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Monte Carlo renormalization group study of the dynamic scaling of hysteresis
in the two-dimensional Ising model
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Extending the Monte Carlo renormalization group technique to the two-dimensional Ising model, we find
from first principles that the dynamic scaling behavior of hysteresis originates from a rate exponent that
characterizes the response of the system to the sweep rate of the field that leads to the hysteresis. The static
hysteresis is determined and a scaling law attained. The effect of the temperature is discussed.

DOI: 10.1103/PhysRevB.66.060401 PACS number~s!: 75.60.Ej, 05.10.Cc, 64.60.Ak, 77.80.Dj
tin

e
e
an
um
Th
si

e
re

ic
th
a
um
om
u
er
st
ig
a
a

r

ed

er
s

t

re

is
ti-
de-
der-
y

um-
tes.

long
a
tic
le
an
his
by

the

n
of
the
nts

ect
nor-

bles
any
Hysteresis is a ubiquitous phenomenon in nature.1–4 Mag-
netic hysteresis, ferroelectric hysteresis, superconduc
hysteresis, adsorption hysteresis, and optical hysteresis
just a few common examples of it. Glass transition ess
tially results from it; and a characteristic feature of first-ord
phase transitions goes to it. In spite of such theoretical
technological significances, its nonlinear and nonequilibri
nature renders itself elusive to most scientific treatments.
past decade has been seeing, however, increa
theoretical5–18 and experimental19–25activities focusing on a
new perspective upon its dynamic scaling behavior. Y
most results are essentially empirical, lacking a firm theo
ical ground. Here, applying a Monte Carlo~MC! renormal-
ization group ~RG! technique to a two-dimensional~2D!
Ising model, we find from first principles that the dynam
scaling of hysteresis originates from a new exponent
characterizes the transformation property of the sweep r
This scaling behavior contrasts with that near the equilibri
critical point in that the system’s character shows up fr
the behavior of its outside environment. Our results sho
thus provide convincing evidence for the scaling of hyst
esis, and for the applicability of the RG theory to such fir
order-like dynamic phenomena. They should also shed l
to the study of hysteresis and its related phenomena
other far-from-equilibrium systems that involve an extern
driving.

Consider the Ising model with a Hamiltonian

H52
J

kBT (
^ i , j &

SiSj2
H

kBT (
i

Si , ~1!

where the classical spinSi561, the first summation is ove
all different nearest-neighbor pairŝi,j& and the second is
over all sitesi of a 2D lattice of lengthL. For simplicity, we
shall set the Boltzmann’s constantkB and the coupling con-
stant J to one. Periodic boundary conditions are appli
throughout. We start with all spins pointing down (Si
521), and let the magnetic fieldH5Rt with a sweep rateR
and the timet, which is measured in units of MC steps p
spin. Each step includesL2 random attempts to flip the spin
using the standard Metropolis algorithm.26 The system then
evolves with time to the ‘‘up’’ state~all Si51! with a hys-
teresis depending onR. It has been found previously tha
when the field sweeps cycles by a sinusoidal5–12,18 or
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saw-tooth13–17 manner, the areaA enclosed in the
magnetization-field loop may well be fitted to

A5A01A1Ra ~2!

over a large order of magnitude ofR, whereA0 andA1 are
constants independent ofR, and the area exponenta depends
only slightly on temperature below the critical temperatu
TC . A0 is the static hysteresis8,12,14,15,17,21that is important to
set the area exponent right and sometimes
controversial.12,17 A previous momentum-space RG inves
gation has clearly shown analytically that the scaling is
termined by the zero-temperature fixed point, and the un
lying invariance is probably the dynamical similarit
associating with different rates of the driving.16 But that is on
a somewhat unrealisticO(N) vector model with an infinite
number of vector componentsN, i.e., the large-N model,
which involves transverse Goldstone modes that can circ
vent the energy barrier between the up and the down sta
The Ising model, on the other hand, has been found to be
to a different universality class,15 and has been used as
primary model to fit the experimental results from magne
thin films.17,19,23–25So, whether the RG theory is applicab
to this and other more realistic classes of models is still
important issue in pursuing the scaling of hysteresis. In t
Communication, we shall make an attempt along this line
extending the MCRG approach.

The MCRG technique was introduced by Ma,27 and de-
veloped and extended by Swendsen,28 to analyze the critical
phenomena. It has since been applied successfully to
study of, among others, critical dynamics,29 and phase
ordering.30,31 The method consists in matching correlatio
functions on different-sized lattices at different levels
renormalization. The renormalization was obtained by
usual majority rule. Ties are broken by random assignme
of 61 to the coarse-grained spinS(m), wherem is the level of
blocking. As renormalization, the system flows with resp
to the fixed point. As a result, one assumes that the re
malized t85tb2z, R85Rbn, for example, whereb is the
length rescaling factor,z a dynamical exponent, andn a new
rate exponent. One expects that after the irrelevant varia
are iterated away, the system becomes invariant, so that
quantity determined afterm blockings of anL3L lattice
should be identical to that afterm11 blockings of another
©2002 The American Physical Society01-1
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TABLE I. Results of successive renormalizations ofE.

m

R50.005,L52048,T51.8 R50.01,L51024,T51.5

n
z

H0Þ0
z/n

H0Þ0 n
z

H0Þ0
z/n

H0Þ0

1 2.49~2!a 1.656~8! 0.666~5! 2.06~2! 1.46~1! 0.707~7!

1.544~8! 0.621~5! 1.37~1! 0.663~7!

2 2.78~1! 1.856~7! 0.667~4! 2.40~2! 1.71~1! 0.713~6!

1.735~7! 0.624~3! 1.61~1! 0.671~6!

3 3.04~4! 2.03~2! 0.667~7! 2.61~3! 1.86~3! 0.713~9!

1.90~2! 0.626~7! 1.75~2! 0.672~8!

4 3.06~5! 2.04~3! 0.666~14! 2.73~7! 1.95~5! 0.714~25!

1.91~3! 0.624~13! 1.84~5! 0.673~24!

5 2.63~33! 1.75~20! 0.67~11! 2.46~31! 1.75~22! 0.71~13!

1.65~21! 0.63~11! 1.65~21! 0.67~12!

aThe standard deviations are estimated by the propagation of errors.
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Lb3Lb lattice in anticipation of possible finite-size effect
and continue to track each other upon further blockings.

Specifically, consider the nearest-neighbor correlation

E~m!~L,R,t !5
b2m

L2 K (
^ i , j &

Si
~m!Sj

~m!L , ~3!

and the spatial correlation function

C~m!~L,R,t,r !5K (
i

Si
~m!Si 1r

~m! L . ~4!

They both develop a valley as the system transitions from
down state to the up one. Then assuming exact matching,
finds from a series of runs at different rates on a small lat
of sizeL ts

(m) ~the time at the minimum ofE(m) or C(m). The
subscript indicates the small lattice.! and Rs

(m) at which the
minimum of E(m) or C(m) equals the corresponding min
mum att (m11)5t (m)b2z andR(m11)5R(m)bn run on a large
lattice of sizeLb at the same temperature. Accordingly,

z5 ln~ ts
~m!/t ~m!!/ ln~b!,

n5 ln~Rs
~m!/R~m!!/ ln~b!. ~5!

We have neglected the effect of the temperature, which
be taken up towards the end of the text. To be consist
intrinsic properties associate with the fixed point must s
to be invariant after some blockings that have iterated aw
the irrelevant variables.

In practice, as the number of renormalizationm increases,
the minimum ofE and C approach 0, and become almo
independent of the rates after a few blockings, beyond wh
the present method fails. Also the bigger them, the stronger
the fluctuations due to the random assignments and so
larger the standard errors estimated by the propagatio
errors. In order to reach a reasonable result, each rate h
be run for a number of times for the thermal average. G
erally, the bigger the size of the lattices, the less the fluc
tions and so the fewer the number of the runs needed
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good statistics. However, the results are nearly indepen
of the size of the lattices used.

Table I collects the results for the large lattices of 20
32048 and 102431024 run atR50.005 andT51.8 andR
50.01 andT51.5 with a length rescaling factorb52, re-
spectively. The most remarkable result is thatz/n is invariant
after the first blocking, which generates a very close value
well. Although the spatial correlation function~we used av-
erage along bothx and y axes! at longer distances offer
fewer blockings, similar results are also obtained wh
matching its minima. This result is not because of our int
polation by a power law to findts

(m) andRs
(m) . Other meth-

ods only yielded a variation within the statistical errors. W
also checked the results forb53, in which case fewer block-
ings may be performed. Another appreciable outcome is
for large rates and high temperatures, the dynamical ex
nent z also reaches the fixed-point value 2 within statistic
errors, which accords with that found from phase ordering30

where systems are governed by the zero-temperature fi
point.16,30For small rates and low temperatures, whether t
is true has yet to be determined.

The reason for the invariance ofz/n for a given rate can
be seen from Fig. 1, showing the effects of renormalizat
in terms of H (m)5R(m)t (m) ~the H value atE’s minimum!
versusR(m). H (0) and R(0) represent the values of the un
renormalized large lattice; othermÞ0 values correspond to
those matching values of the small lattice. It is notable t
all but a few initial blockings converge to a single ‘‘reno
malized trajectory’’ that fits nicely toH (m)5H01A2R(m)b,
with H050.070(2), b50.379(2), and A252.69(2) for T
51.8 andH050.116(2), b50.327(2), andA252.82(1) for
T51.5 for m>3, independent of the size of the lattice
However,z/n varies withR. For example,z/n50.75(4) and
0.76~6! at T51.8 and 1.5 forR50.0001, respectively, bigge
than those listed in Table I albeit with larger errors. Th
implies that the invariance obtained in this way is only l
cally in rate. The reason is that the stat
hysteresis8,12,14,15,17,21that may associate with the dynam
transition18 has been neglected so far.
1-2
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It has already been seen in Fig. 1 that the renormali
trajectory extrapolates down toR50 with a finite H0 , the
static hysteresis. However,H0 so determined relies on th
smallest rate used, so we find it by adjusting it in the w
such that all relevant curves collapse onto a single one a
rescaling~see below!, similar to the determination ofTC in
MCRG analysis,28 though the error may be larger since th
quality of data collapse is perceived by eye. The value fou
in this way is 0.067 and 0.12 forT51.8 and 1.5, respec
tively. It is close to that found from extrapolation, corrob
rating each other. SubtractingH0 affects the values ofz and
z/n, which have also been given in Table I in the second l
of the relevant rows. The standard deviations in this c
have not included those arising fromH0 . Note that consis-
tently, 12z/n'b within statistical errors.

Having considered the static hysteresis, we now sh
data collapse and its consequences as a result of sca
Figures 2 and 3 display the averaged correlation function
magnetizationM vs the rescaled field (H2H0)R211z/n with
z/n50.62 atT51.8, respectively. It is seen that all origina
curves of various rates shown in the insets approach a sca
form almost independent of the sweep rates as the level
renormalization increase. Size independence is also cle
seen from the insets. In particular, the large rates h
reached a single valley form54 in Fig. 2, though the smal
rates have not. However, form55 and 6, the latter have
almost joined the others, though as pointed out above, fl
tuations become relatively large and so the feature beco
diffused beyond the minima. In Fig. 3, although the curves
R50.0001 appear not to collapse as well as others, form
>3, it can be seen that all the other rates coincide impr
sively in a single curve. This strongly supports our theo
Moreover, this also implies the scaling of the area,A
5rMdH}R12z/n, or a scaling lawa'12z/n from Eq.~2!.
We founda to be 0.381~9! for T51.8 and 0.326~9! for T
51.5 onL5256 lattices~this L is several times bigger than

FIG. 1. ~Color! Flows of the renormalized magnetic fieldH (m)

and the rateR(m) of the minimum of the correlation functionE with
the numberm of renormalizations. Thin lines connecting the da
show the flows. The yellow thick lines are fits to data withm>3.
Black lines and symbols indicate results of 5123512 lattices, green
of 102431024, and red of 204832048.
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those previous studied!, both of which satisfy this law within
statistical errors and agree with previous studies.6,15,17There-
fore, the origin of the dynamic hysteresis arises from the r
exponentn, which characterizes the response of the syst
to the driving rate. If this response keeps pace with the
namical evolution of the system itself, no dynamic hystere
would appear.

Finally we discuss the effect of the temperature. We us
the same temperature for the large and small lattices in
matching above. This is supported by the results, especi

FIG. 2. ~Color! Nearest-neighbor correlation functionE vs the
rescaled field (H2H0)R211z/n at T51.8. The three main valleys
correspond, respectively, tom53, 4, and 5, the latter two having
been shifted by10.75 and11.5 relative to the first one for clarity.
The inset shows the original curves. All curves have been avera
over different realizations of random numbers. Opened diamo
denote R50.0001, down-triangles 0.0005, up-triangles 0.00
circles 0.01, squares 0.09, and filled up-triangles 0.005. Colors
the same as in Fig. 1. Lines are only a guide to the eye.

FIG. 3. ~Color! MagnetizationM vs (H2H0)R211z/n at T
51.8. The curves correspond respectively tom50 to 6, each of
which has been shifted by10.5 relative to its preceding one fo
clarity. The inset shows the original curves. All curves have a
been averaged except them56, R50.0001 one showing the pos
sible diffusiveness~in cyan for contrast!. Symbols and colors have
the same meaning as in Fig. 2.
1-3
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the striking coincidence in Fig. 3 form>3. A common ex-
pectation in application of the MCRG method to undercr
cal systems is that temperature is an irrelevant paramete
the number of RG increases, the system is driven to
zero-temperature fixed point, so universal behavior reve
However, a direct attempt to match quantities atT51.8 to
those atT51.5 by the same method failed to yield an exp
nent that could make the curves overlapped. There are
eral possible reasons for this. The temperature may be a
able that renormalizes slowly or does not renormalize sim
to the large-N model in 2D16, or the present available leve
of coarse graining are not sufficient to reach the fixed po
for the different-temperature matching, or more subtly, e
rate has to be run at its particular temperature if the temp
ture has to be renormalized like the 3D case of the largN
s

,

r
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model.16 Our present numerical results could not yet give
conclusive answer because of the fluctuations in the d
Further work is needed and is underway.

Summarizing, we have extended the MCRG technique
the 2D Ising model, and found from first principles that t
dynamic scaling behavior of hysteresis originates from a r
exponent that characterizes the response of the system t
sweep rate of the field driving the transition. The static h
teresis has been determined which is important for the s
ing behavior to occur. A scaling law relating the rate exp
nent to the area exponent has also been attained.

This work was supported by the Foundation for the A
thor of National Excellent Doctoral Dissertation of Chin
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