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Single-particle density matrix and superfluidity in the two-dimensional Bose Coulomb fluid
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A study by Magro and Ceperldfhys. Rev. Lett73, 826 (1994] has shown that the ground state of the
two-dimensional fluid of charged bosons with logarithmic interactions is not Bose condensed, but exhibits
algebraic off-diagonal order in the single-particle density mat(ix). We use a hydrodynamic Hamiltonian
expressed in terms of density and phase operators, in combination wiguanrule on the superfluid fraction,
to reproduce these results and to extend the evaluation of the density matrix to finite temperathie
approach allows us to treat the liquid as a superfluid in the absence of a condensate. The algebraic decay of the
one-body density matrix is due to correlations between phase fluctuations, and we find that the exponent in the
power law is determined by the superfluid densityT). We also find that the plasmon gap in the single-
particle energy spectrum at long wavelengths decreases with incr8aamjcloses at the critical temperature
for the onset of superfluidity.
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I. INTRODUCTION recover by this approach the results of Magro and Ceperley
for the power-law decay op(r) in the ground state and

The fluid of point charges interacting via a logarithmic obtain their extension to finite temperature. Starting from a
Coulomb potential in a strictly two-dimensionéD) space  superfluid state for the 2D-BCF at=0, we find that in the
is a basic model in statistical mechanics with main relevanceveak-coupling regime a slowly declining superfluid fraction
to the theory of vortex fluctuations in superfluid or supercon-persists as the temperature is raised. In fact, the superfluid
ducting films! Magro and Ceperléyhave discussed the fraction enters to determine the value of the exponent for the
bosonic ground state of this model system. They first used power-law decay ofp(r). The presence of the superfluid
sum-rule argument from the work of Pitaevskii and density in the power-law decay of the density matrix in a
Stringar? to show that the zero-point fluctuations associatecheutral 2D Bose gas was already argued by PSpov.
with long-wavelength plasmons rule out the presence of a Our present progress in understanding the properties of
Bose-Einstein condensate even at zero temperature. Thelye 2D-BCF borrows from the theory of a quasicondensate
proceeded to study the single-particle density mapx) state in the neutral 2D Bose gas, that was developed by a
both by sum-rule arguments and by quantum Monte Carlmumber of authors~*'and has also been used within a Bo-
(QMC) methods and showed that the ground state exhibitgoliubov approach to describe the 2D fluid of charged
algebraic off-diagonal long-range order: the decayp@f) bosons withe?/r interactions:? In essence, the local proper-
with increasing distance is through the power law "%, ties of a quasicondensate, over distances that are shorter than
wherer ¢ is a coupling strength parameter determined by thehe phase correlation length, are the same as those of a genu-
areal densityn. ine condensate. However, in our treatment of the 2D-BCF we

As Magro and Ceperléemphasize, although the ground dispense with the notion of a quasicondensate fraction and
state of the 2D Bose Coulomb flui@D-BCF is not con-  base our arguments on thsum rule for the superfluid frac-
densed, superfluidity is nonetheless possible. If the model igon.
indeed superfluid, it may then provide an ideal system in The paper is organized as follows. In Sec. Il, after intro-
which to study the differences between superfluidity andducing the Hamiltonian of the charged fluid with its neutral-
Bose-Einstein condensation. izing background and recalling tHfesum rules for a super-

A number of structural and collective dynamical proper-fluid from the work of Hohenberg and Martinwe present
ties have been calculated for the 2D-BCF within approxi-the hydrodynamic Hamiltonian as expressed in terms of den-
mate theoretical schemé$ut no other studies seem to have sity and phase operators. Following M&wge diagonalize it
been made of its momentum distribution and one-body denin the momentum representation and obtain a dispersion re-
sity matrix beyond that of Magro and Ceperley. In thelation for single-particle excitations which has the Bogoliu-
present paper we evaluate these properties for the chargédv form but contains the superfluid density in place of the
fluid in the weak-coupling regime corresponding to highcondensate density. In Sec. lll we use the hydrodynamic
density, by adopting a hydrodynamic reduction of its Hamil-Hamiltonian to determine the power-law decay of the one-
tonian as previously proposed by Popéar 2D neutral Bose  body density matrix from the behavior of the correlations
fluids (see also Merfy). A crucial point of our approach isto between phase fluctuations entering the single-particle
allow for a difference between the long-wavelength disper-Green’s function. In Sec. IV we evaluaggr) by using the
sion relations of single-particle and collective excitations atresummation method adopted by other authdts deal with
finite temperaturdl, through the use of distindtsum rules  a fluid with a quasicondensate, and show that the power-law
on the superfluid and the total particle number densfte.  decay obtained from the single-particle Green’s function is
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recovered. We then report in Sec. V numerical results for the _ : Ty — o I
superfluid density from Landau’s formula and for the one- YIN=VpOexdi® ()], i =exd ~id(1)] p(l’()4)

body density matrix as functions of temperature at various

values of the coupling strength in the weak-coupling re- for the components of the field operators which correspond
gime. Section VI concludes the paper with a brief summaryto wave numbek below a cut-offk,.> Here;}(r) and®(r)

In an Appendix we show that the standard Bogoliubovare the particle density and phase operators. The transformed
approacf? yields an independent proof that the condensatedamiltonian can be brought to a quadratic form by consid-

fraction is zero in the ground state of the 2D-BCF. ering only small fluctuations ip(r) around a constant value

Po
II. HYDRODYNAMIC HAMILTONIAN ~

AND SINGLE-PARTICLE EXCITATIONS p(r)=po+ n(r). (5)

The 2D-BCF is described by the Hamiltonian A term linear in7(r) can be dropped by setting=V,_q
=0, and we obtain the hydrodynamic Hamiltonian
V2
H=fdr )| —s=— } r
v 2m o Hh:f dr{(8mny) ~*[V 5(r)]*+ (ng2m)[V®(r)]%}

+;j drjdr'wr)w*(r')vur—r’|>w<r'>w<r>

1

W Here, the constaniy has been taken equal m in order to
(having seth =1), wherey(r) is the field operatory is the  satisfy the sum rul€3), as we shall explicitly demonstrate at
chemical potential an¥(r) is the interaction potential. This the end of this section. As usual, the superfluid velocity is
is the solution of the 2D Poisson equatiovi?V(r) Vs=V®(r)/m. We stress that the Hamiltonian in E¢p)
=—2me?5(r), yieldingV(r) = —e?In(r/ly) wherel y is aref-  describes only long-wavelength fluctuations of small ampli-
erence length that we shall take las- (me?) ~ 2. The Fou- tude in the superfluid density and velocity field.
rier transform of the potential i¥/,=2me*k?, and in the The Hamiltonian(6) can be diagonalized by first expand-
following we shall setV,_,=0 on account of a uniform ing the density fluctuation and phase operators in the form
background ensuring global charge neutrdfftfhe coupling
strength is measured by the dimensionless paranreter _ ; _ ;
which is defined by ;= (2me*/mn)Y2, "(r)_k(;ko) Aexplik-r), q)(r)_k(.;ko) P-explik-r),

A special role will be played in the following by a sum @
rule involving the superfluid densitys. We first recall that
the usuaf-sum rulé® involving the particle density can be
recast through the continuity equation into a sum rule on the

longitudinal current-current response functigm(k, ), Hp= 2 H(kZ/gm %)+%VK}QKQ|<
k(k<kg)

1
+§f drfdr’V(|r—r’|)r;(r)77(r’). (6)

which yields

* dw Imy;;K,w) n

f_oc7 o m @) +(nsk2/2m)pkp—k]- 8
For a charged fluid this is equivalent to the well-known plas-We — next set q=(2e) *¥a+a’,) and p_y
mon sum rule on the longitudinal electrical current density.= —i a,(2a,) ~Y3(a,—a’,) with [ak,al,]z Sk » Where
In addition to Eqg.(2), a sum rule involving the response a=2mE./(nk? and

function of the superfluid velocityvs holds in a

superfluid!*> which reads 2mnge’ [ k?\?
Ey= tom 9
(K.w) m 2m
% d Iva v W 1 L .
Iimj e (3)  This finally yields
kod — T [0} mng
i i Ho= > Eajay. (10)
The role of this relation as a long-wavelendtsum rule on h ko) kK

the superfluid response becomes evident from its similarity

to Eq.(2) when it is rewritten as a sum rule for the superfluid Equation(9) has the same form as the Bogoliubov spectrum

particle current densitys=ngvs. for a weakly coupled charged Bose gas, with the superfluid
We are now ready to proceed to a hydrodynamic reducdensityng taking the place of the condensate density. It will

tion of the Hamiltonian(1), following the work of Popov  be used in the next section as the dispersion relation of

and Men§ on neutral superfluids. This is obtained by mak- single-particle excitations in the evaluation of the phase-

ing the transformation phase correlations from the single-particle Green’s function.
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Equation(9) should also be contrasted with the dispersion 1 )
relation of collective excitations, which within a weak- 5([@017)—‘1)(&,71)])
coupling theory is

KeT Vi
— = — |exdi(k-r— o7

@k 27an:e <2k_m) (12) 2 k(gk0)§w2+nsvkk2/ml i !

—exi(k-r1—wr)]2 (15)

This relation tends to the 2D plasma frequenay,

= (2mwne?/m)*? at long wavelengths, in accord with the sum
rule reported in Eq2). Notice that in the limifT—0, where
we expect thabs—n, Egs.(9) and(11) give the same result.
According to the Gavoret-Nozies theorent® single-particle
and collective excitations coincide at long wavelengths in a ~([@(r, 1) —D(r1,m)]?)
Bose-condensed fluid at zero temperature. 2

The summation over Matsubara frequencies in @) can
be carried out explicitly forr;=7", and forr=|r—ry|—o
we find

We conclude this section by showing that the sum (8Je rol )\ Y2 (no/m)¥2| r1Ldk
is satisfied in our approach. The response function = _5(_) Cot%( 5—)f —[1-Jo(kn)].
Xow (K, @) for the superfluid velocity is related to the phase- 41ng Trs wr K
phase response by, , (k,®)=k?x,4(k,)/m?. At long (16)

wavelengths we get from E¢g) Here, the temperatur€ is in units ofe?/kg, L is a length

scale of order X, andJy(x) is the zero-order Bessel func-

im (K, )= K?V) 1 _ 1 tion. Finally, the expression for the mean-square phase fluc-
Pt ELERA 2m?Q),, w—Qptie o+Q,tie)’ tuation has the form
12
1
wheree =0" and€),= (27ne?/m)*2. Insertion of Eq(12) §<[(D(rv7')_q)(r1-7'l)]2>—>aIn(r/L)1 17)
into the integral on the left-hand sideHS) of Eq. (3) leads
immediately to the desired result. where the quantityr is given by
1/2 1/2
. ASYMPTOTIC BEHAVIOR OF THE SINGLE- a= rj(ﬂ) r(M (18
PARTICLE GREEN'S FUNCTION 4\ng Trs

We show in this section that the one-body density matrixin conclusion, the one-body density matrix of the 2D-BCF
of the 2D-BCF at temperatufEbelow a critical temperature decays to zero with the power law ¢ as a consequence of
T. has a power-law decay, as a consequence of the correlthe logarithmic correlations between phase fluctuations. In
tions between phase fluctuations in the superfluid. We followthe limit of zero temperature the decay follows the law
the method proposed for the neutral 2D gas in the work of "4, which is the result found in the QMC study of Magro
PopoY (see also Fisher and Hohenb®rgvhich derives the and Ceperley.
power law by evaluating the single-particle Green’s function Having reached their result from the finite-temperature
at low momenta from the mean-square fluctuations of thdormula given in Eq.(18), we can draw two main conclu-
phased(r, 7). sions:(i) the off-diagonal order reported in the QMC work of

More precisely, the phase fluctuations determine théMlagro and Ceperléyproves that the 2D-BCF is a superfluid
single-particle Green’s functio®(r,r;r,,7;) in the low- atT=0 and(ii) a quantum simulation study of the one-body
momentum regimébelow the cutoff momenturk,) accord- density matrix at finite temperature would provide for the
ing to 2D-BCF an alternative approach to the superfluid density, to

be compared with the methods that are currently available
1 for its calculation(see, e.g., the method based on the relation
G(r,r;rl,rl)ocexp[ - —([(I)(r,r)—@(rl,rl)]z)}. between the superfluid density and the mean square winding
2 #). Noti Iso that, as discussed in the book of
(13) numbe 5). otice a , in
Forster*® the equivalence between the definition of super-

From Eq.(19.16 in Chap. 6 of Popov’s boGkand using the ~ fluid density that is provided by the single-particle excitation
dispersion relation for single-particle excitations given in Eq.SPectrum and the definition that may be extracted from trans-
(9) we find verse current correlations and rotation experiments remains a

question of continued interest.
As a final point, we should remark that our calculation has

(®(K,0)D(—K,—w))— Vi (14) not included the possibility of vortex formation in the super-
0?4+ ngVik?/m fluid as the temperature is raised towards the critical tem-
perature for superfluidity. Equatioii8) should therefore be
so that expected to become invalid nedg.
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IV. ALTERNATIVE APPROACH TO THE ONE-BODY 1
DENSITY MATRIX
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We present in this section an alternative calculation of the
asymptotic behavior of the one-body density matrix, follow-
ing an approach which is closely akin to the resummation
method adopted in the book of Popaand in the work by
Kagan and co-workefgor neutral 2D Bose fluids in a qua- 0.6 -
sicondensate state. €

We start from the definitiom(r,r’)= (4" (r)¥(r')) and <
use the expression of the field operators in terms of the hy- 04
drodynamic density and phase fluctuation operators to find

(11 =g 3 81—+ 2 (D) (1) T 1
r,r'y=ng—=48(r—r —(n(r)n(r
p S 2 4n5 77 77
+ng(P(r)d(r')), (19 0 . .
0 0.2 0.4 0.6 0.8 1 1.2
to lowest order in the density and phase fluctuations. The T,

transformations carried out in Sec. Il yield ) i )
FIG. 1. The superfluid fractiomg/n as a function of reduced

temperaturel /T, for four values of the coupling strength. In
exdik-(r—r")] absolute units the critical temperatufe takes the values 136.9,

1
F(EQ+ =
(B 2 41.3, 8.9, and 2.8%/kg for r going from 0.1 to 1.

<q><r><b<r'>>=k(2 ay

k<ko)

(20

P 1 d%
and a similar expression fo{n(r)n(r')), with f(Ey) wzl——J’ 2[1—cos(k-r)]
=(ala,)=[expEy/kgT)—1] 1. The final result is n nJ (2m)
1 x[ < [1‘(E)+1 1]
p(r)=nst 2> [(—+nsak> 2mg | 2| 2
k(k<kg) | \4Nsary
1] 1 1 (ns)l’zr dX{1-Jo(XR)] <
=1-rg — X —Jo(x —
X[ H(E)+5 —E}exqik.r], (21) *\'n 0 0 2g9(x)

2 1
wherer =|r—r’'|. This expression has the same form as in + X1/ - —},
the standard Bogoliubov approach, except that the superfluid g(x)(exg 2(ng/n)¥2g(x)/(rsT)]—-1) 2
densityn replaces the condensate densigy Equation(13) (24)
can be reobtained by an approximate resummation of the
phase fluctuations to infinite order. Ir; these equations the temperature is scaled in units of

We write the density matrix in the forhd e“/kg.

A power-law decay op(r) can now be demonstrated ana-
_~ _ lytically from Egs. (22)—(24). The functionJo(xR) in the
p(r)=p(ryexg —A(r)], (22) integrand in Eq.(23) provides a lower limit of integration
going asr 1, while the upper limit is set by the cut-off wave
numberky~1/L for the applicability of the hydrodynamic
Hamiltonian. The asymptotic calculation of the integrals

whereA(r) collects all the terms that are responsible for the
slow asymptotic decay gi(r). We find

yields
Ar)— d?k e K o _
<r>—f(277)2[1—003 g, [ EI+] p(1)=pol(r/L) 7, (25
o[ n\Y2 e 1-35(xR) where the value of the exponeatis given by Eq.(18) and
- _S(_> j dx—2 2 we have defined

4\ns/ Jo xg(x)

5 po= lim p(r). (26)

(23 . : ,
exf 2(ns/n)Y2g(x)/(rsT)]—1 In the numerical calculations that are reported in the next

section we find that the ratig,/n becomes larger than unity
from Eq. (21), where R=2[n,/(nr?)]1*4r/l,) and g(x) at very low temperature, so that this quantity cannot be in-
=(1+x%*2 We also find terpreted as a quasicondensate fraction.
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FIG. 2. The one-body density matrp(r)/n as a function of distance (in units of the reference lengih) in the 2D-BCF. Left: afl
=0 forry,=0.1, 0.2, 0.5, and 1from top to botton. Right: on a logarithmic scale, the same numerical results are shown as dots while the
predictions from the Green'’s function approach are shown as continuous lines.

V. NUMERICAL RESULTS Ne me x3exp[29(x)/(rST)] 8

In this section we report some illustrative calculations of n 1= TJo X{ex;{Zg(x)/(rsT)]— 1)2

the one-body density matrix of the 2D-BCF, based on Egs.

(22)—(24). We need for this purpose to first evaluate the suWwith T in units ofezlkB. The results for the superfluid frac-
perfluid density as a function of temperature, for which wetion ng(T)/n are shown in Fig. 1 for some valuesrfin the
adopt the Landau theory based on damping of superfluitveak-coupling regime.

flow by emission of collective excitations. That’ig, It is worth noting that, as a consequence of the behavior
shown by the superfluid fraction in Fig. 1, the single-particle

excitation energye, given in Eq.(9) starts forT=0 at the

E=1—(2nkaT)‘12 kZM (27)  collective excitation energysy given in Eq.(11) and de-
n —172 ith i i il i i -
k=0 [expBwy)—1] creases with increasing temperature until its leading long
walength term vanishes at the critical temperaflige The
with 8=1/(kgT) and w given by Eq.(11). This yields plasmon gap in the collective excitation spectrum of @4)

1

1
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p(r)/n
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~
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p{ryn
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0.5 L L L AR | M|
0 5 10 15 20 1 10 100

g tly

FIG. 3. The one-body density matrixr)/n as a function of distance(in units ofly) in the 2D-BCF. Left: ar,=0.1 forT=0, 10, 20,
and 40e?/kg (from top to bottom. Right: on a logarithmic scale, the same numerical results are shown as dots while the predictions from
the Green'’s function approach are shown as continuous lines.
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remains instead constant with increasing temperature. This APPENDIX: ABSENCE OF BOSE-EINSTEIN
behavior of the plasmon gap in the single-particle spectrum CONDENSATION IN THE 2D-BCF
of a charged boson fluid has previously been found in the 3D
case within the Hartree-Fock-Bogoliubov approximatibn,
with small deviations from the predictions of the Gavoret-
Nozieres theorem being presentB&0.

Our results for the one-body density matrix are reporte
in Figs. 2 and 3, first af =0 for several values af; (Fig. 2) 12
and then at ;= 0.1 for several values df (Fig. 3). In each of can be used ar+0. : .
these figures the right-hand panel shows a logarithmic plot of If we assume that the condensate fractigyin is non-
the numerical results fgs(r)/n and a linear fit based on Eq. Z€ro, then.|t IS easy '.‘O show that the express@nfor the
(25), using the value of the exponent given by Eq.(18). single-particle excitation energy becomes

We show here that within the Bogoliubov approxi-
mationt® there is no Bose-Einstein condensate in the 2D-
BCF both at zero and at finite temperature. In contrast, in the
02D fluid of charged bosons wite?/r interactions a conden-
sate is present &i=0 and the notion of quasicondensation

The lengthL in Eq. (25), which is not determined by the o2 K22
asymptotic calculation, appears in a logarithmic scale as an Ex= \/ 0 — (A1)
additive constant and has been obtained from the linear fit- m 2m

ting procedure at large Evidently the power-law prediction i, the Bogoliubov approach. The corresponding equation for
is in excellent agreement with the numerical results over aghe condensate fraction reads

extended range of values for the reduced distance.

No\(no\ 2 rq(> h(x)
VI. SUMMARY 1-—l =] =5 xdxj—5——~—
n/in 2 Jo 2x2g(x)
In summary, we have studied superfluidity in a weakly
interacting 2D fluid of charged bosons withip{nteractions [X*g(x)]~*
as a function of temperature, using a hydrodynamic reduc- exd 2(ne/n)¥2g(x)/(rT)]—1 '
tion of the Hamiltonian that has allowed us to treat the sys- s
tem as a superfluid in the absence of a Bose-Einstein con- (A2)

densate at zero temperature. In the Appendix we show th%hereh(x)=1+2x4.
the absence of a condensateTat0 also follows for this
system from the standard Bogoliubov approach.

We have shown that the assumption of complete superfl
idity for this system atT=0 agrees with the analysis of

The first term in the curly brackets on the RHS of Eqg.
(A2) gives a contribution of ordex ! to the integrand as
W0, and hence the integral diverges. We conclude that

M 4c iéon th law d £ th ny/n must vanish at any temperature, in agreement with the
b %gr% an i ep?r_ Iont € power-taw te((j:_ay Ot f. gtotne- general sum-rule argument given by Magro and Cepérley.
ody density matrix. in rm, computer studies at finité tem-g, propertyng/n=_0 is consistent, on the other hand, with

peraturg WOUld. allow one t_o determine th? pehavior of thqhe Bogoliubov—des Gennes equations for the Bogoliubov
superfluid fraction and provide a full quantitative test of ouramplitudesuk andu, . In this case these equations yield

theory. =0 anduy,=1, so that the particle density is related to the
(now finite) chemical potential by
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