reach a reasonable result, each rate hasitoplies that the invariance obtained in this way is only lo-
be run for a number of times for the thermal average. Geneally in rate. The reason is that the static
erally, the bigger the size of the lattices, the less the fluctuahysteresi$'?1415172khat may associate with the dynamic
tions and so the fewer the number of the runs needed faransitiort® has been neglected so far.
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FIG. 1. (Colon Flows of the renormalized magnetic fiet(™
and the rat&R(™ of the minimum of the correlation functiod with
the numbem of renormalizations. Thin lines connecting the data
show the flows. The yellow thick lines are fits to data witk=3.
Black lines and symbols indicate results of X212 lattices, green
of 1024X 1024, and red of 20482048.
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FIG. 2. (Color) Nearest-neighbor correlation functiéhvs the
rescaled field H —Hy )R 1"?" at T=1.8. The three main valleys
correspond, respectively, tm=3, 4, and 5, the latter two having
been shifted by+0.75 and+1.5 relative to the first one for clarity.
The inset shows the original curves. All curves have been averaged
over different realizations of random numbers. Opened diamonds
denote R=0.0001, down-triangles 0.0005, up-triangles 0.001,
circles 0.01, squares 0.09, and filled up-triangles 0.005. Colors are

It has already been seen in Fig. 1 that the renormalizeé'® same as in Fig. 1. Lines are only a guide to the eye.

trajectory extrapolates down t®=0 with a finite Hy, the
static hysteresis. HoweveH, so determined relies on the

those previous studiedboth of which satisfy this law within

smallest rate used, so we find it by adjusting it in the waystatistical errors and agree with previous stui€s:’ There-
such that all relevant curves collapse onto a single one aftdpre, the origin of the dynamic hysteresis arises from the rate

rescaling(see beloy, similar to the determination of ¢ in
MCRG analysi€® though the error may be larger since the

exponentn, which characterizes the response of the system
to the driving rate. If this response keeps pace with the dy-

quality of data collapse is perceived by eye. The value foundhamical evolution of the system itself, no dynamic hysteresis

in this way is 0.067 and 0.12 foF=1.8 and 1.5, respec-
tively. It is close to that found from extrapolation, corrobo-
rating each other. Subtractindy, affects the values of and

would appear.
Finally we discuss the effect of the temperature. We used
the same temperature for the large and small lattices in the

z/n, which have also been given in Table I in the second linenatching above. This is supported by the results, especially
of the relevant rows. The standard deviations in this case

have not included those arising frory,. Note that consis-
tently, 1—z/n~ B within statistical errors.

Having considered the static hysteresis, we now shov
data collapse and its consequences as a result of scalir
Figures 2 and 3 display the averaged correlation function an
magnetizatiorM vs the rescaled fieldH—Hg)R™1"Z" with
z/In=0.62 atT=1.8, respectively. It is seen that all original
curves of various rates shown in the insets approach a scalir
form almost independent of the sweep rates as the levels ¢
renormalization increase. Size independence is also clear
seen from the insets. In particular, the large rates hav
reached a single valley fan=4 in Fig. 2, though the small
rates have not. However, fon=5 and 6, the latter have
almost joined the others, though as pointed out above, fluc
tuations become relatively large and so the feature become

diffused beyond the minima. In Fig. 3, although the curves ol

R=0.0001 appear not to collapse as well as othersnfor

}H-Ha'n

-
(H-H,

FIG. 3. (Colon MagnetizationM vs (H—HgR™*"?" at T

=3, it can be seen that all the other rates coincide impres=; g The curves correspond respectivelyne-0 to 6, each of

sively in a single curve. This strongly supports our theory.
Moreover, this also implies the scaling of the aref¥,
=$MdHxR*"Z" or a scaling lana~1—2z/n from Eq.(2).

We found « to be 0.3819) for T=1.8 and 0.32@®) for T
=1.5 onL =256 lattices(this L is several times bigger than

which has been shifted by 0.5 relative to its preceding one for
clarity. The inset shows the original curves. All curves have also
been averaged except the=6, R=0.0001 one showing the pos-
sible diffusivenessin cyan for contragt Symbols and colors have
the same meaning as in Fig. 2.
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the striking coincidence in Fig. 3 fan=3. A common ex- model® Our present numerical results could not yet give a
pectation in application of the MCRG method to undercriti- conclusive answer because of the fluctuations in the data.
cal systems is that temperature is an irrelevant parameter; &uirther work is needed and is underway.

the number of RG increases, the system is driven to the Summarizing, we have extended the MCRG technique to
zero-temperature fixed point, so universal behavior revealshe 2D Ising model, and found from first principles that the
However, a direct attempt to match quantitiesTat1.8 to  dynamic scaling behavior of hysteresis originates from a rate
those aff=1.5 by the same method failed to yield an expo-exponent that characterizes the response of the system to the
nent that could make the curves overlapped. There are se¥yeep rate of the field driving the transition. The static hys-
eral possible reasons for this. The temperature may be a vaijgresis has been determined which is important for the scal-
able that renormalizes slowly or does not renormalize similal,fng behavior to occur. A scaling law relating the rate expo-

of coarse graining are not sufficient to reach the fixed point

for the different-temperature matching, or more subtly, each This work was supported by the Foundation for the Au-
rate has to be run at its particular temperature if the temperdhor of National Excellent Doctoral Dissertation of China
ture has to be renormalized like the 3D case of the I&ge- and the NSF of Gunangdong Province, China.
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