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Domain wall renormalization group study of the XY model with quenched random phase shifts
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The XY model with quenched random disorder is studied by a zero-temperature domain wall renormaliza-
tion group method in two dimensions~2D! and three dimensions~3D!. Instead of the usual phase representa-
tion we use the charge~vortex! representation to compute the domain wall, or defect, energy. For the gauge
glass corresponding to the maximum disorder we reconfirm earlier predictions that there is no ordered phase in
2D but an ordered phase can exist in 3D at low temperature. However, our simulations yield spin stiffness
exponentsus'20.36 in 2D andus'10.31 in 3D, which are considerably larger than previous estimates and
strongly suggest that the lower critical dimension is less than three. For the6J XY spin glass in 3D, we
obtain a spin stiffness exponentus'10.10 which supports the existence of spin glass order at finite tempera-
ture in contrast with previous estimates which obtainus,0. Our method also allows us to study renormaliza-
tion group flows of both the coupling constant and the disorder strength with a length scaleL. Our results are
consistent with recent analytic and numerical studies suggesting the absence of a reentrant transition in 2D at
low temperature. Some possible consequences and connections with real vortex systems are discussed.
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I. INTRODUCTION
The XY model with quenched random phase shifts a

model for a superconducting glass has been intensively
vestigated over the last decade, focusing on the so-ca
gauge glass model which corresponds to the case with m
mal disorder. Since a transport current exerts a force o
flux lattice, it tends to move in response which causes di
pation of the current. The existence of disorder, which
stroys the flux lattice structure, is essential to pin the vorti
in order for a superconducting phase to exist in a highTc
superconductor.1–3Although there exists no proof whether o
not the gauge glass and vortex glass are in the same un
sality class, it is of interest as the simplest model of a dis
dered superconductor and is still not understood despite
the effort expended on it.

From numerical4–9 and experimental10 studies, it is be-
lieved that the gauge glass has no ordered phase at any
temperature in two dimensions~2D!. In three dimensions
~3D!, numerical domain wall renormalization grou
~DWRG! studies11,12 indicate that the lower critical dimen
sion seems to be close to three. However the situation is
conclusive, since the simulations are limited to small syst
sizes. Finite temperature Monte Carlo studies yield a tra
tion temperatureTc /J;O(1),4,5,13–15 which is difficult to
reconcile with DWRG studies5,6,8,9 as these studies impl
that the lower critical dimension for superconducting gla
order is close to three. Experimentally there is also so
evidence for a finite temperature phase transition to a su
conducting glass phase.16,17

The Hamiltonian of theXY model with random quenche
disorder can be written as

H5(̂
i j &

V~u i2u j2Ai j !, ~1!

whereV(f) is an even, 2p periodic function off with a
maximum atf5p and minimum atf50, usually taken as
0163-1829/2002/66~5!/054536~14!/$20.00 66 0545
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V(f i j )52Ji j cos(f i j ). The sum is over all nearest-neighb
pairs of sites and the coupling constants,Ji j , are assumed
uniform, Ji j 5J.0. The random bond variablesAi j , which
are responsible for the randomness and frustration, are ta
to be independent and uniformly distributed in (2ap,ap#
with 0<a<1. For a gauge glass,u i is the phase of the
superconducting order parameter at sitei of a square lattice
in 2D and a simple cubic lattice in 3D. The random bo
variablesAi j are taken to correspond to maximal disord
with a51. An external field applied to an extreme type-
superconductor induces a uniform componentAi j

0

5(2p/F0)* i
jA•dl where A is the vector potential of the

applied field andF05hc/2e is the quantum of flux. In this
work, we takeAi j

0 50, corresponding to zero applied field
Unless explicitly stated, we consider an unscreened sys
with a51 corresponding to maximal disorder. The Ham
tonian of Eq.~1! also describes theXY magnet with random
Dzyaloshinski-Moriya interactions18 and also a Josephson
junction array with positional disorder.19,20 These
studies18–20 showed that the existence of weak disordera
!1) does not destroy an ordered phase at intermediate
perature but predicts a reentrant transition to a disorde
phase at low temperature in two dimensions. However,
cent analytic21–25and numerical8 studies suggest the absen
of a reentrant transition and that there exists an ordered p
for T,Tc(a) whena,ac .

When the random bond variablesAi j are restricted to 0 or
p with equal probabilities, this model reduces to the6J XY
spin glass, which is believed to be in a different universa
class due to the additional reflection symmetry26 which is
absent in the case of uniformly or Gaussian distributedAi j .
An XY spin glass may have both spin- and chiral glass or
associated with rotational and reflection symmetries, resp
tively. It has been suggested that, in 2D and 3D, spin a
chiral variables decouple at long distances and or
independently,27–30 and the lower critical dimensions aredl
©2002 The American Physical Society36-1
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>4 for spin-glass order anddl,3 for chiral glass order.
However, the decoupling scenario contradicts the anal
studies on a ladder lattice,31 on a tube lattice,32 and on a 2D
lattice with a special choice of disorder.33 Recent numerica
simulations30 also suggestdl for a spin-glass order may b
close to three.

In this paper, we reinvestigate the possibility of an
dered phase at small but finite temperatureT by a numerical
DWRG,11,12 or defect energy scaling. The domain-wall
defect energy of the system is computed by using the Ha
tonian in the Coulomb gas~vortex! representation, which is
more convenient for numerical work as it eliminates sp
wave contributions to the energy. Although the conventio
DWRG method can handle only the scaling of the coupl
constantJ(L) at scaleL, which is proportional to the domain
wall or defect energy, our method enables us to study
flows of both the coupling constant and the disorder stren
A(L), at length scaleL.8 We apply this to the case of gener
disorder strength, 0<a<1. The outline of the paper is a
follows. In Sec. II we discuss the DWRG method and a
our strategy. In Sec. III, we explicitly perform the transfo
mation of the 3D Hamiltonian of Eq.~1! from the phase to
the Coulomb gas representation. Our numerical metho
explained in Sec. IV. Finally we discuss our numerical
sults in Sec. V and give a brief discussion of some of
effects of weak disorder,a,1, and of finite screening o
vortex-vortex interactions.

II. STRATEGY

The general idea behind a DWRG is to compute, anal
cally or numerically, the energyDE(L) of a domain wall in
a system of linear sizeL and fit this to a finite-size scaling
form

DE~L !;Lu, ~2!

whereu is a stiffness exponent, whose sign is of fundamen
importance. Ifu,0, DE(L) vanishes in the thermodynam
limit. The energy of the domain wall or defect excitatio
vanishes which implies that, forT.0, the probability of the
defectPL;e2DE(L)/kT→1 asL→`. This in turn implies that
the density of such defects is finite whenT.0 and there will
be no resistance to an infinitesimal applied force and
system has no order. This is analogous to the vanishing o
shear modulus in a liquid, the superfluid density in a sup
fluid or superconductor, and the spin stiffness constant in
isotropic magnet whenT.Tc . On the other hand, ifu.0,
such defects will have zero probability whenL5` and the
system will have finite stiffness and will be ordered at su
ciently smallT.0.

In a uniform system without disorder, the definition of th
energy of a domain wall of sizeL, DE(L), is intuitively
obvious. The first step is to find the ground-state~GS! energy
of a system of sizeL, which requires applying boundar
conditions~BC! which are compatible with the GS configu
ration. For a ferromagnet, this is straightforward to imp
ment as the GS configuration is known to be one with
spins parallel, and periodic BC are compatible with this.
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impose a spin domain wall perpendicular to thex̂ direction,
one simply changes the BC to antiperiodic alongx̂ and peri-
odic in the otherd21 directions. Then it immediately fol-
lows that

DE~L !5Eap~L !2Ep~L !;Ld2n, ~3!

wheren51 for an Ising model andn52 for a system with a
continuous symmetry such asXY and Heisenberg models.

One would like to use the same strategy forrandomsys-
tems described by Eq.~1!, as suggested by Anderson fo
Ising spin glasses.34 However, it is not so clear how to pro
ceed because, for a particular sample~realization of disor-
der!, neither the GS configuration nor compatible BC a
known so computing the defect energyDE(L) is problem-
atical. AssumingDE(L) can be calculated, the stiffness e
ponent is defined by the scaling ansatz

^DE~L !&;Lu, ~4!

where^•••& denotes an average over realizations of disord
To our knowledge, it is not known how to calculateanalyti-
cally either the GS energyE0(L) or the energyED(L) of the
system containing a defectrelative to this GSwhich means
that one must proceed numerically. A number of concept
and technical difficulties are apparent. The first, and m
important, is the technical problem of computing the ene
differenceDE(L) between the energies of the system subj
to two different BC. We ultimately want the disorder ave
aged defect energy^DE(L)&5^Ea(L)2Eb(L)& where
Ea(L) is the lowest energy of a particular sample subject
BC denoted bya andEb(L) with BC denoted byb. We need
the individual energiesEa(L) andEb(L) essentiallyexactly
because the uncertainty in^DE(L)& must be kept as small a
possible. Also, to our knowledge, there is no proof that
scaling ansatz of Eq.~4! is a correct description and, even
it is, the only thing we can be sure of isu<(d22)/2. All
results are based on fitting data to the scaling form of Eq.~4!
so one is attemptingboth to verify the scaling ansatz and t
estimate a numerical value ofu. For any conclusion to be
believable, the data must have both very small errors an
Eq. ~4! extremely well. The first requirement of highly accu
rate data is the most important as the estimate ofu depends
on this. Assuming thatEa(L) andEb(L) can be determined
exactly for each sample, thenDE(L) is also known exactly
for each sample and the errors in̂DE(L)& are
O(N21/2Ld21) whereN is the number of samples of sizeL in
d dimensions. If the energy minimaEa,b(L) are not found
exactly, a crude estimate of the errors inDE(L) is
O(N21/2Ld) but this is certainly too low as failure of th
algorithm to find the true minima because of being trapped
a metastable state of energyE.E0 will cause systematic
errors of unknown magnitude. Empirically, we find that th
can readily cause errors larger than^DE(L)& which makes
the data point useless. This is most likely to happen for la
L because the CPU time required grows uncontrollably, as
the errors, so the largeL data becomes unreliable. This tec
nical difficulty limits the accessible sizesL to small values as
one must keep errors in individual data points small.
6-2
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DOMAIN WALL RENORMALIZATION GROUP STUDY OF . . . PHYSICAL REVIEW B66, 054536 ~2002!
We are forced to conclude that the accessible sizesL are
limited by the necessity of finding essentially exact glob
energy minima of each of a numberN of samples subject to
certain, yet to be defined, BC. To our knowledge, there is
algorithm applicable to the systems of interest which w
find exact minima in polynomial time, such as the bran
and cut algorithm35 for the 2D Ising spin glass or numer
cally exact combinatorial optimization algorithms36 for
gauge and vortex glass models in the infinite screening lim
so we have to live with the fact that our problem is N
complete and the required CPU time explodes asL increases.
We use simulated annealing37,38 to estimate the lowest ene
gies, which seems considerably more efficient than sim
quenching toT50, but we are unable to go beyondL57 in
3D andL510 in 2D. We wish to extract the stiffness exp
nentu from the scaling ansatz of Eq.~4! with a single power
law and this makes sense only if the errors on individual d
points are very small and the fit to the assumed scaling f
is extremely good. In our opinion, the only sensible strate
is to obtain very accurate estimates of^DE(L)& for the lim-
ited sizesL which are feasible for the computer power ava
able.

In the phase representation of Eq.~1!, the configuration
space to be searched for the global energy minimaEa,b(L) is
rather large as the phasesu iP(0,2p# are continuous vari-
ables. Searching this space in finite time is not feasible
most of the allowed configurations of theu i are not even
local energy minima. It is well known that randomXY mod-
els with a Hamiltonian of Eq.~1! can be written in a Cou-
lomb gas ~CG! or vortex representation via a dualit
transformation40,41,33which leaves the partition function in
variant. This expresses the Hamiltonian in terms of charg
vortex configurations which arealready local energy
minima.42,43Thus, a reformulation of the Hamiltonian of Eq
~1! as a CG performs a partial minimization. A further min
mization of the CG Hamiltonian corresponds to search
the much smaller space of local minima. Reformulating
problem of Eq.~1! including the BC in CG language i
clearly a worthwhile exercise as it dramatically reduces
number of configurations over which we have to minimiz
despite introducing long-range Coulomb interactions
tween vortices. The transformation is carried out in Sec.
for the model of Eq.~1! in 3D.

The final problem is to define what is meant by a dom
wall and the BC needed to induce a wall in a finite system
sizeL in d dimensions. We imagine the system of Eq.~1! on
a torus in 2D or a hypertorus in 3D, which corresponds
imposing periodic BC in the phasesu i1Lêm

5u i whereêm is a

unit vector in the direction m5x,y, . . . ,d and i
5( i x , . . . ,i d) with i m5(1,2, . . . ,L). The phases at corre
sponding sites (i , j ) on opposite faces are coupled by som
interactionṼ(u i ,u j ,Ai j ) which may be regarded as definin
the BC. In principle, the GS is obtained by minimizing th
energy with respect to theLd bulk variablesu i and all forms
of Ṽ. This program is beyond our ability and we restr
ourselves to thoseṼ which induce a spin or chiral defec
which are related to the continuous and reflection symm
05453
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tries respectively. To impose a spin defect, we chooseṼ
5V(u i2u j2Ai j ). The plaquettes between the opposite fac
are indistinguishable from the others and play no spe
role. We therefore keep fixed the frustrationsf r
5(hrAi j /2p where the sum is over the bonds in a clockwi
direction of the elementary plaquette centered atr . We still
have the freedom to addDm to every bond in them direction
between opposite faces which imposes a global twistDm in
the phase around a loop circling the hypertorus in the dir
tion m. This is equivalent to a gauge transformationAi j
→Ai j 1Dm /L on every bondi j in the directionm. The low-
est energy,E0(Dm), is 2p periodic inDm with a minimum at
someDm

0 which depends on the sample. To induce a s
domain wall normal tox, one changes the twists from the
best twist~BT! valuesDm

0 →Dm
0 1pdm,x . The minimum en-

ergy subject to this constraint givesEsD(L), the energy of
the system of sizeL containing an extra spin defect. Not
that EsD>E0 for every sample butE0 is not necessarily the
absolute minimum as some other functional form ofṼ may
give a lower energy. However, even ifE0 is not the true GS
energy but is the energy of a state with some excitation fr
the GS, this method of inducing a spin defect ensures
any excitation in the BT configuration will also be present
the state with an extra spin domain wall so thatDEs

BT(L)
[EsD(L)2E0(L)>0 is not affected by these. It is conve
nient, but not necessary, to define the spin defect energy
twist of p from the BT valueDx

0 . This choice yields the
maximum defect energyDE(L). Any other choice 0,e
<p yields the same spin stiffness exponentus

BT defined by

^DEs
BT~L,e!&5A~e!Lus

BT
. ~5!

The sizee of the twist from the BT valueDx
0 affects only the

amplitudeA(e) which is a maximum ate5p.
A chiral domain wall is induced by imposing reflectiv

BC,28 which means that corresponding sites (i j ) on opposite
faces are connected by interactionsṼ5V(u i1u j2Ai j )
which is equivalent to a reflection of the spins about so
axis. In principle, one follows the procedure for a spin d
main wall to obtain the chiral defect energyDEc5EcD
2E0 whereEcD is the minimum energy of the system wit
these modified interactionsṼ connecting opposite faces
However, there is no reason to expectEcD.E0 as the BC
definingE0 may trap a chiral defect in some samples and
such cases, the modified interactionsṼ will cancel the chiral
defect to giveEcD,E0. This phenomenon has been observ
previously in numerical simulations of theXY spin glass.28,30

We therefore define the chiral defect energy asDEc
BT(L)

[uEcD(L)2E0(L)u and the chiral stiffness exponentuc
BT by

a finite-size scaling ansatz analogous to Eq.~5!,

^DEc
BT~L !&;Luc

BT
. ~6!

Note that the Hamiltonian of Eq.~1! is truly invariant under
reflection u i→2u i in the XY spin-glass case whenAi j
50,p as Ai j 56p are equivalent. The Hamiltonian with
uniform distribution ofAi j such as a gauge glass is not tru
6-3
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invariant under reflection which would also requireAi j →
2Ai j for the Hamiltonian to be invariant as it lacks the r
flection symmetry.

However, in anXY spin glass there are two possible typ
of order, spin glass order and a chiral glass order each
their own stiffness exponent of Eq.~5! and Eq.~6!. Recently,
an important prediction was made thatus5uc,0 for anXY
spin glass in dimensiond,dl wheredl is the lower critical
dimension.33 Although not rigorous, the arguments are ve
plausible and supported by analytic calculations on sim
one-dimensional systems in whichus5uc exactly.31,32There
is a notable lack of analytic results in this field with which
test numerical simulations and to our knowledge this is
only one existing at present. We have checked our nume
method ind52,dl and get agreement with the analytic pr
diction that us5uc520.3760.015 to within numerical
uncertainty.44 Assuming the conjecture33 is correct, this
agreement gives some confidence in our definition
domain-wall energies as discussed above and in our num
cal method ind53 using the CG representation. There is
analogous equality of the stiffness exponents in anXY spin
glass ford53.dl so we do not attempt to estimateuc in 3D
but concentrate on the spin stiffness exponentus . Also, at
present, we are unable to derive an expression for a
Hamiltonian with reflective boundary conditions ind53. All
previous work on theXY gauge glass5,6,8,9 and on theXY
spin glass28–30 using theT50 DWRG method have use
different definitions for domain wall energies. Minimizatio
with respect to the global twistsDm is omitted, the lowest
energy withDm50 is calledEp , and the lowest energy with
Dm5p is calledEap . Neither of these BC is compatible wit
the GS configuration, as both must induce some excita
from E0. Nevertheless, the spin defect energy is defined
DEs

RT[uEap2Epu and the spin stiffness exponentus
RT by

^DEs
RT~L !&;Lus

RT
. ~7!

We call this a random twist~RT! measurement since, for
particular sample, the twistsDm50,p are two arbitrary ran-
dom choices relative to the best twistDm

0 , which is the twist
which yields the lowest energy. In a uniform ferromagn
Dm

0 50 which is realized by periodic BC andDm
0 1p by an-

tiperiodic BC. For a particular realization of randomness,Dm
0

is the analog of periodic BC in a uniform ferromagnet.
Recently, the 2D Ising spin glass has been studied b

closely related defect energy scaling method.45,46 At first
sight, this is a much simpler system than theXY spin and
gauge glasses of this work but it turns out that the 2D Is
spin glass is a very subtle system whose properties dep
on the form of the distribution of couplings. In fact, the mo
recent study46 computes exact domain wall energiesDE for
systems withL<480 by means of a minimum-weight perfe
matching algorithm and finds thatu520.27 for a Gaussian
distribution of coupling strengths butu50 for a 6J distri-
bution, implying that 2D is the lower critical dimension an
Tc50.47,48 These results are similar to the earlier stud45

which was restricted toL<24 with a cluster Monte Carlo
technique and is less accurate.
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III. TRANSFORMATION TO COULOMB GAS
REPRESENTATION

In this section, we discuss the CG representation of
Hamiltonian of Eq.~1! including all finite-size contributions
This representation parametrizes the energy in terms of
topological excitations on a torus in 2D and a hypertorus
3D and includes global excitations which wind around t
whole hypertorus. These latter excitations are very import
for a finite system and are vital for finite-size scaling cons
erations when one is limited to small system sizesL. Also,
every allowed configuration of topological excitations is
local energy minimum,42,43 since spin-wave excitations de
couple from the vortex excitations, which allows us to obta
a more accurate estimate of energy minima than using
phase representation of Eq.~1! with the limited CPU time
available. The transformation of the two-dimensionalXY
model to the CG representation including boundary con
butions has been discussed in detail in earlier works.33,40,41In
this section, we use the method of Ney-Nifle and Hilhors33

to transform to the CG representation in 3D.
We first replace the potentialV(f) in Eq. ~1! by a piece-

wise parabolic potential which is equivalent to a Villain39

potential at T50. The partition function for aL3L3L
gauge glass model in 3D is

Z5E
2p

1p

)
i

du i (
$ni j %

expF2bJ(̂
i j
L ~u i j 2Ai j !

2, ~8!

whereu i j [u i2u j22pni j and whereni j 52nji are integers
on the bond̂ i j &. By choosing one phase,u0, as a reference
the partition function can be written as

Z5E
2p

p

du0E
2`

`

)̂
i j &

du i j exp@2bJ~u i j 2Ai j !
2#)

r

3dS (
hrxy

u i j mod2p D dS (
hryz

u i j mod2p D)
r

3dS (
hrzx

u i j mod2p D dS (
hx

u i j mod2p D)
r

3dS (
hy

u i j mod2p D dS (
hz

u i j mod2p D . ~9!

Here,r is the coordinate of the center of an elementary cu
of the original lattice which corresponds to the coordinate
a dual lattice site.r xy is the coordinate of the center of th
elementary plaquette in thexy plane and similarly forr yz
and r zx . Note that for a 2D system in thexy plane,r xy are
the dual lattice sitesr . Since each cube has six face
~plaquettes!, each of which is shared by two adjacent cub
to each dual lattice siter we assign three independe
plaquettes with centers atr xy , r yz , andr zx as shown in Figs.
1 and 2.(hrxy

u i j is the circulation ofu i j round the plaquette

in the xy plane of the cube atr ,

(
hrxy

u i j [@u i j x
1u j xi 82u j yi 82u i j y

#, ~10!
6-4
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and(hxu i j is the circulation ofu i j along an arbitrary loop in
the x direction around the hypertorus,

(
hx

u i j [ (
i x51

L

u ( i x ,i y ,i z),(i x11,i y ,i z)
, ~11!

where i m with m5x,y,z is the coordinate of the origina
lattice site andi y and i z are fixed. Other summations ar
defined similarly. Note that one needs to consider only o
global loop on the hypertorus in each direction. Circulatio
around other global loops can be expressed in terms of
culations around any three chosen global loops and aro
elementary plaquettes. It is clear from the definition ofu i j
and the periodic boundary condition imposed on theu i that
these circulations are integer multiples of 2p. Since the delta
functions can be rewritten as follows,

FIG. 1. An elementary cube of the original lattice with vertic
at i , j m . The dual lattice siter is at the center of the cube and th
faces associated withr have centers atr xy , r yz and r zx . The bond
variablesAi j m

, relabeled asAr
m , are associated with the cube atr .

FIG. 2. Graphical explanation of our symbols.r denotes the
center of the cube and light solid lines join original lattice sites
05453
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dS (
hrxy

u i j mod2p D 5
1

2p (
nr

z
52`

`

expF in r
z (
hrxy

u i j G ,
dS (

hx
u i j mod2p D 5

1

2p (
nx52`

`

expF inx(
hx

u i j G ,
the partition function now becomes

Z5Z0(
n

(
$nr%

E
2`

`

)̂
i j &

du i j exp@2bJ~u i j 2Ai j !
2#

3expF(
r

S in r
x (

hryz

u i j 1 in r
y (

hrzx

u i j 1 in r
z (
hrxy

u i j D G
3expF inx(

hx
u i j 1 iny(

hy
u i j 1 inz(

hz
u i j G , ~12!

where nr
m and nm with m5x,y,z are integers, and(n

[)m(nm
and ($nr%[)m(nr

m. The sum( r is over the dual

lattice sitesr at the centers of the elementary cubes andZ0 is
an unimportant constant. To perform the integrations o
$u i j %, we choose the three global loops around the hyperto
as shown in Fig. 3. To deal with these global loops ma
ematically, we introduce the following quantities,

d r
x[H 1 if r5~x,1,1! with x51,2, . . . ,L,

0 otherwise,
~13!

similarly for d r
y and d r

z . For example, the cubes atr
5(x,1,1) have a part of the global loop in thex direction.

The definition ofAr
m associated with the cube atr is also

shown in Fig. 1. As the plaquettes, one can assign th
independentAr

m to each cube. After relabelingAi j by Ar
m ,

performing the integrations in Eq.~12! overu i j , the partition
function becomes

Z5Z0(
n,nr

expF2
1

4bJ (
r

(
a

$~“3nr !a1d r
ana%2G

3expF2 i(
r

(
a

$~“3nr !a1d r
ana%Ar

aG . ~14!

FIG. 3. TheL3L3L system is represented by a cube. The th
lines are our choices of the three global loops around the wh
system.
6-5
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We use the following notation for the discrete derivative,

~“3nr !x[~nr
y2nr2 ẑ

y
!2~nr

z2nr2 ŷ
z

! ~15!

and similarly for other components of“3nr . Note that,
whenr5(1,y,z), thenr2 x̂5(L,y,z) due to periodic bound-
ary conditions, and similarly forr2 ŷ andr2 ẑ. Applying the
Poisson-summation formula tonr

m ,

(
n52`

`

f ~n!5 (
q52`

` E
2`

`

due2p iquf ~u!, ~16!

the partition function of Eq.~14! becomes

Z5Z0(
n

(
$qr%

E
2`

`

)
r

durexpF2p i(
r

qr•urG
3expF2

1

4bJ (
r

(
a5x,y,z

$~“3ur !a1d r
ana%2G

3expF2 i(
r

(
a5x,y,z

$~“3ur !a1d r
ana%Ar

aG . ~17!

It is convenient to change integration variables tov r
m to make

Eq. ~17! more symmetric,

v r
x[ur

x2
y

2L
nz1

z

2L
ny ,

v r
y[ur

y2
z

2L
nx1

x

2L
nz , ~18!

v r
z[ur

z2
x

2L
ny1

y

2L
nx ,

where r5(x,y,z). The partition function of Eq.~17! now
becomes

Z5Z0(
n

(
$qr%

E
2`

`

)
r

dvrexpF2p i(
r

qr•vrG
3expFp i

L (
r

qr•~r3n%G
3expF2

1

4bJ (
r

(
a5x,y,z

H ~“3vr !a1
na

L J 2G
3expF2 i(

r
(

a5x,y,z
H ~“3vr !a1

na

L J Ar
aG . ~19!

The terms linear innm in the exponent of Eq.~19! vanish due
to the periodic boundary condition( r(v r

x2v r2 ŷ
x )50. Equa-

tion ~19! can be simplified by introducing frustration var
ablesf r

m at siter ,

f r
x[2

1

2p (
hryz

Ai j 5
1

2p
~Ar

y2Ar1 ẑ
y

1Ar1 ŷ
z

2Ar
z!, ~20!
05453
from which f r
y and f r

z are obtained by cyclic permutation o
xyz. After some algebra, the partition function of Eq.~19!
becomes a form suitable for integration overv r

m ,

Z5Z0(
n

(
$qr%

E
2`

`

)
r

dvr
xexpF2p i

2L
$qr•~r3n!%G

3expF2
1

4bJ (
r

(
a5x,y,z

$~“3vr !a%2G
3expF2p i(

r
~qr2fr !•vrG . ~21!

To evaluate the integrals overv r
m in Eq. ~21! it is conve-

nient to take the Fourier transform

vr5L2
3
2(

k
eik•r ṽ~k!, ~22!

wherek5(kx ,ky ,kz) andki52p/Lmi with mi50,1, . . . ,L
21. We also decomposeṽ(k) into longitudinal,ṽL(k), and
transverse,ṽT(k) components where

ṽL
a~k!5(

b

~12eika!~12e2 ikb!

lk
ṽb~k![(

b
Labṽb~k!,

ṽT
a~k![(

b
~dab2Lab!ṽb~k![(

b
Tabṽb~k!,

lk5622 coskx22 cosky22 coskz ~23!

define the longitudinal and transverse projection opera
Lab(k) andTab(k). In Fourier space, the integration overvr
in Eq. ~21! is straightforward,

E )
k

dṽL~k!dṽT~k!expF2
1

4bJ (
k

lkU ṽT~k!U2G
3expF2p i(

k
$p̃T~k!• ṽT~k!1p̃L~k!• ṽL~k!%G ,

~24!

where p̃(k)5q(k)2f(k). Integration over ṽL(k) gives
p̃L(k)50. In real space, this is the condition whereby t
discrete divergence of the vorticity~charge! qr at any dual
lattice siter obeys“•qr50 since“•fr50. The integration
over the transverse componentsṽT(k) are simple Gaussian
integrals and are easily performed. Integration overṽL(0)
and ṽT(0) yields the neutrality condition

p̃~0!5(
r

pr50. ~25!

The final step in this rather technical derivation of the Ham
tonian in the CG representation is to apply the Poiss
summation formula of Eq.~16! to eliminate thenm in favor
of global vortices or chargesqm1. The Gaussian integration
yield the partition function
6-6
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Z5Z0(
$qr%

(
qm

exp@2bH~qr ,fr ,qm1 , f m1!#. ~26!

The HamiltonianH is identified as

H5~2p!2J(
r ,r8

~qr2fr !•~qr82fr8!G~r2r 8!

1
J

2L H p

L (
r

~zpr
y2ypr

z!1QxJ 2

1
J

2L H p

L (
r

~xpr
z

2zpr
x!1QyJ 2

1
J

2L H p

L (
r

~ypr
x2xpr

y!1QzJ 2

, ~27!

where G(r )5L23(kÞ0@exp(ik"r )21#/lk is the lattice
Green’s function on a simple cubic lattice in 3D with pe
odic BC and the quantitiesQm are

Qx5p(
r

~zpr
ydy,12ypr

zdz,1!12pL~qx12 f x1!, ~28!

with Qy andQz obtained fromQx by cyclic permutations of
xyz. In Eq. ~28!, f x1 is the circulation ofAi j along the cho-
sen global loop around the hypertorus in thex direction,

2p f x15 (
x51

L

Ar5(x,1,1)
x ~29!

and similarly forf y1 and f z1. The integersqm1 are interpreted
as circulations of the phase around the three indepen
global loops encircling the hypertorus. Equations~27! and
~28! are the main results of this section. These express
give the energy of a system of sizeL on a hypertorus. To find
the minimum energy E0 the Hamiltonian H
5H(qr ,fr ,qm1 , f m1) is minimized with respect to the bul
integer valued vector chargesqr , the integer valued globa
winding numbersqm1, and the global frustrationsf m1. In the
case of theXY spin glass theqm12 f m1 of Eq. ~28! are re-
stricted to be integer or half integer while for the gauge gl
this can have any real value. Note that minimizing with
spect toqx1 and f x1 is exactly minimizing with respect to th
twist Dx and the best twistDm

0 corresponds tof m1
0 , the value

of f m1 at the energy minimum. Adding a global twistDm to
the phases is exactly equivalent to changing the global f
tration from its original valuef m1→ f m11Dm/2p. As dis-
cussed in Sec. II, a spin domain wall is induced byDx

0

→Dx
01p which, in the CG representation, isf x1

0 → f x1
0

11/2. Note that the frustrationsfr are given in terms of the
randomAi j and are kept fixed during the minimization.

To confront our numerical results with the only existin
analytic prediction33 we need expressions for both spin a
chiral domain wall energies in dimensiond52,dl . The CG
representation of theXY spin and gauge glasses including
finite size corrections has been known for some time
2D,41,33and, for the sake of completeness, we quote the n
essary results below. To study the spin stiffness, we join c
responding sites on opposite faces byṼ5V(u i2u j2Ai j )
and the CG Hamiltonian is
05453
nt

ns

s
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n
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H5~2p!2J(
rr 8

~qr2 f r !G~r2r 8!~qr82 f r8!1
J

L2
~sx

21sy
2!,

~30!

where

sx522pFL~qx12 f x1!1(
r

~qr2 f r !yG ,
sy522pFL~qy12 f y1!2(

r
~qr2 f r !xG ,

G~r !5
1

L2 (
kÞ0

eik•r21

422 coskx22 cosky
. ~31!

Here, as in 3D,r5(x,y) represents the coordinates of th
dual lattice sites andG(r ) is the lattice Green’s function with
periodic BC on theu i . From Eq.~8!, we see that the differ-
ence of a factor 2 in the prefactor of Eq.~30! from other
works is in the coupling constantJ. Also note that the Hamil-
tonian of Eq. ~30! describes theXY spin glass when the
frustrationsf r and the global frustrationsf m1 are restricted to
(0,1/2). In the gauge glass, they can have any real value
in 3D, the topological chargesqr are integers as areqm1
because of the periodic BC in theu i .

The last piece of information we need is the CG repres
tation of the Hamiltonian of theXY spin glass in 2D with a
chiral domain wall imposed. This is to be found in the pap
of Ney-Nifle and Hilhorst.33 A single chiral domain wall is
induced by joining opposite faces by interactionsṼ5V(u i
1u j2Ai j ) which is equivalent to imposing reflectiv
BC.28,33 In turn, this is equivalent to doubling the size
~say! the x direction to a 2L3L lattice in which the extra
half is a charge conjugated image of the other. This sys
has two chiral domain walls with the Hamiltonian33

HR52p2J(
r ,r8

~qr2 f r !G̃~r2r 8!~qr82 f r8!, ~32!

whereG̃(r ) is the Green’s function for a 2L3L square lat-
tice with periodic BC and also withqr1L x̂52qr and f r1L x̂
52 f r . Note that the sign reversal of the frustrationsf r is
not necessary for the spin glass becausef r561/2 are
equivalent.

The form of the energy of Eq.~32! is used in the simula-
tions to estimateuc , the chiral stiffness exponent, as it
intuitively more transparent and more convenient than
corresponding expression with a single chiral domain wal33

Unfortunately, we have been unable to derive the analog
expression in 3D to Eq.~32! so we have no independen
estimate ofuc ~Ref. 30! for the 3DXY spin glass.

IV. NUMERICAL METHOD

A. Minimization algorithm

In Sec. II we argued that it is necessary to find the en
gies E0(L) and ED(L) essentially exactly for every sampl
to control the errors in thesmall domain wall energy
6-7
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^DE(L)&. To our knowledge, for the systems of interest
algorithm exists which can locate the global energy mini
in polynomial time. We are left with two methods:~i! re-
peated simple quenches from an arbitrary initial configu
tion to T50 followed by a downward slide to the neare
local minimum and~ii ! simulated annealing37 which is con-
siderably more efficient.38 By this we mean that, for the sam
CPU time, simulated annealing finds a lower energy th
simple quenching.

We start with the system in some randomly chosen c
figuration and quench to someT0, determined by trial and
error, for each sizeL. Then we do a Monte Carlo~MC!
sweep through the system by inserting chargesq51 and
q8521 on an arbitrary pair of nearest-neighbor sites of
dual lattice in 2D and accepting or rejecting the move
cording to conventional MC rules. This has the effect
inserting new charges, annihilating charges, or moving
charge by one lattice spacing while maintaining charge n
trality (qr50. In 3D, the elementary excitation is a loop
charge around an elementary square with vertices at
lattice sites. This maintains“•qr50. The closed loop of
charge can lie in any of the three orthogonal planes of
cubic lattice and the charge can circulate around the loo
either direction, making six possibilities with the center
the loop at a fixed but randomly selected position. The te
peratureT is then reduced toT15aT0 with a,1 whose
value is again determined by trial and error and the pro
dure iterated a large number,N, of times to reach a lowes
temperatureTN5aNT0'0. Of course, the system may b
trapped in a deep metastable well with barriers too high
the MC passes to overcome so the whole annealing sequ
is repeatedM times from different random initial configura
tions and the lowest energy out of all theNM trials is re-
corded. Again, this does not guarantee that the global m
mum energy is found but this method does have a
checks built in. At the crudest level, the best twist conditi
EsD(L)>E0(L) must be obeyed for each sample sin
E0(L) is, by construction, the lowest energy of the syst
subject to the BC given by the interactionsṼ5V(u i2u j

2Ai j ) across opposite faces.EsD(L) is obtained by f x1
0

→ f x1
0 11/2 wheref m1

0 is the value off m1 which makes the
boundary terms of Eqs.~27! and ~30! vanish, corresponding
to the best twistDm

0 . It is clear thatEsD(L) is the energy of
the system containing an extra spin domain wall compare
the system with energyE0(L). As discussed earlier,E0(L) is
not necessarily the true GS energy as the system may co
some chiral domain walls. However, by constructio
EsD(L) is the energy of the system with thesamechiral
defects and an extra spin defect.

If any sample violates the BT condition, clearly the a
nealing is not sufficient and one can either increase the n
ber MN of annealing attempts or just discard that samp
IncreasingMN involves a significant increase in CPU tim
particularly for the larger sizesL so the choice depends o
the time available. However, even if the BT condition
satisfied for every sample, there is no guarantee that the
est energies found aretrue global minima. To improve the
chances that true minima are achieved, where possible
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did two independent simulations on identical samples w
different pseudorandom number sequences and, if the s
energy minima are found in both simulations, this is defin
to be the true minimum. This procedure is very expensive
CPU time and our resources did not permit this last check
be performed for every sample, particularly for the larg
systems. This check was done for at least a few rando
selected samples, except forL57 in the 3D gauge glass
Averaging over disorder was performed over as ma
samples as possible with the aim of making the uncerta
in the mean domain-wall energŷDE(L)& less than 3%
which requires averaging over at least 103 samples. The first
set of checks are done on every sample which makes it fa
probable that exact minimaE0(L) andED(L) are obtained.
We can assume with some confidence that the uncertain
^DE(L)& is purely statistical andO(N1/2). Averaging over
about 103 samples leads to an acceptable uncertainty
about 3% in^DE(L)&.

B. XY spin glass in 2D

This particular system with a Hamiltonian of Eq.~1! in
2D is not particularly interesting in the sense that there ex
no finite temperature transition. It has been known for a lo
time thatdl.2 and both spin and chiral stiffness exponen
are negative. However, the situation has been controve
due to the possible existence of different stiffness or corre
tion length exponents for spin- and chiral glass order in 2
Previous estimates of the spin and chiral stiffness expon
are summarized byus'2uc'20.78 based on extensive nu
merical simulations such as DWRG and finite temperat
MC simulations.28–30,49,50However, Ney-Nifle and Hilhorst33

made a nonrigorous but very plausible conjecture based
analytic considerations that for dimensiond<dl , us5uc
<0. This is supported by exact analytic results on sim
models of~i! anXY spin glass on a ladder lattice31 where the
common correlation length exponentn5uuu2150.5263 . . .
and ~ii ! the XY spin glass on a tube lattice32 with n
50.5564 . . . . The keydisagreement between numerical e
timates and analytic theory is in the conjectured equality
us anduc . If one makes the hypothesis that earlier estima
are in error, then the most likely reason is that the simu
tions are computing the wrong quantity when estimating o
or both of the stiffness exponents. It is extremely unlike
that all the simulations are in error for simple technical re
sons since all find the same values ofus and uc , but us
Þuc .

To test this hypothesis, we have performed simulations
the 2DXY spin glass in the CG representation using Eq.~30!
to estimate the spin stiffness exponentus using both BT and
RT measurements with the resultsus

BT520.3760.015 and
us

RT520.7660.015.44 These numbers were obtained fro
sizesL54, 5, 6, 7, 8, and 10 averaging over 2560 samp
for L<8 and 1152 samples forL510. As expected, the
value of us

RT agrees with all previous estimates,28,30 all of
which use the RT measurement in some form. Both the
and the RT data fit the scaling ansatz of Eq.~4! equally well
and some other information is needed to decide which va
of us , if either, is correct. Both cannot be correct as both
6-8
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DOMAIN WALL RENORMALIZATION GROUP STUDY OF . . . PHYSICAL REVIEW B66, 054536 ~2002!
supposed to measure the same quantity. The necessary
mation is in the chiral stiffness exponentuc which we mea-
sure by simulating Eq.~32! on a 2L3L system. Again, both
BT and RT measurements were made with the same rang
L and the same number of samples as forus with the results
uc

BT520.3760.010 anduc
RT520.3760.015.44 At first sight

it is surprising that both measurements give the same v
for uc to within numerical uncertainty while the values
us

RT anduc
BT differ by a factor of 2. Note that the boundar

termssa of Eq. ~30! which contain the twist parameterf m1
vanish in the BT condition and such boundary terms
absent from Eq.~32!. Thus, any measurement with a C
representation in which boundary contributions are absen
automatically a BT measurement. Sinceuc5us

BT'20.37
and ucÞus

RT'20.76, assumingthat the conjecture is cor
rect, we conclude that the BT measurement yields a rea
able estimate of the trueus while the commonly used RT
measurement yieldingus

RTÞuc is not an appropriate metho
for the small values ofL accessible at present. Our simul
tion results are shown in Fig. 4. We do not understand w
if anything, us

RT means despite the apparent excellent fit
^DEs

RT(L)& to the scaling ansatz, since this is the ene
difference of the system subject to two random choices
BC and we can see no reason why it should scale asLus over
decades ofL.

V. RESULTS

Our investigation of the 2DXY spin glass establishes th
the BT method of measuring domain wall energies can
produce the one and only available analytic predictio33

which is relevant for our purposes. This gives some enco
agement to venture into areas where no such analytic g
exists. In this section, we report some new results on the
stiffness exponentus for theXY spin glass in 3D~Sec. V A!,
and the gauge glass in both 2D and 3D~Sec. V B!. We also
perform simulations on systems with varying strengths
disorder ~Sec. V C! where we study the renormalizatio

FIG. 4. Top to bottom:L dependence ofDEs
BT , DEs

RT , DEc
RT ,

andDEc
BT for the 2DXY spin glass.
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group flows for both the coupling constantsJ(L) and disor-
der strengthA(L) with an increasing length scaleL. All our
results are numerical and the exponentus5us

BT is estimated
by fitting estimates of̂ DEs

BT(L)& to the scaling ansatz o
Eq. ~4!. The system sizesL are very small as they are se
verely constrained by the necessity of controlling the err
in both E0(L) andED(L), which are estimated by indepen
dent simulations. However, the fit to the scaling ansatz
very good despite the very few data points for all cases
have studied and is comparable with the same procedure
ried out on the 2D Ising ferromagnet. In this case, simu
tions for sizesL52 –5 are sufficient to reproduce the exa
us51 to high accuracy.

A. XY spin glass in 3D

This system has been somewhat controversial for so
years and is not yet settled. It has been believed thatdl>4
for spin-glass order, anddl,3 for chiral glass order and tha
in 2D and 3D, spin and chiral variables decouple and or
separately.27–30,49,50This allows for the widely accepted sce
nario that in 3D, spin-glass order sets in atTSG50 whereas
chiral glass order sets in atTCG.0. This scenario is base
on MC simulations at finiteT ~Refs. 29 and 51! and onT
50 defect energy scaling28,29using the RT method. Attempt
to show rigorously thatTSG50 in 3D ~Ref. 52! fail if reflec-
tion symmetry is broken29,53,54at finite T. The first cracks in
this widely accepted scenario appeared recently when M
court and Grempel30 published the results of a large sca
defect energy scaling study of the 3DXY spin-glass model
of Eq. ~1!. They used the RT method, as all previous def
energy scaling studies have done, with sizesL<12 in 2D
andL<8 in 3D. Although the fit to the scaling ansatz is n
good due to strong crossover effects and large uncertain
in the largeL data which was used to estimateus,c

RT , it is clear
that both^DEs

RT(L)& and^DEc
RT(L)& increase withL which

implies that there is both spin- and chiral glass order at s
ficiently smallT.0. However, as argued above a valid n
merical method must yieldus5uc in 2D while they obtain
us'2uc'20.78,30 in agreement with other estimates.28,29

Finite T simulations seem to suffer from severe equilibrati
difficulties29,51which makes any conclusions from them al
suspect.

In view of the lack of reliable results for the 3DXY spin
glass, we have done some preliminary simulations on v
small systems withL52 –6 in the CG representation wit
Eq. ~27! wheref m150,1/2 in Eq.~28!. Following the method
outlined in Sec. IV B we estimateus

BT510.1060.03 while
the data for ^DEs

RT(L)& clearly decreases withL for L
52 –4, with roughly the same slope as found
Kawamura29 for the same range ofL. Our valueus50.10
60.03 ~Ref. 44! is to be compared with the recent estima
us

RT510.05260.03 for L55 –7.30 Although these values
are close numerically and are equal to within error bars,
are more inclined to believe in the former number as
considerus

BT to give the true spin stiffness exponent and w
speculate that further points will also lie on the scaling a
satz and will significantly reduce the 30% uncertainty. T
6-9
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results are shown in Fig. 5. Unfortunately, we have no e
mate for the chiral stiffness exponentuc

BT for the 3DXY spin
glass as we have been unable to derive the 3D analog o
~32! to estimateDEc

BT(L) andDEc
RT(L). However, because

the numerical values ofuc
BT anduc

RT are the same in 2D an
equal tous as required, we are reasonably safe in assum
that existing estimates29,30 of uc in 3D are fairly accurate.
Even though our spin stiffness exponentus

BT'10.1 has a
rather large uncertainty, it suggests that the lower criti
dimension for spin-glass order isdl,3, as for chiral order.
This is to be expected from analytic arguments.33

B. Gauge glass in 2D and 3D

We have also performed simulations on the gauge glas
the CG representation using Eq.~30! in 2D and Eq.~27! in
3D. The only differences to the spin glass are in the value
f m1 and f r which can have any value in the interva
@21/2,1/2). The frustrationsf r52(hrAi j /2p are correlated
random variables, since theAi j are the independent rando
variables. Similarly, in 3D, the frustrationsfr of Eq. ~20! are
correlated random variables with each component in the
terval @21/2,1/2). The three global frustrationsf m1 can take
any value in the same interval. In both spin and gau
glasses, the vorticitiesqr

m andqm1 are integers. We have no
computeduc in either 2D or 3D for the gauge glass, main
because we have been unable to obtain the appropriate
pression for the Hamiltonian in the CG representation w
reflective BC in 3D and we are unable to understand w
information such a simulation would yield. The major reas
for doing such a simulation in the 2D spin-glass case wa
confirm that our procedure is a useful numerical method
estimate the actual spin stiffness exponentus for both spin
and gauge glasses in 2D and 3D. To compare with ea
work5,6,8,9 we have also estimatedus

RT by keepingf m1 fixed
at some random value during the minimization, exactly
for the spin glass. The results of the simulations55 in 2D for

FIG. 5. L dependence ofDEs
BT andDEs

RT in 3D. The error in the
L56 point is due to the rather few samples. The solid line is pow
law fit and the dotted line is a guide to the eye.
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system sizesL52 –6, 8, and 10 are shown in Fig. 6 fo
^DEs

BT(L)& and ^DEs
RT(L)&. Averages were performed ove

about 103 samples for each sizeL. In this case, all the check
discussed in Sec. IV A were performed so we assume
errors are purely statistical. Both fit well to the scaling ans
of Eq. ~4! with very similar errors with the valuesus

BT

520.3660.010 andus
RT520.4560.015. The latter value

is consistent with all earlier estimates ofus ,5,6,9 which is not
a surprise as all these were done using the RT metho
some form. However, as argued in Sec. IV B, this is not
accurate estimate ofus so this number isnot the T50 spin
stiffness exponent. A more accurate estimate of this isus

BT

520.3660.010 which is significantly larger thanus
RT , so

that the 2D gauge glass has a longer correlation len
j(T);T21/uusu than previously thought.

We have also obtained some estimates ofus in 3D by
performing simulations55 of the gauge glass in the CG rep
resentation using Eq.~27! with the distribution of frustrations
fr appropriate for this case as determined by taking theAi j
uniformly distributed in (2p,1p#. The system sizes are
<L<7 with disorder averaging over 103 samples forL
<5, 300 for L56, and 60 for the largest sizeL57. The
uncertainty in^DEs

BT(L)& for L57 is very large, but this
data point is included to check that it is consistent with t
behavior deduced from the more reliable data of the sma
sizes. The results are shown in Fig. 7 for^DEs(L)& for the
unscreened gauge glass using both BT and RT measurem
and for a gauge glass in 3D with screened interactionsl
,`. The BT data fit the scaling form of Eq.~4! very well for
sizesL<6 with exponentus

BT510.3160.010. If theL57
point is also included in the fit, we obtainus

BT510.30
60.015. These errors inus come from a naive least square
fit of the data to a straight line and should not be taken
seriously. TheL57 data is suspect because four samp
violated the BT conditionDEs

BT(L)>0 out of a total of only
64, despite running a highly vectorized code for a few tho
sand CPU hours on a Cray J90. Time did not permit a

r-

FIG. 6. SizeL dependence of domain wall energy in 2D. Bo
RT and BT measurements are shown. Solid lines are power law
Error bars are not shown if smaller than symbol size.
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further checks for attaining the global energy minimum
L57. We cannot be sure that the remaining 60 samp
which did not violate the BT condition reached their glob
energy minima nor that the energiesEsD are determined suf
ficiently accurately. The error bar on theL57 point in Fig. 7
assumes that the uncertainty in^DEs

BT(L57)& is purely sta-
tistical and the true uncertainty is probablymuch larger. At
least an order-of-magnitude more CPU time is needed
sufficient annealing to reach the true minima and to perfo
the additional simulations with different random number
quences to check that the minimization algorithm is succe
ful. This is just for a single batch of 64 samples and to red
the uncertainty to 3%, yet another order of magnitude
CPU time would be needed to average over 103 samples.
This is totally out of reach with the computing resourc
available to us. What data we have is entirely consistent w
the scaling form of Eq.~4! with us'10.30 with no sign of
any deviation from this form.

The behavior of̂ DEs
RT(L)& is also shown in Fig. 7 for

sizesL<6 which is very much like the data obtained b
earlier simulations. This clearly does not fit the scaling fo
of Eq. ~4! for these small values ofL, but if one insists on
extracting a value ofus

RT from the data, one obtains consi
tency with previous estimates6 for the spin stiffness exponen
us

RT'10.0560.05. As can be seen from Fig. 7, this estima
has no meaning as the data clearly does not obey the sc
ansatz. In fact, as noticed by Maucourt and Gremp9

^DEs
RT(L)& seems to start increasing withL for L.5 but, as

we argue earlier, this may, or may not, eventually scale
^DEs

BT(L)& for sufficiently largeL. Speculation along thes
lines is fruitless until computers which are many orders-
magnitude faster become available or until an analytic so
tion is found. We conclude that, for theunscreenedgauge
glass in 3D, the spin stiffness exponentus510.3160.010,

FIG. 7. L dependence of domain-wall energy in 3D. Botto
curve is RT measurement for unscreened interaction. All others
BT measurements. Topmost curve is unscreened caseL5227.
Other curves are screened interactions withl decreasing from top
to bottom. Solid line is a power-law fit and dotted lines are guid
for the eye.
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which is considerably larger than earlier estimates and in
cates that the lower critical dimensiondl,3. This is consis-
tent with finiteT MC results4,5,13,14for the gauge glass in 3D
which indicate thatTc5O(J). This value ofTc is very dif-
ficult to reconcile with the suggestion thatdl'3 from previ-
ous DWRG studies5,6,8,9as this implies a very small value o
Tc /J. A very recent Monte Carlo study15 of the 2D and 3D
unscreened gauge glass obtains values ofus which are very
close to those of this work.

The prediction thatTc50 for the 2D gauge glass is sti
somewhat controversial. It is safe to say that allT50 defect
energy scaling studies agree thatus,0 in 2D although there
is some disagreement on the actual value ofus . Finite but
low-temperature Monte Carlo simulations56,57 claim thatTc
.0 for the 2D gauge glass. This result is contested by so
very recent large scale simulations by Katzgraber a
Young15 at much lowerT in 2D. The data of this study scale
best with us520.3960.03 andTc50 and is inconsisten
with Tc.0 but is consistent with the results of this work.

We have also studied the effects of screened vortex-vo
interactions on the spin domain-wall energy using the
measurement in 3D. Screening of the Coulomb interaction
vortices is implemented by adding a mass terml22 to the
denominator of the Green’s function,58

G~r !5
1

L3 (
kÞ0

eik"r21

622coskx22cosky22coskz1l22
.

~33!

The results are also shown in Fig. 7. We average over3

samples forL52 –4 and 250 forL55 for several values of
the screening lengthl. Screening is clearly a relevant pe
turbation whenl is finite andus

BT,0 but our small sizes do
not permit an estimate of the value ofus

BT . For large screen-
ing lengths,̂ DEs

BT(L)& seems to scale the same as for t
unscreened case but we expect that^DEs

BT(L)& will decrease
as Lus with us,0 at length scales which are beyond o
computing power for anyl,`. These results are consiste
with those of Bokil and Young58 who studied the question o
screening using a RT measurement and with Riegeret al.59

for very strong screening.

C. Varying disorder strength in 2D and 3D

We have also performed simulations with vario
strengths of disorder in the CG representation using Eq.~30!
for the 2D case and Eq.~27! for 3D where the random bond
variablesAi j are independently uniformly distributed in th
range @2ap,ap) with 0<a<1 so that ^Ai j &50 and
^uAi j u&5ap/2. Physical realizations of this model are, e.
an XY magnet with random Dzyaloshinski-Moriy
interactions18 and Josephson-junction arrays with position
disorder19,20where both the effective coupling constantJ(L)
and the effective disorder strengthA(L) at length scaleL
play a role. Studies in 2D~Refs. 18–20! suggest that weak
disorder (a*0) does not affect the existence of an order
phase at intermediate temperature but there is a reen
transition to a disordered phase at low temperature. H
ever, recent analytic22–25 and numerical8 studies show there

re

s
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is an ordered phase forT,Tc(a) with Tc(a).0 for 0<a
,ac . To study how the disorder strength behaves as
length scaleL varies, one must, if possible, identify th
scaled disorder strengthA(L) with some measurable quan
tity. An identification has been proposed in a recent num
cal study8 where the effective disorder strength is defined
2pA(L)[^uD0(L)u& with A(1)5a/4 so that one can follow
the flows of bothJ(L) and A(L) with an increasing length
scaleL. With this definition, 0<A(L)<1/4. D0(L) is the
global phase twist minimizing the energy of a system of s
L for a particular realization of disorder. For two phases w
energy E125V(u12u22A12), the minimum is atu12u2
5A12 which is satisfied by applying a ‘‘global’’ phase twis
of A12. Hence, this follows the definition ofA(L) as a mea-
sure of disorder at scaleL.

Since the numerical study8 used the Hamiltonian of Eq
~1! is the phase representation, we reinvestigate this mod
the CG representation. The simulations were performed
L52 –6, 8, and 10 in 2D,L52 –5 in 3D and averaged ove
at least 103 samples. The results are shown in Fig. 8 in 2
and in Fig. 9 in 3D. We are interested in the stable fixe
point values atL→` J* and A* as these determine th
nature of the phases. In 2D, weak disorder (a,ac'0.37)
seems to be marginal and the system seems to iterate to
a glass phase with quasi-long-range order characterize
(J* ,A* ) where the fixed point valuesJ* , A* are finite and
depend on a. This is consistent with recent analyt
studies.22–25On the other hand, systems with strong disord
a.ac , seem to flow to a disordered fixed point (J* ,A* )
5(0,1/4) which corresponds to a nonsuperconducting gl

In 3D, for a,ac'0.57, the system flows to a strong
coupling limit J* 5`. The disorder strengthA(L) appears to
flow to a finite fixed point valueA* which depends ona.
However this is not conclusive from our simulations, sin
only very small valuesL52 –6 are used. This can be inte
preted as the zero field version of a Bragg glass phase.
large disorder,a.ac , @J(L),A(L)# seem to iterate to thei
maximum values of (̀ ,1/4) corresponding to the gaug

FIG. 8. RG flow in 2D. The flows are from right to left fora
>0.4 and from left to right fora<0.35.
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glass fixed point. It seems that, in the absence of screen
l→`, there are two glassy superconducting phases aT
50 which, in an applied magnetic field, correspond to
Bragg glass60 for a,ac and to a vortex glass61 for a.ac .

VI. DISCUSSION AND SUMMARY

In this paper, we reinvestigate the possibility of an o
dered phase at small but finite temperatureT by a numerical
domain wall renormalization group method in a disorder
XY model in 2D and 3D described by the Hamiltonian of E
~1! in the Coulomb gas representation. For the6J XY spin
glass in 3D, our simulations yield the spin glass stiffne
exponentus

BT'10.10 which suggests its lower critical d
mension isdl,3. This value ofus

BT is very different from
existing estimates of the chiral glass stiffness exponent in
uc'10.47~Ref. 29! anduc'10.5660.18.30 The difference
betweenus and uc seems to support the decoupling of tw
degrees of freedom in 3D. For the gauge glass, we estim
the stiffness exponentus

BT520.3660.01 in 2D andus
BT5

10.3160.01 in 3D, which are considerably larger than
earlier estimates. The latter value is consistent withTc /J
;O(1) from finite temperature MC studies4,5,13,14and also
strongly suggestsdl,3. The results for theXY spin glass in
3D are consistent with spin-glass order atT.0 which is in
contradiction with all other studies27–29 except one.30 We
also note that there are studies of the 3D Heisenberg
glass62 which indicate that the behavior is similar to that
the XY spin glass found in Sec. V A except that they find
surprisingly largeus'0.8. The existence of a low-T state
with spin-glass and chiral order is also found by studyi
nonequilibrium relaxation of the correspondin
susceptibilities.63

We also studied the effects of varying the disord
strength. In 2D, our simulations imply that weak disorder
marginal22–25 and a system with strong disorder flows to
disordered fixed point. There is no sign of a reentrant tran
tion in our simulations. In 3D, weak disorder has little effe
and the system flows to an ordered phase which is the z

FIG. 9. RG flow in 3D. The flows are from left to right for alla.
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field analog of a Bragg glass.60 For strong disorder, the sys
tem seems to flow to a gauge glass fixed point. The disag
ment between the stiffness exponentus

BT and previous
estimates is because these measureus

RT whose meaning is
less clear. The quantityDERT(L) seems more likely to suffe
from large corrections to scaling as seen in Fig. 7, espec
for the small system sizesL which are possible to simulate a
present. However, we conjecture that both measurem
would coincide ifmuchlarger values ofL could be reached
Since our simulations are also limited to very small sizesL,
it is not possible to draw any definite conclusions from th
and more studies are needed to settle these problems in
dom systems more satisfactorily.

One interesting conjecture we can make concerns
Bragg and vortex glass states in disordered supercondu
in an applied magnetic field. Recently, Giardina` et al.64 stud-
ied the model of Eq.~1! in the strong screening limitl→0 in
3D and found that two phases exist atT50 in the presence
of an applied external field. The low field, the small disord
phase has a well-ordered~by eye! vortex line lattice as a
ground state with a stiffness exponentus511.0, implying
this is a superconductingstate. By contrast, the high-field
large disorder ground state is a disordered entangled vo
configuration, again by inspection, withus'21.0,59,64

which implies this is anonsuperconductingstate. We conjec-
ture that the low-field state is a Bragg glass and the high-fi
state is a disordered entangled vortex liquid. In this limit,
evidence is strongly in favor of a direct, disorder, or fie
driven transition from a superconducting Bragg glass t
normal nonsuperconducting phase. This scenario seems
favored by recent experiments.

In the absence of screening of the vortex-vortex inter
tions, the picture which results from this work is somewh
different, although the studies here are all done in zero
plied field. One may argue that increasing the disorde
equivalent to increasing the field at fixed disorder. At lo
field or low disorder, the ground state is asuperconducting
Bragg glass withu.11.0, exactly as with screening. With
out screening, the main difference is that the high-field, la
disorder phase is a true superconducting vortexglass with
stiffness exponentu.10.30, as proposed by Fisheret al.61

We tentatively conjecture that a true superconducting vo
glass phase does not exist in 3Dexceptin the absence o
screening (l→`). Unfortunately, this prediction about th
existence of a superconducting phase in the presence of
disorder seems to contradict two recent studies.65,66 These
d

er
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are both finiteT Monte Carlo simulations of a 3DXY model
with uniform Ai j given by the applied magnetic field and th
disorder by random couplingsJi j . In these simulations, su
perconductivity is probed by the helicity modulus and,
though these studies differ in several respects, they agre
one vital point which is that, in the absence of screening
superconducting phase doesnot exist for strongly disordered
Ji j in a uniform applied field. If our conjecture is correct th
the models considered in this work are not affected by
application of a uniform magnetic field, thenu.0 which
seems to imply a finite helicity modulus and superconduc
ity. The natural consequence of this argument is that, in
absence of screening, a strongly disordered system in a
will be superconducting which disagrees with rece
simulations.65,66

Clearly, further work is needed to resolve this contrad
tion which could be due to several possibilities. These
clude the fact, among others, that the models used may
be equivalent because of the different types of disorder
posed, the presence or absence of an external magnetic
and the extreme difficulty of the simulations causing a fin
helicity modulus to be missed. One difference which appe
to be unimportant is that this work is atT50 while the
simulations65,66 are atT.0. This is apparent in the recen
work of Katzgraber and Young15 who find essentially the
same exponentu.0 at T.0 for the 3D gauge glass. Ther
is a very recent simulation67 on precisely this point using the
CG representation of the unscreened 3D system in a la
applied field with random pinning of the vortex cores. Th
supports the existence of a low-T superconductingvortex
glass phase at large disorder in a field in the absence
screening, as conjectured here. Our understanding of the
perimental consequences for real systems withmesoscopic
penetration depthsl;O(103) Å is lacking. Much work re-
mains to be done to clarify experimental and theoretical s
ations. A challenge to simulations is, in a single model,
demonstrate unambiguously that only a Bragg glass exis
the presence of screening and at weak disorder while, w
out screening, a distinct vortex glass phase also exist
large disorder.

ACKNOWLEDGMENTS

Computations were performed at the Theoretical Phys
Computing Facility at Brown University. J.M.K. thanks A
Vallat and B. Grossmann for many discussions about s
glasses, best twists, etc.
tt.

.

1M. P. A. Fisher, Phys. Rev. Lett.62, 1415~1989!.
2G. Blatter, M. V. Feigel’man, V. J. Geshkenbein, A. I. Larkin, an

V. M. Vinokur, Rev. Mod. Phys.66, 1125~1994!.
3T. Nattermann and S. Scheidl, Adv. Phys.49, 607 ~2000!.
4D. A. Huse and H. S. Seung, Phys. Rev. B42, 1059~1990!.
5J. D. Reger, T. A. Tokuyasu, A. P. Young, and M. P. A. Fish

Phys. Rev. B44, 7147~1991!.
6M. J. P. Gingras, Phys. Rev. B45, 7547~1992!.
,

7M. P. A. Fisher, T. A. Tokuyasu, and A. P. Young, Phys. Rev. Le
66, 2931~1991!.

8J. M. Kosterlitz and M. V. Simkin, Phys. Rev. Lett.79, 1098
~1997!.

9J. Maucourt and D. R. Grempel, Phys. Rev. B58, 2654~1998!.
10C. Dekker, P. J. M. Wo¨ltgens, R. H. Koch, B. W. Hussey, and A

Gupta, Phys. Rev. Lett.69, 2717~1992!.
11J. R. Banavar and M. Cieplak, Phys. Rev. Lett.48, 832 ~1982!.
6-13



nd

y

-

ia
1

,

s.

.

N. AKINO AND J. M. KOSTERLITZ PHYSICAL REVIEW B66, 054536 ~2002!
12W. L. McMillan, Phys. Rev. B29, 4026~1983!.
13C. Wengel and A. P. Young, Phys. Rev. B56, 5918~1997!.
14T. Olson and A. P. Young, Phys. Rev. B61, 12467~2000!.
15H. G. Katzgraber and A. P. Young, Phys. Rev. B64, 104426

~2001!; cond-mat/0205206, Phys. Rev. B~to be published!.
16R. H. Koch, V. Foglietti, W. J. Gallagher, G. Koren, A. Gupta, a

M. P. A. Fisher, Phys. Rev. Lett.63, 1511~1989!.
17C. Dekker, W. Eidelloth, and R. H. Koch, Phys. Rev. Lett.68,

3347 ~1992!.
18M. Rubinstein, B. Shraiman, and D. R. Nelson, Phys. Rev. B27,

1800 ~1983!.
19E. Granato and J. M. Kosterlitz, Phys. Rev. B33, 6533~1986!.
20E. Granato and J. M. Kosterlitz, Phys. Rev. Lett.62, 823 ~1989!.
21Y. Ozeki and H. Nishimori, J. Phys. A26, 3399~1993!.
22T. Natterman, S. Scheidl, S. E. Korshunov, and M. S. Li, J. Ph

I 5, 555 ~1995!.
23S. E. Korshunov and T. Natterman, Phys. Rev. B53, 2746~1996!.
24S. Scheidl, Phys. Rev. B55, 457 ~1997!.
25M.-C. Cha and H. A. Fertig, Phys. Rev. Lett.74, 4867~1995!.
26J. Villain, J. Phys. C10, 4793~1977!; ibid. 11, 745 ~1978!.
27H. Kawamura and M. Tanemura, Phys. Rev. B36, 7177~1987!.
28H. Kawamura and M. Tanemura, J. Phys. Soc. Jpn.60, 608

~1991!.
29H. Kawamura, Phys. Rev. B51, 12 398~1995!.
30J. Maucourt and D. R. Grempel, Phys. Rev. Lett.80, 774 ~1998!.
31M. Ney-Nifle, H. J. Hilhorst, and M. A. Moore, Phys. Rev. B48,

10 254~1993!.
32M. J. Thill, M. Ney-Nifle, and H. J. Hilhorst, J. Phys. A28, 4825

~1995!.
33M. Ney-Nifle and H. J. Hilhorst, Phys. Rev. B51, 8357~1995!.
34P. W. Anderson, J. Less-Common Met.62, 291 ~1978!; P. W.

Anderson and C. M. Pond, Phys. Rev. Lett.40, 903 ~1979!.
35H. Rieger, L. Santen, U. Blasum, M. Diehl, and M. Ju¨nger, J.

Phys. A29, 3939 ~1996!; N. Kawashima and H. Rieger, Euro
phys. Lett.39, 85 ~1997!.

36H. Rieger, inFrustrated Systems: Ground State Properties V
Combinatorial Optimization, Lecture Notes in Physics, Vol. 50
~Springer-Verlag, Heidelberg, 1998!; R. Ahuja, T. Magnanti and
J. Orlin, Network Flows~Prentice-Hall, Englewood Cliffs, NJ,
1993!.
05453
s.

37S. Kirkpatrick, C. D. Gellat, and M. P. Vecchi, Science220, 671
~1983!.

38M. V. Simkin, Phys. Rev. B55, 11 405~1997!.
39J. Villain, J. Phys.~France! 36, 581 ~1975!.
40J. V. Jose´, L. P. Kadanoff, S. Kirkpatrick, and D. R. Nelson, Phy

Rev. B16, 1217~1977!.
41A. Vallat and H. Beck, Phys. Rev. B50, 4015~1994!.
42J. M. Kosterlitz and D. J. Thouless, J. Phys. C6, 1181~1973!.
43J. M. Kosterlitz, J. Phys. C7, 1046~1974!.
44J. M. Kosterlitz and N. Akino, Phys. Rev. Lett.82, 4094~1999!.
45F. Matsubara, T. Shirakura, and M. Shiomi, Phys. Rev. B58,

11 821~1998!.
46A. K. Hartmann and A. P. Young, Phys. Rev. B64, 180404

~2001!.
47L. Saul and M. Kardar, Phys. Rev. E48, 3221~1993!.
48J. Houdayer, Eur. Phys. J. B22, 479 ~2001!.
49H. S. Bokil and A. P. Young, J. Phys. A29, L89 ~1996!.
50P. Ray and M. A. Moore, Phys. Rev. B45, 5361~1992!.
51S. Jain and A. P. Young, J. Phys. C19, 3913~1986!.
52H. Nishimori and Y. Ozeki, J. Phys. Soc. Jpn.59, 289 ~1990!.
53M. Schwartz and A. P. Young, Europhys. Lett.15, 209 ~1991!.
54Y. Ozeki and H. Nishimori, Phys. Rev. B46, 2879~1992!.
55J. M. Kosterlitz and N. Akino, Phys. Rev. Lett.81, 4672~1998!.
56M. Y. Choi and S. Y. Park, Phys. Rev. B60, 4070~1999!.
57B. J. Kim, Phys. Rev. B62, 644 ~2000!.
58H. S. Bokil and A. P. Young, Phys. Rev. Lett.74, 3021~1995!.
59J. Kisker and H. Rieger, Phys. Rev. B58, R8873~1998!; F. O.

Pfeiffer and H. Rieger,ibid. 60, 6304~1999!.
60T. Giamarchi and P. Le Doussal, Phys. Rev. Lett.72, 1530~1994!;

Phys. Rev. B52, 1242~1995!.
61M. P. A. Fisher, Phys. Rev. Lett.62, 1415~1989!; D. S. Fisher, M.

P. A. Fisher, and D. A. Huse, Phys. Rev. B43, 130 ~1991!.
62S. Endoh, F. Matsubara, and T. Shirakura, J. Phys. Soc. Jpn70,

1543 ~2001!.
63T. Nakamura and S. Endoh, cond-mat/0110017~unpublished!.
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