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Single-particle density matrix and superfluidity in the two-dimensional Bose Coulomb fluid
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A study by Magro and Ceperley@Phys. Rev. Lett.73, 826 ~1994!# has shown that the ground state of the
two-dimensional fluid of charged bosons with logarithmic interactions is not Bose condensed, but exhibits
algebraic off-diagonal order in the single-particle density matrixr(r ). We use a hydrodynamic Hamiltonian
expressed in terms of density and phase operators, in combination with anf-sum rule on the superfluid fraction,
to reproduce these results and to extend the evaluation of the density matrix to finite temperatureT. This
approach allows us to treat the liquid as a superfluid in the absence of a condensate. The algebraic decay of the
one-body density matrix is due to correlations between phase fluctuations, and we find that the exponent in the
power law is determined by the superfluid densityns(T). We also find that the plasmon gap in the single-
particle energy spectrum at long wavelengths decreases with increasingT and closes at the critical temperature
for the onset of superfluidity.

DOI: 10.1103/PhysRevB.66.054538 PACS number~s!: 05.30.Jp, 03.75.Fi, 74.20.2z
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I. INTRODUCTION

The fluid of point charges interacting via a logarithm
Coulomb potential in a strictly two-dimensional~2D! space
is a basic model in statistical mechanics with main releva
to the theory of vortex fluctuations in superfluid or superco
ducting films.1 Magro and Ceperley2 have discussed th
bosonic ground state of this model system. They first use
sum-rule argument from the work of Pitaevskii an
Stringari3 to show that the zero-point fluctuations associa
with long-wavelength plasmons rule out the presence o
Bose-Einstein condensate even at zero temperature. T
proceeded to study the single-particle density matrixr(r )
both by sum-rule arguments and by quantum Monte Ca
~QMC! methods and showed that the ground state exhi
algebraic off-diagonal long-range order: the decay ofr(r )
with increasing distancer is through the power lawr 2r s/4,
wherer s is a coupling strength parameter determined by
areal densityn.

As Magro and Ceperley2 emphasize, although the groun
state of the 2D Bose Coulomb fluid~2D-BCF! is not con-
densed, superfluidity is nonetheless possible. If the mod
indeed superfluid, it may then provide an ideal system
which to study the differences between superfluidity a
Bose-Einstein condensation.

A number of structural and collective dynamical prope
ties have been calculated for the 2D-BCF within appro
mate theoretical schemes,4 but no other studies seem to ha
been made of its momentum distribution and one-body d
sity matrix beyond that of Magro and Ceperley. In t
present paper we evaluate these properties for the cha
fluid in the weak-coupling regime corresponding to hi
density, by adopting a hydrodynamic reduction of its Ham
tonian as previously proposed by Popov5 for 2D neutral Bose
fluids ~see also Meng6!. A crucial point of our approach is to
allow for a difference between the long-wavelength disp
sion relations of single-particle and collective excitations
finite temperatureT, through the use of distinctf-sum rules
on the superfluid and the total particle number densities.7 We
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recover by this approach the results of Magro and Ceper2

for the power-law decay ofr(r ) in the ground state and
obtain their extension to finite temperature. Starting from
superfluid state for the 2D-BCF atT50, we find that in the
weak-coupling regime a slowly declining superfluid fractio
persists as the temperature is raised. In fact, the super
fraction enters to determine the value of the exponent for
power-law decay ofr(r ). The presence of the superflui
density in the power-law decay of the density matrix in
neutral 2D Bose gas was already argued by Popov.5

Our present progress in understanding the propertie
the 2D-BCF borrows from the theory of a quasicondens
state in the neutral 2D Bose gas, that was developed b
number of authors5,8–11and has also been used within a B
goliubov approach to describe the 2D fluid of charg
bosons withe2/r interactions.12 In essence, the local prope
ties of a quasicondensate, over distances that are shorter
the phase correlation length, are the same as those of a g
ine condensate. However, in our treatment of the 2D-BCF
dispense with the notion of a quasicondensate fraction
base our arguments on thef-sum rule for the superfluid frac
tion.

The paper is organized as follows. In Sec. II, after intr
ducing the Hamiltonian of the charged fluid with its neutra
izing background and recalling thef-sum rules for a super
fluid from the work of Hohenberg and Martin,7 we present
the hydrodynamic Hamiltonian as expressed in terms of d
sity and phase operators. Following Meng6 we diagonalize it
in the momentum representation and obtain a dispersion
lation for single-particle excitations which has the Bogoli
bov form but contains the superfluid density in place of t
condensate density. In Sec. III we use the hydrodyna
Hamiltonian to determine the power-law decay of the on
body density matrix from the behavior of the correlatio
between phase fluctuations entering the single-part
Green’s function. In Sec. IV we evaluater(r ) by using the
resummation method adopted by other authors8,9 to deal with
a fluid with a quasicondensate, and show that the power-
decay obtained from the single-particle Green’s function
©2002 The American Physical Society38-1
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recovered. We then report in Sec. V numerical results for
superfluid density from Landau’s formula and for the on
body density matrix as functions of temperature at vario
values of the coupling strengthr s in the weak-coupling re-
gime. Section VI concludes the paper with a brief summa
In an Appendix we show that the standard Bogoliub
approach13 yields an independent proof that the condens
fraction is zero in the ground state of the 2D-BCF.

II. HYDRODYNAMIC HAMILTONIAN
AND SINGLE-PARTICLE EXCITATIONS

The 2D-BCF is described by the Hamiltonian

H5E dr c†~r !F2
¹2

2m
2mGc~r !

1
1

2E drE dr 8c†~r !c†~r 8!V~ ur2r 8u!c~r 8!c~r !

~1!

~having set\51), wherec(r ) is the field operator,m is the
chemical potential andV(r ) is the interaction potential. This
is the solution of the 2D Poisson equation¹2V(r )
522pe2d(r ), yieldingV(r )52e2ln(r/l0) wherel 0 is a ref-
erence length that we shall take asl 05(me2)21/2. The Fou-
rier transform of the potential isVk52pe2/k2, and in the
following we shall setVk5050 on account of a uniform
background ensuring global charge neutrality.14 The coupling
strength is measured by the dimensionless parameterr s ,
which is defined byr s5(2me2/pn)1/2.

A special role will be played in the following by a sum
rule involving the superfluid densityns . We first recall that
the usualf-sum rule15 involving the particle densityn can be
recast through the continuity equation into a sum rule on
longitudinal current-current response functionxJJ(k,v),

E
2`

` dv

p

ImxJJ~k,v!

v
5

n

m
. ~2!

For a charged fluid this is equivalent to the well-known pla
mon sum rule on the longitudinal electrical current dens
In addition to Eq.~2!, a sum rule involving the respons
function of the superfluid velocity vs holds in a
superfluid,7,15 which reads

lim
k→0

E
2`

` dv

p

Imxvsvs
~k,v!

v
5

1

mns
. ~3!

The role of this relation as a long-wavelengthf-sum rule on
the superfluid response becomes evident from its simila
to Eq.~2! when it is rewritten as a sum rule for the superflu
particle current densityJs5nsvs .

We are now ready to proceed to a hydrodynamic red
tion of the Hamiltonian~1!, following the work of Popov5

and Meng6 on neutral superfluids. This is obtained by ma
ing the transformation
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c~r !5Ar̂~r !exp@ iF~r !#, c†~r !5exp@2 iF~r !#Ar̂~r !
~4!

for the components of the field operators which correspo
to wave numberk below a cut-offk0.5 Here r̂(r ) andF(r )
are the particle density and phase operators. The transfor
Hamiltonian can be brought to a quadratic form by cons
ering only small fluctuations inr̂(r ) around a constant valu
r0,

r̂~r !5r01h~r !. ~5!

A term linear inh(r ) can be dropped by settingm5Vk50
50, and we obtain the hydrodynamic Hamiltonian

Hh5E dr$~8mns!
21@¹h~r !#21~ns/2m!@¹F~r !#2%

1
1

2E drE dr 8V~ ur2r 8u!h~r !h~r 8!. ~6!

Here, the constantr0 has been taken equal tons in order to
satisfy the sum rule~3!, as we shall explicitly demonstrate a
the end of this section. As usual, the superfluid velocity
vs5¹F(r )/m. We stress that the Hamiltonian in Eq.~6!
describes only long-wavelength fluctuations of small amp
tude in the superfluid density and velocity field.

The Hamiltonian~6! can be diagonalized by first expand
ing the density fluctuation and phase operators in the for

h~r !5 (
k(k,k0)

qkexp~ ik•r !, F~r !5 (
k(k,k0)

p2kexp~ ik•r !,

~7!

which yields

Hh5 (
k(k,k0)

H F ~k2/8mns!1
1

2
VkGqkq2k

1~nsk
2/2m!pkp2kJ . ~8!

We next set qk5(2ak)
21/2(ak1a2k

† ) and p2k

52 iak(2ak)
21/2(ak2a2k

† ) with @ak ,ak8
†

#5dk,k8 , where
ak52mEk /(nsk

2) and

Ek5A2pnse
2

m
1S k2

2mD 2

. ~9!

This finally yields

Hh5 (
k(k,k0)

Ekak
†ak . ~10!

Equation~9! has the same form as the Bogoliubov spectr
for a weakly coupled charged Bose gas, with the superfl
densityns taking the place of the condensate density. It w
be used in the next section as the dispersion relation
single-particle excitations in the evaluation of the pha
phase correlations from the single-particle Green’s functi
8-2
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Equation~9! should also be contrasted with the dispers
relation of collective excitations, which within a weak
coupling theory is

vk5A2pne2

m
1S k2

2mD 2

. ~11!

This relation tends to the 2D plasma frequencyvp
5(2pne2/m)1/2 at long wavelengths, in accord with the su
rule reported in Eq.~2!. Notice that in the limitT→0, where
we expect thatns→n, Eqs.~9! and~11! give the same result
According to the Gavoret-Nozie`res theorem,16 single-particle
and collective excitations coincide at long wavelengths i
Bose-condensed fluid at zero temperature.

We conclude this section by showing that the sum rule~3!
is satisfied in our approach. The response funct
xvsvs

(k,v) for the superfluid velocity is related to the phas

phase response byxvsvs
(k,v)5k2xff(k,v)/m2. At long

wavelengths we get from Eq.~8!

lim
k→0

xvsvs
~k,v!5

k2Vk

2m2Vp
S 1
v2Vp1 i«

2
1

v1Vp1 i« D ,

~12!

where«501 andVp5(2pnse
2/m)1/2. Insertion of Eq.~12!

into the integral on the left-hand side~LHS! of Eq. ~3! leads
immediately to the desired result.

III. ASYMPTOTIC BEHAVIOR OF THE SINGLE-
PARTICLE GREEN’S FUNCTION

We show in this section that the one-body density ma
of the 2D-BCF at temperatureT below a critical temperature
Tc has a power-law decay, as a consequence of the cor
tions between phase fluctuations in the superfluid. We fol
the method proposed for the neutral 2D gas in the work
Popov5 ~see also Fisher and Hohenberg9!, which derives the
power law by evaluating the single-particle Green’s funct
at low momenta from the mean-square fluctuations of
phaseF(r ,t).

More precisely, the phase fluctuations determine
single-particle Green’s functionG(r ,t;r1 ,t1) in the low-
momentum regime~below the cutoff momentumk0) accord-
ing to

G~r ,t;r1 ,t1!}expH 2
1

2
^@F~r ,t!2F~r1 ,t1!#2&J .

~13!

From Eq.~19.16! in Chap. 6 of Popov’s book5 and using the
dispersion relation for single-particle excitations given in E
~9! we find

^F~k,v!F~2k,2v!&→
Vk

v21nsVkk
2/m

~14!

so that
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^@F~r ,t!2F~r1 ,t1!#2&

→ kBT

2 (
k(k,k0)

(
v

Vk

v21nsVkk
2/m

uexp@ i ~k•r2vt!#

2exp@ i ~k•r12vt1!#u2. ~15!

The summation over Matsubara frequencies in Eq.~15! can
be carried out explicitly fort15t1, and forr[ur2r1u→`
we find

1

2
^@F~r ,t!2F~r1 ,t1!#2&

5
r s

4 S n

ns
D 1/2

cothS ~ns /n!1/2

Trs
D E

1/r

1/Ldk

k
@12J0~kr !#.

~16!

Here, the temperatureT is in units of e2/kB , L is a length
scale of order 1/k0, andJ0(x) is the zero-order Bessel func
tion. Finally, the expression for the mean-square phase fl
tuation has the form

1

2
^@F~r ,t!2F~r1 ,t1!#2&→a ln~r /L !, ~17!

where the quantitya is given by

a5
r s

4 S n

ns
D 1/2

cothS ~ns /n!1/2

Trs
D . ~18!

In conclusion, the one-body density matrix of the 2D-BC
decays to zero with the power lawr 2a as a consequence o
the logarithmic correlations between phase fluctuations
the limit of zero temperature the decay follows the la
r 2r s/4, which is the result found in the QMC study of Magr
and Ceperley.2

Having reached their result from the finite-temperatu
formula given in Eq.~18!, we can draw two main conclu
sions:~i! the off-diagonal order reported in the QMC work o
Magro and Ceperley2 proves that the 2D-BCF is a superflu
at T50 and~ii ! a quantum simulation study of the one-bod
density matrix at finite temperature would provide for t
2D-BCF an alternative approach to the superfluid density
be compared with the methods that are currently availa
for its calculation~see, e.g., the method based on the relat
between the superfluid density and the mean square win
number17!. Notice also that, as discussed in the book
Forster,15 the equivalence between the definition of sup
fluid density that is provided by the single-particle excitati
spectrum and the definition that may be extracted from tra
verse current correlations and rotation experiments remai
question of continued interest.

As a final point, we should remark that our calculation h
not included the possibility of vortex formation in the supe
fluid as the temperature is raised towards the critical te
perature for superfluidity. Equation~18! should therefore be
expected to become invalid nearTc .
8-3
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IV. ALTERNATIVE APPROACH TO THE ONE-BODY
DENSITY MATRIX

We present in this section an alternative calculation of
asymptotic behavior of the one-body density matrix, follo
ing an approach which is closely akin to the resummat
method adopted in the book of Popov5 and in the work by
Kagan and co-workers8 for neutral 2D Bose fluids in a qua
sicondensate state.

We start from the definitionr(r ,r 8)5^c†(r )c(r 8)& and
use the expression of the field operators in terms of the
drodynamic density and phase fluctuation operators to fi

r~r ,r 8!5ns2
1

2
d~r2r 8!1

1

4ns
^h~r !h~r 8!&

1ns^F~r !F~r 8!&, ~19!

to lowest order in the density and phase fluctuations. T
transformations carried out in Sec. II yield

^F~r !F~r 8!&5 (
k(k,k0)

akF f ~Ek!1
1

2Gexp@ ik•~r2r 8!#

~20!

and a similar expression for̂h(r )h(r 8)&, with f (Ek)
5^ak

†ak&5@exp(Ek /kBT)21#21. The final result is

r~r !5ns1 (
k(k,k0)

H S 1

4nsak
1nsakD

3F f ~Ek!1
1

2G2
1

2J exp@ ik•r #, ~21!

where r 5ur2r 8u. This expression has the same form as
the standard Bogoliubov approach, except that the super
densityns replaces the condensate densityn0. Equation~13!
can be reobtained by an approximate resummation of
phase fluctuations to infinite order.

We write the density matrix in the form5,8

r~r !5 r̃~r !exp@2L~r !#, ~22!

whereL(r ) collects all the terms that are responsible for t
slow asymptotic decay ofr(r ). We find

L~r !5E d2k

~2p!2
@12cos~k•r !#

Vk

2Ek
@2 f ~Ek!11#

5
r s

4 S n

ns
D 1/2E

0

`

dx
12J0~xR!

xg~x!

3H 11
2

exp@2~ns /n!1/2g~x!/~r sT!#21
J ~23!

from Eq. ~21!, where R52@ns /(nrs
2)#1/4(r / l 0) and g(x)

5(11x4)1/2. We also find
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1

nE d2k

~2p!2
@12cos~k•r !#

3H k2

2mEk
F f ~Ek!1

1

2G2
1

2J
512r sS ns

n D 1/2E
0

`

xdx@12J0~xR!#H x2

2g~x!

1
x2

g~x!~exp@2~ns /n!1/2g~x!/~r sT!#21!
2

1

2J .

~24!

In these equations the temperature is scaled in units
e2/kB .

A power-law decay ofr(r ) can now be demonstrated an
lytically from Eqs. ~22!–~24!. The functionJ0(xR) in the
integrand in Eq.~23! provides a lower limit of integration
going asr 21, while the upper limit is set by the cut-off wav
numberk0'1/L for the applicability of the hydrodynamic
Hamiltonian. The asymptotic calculation of the integra
yields

r~r !→ r̃0~r /L !2a, ~25!

where the value of the exponenta is given by Eq.~18! and
we have defined

r̃05 lim
r→`

r̃~r !. ~26!

In the numerical calculations that are reported in the n
section we find that the ratior̃0 /n becomes larger than unit
at very low temperature, so that this quantity cannot be
terpreted as a quasicondensate fraction.

FIG. 1. The superfluid fractionns /n as a function of reduced
temperatureT/Tc for four values of the coupling strengthr s . In
absolute units the critical temperatureTc takes the values 136.9
41.3, 8.9, and 2.9e2/kB for r s going from 0.1 to 1.
8-4
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FIG. 2. The one-body density matrixr(r )/n as a function of distancer ~in units of the reference lengthl 0) in the 2D-BCF. Left: atT
50 for r s50.1, 0.2, 0.5, and 1~from top to bottom!. Right: on a logarithmic scale, the same numerical results are shown as dots wh
predictions from the Green’s function approach are shown as continuous lines.
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V. NUMERICAL RESULTS

In this section we report some illustrative calculations
the one-body density matrix of the 2D-BCF, based on E
~22!–~24!. We need for this purpose to first evaluate the
perfluid density as a function of temperature, for which
adopt the Landau theory based on damping of superfl
flow by emission of collective excitations. That is,5,9

ns

n
512~2nmkBT!21(

kÞ0
k2

exp~bvk!

@exp~bvk!21#2
~27!

with b51/(kBT) andvk given by Eq.~11!. This yields
05453
f
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ns

n
512

2

TE0

`

dx
x3exp@2g~x!/~r sT!#

$exp@2g~x!/~r sT!#21%2
~28!

with T in units of e2/kB . The results for the superfluid frac
tion ns(T)/n are shown in Fig. 1 for some values ofr s in the
weak-coupling regime.

It is worth noting that, as a consequence of the behav
shown by the superfluid fraction in Fig. 1, the single-partic
excitation energyEk given in Eq.~9! starts forT50 at the
collective excitation energyvk given in Eq. ~11! and de-
creases with increasing temperature until its leading lo
walength term vanishes at the critical temperatureTc . The
plasmon gap in the collective excitation spectrum of Eq.~11!
s from

FIG. 3. The one-body density matrixr(r )/n as a function of distancer ~in units of l 0) in the 2D-BCF. Left: atr s50.1 forT50, 10, 20,

and 40e2/kB ~from top to bottom!. Right: on a logarithmic scale, the same numerical results are shown as dots while the prediction
the Green’s function approach are shown as continuous lines.
8-5
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remains instead constant with increasing temperature.
behavior of the plasmon gap in the single-particle spectr
of a charged boson fluid has previously been found in the
case within the Hartree-Fock-Bogoliubov approximation18

with small deviations from the predictions of the Gavor
Nozières theorem being present atT50.

Our results for the one-body density matrix are repor
in Figs. 2 and 3, first atT50 for several values ofr s ~Fig. 2!
and then atr s50.1 for several values ofT ~Fig. 3!. In each of
these figures the right-hand panel shows a logarithmic plo
the numerical results forr(r )/n and a linear fit based on Eq
~25!, using the value of the exponenta given by Eq.~18!.
The lengthL in Eq. ~25!, which is not determined by the
asymptotic calculation, appears in a logarithmic scale as
additive constant and has been obtained from the linear
ting procedure at larger. Evidently the power-law prediction
is in excellent agreement with the numerical results over
extended range of values for the reduced distance.

VI. SUMMARY

In summary, we have studied superfluidity in a weak
interacting 2D fluid of charged bosons with ln(r) interactions
as a function of temperature, using a hydrodynamic red
tion of the Hamiltonian that has allowed us to treat the s
tem as a superfluid in the absence of a Bose-Einstein
densate at zero temperature. In the Appendix we show
the absence of a condensate atT50 also follows for this
system from the standard Bogoliubov approach.

We have shown that the assumption of complete supe
idity for this system atT50 agrees with the analysis o
Magro and Ceperley2 on the power-law decay of the one
body density matrix. In turn, computer studies at finite te
perature would allow one to determine the behavior of
superfluid fraction and provide a full quantitative test of o
theory.
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APPENDIX: ABSENCE OF BOSE-EINSTEIN
CONDENSATION IN THE 2D-BCF

We show here that within the Bogoliubov approx
mation13 there is no Bose-Einstein condensate in the 2
BCF both at zero and at finite temperature. In contrast, in
2D fluid of charged bosons withe2/r interactions a conden
sate is present atT50 and the notion of quasicondensatio
can be used atTÞ0.12

If we assume that the condensate fractionn0 /n is non-
zero, then it is easy to show that the expression~9! for the
single-particle excitation energy becomes

Ek5A2pn0e2

m
1S k2

2mD 2

~A1!

in the Bogoliubov approach. The corresponding equation
the condensate fraction reads

S 12
n0

n D S n0

n D 21/2

5
r s

2 E0

`

xdxH h~x!

2x2g~x!
21

1
@x2g~x!#21

exp@2~n0 /n!1/2g~x!/~r sT!#21
J ,

~A2!

whereh(x)5112x4.
The first term in the curly brackets on the RHS of E

~A2! gives a contribution of orderx21 to the integrand as
x→0, and hence the integral diverges. We conclude t
n0 /n must vanish at any temperature, in agreement with
general sum-rule argument given by Magro and Ceperl2

The propertyn0 /n50 is consistent, on the other hand, wi
the Bogoliubov–des Gennes equations for the Bogoliub
amplitudesuk andvk . In this case these equations yieldvk
50 anduk51, so that the particle density is related to t
~now finite! chemical potential by

n5 (
kÞ0

H expFbS k2

2m
2m D G21J 21

. ~A3!
for
he
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