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Domain wall renormalization group study of the XY model with quenched random phase shifts
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The XY model with quenched random disorder is studied by a zero-temperature domain wall renormaliza-
tion group method in two dimensiori2D) and three dimension@D). Instead of the usual phase representa-
tion we use the chargevortex) representation to compute the domain wall, or defect, energy. For the gauge
glass corresponding to the maximum disorder we reconfirm earlier predictions that there is no ordered phase in
2D but an ordered phase can exist in 3D at low temperature. However, our simulations yield spin stiffness
exponentds~ —0.36 in 2D andds~ +0.31 in 3D, which are considerably larger than previous estimates and
strongly suggest that the lower critical dimension is less than three. Fat $heXY spin glass in 3D, we
obtain a spin stiffness exponefd~ +0.10 which supports the existence of spin glass order at finite tempera-
ture in contrast with previous estimates which obt&jr:0. Our method also allows us to study renormaliza-
tion group flows of both the coupling constant and the disorder strength with a length_s€ae results are
consistent with recent analytic and numerical studies suggesting the absence of a reentrant transition in 2D at
low temperature. Some possible consequences and connections with real vortex systems are discussed.
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|. INTRODUCTION _ V(¢ij;)=—J;jcos(ei;). The sum is over all nearest-neighbor
The XY model with quenched random phase shifts as airs of sites and the coupling constanig, are assumed
model for a superconducting glass has been intensively INaniform, J;;=J3>0. The random bond variables; , which
vestigated over the last decade, focusing on the so-callegle responsible for the randomness and frustration, are taken
gauge glass model which corresponds to the case with maXy pe independent and uniformly distributed i &, a]

mal disorder. Since a transport current exerts a force on @.. < ,<1. For a gauge glasg), is the phase of the
sa<l. ,

flux lattice, it tends to move in response which causes d'ss'éuperconducting order parameter at sitef a square lattice

pation of the current. The existence of.dlsord_er, which .de'in 2D and a simple cubic lattice in 3D. The random bond
stroys the flux lattice structure, is essential to pin the vortices " . .
in order for a superconducting phase to exist in a High- va_lrlablesAij are taken tg correspond to maximal disorder
superconductal:3 Although there exists no proof whether or with a=1. An external field applied to an extreme ty(p))e-ll
not the gauge glass and vortex glass are in the same univefPerconductor induces a uniform  componer;;
sality class, it is of interest as the simplest model of a disor= (27/®¢) [{A-dl where A is the vector potential of the
dered superconductor and is still not understood despite a#ipplied field andb,=hc/2e is the quantum of flux. In this
the effort expended on it. work, we takeA% =0, corresponding to zero applied field.
From numericdi™® and experiment&! studies, it is be- Unless explicitly stated, we consider an unscreened system
lieved that the gauge glass has no ordered phase at any finitéth =1 corresponding to maximal disorder. The Hamil-
temperature in two dimension@D). In three dimensions tonian of Eq.(1) also describes th¥Y magnet with random
(3D), numerical domain wall renormalization group Dzyaloshinski-Moriya interaction and also a Josephson-
(DWRG) studies™*? indicate that the lower critical dimen- junction array with positional disordé#?° These
sion seems to be close to three. However the situation is lessudied®2° showed that the existence of weak disorder (
conclusive, since the simulations are limited to small system<1) does not destroy an ordered phase at intermediate tem-
sizes. Finite temperature Monte Carlo studies yield a transiperature but predicts a reentrant transition to a disordered
tion temperatureT./J~O(1),*>13">which is difficult to  phase at low temperature in two dimensions. However, re-
reconcile with DWRG studi€$®® as these studies imply cent analyti*~?®and numericdlstudies suggest the absence
that the lower critical dimension for superconducting glassof a reentrant transition and that there exists an ordered phase
order is close to three. Experimentally there is also soméor T<T.(a) whena<a,.
evidence for a finite temperature phase transition to a super- When the random bond variablég are restricted to 0 or

conducting glass phasé!’ 7 with equal probabilities, this model reduces to thé XY
The Hamiltonian of theX'Y model with random quenched spin glass, which is believed to be in a different universality
disorder can be written as class due to the additional reflection symmé&trwhich is

absent in the case of uniformly or Gaussian distribugd

_ o An XY spin glass may have both spin- and chiral glass order

H _% V(0= 0= Ay, (@) associated with rotational and reflection symmetries, respec-

tively. It has been suggested that, in 2D and 3D, spin and

whereV(¢) is an even, zZr periodic function of¢ with a  chiral variables decouple at long distances and order
maximum at¢= 7 and minimum atp=0, usually taken as independently/ *°and the lower critical dimensions adg
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=4 for spin-glass ordgr and,<3. for chiral_ glass order. _impose a spin domain wall perpendicular to thelirection,
However, the decoupling scenario contradicts the analytic . L - .
studies on a ladder latticé,on a tube latticé2 and on a 2D °ON€ Simply changes the BC to antiperiodic alongnd peri-

lattice with a special choice of disord&rRecent numerical odic in the otherd—1 directions. Then it immediately fol-

simulations® also suggest, for a spin-glass order may be lows that
close to three. _ _ __pd-n
In this paper, we reinvestigate the possibility of an or- AB(L)=EBap(L) = Ep(L)~ LT, ©

dered phase at small but finite temperatiifay a numerical heren=1 for an Ising model and=2 for a system with a
DWRG,™™* or defect energy scaling. The domain-wall or ¢ontinuous symmetry such &6Y and Heisenberg models.
defgct energy of the system is computed by using th(_a Hgmll— One would like to use the same strategy fandomsys-
tonian in the Coulomb gakrortex representau'on', which IS tems described by Eq1), as suggested by Anderson for
more convenient for numerical work as it eliminates spin-ising spin glasse¥ However, it is not so clear how to pro-
wave contributions to the energy. Although the conventionaleed pecause, for a particular samiealization of disor-
DWRG method can handle only the scaling of the couplinggep), neither the GS configuration nor compatible BC are
constantJ(L) at scalel, which is proportional to the domain nown so computing the defect energye(L) is problem-

wall or defect energy, our method enables us to study thgtical. AssumingAE(L) can be calculated, the stiffness ex-
flows of both the coupling constant and the disorder strengthyonent is defined by the scaling ansatz

A(L), at length scalé.2 We apply this to the case of general
disorder strength, € «=<1. The outline of the paper is as (AE(L))~L", (4)
follows. In Sec. Il we discuss the DWRG method and also
our strategy. In Sec. lll, we explicitly perform the transfor- where(- - -} denotes an average over realizations of disorder.
mation of the 3D Hamiltonian of Eql) from the phase to To our knowledge, it is not known how to calculagalyti-
the Coulomb gas representation. Our numerical method isally either the GS energlgy(L) or the energyep(L) of the
explained in Sec. IV. Finally we discuss our numerical re-system containing a defeatlative to this GSvhich means
sults in Sec. V and give a brief discussion of some of thehat one must proceed numerically. A number of conceptual
effects of weak disorderg<<1, and of finite screening of and technical difficulties are apparent. The first, and most
vortex-vortex interactions. important, is the technical problem of computing the energy
differenceAE(L) between the energies of the system subject
to two different BC. We ultimately want the disorder aver-
aged defect energy(AE(L))=(E,(L)—Ey(L)) where
The general idea behind a DWRG is to compute, analytiE,(L) is the lowest energy of a particular sample subject to
cally or numerically, the energ&E(L) of a domain wall in  BC denoted bya andE,(L) with BC denoted byb. We need
a system of linear size and fit this to a finite-size scaling the individual energie&, (L) andE,(L) essentiallyexactly
form because the uncertainty {d E(L)) must be kept as small as
possible. Also, to our knowledge, there is no proof that the
AE(L)~L?, 2 scaling ansatz of Ed4) is a correct description and, even if
it is, the only thing we can be sure of &<(d—2)/2. All
whered is a stiffness exponent, whose sign is of fundamentatesults are based on fitting data to the scaling form of(&Q.
importance. If§<0, AE(L) vanishes in the thermodynamic so one is attemptingothto verify the scaling ansatz and to
limit. The energy of the domain wall or defect excitation estimate a numerical value @ For any conclusion to be
vanishes which implies that, far>0, the probability of the believable, the data must have both very small errors and fit
defectP, ~e 2EML/KT_, 1 asl — 0. This in turn implies that ~ Eq. (4) extremely well. The first requirement of highly accu-
the density of such defects is finite wh&r0 and there will  rate data is the most important as the estimaté dépends
be no resistance to an infinitesimal applied force and then this. Assuming thaE (L) andEy(L) can be determined
system has no order. This is analogous to the vanishing of thexactly for each sample, theXE(L) is also known exactly
shear modulus in a liquid, the superfluid density in a superfor each sample and the errors IJAE(L)) are
fluid or superconductor, and the spin stiffness constant in a®(N~Y2.9"1) whereN is the number of samples of sizen
isotropic magnet wheif>T.. On the other hand, i#>0, d dimensions. If the energy minimé, ,(L) are not found
such defects will have zero probability whér=o and the exactly, a crude estimate of the errors E(L) is
system will have finite stiffness and will be ordered at suffi-O(N~Y2L%) but this is certainly too low as failure of the
ciently smallT>0. algorithm to find the true minima because of being trapped in
In a uniform system without disorder, the definition of the a metastable state of ener@>E, will cause systematic
energy of a domain wall of sizé, AE(L), is intuitively  errors of unknown magnitude. Empirically, we find that this
obvious. The first step is to find the ground-st@@) energy  can readily cause errors larger thehE(L)) which makes
of a system of sizd., which requires applying boundary the data point useless. This is most likely to happen for large
conditions(BC) which are compatible with the GS configu- L because the CPU time required grows uncontrollably, as do
ration. For a ferromagnet, this is straightforward to imple-the errors, so the large data becomes unreliable. This tech-
ment as the GS configuration is known to be one with allnical difficulty limits the accessible sizésto small values as
spins parallel, and periodic BC are compatible with this. Toone must keep errors in individual data points small.

Il. STRATEGY
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We are forced to conclude that the accessible dizase  tries respectively. To impose a spin defect, we chodse
limited by the necessity of finding essentially exact global=\/(¢, - 6,—A;;). The plaquettes between the opposite faces
energy minima of each of a numbhirof samples subject to  are indistinguishable from the others and play no special
certain, yet to be defined, BC. To our knowledge, there is ngole. We therefore keep fixed the frustration§,
algorithm applicable to the systems of interest which will =30, Ajj/2m where the sum is over the bonds in a clockwise
find exact minima in polynomial time, such as the branchdirection of the elementary plaguette centered.aive still
and cut algorithr®P for the 2D Ising spin glass or numeri- have the freedom to adl, to every bond in thex direction
cally exact combinatorial optimization algorithfisfor ~ between opposite faces which imposes a global twistin
gauge and vortex glass models in the infinite screening limitthe phase around a loop circling the hypertorus in the direc-
so we have to live with the fact that our problem is NPtion w. This is equivalent to a gauge transformatiég
complete and the required CPU time explodek @&reases. —Ajj+4,/L on every bondj in the directionu. The low-

We use simulated anneali#{g®to estimate the lowest ener- est energyEq(A ), is 2 periodic inA , with a minimum at
gies, which seems considerably more efficient than simpléomeA® which depends on the sample. To induce a spin
quenching toT =0, but we are unable to go beyohd7 in  domain wall normal tax, one changes the twists from their
3D andL =10 in 2D. We wish to extract the stiffness expo- best twist(BT) valuesA— A%+ 75, .. The minimum en-
nent@ from the scaling ansatz of E¢4) with a single power ~ €rgy subject to this constraint givésp(L), the energy of
law and this makes sense only if the errors on individual datdhe system of sizé& containing an extra spin defect. Note
points are very small and the fit to the assumed scaling fornfhat Esp=E, for every sample buk, is not necessarily the

is extremely good. In our opinion, the only sensible strategyabsolute minimum as some other functional formvofay

is to obtain very accurate estimates(&fE(L)) for the lim-  give a lower energy. However, evenkf, is not the true GS
ited sizes. which are feasible for the computer power avail- Energy but is the energy of a state with some excitation from
able. the GS, this method of inducing a spin defect ensures that

In the phase representation of E@), the configuration any excitation in the BT configuration will also be present in
space to be searched for the global energy mirfipg(L) is ~ the state with an extra spin domain wall so tWE_sBT(L)
rather large as the phasése (0,27 are continuous vari- = Esp(L) —Eo(L)=0 is not affected by these. It is conve-
ables. Searching this space in finite time is not feasible agi€nt, but not necessary, to deﬂrge the spin defect energy by a
most of the allowed configurations of th& are not even tWist of 7 from the BT valueA,. This choice yields the
local energy minima. It is well known that randoxY mod- ~ maximum defect energAE(L). Any other choice €<e
els with a Hamiltonian of Eq(1) can be written in a Cou- <=7 Yields the same spin stiffness exponefif defined by
lomb gas (CG) or vortex representation via a duality
transformatiof®*!*3which leaves the partition function in- (AEBT(L,e))=A(e)L% (5)
variant. This expresses the Hamiltonian in terms of charge or
vortex configurations which arealready local energy The sizee of the twist from the BT value\? affects only the
minima*?43Thus, a reformulation of the Hamiltonian of Eq. amplitude.A(€) which is a maximum a&= .

(1) as a CG performs a partial minimization. A further mini- A chiral domain wall is induced by imposing reflective
mization of the CG Hamiltonian corresponds to searching8C,?® which means that corresponding sitéf) (on opposite
the much smaller space of local minima. Reformulating theraces are connected by  interactioVs= V(6 + ;—A;j)
problem of Eq.(1) including the BC in CG language is which is equivalent to a reflection of the spins about some
Clearly a WorthWh||e -exerCise as |t dramatica”y I’edL_JC_es_ th%)qs In princip|e, one follows the procedure for a Spin do-
number of configurations over which we have to minimize,main wall to obtain the chiral defect energyE.=E.p

?espite i'"'thOdUQIEEQ t|0ng'ffan9€‘t. Coulomb i(;\ter?qtiogs bﬁl'— Eo whereE,p is the minimum energy of the system with
ween vorltices. 1he transformation 1S carmed out In Sec. lliy,oqe modified interaction¥ connecting opposite faces.

for the model of Eq(1) in 3D. .
The final problem is to define what is meant by a domainHowever’ there is no reason 1o expéey>E, as the BC

wall and the BC needed to induce a wall in a finite system opefmngo may trap a chiral defect in some samples and, in

sizeL in d dimensions. We imagine the system of Etj. on such cases, the modified interactidhsvill cancel the chiral
a torus in 2D or a hypertorus in 3D, which corresponds todefect to giveE.p<Eq. This phenomenon has been observed

. . L . o ~ previously in numerical simulations of theY spin glas$®°
'mposing perlo.dlc BCin the phas@gLeM—ei wheree, 'S8 " We therefore define the chiral defect energy 8BE2T(L)
unit - vector in the direction u=xy,....d and I _g ) _FE (1) and the chiral stiffness exponefit ' by
=(ix, - dg) with i,=(1,2,...L). The phases at core- , i oize scaling ansatz analogous to &,

sponding sitesi(j) on opposite faces are coupled by some

interactionV( 6, ,0; ,Ai;) which may be regarded as defining
the BC. In principle, the GS is obtained by minimizing the
energy with respect to the? bulk variabless; and all forms  Note that the Hamiltonian of Ed1) is truly invariant under
of V. This program is beyond our ability and we restrict reflection ,— — 6, in the XY spin-glass case when;
ourselves to thos& which induce a spin or chiral defect, =0,7 as Ajj==*m are equivalent. The Hamiltonian with
which are related to the continuous and reflection symmeuniform distribution ofA;; such as a gauge glass is not truly

(AEBT(L))~L"% . ()
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invariant under reflection which would also requitg — lll. TRANSFORMATION TO COULOMB GAS
—A; for the Hamiltonian to be invariant as it lacks the re- REPRESENTATION
flection symmetry.

However, in arXY spin glass there are two possible types
of order, spin glass order and a chiral glass order each wit
their own stiffness exponent of E(p) and Eq.(6). Recently,
an important prediction was made that= 6,<0 for anXY
spin glass in dimensiod<d, whered, is the lower critical
dimensior?® Although not rigorous, the arguments are very
plausible and supported by analytic calculations on simpl

- i i i i = 1’32 . - . . . .
one dlrtn%rlls“onil Sfysterln?_ In Wh'ﬁg. i%ex?cltcljy? 'thThhe'rit every allowed configuration of topological excitations is a
IS a notablé fack of analylic results in this field with Whieh 10, - 1" e yargy minimund?#3 since spin-wave excitations de-

teslt numerlgzat! S|mltJIat|ons tar\lls t?] our kr?oleilegge this is t.h‘%ouple from the vortex excitations, which allows us to obtain
only one existing at present. Ye have Checked our NUMENCa ;o accyrate estimate of energy minima than using the

method ind=2<d, and get agreement with the analytic pre- phase representation of E(l) with the limited CPU time

dICtIOI’t] .tf:;a 0;\: 00:._0'31& 0.015 tto?évylthm nurPertlr(]:_al available. The transformation of the two-dimensioaY
uncertainty.= ASsuming th€ conjecture IS correct, tis odel to the CG representation including boundary contri-

agreement gives some _conﬂdence in-our _def|n|t|0n %%utions has been discussed in detail in earlier wdtk&*!In
domain-wall energies as discussed above and in our numer,

I hod ind=3 using the CG ion. There i fhis section, we use the method of Ney-Nifle and Hilhtrst
cal method ind=3 using the CG representation. There IS N0y, yansform to the CG representation in 3D.
analogous equality of the stiffness exponents inXafispin

S ; . We first replace the potentis(¢) in Eq. (1) by a piece-
glass ford=3>d, so we do not attempt to estimafigin 3D wise parabolic potential which is equivalent to a Vili&n

but concentrate on thbel splndstn_‘fness exponemAls?, at c otential atT=0. The partition function for aL XL XL
present, we are unable to derive an expression for a auge glass model in 3D is

Hamiltonian with reflective boundary conditionsds= 3. All
previous work on theXY gauge glas®®°and on theXY o
spin glas&®~3° using theT=0 DWRG method have used Z= 1T d6 > ex;{—,&]2> (6;—A)> (8
different definitions for domain wall energies. Minimization cmod i} i

with respect to thg global twista , is omitted, the Iowe_st where6;; = 6,— 6, — 2rn;; and wheren;; = —n;; are integers
energy withA ,=0 is calledE,, and the lowest energy with 4, the hond(ij). By choosing one phasé,, as a reference,
A, =mis calledE,,. Neither of these BC is compatible with e partition function can be written as

the GS configuration, as both must induce some excitation

from E,. Nevertheless, the spin defect energy is defined by - o
AES"=|E,,—E,| and the spin stiffness expones" by ZIJ ﬂdﬂof )

In this section, we discuss the CG representation of the

amiltonian of Eq.(1) including all finite-size contributions.

his representation parametrizes the energy in terms of the
topological excitations on a torus in 2D and a hypertorus in
3D and includes global excitations which wind around the
whole hypertorus. These latter excitations are very important
for a finite system and are vital for finite-size scaling consid-
%rations when one is limited to small system sited\lso,

<1;[> daijqu_ﬂ\](eij_Aij)z]H

(AERT(L))~LY% . @ %8

> Gijmod27r) 5(2 0i1m0d27-r)H

Drxy Dryz r
We call this a random twistRT) measurement since, for a

particular sample, the twists ,= 0,7 are two arbitrary ran- X8 D HiijdZﬂ') 5( > ﬁiijdZ'n) 11

dom choices relative to the best twisﬁ, which is the twist Urax Lix r

which yields the lowest energy. In a uniform ferromagnet,

A%=0 which is realized by periodic BC antl) + 7 by an- X8 BiijdZTr) 5( > aijmodzw). 9)
tiperiodic BC. For a particular realization of randomne‘s%, Hy bz

is the analog of periodic BC in a uniform ferromagnet. Here,r is the coordinate of the center of an elementary cube

Recently, the 2D Ising spin glass has been studied by 8¢ the original lattice which corresponds to the coordinate of
closely related defect energy scaling metfidtf At first 3 dual lattice siter, is the coordinate of the center of the
sight, this is @ much simpler system than ®¥ spin and  glementary plaquette in they plane and similarly fory,
gauge glasses of this work but it turns out that the 2D Is'ngandrzx. Note that for a 2D system in they plane,r,, are
spin glass is a very subtle system whose properties depenfls jual lattice sitesr. Since each cube has six faces
on the form of the distribution of cou.plings. In fac;, the most (plaquettes each of which is shared by two adjacent cubes,
recent S““?'?f computes exact domain wall energis& for ¢, each dual lattice site we assign three independent
systems with. <480 by means of a minimum-weight perfect 5,4y ettes with centers al,, ry;, andr,, as shown in Figs.
matching algorithm and finds th@t=—0.27 for a Gaussian 1 anq 25 4. is the circulation ofg;; round the plaquette
distribution of coupling strengths but=0 for a =J distri- . xy ! J
bution, implying that 2D is the lower critical dimension and in thexy plane of the cube at,
T.=02"* These results are similar to the earlier sttidy
which was restricted td.<24 with a cluster Monte Carlo > 0;=L0; +6, i —0; =01, (10)
technique and is less accurate. Oty . g g
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Z L
J.
r
AZ I —
r ¥z
x “7 1 L
. y M
Ax 1 Ar Jy y L
jx Xy FIG. 3. TheL XL X L system is represented by a cube. The thick
i’ lines are our choices of the three global loops around the whole
X system.

FIG. 1. An elementary cube of the original lattice with vertices 1 %
ati,j, . The dual lattice site is at the center of the cube and the 5 6-m _ Lz
. ) mod2r | = =— expgin O |,
faces associated withhave centers at,,, r,, andr,,. The bond DEr;y g 2 nZZ " r[%y 4
variablesA;

i relabeled ag\/*, are associated with the cuberat
8| > 6, mod2r| = 1 i
& 2

ny=—

andXp,6;; is the circulation ofg;; along an arbitrary loop in
the x direction around the hypertorus,

exr{ian 9”},
Ox
the partition function now becomes

(11) z2=2,2> >

v n )

xex;{E

r

[

L
> eijEiZl O

doiexd — BI(6;— Aj)?]
Ox (5)

—(ij

(in’;z 6, +inY >,
tryz O

Fzx

xoly i) (ix+ 1

0”+infz 0”)}
Uryy

wherei, with u=x,y,z is the coordinate of the original
lattice site andi, andi, are fixed. Other summations are
defined similarly. Note that one needs to consider only one Xex{in

global loop on the hypertorus in each direction. Circulations x&d

around other global loops can be expressed in terms of cir-

culations around any three chosen global loops and arourithere ni* and n, with u=x,y,z are integers, and,

0ij+iny2 6’ij+inzz Bij}, (12)
Oy Oz

elementary plaquettes. It is clear from the definitionégf
and the periodic boundary condition imposed on #hé¢hat
these circulations are integer multiples af 2Since the delta

functions can be rewritten as follows,

r=y

/

r-y

AY
XTIy —

/

FIG. 2. Graphical explanation of our symbols.denotes the
center of the cube and light solid lines join original lattice sites.

EHMEnM and Z{nr}EHMEnf. The sumZ, is over the dual
lattice siteg at the centers of the elementary cubes Apdbs

an unimportant constant. To perform the integrations over
16i;}, we choose the three global loops around the hypertorus
as shown in Fig. 3. To deal with these global loops math-
ematically, we introduce the following quantities,

1 ifr=(x,1,2) withx=1,2,...L,

= . 13
0 otherwise, (13

r 5
similarly for &/ and &7. For example, the cubes at
=(x,1,1) have a part of the global loop in tledirection.

The definition ofA¥* associated with the cube afs also
shown in Fig. 1. As the plaquettes, one can assign three
independenfA;* to each cube. After relabeling;; by Af,
performing the integrations in E¢L2) over ¢;; , the partition
function becomes

Z=7,2, exp[ - % > 2 (VXN o+ 80N, )2

n,n

4p
xex;{—iz > {(VXn,),+ 57na}Af“}. (14)
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We use the following notation for the discrete derivative, from which fY and f? are obtained by cyclic permutation of
xyz After some algebra, the partition function of E3d.9)

(VXn),=(ny=n/_)—(nf—n;_;) (15  becomes a form suitable for integration owvef,
and similarly for other components & Xn,. Note that, 27
whenr=(1y,z), thenr —x=(L,y,z) due to periodic bound- Z= ZOE z _wl:[ dvrex 2L L 18 (rXn)}
ary conditions, and similarly far—y andr — z. Applying the )
Poisson-summation formula tg*, wexy] — —— Vxy) 12
418‘J - a:;y,z {( r)a}

n:E—oo f(n):q;oc 7oodue2ﬂ-iqu(U), (16) XGX[{ZWiz (Qr_fr)'Vr .

the partition function of Eq(14) becomes

Z=2Z,> Z H du ex;{ZmZ q- Uy

n {aq.}

(21)

To evaluate the integrals ovef' in Eq. (21) it is conve-
nient to take the Fourier transform

=L*§; ek v(k), (22)

1
Xexpg — —= > {(VXu,),+8%n,)2
‘{ 4BJ = a=x,y,z{ ' Mol wherek= (ky,ky ,k,) andk;=2z/Lm; with m=0,1,...L
—1. We also decomposgKk) into longitudinal,v, (k), and

X ex;{ —i Er: > {(VXu),+ 5?%%?} (17 transversey (k) components where

a=xy,z

(1—e'ka)(1—e 5

It is convenient to change integration variables foto make 20k = > D8(k) = 2 Laﬁvﬂ(k)
Eqg. (17) more symmetric, B Ak
y z ~ ~ B ~
pI= U SNzt ooy, vT<k>=§ (Sup— Laﬁ>vﬂ<k>=§ Tap0P(K),
z X A=6—2 cosk,— 2 cosk,— 2 cosk, (23
Vv =
vi=uf N+ =—n,, (18 i o o
2L 7 2L define the longitudinal and transverse projection operators
L.pg(kK) andT,4(K). In Fourier space, the integration owgr
. X y in Eq. (21) is straightforward,
UE_UE Zny+ an .
wherer=(x,y,z). The partition function of Eq(17) now f 1;[ dVL(k)dVT(k)eXF{_ 48] < 2}

becomes

xexp 2mi 2, {pr(k)-Vr(k) +pL(k)-V (k)}},
Z= ZOE 2 H dvrexr{ZmE Or-Vy F{ < T T L L

—o T

(24)
X exp WTI S g (rxn} where p(k)=q(k)—f(k). Integration overv, (k) gives
L r pL(k)=0. In real space, this is the condition whereby the
1 n2 discrete divergence of the vorticigharge g, at any dual
Xexpg — VN > {(va ) 3 ] } lattice siter obeysV -q,=0 sinceV-f,=0. The integration
: roame over the transverse componemgk) are simple Gaussian
. integrals and are easily performed. Integration ovei0)
X - X 2
&K IE « EX:y 2 (VX ot A (19 andv(0) yields the neutrality condition

The terms linear imﬂ in the exponent of Eq19) vanish due 50)=3 p=0 o5
to the periodic boundary conditia,(vf—v,_;)=0. Equa- p(0)= 2, Pr=0. (29
tion (19) can be simplified by introducing frustration vari-

ablesf” at siter, The final step in this rather technical derivation of the Hamil-

tonian in the CG representation is to apply the Poisson-
1 1 summation formula of Eq(16) to eliminate then,, in favor
X =—(AY—A ~— AZ of global vortices or charges, ;. The Gaussian integrations
fi=—5 > Aj=5 (A A TA-AD, (200 ofg ic argem, ;. g

™ Ory, ™ yield the partition function

054536-6



DOMAIN WALL RENORMALIZATION GROUP STUDY OF ... PHYSICAL REVIEW B66, 054536 (2002

Z=Zo{% qE extl— BH(0 fr Gur fu)] (260 H=(27)233 (qr—fr)G(r—r')(qr,—fr,)Jré(aimg),

'’

The HamiltonianH is identified as (30)
where
H=(2m)22, (q—f)-(q—f)G(r—r")
ox=—2m L(qxl—fxl>+2 (a9 —fy|,
N, 2 I (=
ol L3 eyl 4o | TS oot
oy=—2m L(qy—fy1)— 2 (q,—Fo)x],
2 J (7 2 r
—zp)+Qy tor EE (ypf—xp¥)+Qz} , (27) »
r S 3D
G(r)y=— .
where G(r)=L" 33, [explk-r)—1]/x, is the lattice L2 k70 4—2 cosky—2 cosk,

Green’s function on a simple cubic lattice in 3D with peri-

odic BC and the quantitieg, are Here, as in 3Dy=(x,y) represents the coordinates of the

dual lattice sites an@(r) is the lattice Green’s function with
periodic BC on thes; . From Eq.(8), we see that the differ-
Q=72 (zP 8,1~ yPiS,1)+27L(a—f,a), (28)  ence of a factor 2 in the prefactor of EEO) from other

r works is in the coupling constadt Also note that the Hamil-
tonian of Eq.(30) describes theXY spin glass when the
frustrationsf, and the global frustrationfs,, are restricted to
(0,1/2). In the gauge glass, they can have any real value. As
in 3D, the topological chargeg, are integers as arg,;

with Q, andQ, obtained fromQ, by cyclic permutations of
xyz In Eq.(28), f,, is the circulation ofA;; along the cho-
sen global loop around the hypertorus in thdirection,

L because of the periodic BC in th.
27rf = E AX_ L) (29) The last piece pf information we qeed is thg CG represen-
x=1 " tation of the Hamiltonian of th&XY spin glass in 2D with a

o ] . chiral domain wall imposed. This is to be found in the paper
and S|m||IarIy forf)?l "’r‘]”dfzrl]- The '”teggrﬂhﬁl arze lntergretedd of Ney-Nifle and Hilhorst® A single chiral domain wall is
as circulations of the phase around the three indepen e‘Hduced by ioini . . L~

- . y joining opposite faces by interactiovis V( 6,
(28 are the main reslts of (s section. These expressions, /iy Ar) WHICh s equivalent 10 imposing. refective
' P §C.2833 |n tumn, this is equivalent to doubling the size in

give the energy of a system of siken a hypertorus. To find (say the x direction to a 2 XL lattice in which the extra

the ~minimum  energy Eo, the = Hamiltonian H half is a charge conjugated image of the other. This system

;H(q, +fr20,1, ) IS minimized W't.h respect to the bulk has two chiral domain walls with the Hamiltoni&n
integer valued vector chargeg, the integer valued global

winding numbersy,,,, and the global frustrationts, ;. In the _

case of theXY spin glass thej,; —f,; of Eq. (28) are re- Hr=27232 (q,—f)G(r—r) (g, —f.), (32
stricted to be integer or half integer while for the gauge glass rr!

this can have any real value. Note that minimizing with re'whereé(r) is the Green’s function for al2x L square lat-

spect togy, andf,; is exactly minimizing with respect to the  tjce with periodic BC and also withg, , ;= —q, andf, . ;

. . O 0
twist A, and the best twish, corresponds td,; , the value  — _ ¢ Note that the sign reversal of the frustratiohsis

of f,,, at the energy minimum. Adding a global twist, 0 not necessary for the spin glass becadse +1/2 are

the phases is exactly equivalent to changing the global frussquivalent.

tration from its original valuef ,;—f,,+A /27. As dis- The form of the energy of Eq32) is used in the simula-

cussed in Sec. II, a spin domain wall is induced d)  tions to estimates,, the chiral stiffness exponent, as it is

— A%+ which, in the CG representation, it;—f%  intuitively more transparent and more convenient than the

+1/2. Note that the frustratiorfs are given in terms of the corresponding expression with a single chiral domain Wall.

randomA;; and are kept fixed during the minimization. Unfortunately, we have been unable to derive the analogous
To confront our numerical results with the only existing expression in 3D to Eq(32) so we have no independent

analytic predictio”® we need expressions for both spin and estimate off. (Ref. 30 for the 3DXY spin glass.

chiral domain wall energies in dimensidr=2<d,. The CG

representation of th¥Y spin and gauge glasses including all IV. NUMERICAL METHOD
finite size corrections has been known for some time in o _
2D "33 and, for the sake of completeness, we quote the nec- A. Minimization algorithm

essary results below. To study the spin stiffness, we join cor- |n Sec. Il we argued that it is necessary to find the ener-
responding sites on opposite faces Wy-V(6,— 6;,—A;j) giesEy(L) andEp(L) essentially exactly for every sample
and the CG Hamiltonian is to control the errors in thesmall domain wall energy
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(AE(L)). To our knowledge, for the systems of interest nodid two independent simulations on identical samples with
algorithm exists which can locate the global energy minimadifferent pseudorandom number sequences and, if the same
in polynomial time. We are left with two methodé) re-  energy minima are found in both simulations, this is defined
peated simple quenches from an arbitrary initial configurato be the true minimum. This procedure is very expensive in
tion to T=0 followed by a downward slide to the nearest CPU time and our resources did not permit this last check to
local minimum and(ii) simulated annealiri§ which is con-  be performed for every sample, particularly for the largest
siderably more efficier? By this we mean that, for the same systems. This check was done for at least a few randomly

CPU time, simulated annealing finds a lower energy thars€lected samples, except for=7 in the 3D gauge glass.
simple quenching. Averaging over disorder was performed over as many

We start with the system in some randomly chosen Con__samples as possible with the aim of making the uncertainty

in- 0,
figuration and quench to somk,, determined by trial and mh.t?ﬁ nranea_lpe dg":r‘: -V,:a”oe;e;%f%%ﬁz th‘l?;e :fg r/;t
error, for each size.. Then we do a Monte Carl¢MC) wh quires averaging ov S PEs. !

sweep through the svstem by inserting charaesl and set of checks are done on every sample which makes it fairly

’——pl 9 bit ysten fy ‘ 9 hbg i f th robable that exact minimgy(L) andEp(L) are obtained.
9= on an aroitrary pair of nearest-neighor sites o 'e can assume with some confidence that the uncertainty in
dual lattice in 2D and accepting or rejecting the move ac-,

AE(L)) is purely statistical andD(N*?). Averaging over
cording to conventional MC rules. This has the effect of< (L)) is purely (N ging

. . L X about 18 samples leads to an acceptable uncertainty of
inserting new charges, annihilating charges, or moving About 3% i AE(L)).

charge by one lattice spacing while maintaining charge neu-

trality 2q,=0. In 3D, the elementary excitation is a loop of ] ]

charge around an elementary square with vertices at dual B. XY spin glass in 2D

lattice sites. This maintain¥ -q,=0. The closed loop of This particular system with a Hamiltonian of E@L) in
charge can lie in any of the three orthogonal planes of theD is not particularly interesting in the sense that there exists
cubic lattice and the charge can circulate around the loop imo finite temperature transition. It has been known for a long
either direction, making six possibilities with the center of time thatd,>2 and both spin and chiral stiffness exponents
the loop at a fixed but randomly selected position. The temare negative. However, the situation has been controversial
peratureT is then reduced td';=aT, with <1 whose due to the possible existence of different stiffness or correla-
value is again determined by trial and error and the procetion length exponents for spin- and chiral glass order in 2D.
dure iterated a large numbdy, of times to reach a lowest Previous estimates of the spin and chiral stiffness exponents
temperatureTy=aNTo~0. Of course, the system may be are summarized by,~26,~ —0.78 based on extensive nu-
trapped in a deep metastable well with barriers too high fomerical simulations such as DWRG and finite temperature
the MC passes to overcome so the whole annealing sequentC simulations?®-304%5However, Ney-Nifle and Hilhorét

is repeatedVl times from different random initial configura- made a nonrigorous but very plausible conjecture based on
tions and the lowest energy out of all thM trials is re-  analytic considerations that for dimensiah<d,, 6= 6,
corded. Again, this does not guarantee that the global mini<0. This is supported by exact analytic results on simple
mum energy is found but this method does have a fewnodels of(i) anXY spin glass on a ladder lattitavhere the
checks built in. At the crudest level, the best twist conditioncommon correlation length exponent=|6| 1=0.5263 . . .
Esp(L)=Eo(L) must be obeyed for each sample sinceand (ii) the XY spin glass on a tube lattite with »
Eo(L) is, by construction, the lowest energy of the system=0.5564 ... . The keylisagreement between numerical es-
subject to the BC given by the interactioNs= V(6;,— 0, timates and analytic theory is in the conjectured equality of
—A;;) across opposite face€p(L) is obtained byfgl 05 and 6. . If one makes the hypothesis that earlier estimates
— 9, +1/2 wheref?, is the value off ,, which makes the are in error, then the most likely reason is that the simula-
boundary terms of Eq$27) and (30) vanish, corresponding tions are computing the wrong quantity when estimating one
to the best twisﬂz. Itis clear thatE,p(L) is the energy of  ©OF both of th_e stlff_ness exponents. It is extremely _unI|ker
the system containing an extra spin domain wall compared ithat aII_the S|mu_lat|ons are in error for simple technical rea-
the system with energio(L). As discussed earlieEy(L) is ~ SOns since all find the same values @f and ¢, but 6

not necessarily the true GS energy as the system may containf - ) ) ) .
some chiral domain walls. However, by construction, To test this hypothesis, we have performed simulations of

E.p(L) is the energy of the system with treamechiral  the 2DXY spin glass in the CG representation using Bg)
defects and an extra spin defect. to estimate the spin stiffness expon#gtusing both BT and

If any sample violates the BT condition, clearly the an-RT measurements with the resuti§’= —0.37+0.015 and
nealing is not sufficient and one can either increase the nurfle' = —0.76+0.015* These numbers were obtained from
ber MN of annealing attempts or just discard that samplesizesL=4, 5, 6, 7, 8, and 10 averaging over 2560 samples
IncreasingMN involves a significant increase in CPU time for L<8 and 1152 samples fac=10. As expected, the
particularly for the larger sizek so the choice depends on value of 687 agrees with all previous estimat&s all of
the time available. However, even if the BT condition is which use the RT measurement in some form. Both the BT
satisfied for every sample, there is no guarantee that the lovand the RT data fit the scaling ansatz of E).equally well
est energies found ateue global minima. To improve the and some other information is needed to decide which value
chances that true minima are achieved, where possible w&f 6, if either, is correct. Both cannot be correct as both are
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0.5 group flows for both the coupling constaritd.) and disor-
der strengthA(L) with an increasing length scale All our
results are numerical and the exponégt GSBT is estimated

by fitting estimates of AEZ'(L)) to the scaling ansatz of
Eqg. (4). The system sizek are very small as they are se-
verely constrained by the necessity of controlling the errors
= in both Eg(L) andEp(L), which are estimated by indepen-
@ -05 = z . dent simulations. However, the fit to the scaling ansatz is
- = very good despite the very few data points for all cases we

Ty have studied and is comparable with the same procedure car-
o SDWET) ried out on the 2D Ising ferromagnet. In this case, simula-
0T 5 Scowen 1 tions for sized =2-5 are sufficient to reproduce the exact

0.0 -

H
W

&—2SDWQRT) 6#s=1 to high accuracy.
¥ CDW(RT)
55 15 20 25 A. XY spin glass in 3D
In(L)

This system has been somewhat controversial for some

FIG. 4. Top to bottomL dependence ofEET, AERT AERT,  Years and is not yet settled. It has been believed dia#
andAEET for the 2D XY spin glass. for spin-glass order, and} <3 for chiral glass order and that,

in 2D and 3D, spin and chiral variables decouple and order

supposed to measure the same quantity. The necessary inféeparately’~*****°This allows for the widely accepted sce-
mation is in the chiral stiffness exponefit which we mea- nario that in 3D, spin-glass order sets inTajc=0 whereas
sure by simulating Eq:32) on a 2. X L system. Again, both chiral glass order sets in dicc>0. This scenario is based
BT and RT measurements were made with the same range 6f MC simulations at finitel (Refs. 29 and 51land onT
L and the same number of samples aséowith the results =0 defect energy scalifi§*using the RT method. Attempts
68T=—0.37+0.010 andhR "= — 0.37+ 0.015* At first sight ~ to show rigorously thaT <=0 in 3D (Ref. 52 fail if reflec-
it is surprising that both measurements give the same valléon symmetry is brokeft>**at finite T. The first cracks in
for 6, to within numerical uncertainty while the values of this widely accepted scenario appeared recently when Mau-
6R™ and 627 differ by a factor of 2. Note that the boundary court and Grempéff published the results of a large scale
termso,, of Eq. (30) which contain the twist parametéy, defect energy scaling study of the 30¥ spin-glass model
vanish in the BT condition and such boundary terms aréf Ed- (1). They used the RT method, as all previous defect
absent from Eq(32). Thus, any measurement with a CG €Nnergy scaling studies have done, with sites12 in 2D
representation in which boundary contributions are absent i@ndL<8 in 3D. Although the fit to the scaling ansatz is not
automatically a BT measurement. Sindg= GSBT%_OB? good due to strong crossover effects ar]d Iarng gncertalntles
and g,# 6%~ —0.76, assumingthat the conjecture is cor- 1" the largeL data which was used to estimat@(, it is clear

RT, RT, ; i .
rect, we conclude that the BT measurement yields a reasoff?at both(AES (L)) and(AE; (L)) increase with. which
able estimate of the trué, while the commonly used RT implies that there is both spin- and chiral glass order at suf-
measurement yieldingsRTa& 6. is not an appropriate method f|C|eptIy small T>0. Hoyvever, as_argued apove a va||dl nu-
for the small values of. accessible at present. Our simula- Merical method must yields= 6. in 2D while they obtain

Y 30 ; ; ; 9
tion results are shown in Fig. 4. We do not understand Whatg'_sfzacf 0.787 in agreement with other estimatés™®
if anything, BET means despite the apparent excellent fit of inite T simulations seem to suffer from severe equilibration

EE 1 29,51 g i ;
<AE§T(L)> to the scaling ansatz, since this is the energydgggglgtesz which makes any conclusions from them also

difference of the system subject to two random choices of In view of the lack of reliable results for the 3RY spin

i 0
gecczggswgf_can see no reason why it should scale’asver glass, we have done some preliminary simulations on very
' small systems with.=2-6 in the CG representation with
Eq.(27) wheref ,;=0,1/2 in Eq.(28). Following the method
V. RESULTS outlined in Sec. IV B we estimaté®"= +0.10+0.03 while
Our investigation of the 2IXY spin glass establishes that the data f_‘)r(AEsRT(L» clearly decreases with for L
the BT method of measuring domain wall energies can re=2—4, Wwith roughly the same slope as found by
produce the one and only available analytic predidlon Kawamurd® for the same range df. Our value 6;=0.10
which is relevant for our purposes. This gives some encour=0.03 (Ref. 44 is to be compared with the recent estimate
agement to venture into areas where no such analytic guidél = +0.052£0.03 for L=5-7% Although these values
exists. In this section, we report some new results on the spiare close numerically and are equal to within error bars, we
stiffness exponen, for the XY spin glass in 30Sec. VA, are more inclined to believe in the former number as we
and the gauge glass in both 2D and @Bec. V B. We also  consider6®T to give the true spin stiffness exponent and we
perform simulations on systems with varying strengths ofspeculate that further points will also lie on the scaling an-
disorder (Sec. VQ where we study the renormalization satz and will significantly reduce the 30% uncertainty. The
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. . FIG. 6. SizeL dependence of domain wall energy in 2D. Both
BT RT
FIG. 5. L dependence o E;  andAE, 'in 3D. The errorin the RT and BT measurements are shown. Solid lines are power law fits.

L= 6_p0|nt is due to the_ rather few_ samples. The solid line is POWETEror bars are not shown if smaller than symbol size.
law fit and the dotted line is a guide to the eye.

o system sized =2-6, 8, and 10 are shown in Fig. 6 for

results are shown in Fig. 5. Unfortunately, we have no esﬂmEBT(L)) and<AERT(L)> Averages were performed over
. . T . S S "

mate for the chiral stiffness expone‘?ﬁ. for the 3DXY spin  ahqout 18 samples for each side In this case, all the checks
glass as we have %ﬁen unable tcR)Tdenve the 3D analog of Egjscussed in Sec. IV A were performed so we assume the
(32) to estimateAE; (L) andAE¢ (L). However, because errors are purely statistical. Both fit well to the scaling ansatz
the numerical values of¢ ' and 65" are the same in 2D and of Eq. (4) with very similar errors with the value®®T
equal tofg as required, we are reasonably safe in assuming- — g 36+0.010 andg "= —0.45+0.015. The latter value
that existing estimaté%*° of 4 in 3D are fairly accurate. s consistent with all earlier estimates @f, >®°which is not
Even though our spin stiffness exponetf’~+0.1 has @ 4 surprise as all these were done using the RT method in
rather large uncertainty, it suggests that the lower criticakome form. However, as argued in Sec. IV B, this is not an
dimension for spin-glass order &<3, as for chiral order. accurate estimate df so this number i:iot the T=0 spin

This is to be expected from analytic argumetits. stiffness exponent. A more accurate estimate of thigtis
=—0.36+0.010 which is significantly larger thaal", so
B. Gauge glass in 2D and 3D that the 2D gauge glass has a longer correlation length
We have also performed simulations on the gauge glass ié(T)~ T~ %l than previously thought.
the CG representation using EQO) in 2D and Eq.(27) in We have also obtained some estimatesfgfin 3D by

3D. The only differences to the spin glass are in the values operforming simulatior of the gauge glass in the CG rep-
f,1 and f, which can have any value in the interval resentation using E¢27) with the distribution of frustrations
[—1/2,1/2). The frustration§, = — =, A;;/2m are correlated  fr appropriate for this case as determined by takingAfe
random variables, since th; are the independent random uniformly distributed in ¢, + «]. The system sizes are 2
variables. Similarly, in 3D, the frustratiorisof Eq. (20) are ~ <L=7 with disorder averaging over iGsamples forL
correlated random variables with each component in the in=5, 300 forL=6, and 60 for the largest siZe=7. The
terval[ - 1/2,1/2). The three global frustratiofig; can take ~uncertainty in(AEST(L)) for L=7 is very large, but this
any value in the same interval. In both spin and gaugelata point is included to check that it is consistent with the
glasses, the vorticitieg” andq,,; are integers. We have not behavior deduced from the more reliable data of the smaller
computedd, in either 2D or 3D for the gauge glass, mainly Sizes. The results are shown in Fig. 7 {&rE4(L)) for the
because we have been unable to obtain the appropriate edtdscreened gauge glass using both BT and RT measurements
pression for the Hamiltonian in the CG representation withand for a gauge glass in 3D with screened interactians,
reflective BC in 3D and we are unable to understand what<>. The BT data fit the scaling form of E¢#) very well for
information such a simulation would yield. The major reasonsizesL<6 with exponentdS "= +0.31+0.010. If theL=7

for doing such a simulation in the 2D spin-glass case was tpoint is also included in the fit, we obtaifiZ'=+0.30
confirm that our procedure is a useful numerical method ta-0.015. These errors ifi; come from a naive least squares
estimate the actual spin stiffness exponégptfor both spin  fit of the data to a straight line and should not be taken too
and gauge glasses in 2D and 3D. To compare with earlieseriously. TheL=7 data is suspect because four samples
work®>®89we have also estimateef " by keepingf ,; fixed  violated the BT conditioEET(L)=0 out of a total of only

at some random value during the minimization, exactly a4, despite running a highly vectorized code for a few thou-
for the spin glass. The results of the simulatiSrie 2D for ~ sand CPU hours on a Cray J90. Time did not permit any
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Al P —— which is considerably larger than earlier estimates and indi-

O~ ERT(unscreened) cates that the lower critical dimensial<<3. This is consis-
tent with finite T MC result§>**or the gauge glass in 3D

which indicate thaff .= O(J). This value ofT, is very dif-

ficult to reconcile with the suggestion thdt~=3 from previ-

15 | e S ous DWRG studie¥*®°as this implies a very small value of

: T./J. A very recent Monte Carlo studyof the 2D and 3D

) N A unscreened gauge glass obtains value8sofhich are very
= e = close to those of this work.
T A The prediction thaff.=0 for the 2D gauge glass is still
1.0 + = ] somewhat controversial. It is safe to say thatTai 0 defect

m T energy scaling studies agree tltat<0 in 2D although there

\ is some disagreement on the actual valugdof Finite but

low-temperature Monte Carlo simulaticfs’ claim thatT,

>0 for the 2D gauge glass. This result is contested by some
0.50_5 0 s 20 very r(;:cent large sca_le simulations by _Katzgraber and

In(L) Youngl_ at much lowefT in 2D. The data of thls_study _scales
best with 6= —0.39+0.03 andT.=0 and is inconsistent

FIG. 7. L dependence of domain-wall energy in 3D. Bottom with T.>0 but is consistent with the results of this work.

curve is RT measurement for unscreened interaction. All others are We have also studied the effects of screened vortex-vortex

BT measurements. Topmost curve is unscreened tas2—7. interactions on the spin domain-wall energy using the BT

Other curves are screened interactions witbecreasing from top  measurement in 3D. Screening of the Coulomb interaction of

to bottom. Solid line is a power-law fit and dotted lines are guidesyortices is implemented by adding a mass texi? to the

D

@
(.

{

for the eye. denominator of the Green’s functidf,

further checks for attaining the global energy minimum for 1 aikr 1

L=7. We cannot be sure that the remaining 60 samples G(r)=— .
which did not violate the BT condition reached their global L3 K=o 6—2coskx—Zcosky—2coskz+)\‘2
energy minima nor that the energiggp are determined suf- (33

ficiently accurately. The error bar on the=7 point in Fig. 7 The results are also shown in Fig. 7. We average ovér 10

. - BT _ .
assumes that the uncertainty(iWEs (L =7)) is purely sta- g5 15 fol. =24 and 250 fol.=5 for several values of

tistical and the true uncertainty is probapfyuchlarger. At © e gcreening length. Screening is clearly a relevant per-
least an order-of-magnitude more CPU time is needed fof, ,.i\n when\ is finite and8T<0 but our small sizes do
sufficient annealing to reach the true minima and to perform . . N T
the additional simulations with different random number se-0t PEMit an esﬂnate of the value @f". For large screen-
quences to check that the minimization algorithm is succesdd [€NGths(AES (L)) seems to scaLeT the same as for the
ful. This is just for a single batch of 64 samples and to reducé'nscoreeUEd case but we expect (s, (L)) will decrease
the uncertainty to 3%, yet another order of magnitude ofSL" with 6;<0 at length scales which are beyond our
CPU time would be needed to average ove? samples. COMPputing power for ank <c. These results are consistent
This is totally out of reach with the computing resourcesWith those of Bokil and Youn who studied the qqesﬂoggof
available to us. What data we have is entirely consistent wittfcr€ening using a RT measurement and with Riegel.
the scaling form of Eq(4) with 6.~ +0.30 with no sign of ~for very strong screening.
any deviation from this form.

The behavior of AERT(L)) is also shown in Fig. 7 for C. Varying disorder strength in 2D and 3D

sizesL<6 which is very much like the data obtained by e have also performed simulations with various
earlier simulations. This clearly does not fit the scaling formstrengths of disorder in the CG representation using(&).
of Eq. (4) for these small values df, but if one insists on  for the 2D case and E@27) for 3D where the random bond

extracting a value o5 from the data, one obtains consis- variablesA;; are independently uniformly distributed in the
tency with previous estimat®or the spin stiffness exponent range [—am,am) with O<a<1 so that(A;)=0 and

6¢ "~ +0.05+ 0.05. As can be seen from Fig. 7, this estimate(|A;;|)= am/2. Physical realizations of this model are, e.g.,
has no meaning as the data clearly does not obey the scaliaggyn XY magnet with random Dzyaloshinski-Moriya
ansatz. In fact, as noticed by Maucourt and Greripel,interaction&® and Josephson-junction arrays with positional
(AEST(L)) seems to start increasing withfor L>5 but, as  disordet®2°where both the effective coupling constait.)

we argue earlier, this may, or may not, eventually scale aand the effective disorder strengf(L) at length scaleL
(AEBT(L)) for sufficiently largeL. Speculation along these play a role. Studies in 2DRefs. 18—20 suggest that weak
lines is fruitless until computers which are many orders-of-disorder @=0) does not affect the existence of an ordered
magnitude faster become available or until an analytic soluphase at intermediate temperature but there is a reentrant
tion is found. We conclude that, for thenscreenedjauge transition to a disordered phase at low temperature. How-
glass in 3D, the spin stiffness expondht= +0.31+0.010, ever, recent analytfé~%> and numericdl studies show there
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FIG. 8. RG flow in 2D. The flows are from right to left far FIG. 9. RG flow in 3D. The flows are from left to right for al.

=0.4 and from left to right fore<0.35.

glass fixed point. It seems that, in the absence of screening,
is an ordered phase far<T.(a) with T,(a«)>0 for 0O<a  A—x, there are two glassy superconducting phases at
<a,. To study how the disorder strength behaves as the=O which, in an applied magnetic field, correspond to a
length scaleL varies, one must, if possible, identify the Bragg glas‘? for a<a. and to a vortex gla§§f0r a>ag.
scaled disorder strength(L) with some measurable quan-

tity. An identification has been proposed in a recent numeri- V1. DISCUSSION AND SUMMARY
cal study where the effective disorder strength is defined as . . _ o
27A(L)=(|A°(L)|) with A(1)= a/4 so that one can follow In this paper, we reinvestigate the possibility of an or-

the flows of bothJ(L) and A(L) with an increasing length dered phase at small but finite temperatliney a numerical
scaleL. With this definition, <A(L)<1/4. A°(L) is the =~ domain wall renormalization group method in a disordered
global phase twist minimizing the energy of a system of sizeXY model in 2D and 3D described by the Hamiltonian of Eq.
L for a particular realization of disorder. For two phases with(1) in the Coulomb gas representation. For thé XY spin
energy E;,=V(6;— 6,—A,,), the minimum is atf,— 6, glass in 3D, our simulations yield the spin glass stiffness
—A,, which is satisfied by applying a “global” phase twist €xponentgs '~ +0.10 which suggests its lower critical di-
of A;,. Hence, this follows the definition &%(L) as a mea- mension isd,<3. This value 0f¢9sBT is very different from
sure of disorder at scale existing estimates of the chiral glass stiffness exponent in 3D
Since the numerical stuflyused the Hamiltonian of Eq. 6.~ +0.47(Ref. 29 and 6~ + 0.56+ 0.183 The difference
(1) is the phase representation, we reinvestigate this model ibetweends and 6. seems to support the decoupling of two
the CG representation. The simulations were performed fodegrees of freedom in 3D. For the gauge glass, we estimate
L=2-6, 8, and 10 in 2D,.=2-5 in 3D and averaged over the stiffness exponem®'=—0.36+0.01 in 2D andf®"=
at least 16 samples. The results are shown in Fig. 8 in 2D+0.31+0.01 in 3D, which are considerably larger than all
and in Fig. 9 in 3D. We are interested in the stable fixed-earlier estimates. The latter value is consistent WithJ
point values atL—o J* and A* as these determine the ~©(1) from finite temperature MC stud®3**'*and also
nature of the phases. In 2D, weak disorder{a.~0.37)  strongly suggestd,;<3. The results for th&XY spin glass in
seems to be marginal and the system seems to iterate towad@® are consistent with spin-glass orderTat 0 which is in
a glass phase with quasi-long-range order characterized hyontradiction with all other studié&?° except one® We
(J*,A*) where the fixed point value¥*, A* are finite and also note that there are studies of the 3D Heisenberg spin
depend onw. This is consistent with recent analytic glas§® which indicate that the behavior is similar to that of
studies??~?°0n the other hand, systems with strong disorderthe XY spin glass found in Sec. V A except that they find a
a>ac, seem to flow to a disordered fixed point*(A*)  surprisingly largefs~0.8. The existence of a loW-state
=(0,1/4) which corresponds to a nonsuperconducting glassvith spin-glass and chiral order is also found by studying
In 3D, for a<a,=~0.57, the system flows to a strong- nonequilibrium relaxation of the corresponding
coupling limit J* =. The disorder strengtA(L) appears to  susceptibilitie$>
flow to a finite fixed point valueA* which depends on. We also studied the effects of varying the disorder
However this is not conclusive from our simulations, sincestrength. In 2D, our simulations imply that weak disorder is
only very small values. =2—6 are used. This can be inter- marginaf>~2°and a system with strong disorder flows to a
preted as the zero field version of a Bragg glass phase. Falisordered fixed point. There is no sign of a reentrant transi-
large disorderg> «, [J(L),A(L)] seem to iterate to their tion in our simulations. In 3D, weak disorder has little effect
maximum values of %,1/4) corresponding to the gauge and the system flows to an ordered phase which is the zero-
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field analog of a Bragg gla$8.For strong disorder, the sys- are both finiteT Monte Carlo simulations of a 3 Y model

tem seems to flow to a gauge glass fixed point. The disagreevith uniform A;; given by the applied magnetic field and the
ment between the stiffness expone#f' and previous disorder by random couplingy; . In these simulations, su-
estimates is because these measifté whose meaning is Perconductivity is probed by the helicity modulus and, al-
less clear. The quantityERT(L) seems more likely to suffer though these studies differ in several respects, they agree on

from large corrections to scaling as seen in Fig. 7, especiall{n€ Vital gowp Wh'ﬁh IS ghat, in t.htefabstencelofdgcregmng, a
for the small system sizdswhich are possible to simulate at uperconducting phase daest exist for strongly disordere

present. However, we conjecture that both measurement]ﬁ'i in a uniform applied fi.eld. _If our conjecture is correct that
would coincide ifmuchlarger values of. could be reached. 1€ Models considered in this work are not affected by the

Since our simulations are also limited to very small sizes 2PPlication of a uniform magnetic field, thef>0 which

it is not possible to draw any definite conclusions from themS€ems to imply a finite helicity mod_ulus and sup_ercondgctiv-
The natural consequence of this argument is that, in the

and more studies are needed to settle these problems in rdf: . . : .
dom systems more satisfactorily. absence of screening, a strongly disordered system in a field

One interesting conjecture we can make concerns th¥/!! Ibe, Sslggggcond“"“f‘g which disagrees with recent
Bragg and vortex glass states in disordered superconductordndiations. _ . .
Clearly, further work is needed to resolve this contradic-

in an applied magnetic field. Recently, Giardietaal %* stud-
PP J y tion which could be due to several possibilities. These in-

ied the model of Eq(1) in the strong screening limit—0 in

3D and found that two phases existTat 0 in the presence clude the fact, among others, that the models u;ed may not

of an applied external field. The low field, the small disorderbe equivalent because of the different types of d|sord§r im-

phase has a well-orderethy ey vortex line lattice as a posed, the presence or absence of an external magnetic field,
and the extreme difficulty of the simulations causing a finite

ground state with a stiffness exponef= +1.0, implying . ) . .
this is asuperconductingstate. By contrast, the high-field, helicity m.odulus to k?e m|ssed_. One dlfference Wh'(.:h appears
et>? be unimportant is that this work is d&=0 while the

large disorder ground state is a disordered entangled vort . . .
g g g simulation§>® are atT>0. This is apparent in the recent

configuration, again by inspection, witlds 0. work of Katzgraber and Yourlg who find essentially the

which implies this is anonsuperconductingtate. We conjec-
ture that the low-field state is a Bragg glass and the high-fiel@@me exponen>0 atT>0 for the 3D gauge glass. There
is a very recent simulati§hon precisely this point using the

state is a disordered entangled vortex liquid. In this limit, theCG ) £ th 4 3D . |
evidence is strongly in favor of a direct, disorder, or field- representation of the unscreene system in a large

driven transition from a superconducting Bragg glass to aiapplied field with random pinning of the vortex cores. This

normal nonsuperconducting phase. This scenario seems to BEPPOItS the existence of a IoWw-superconducting/ortex
favored by recent experiments. glass phase at large disorder in a field in the absence of

In the absence of screening of the vortex-vortex imerac_scrgening, as conjectured here. Our understaqding of the ex
tions, the picture which results from this work is somewhatP€rimental consequences for real systems wisoscopic

different, although the studies here are all done in zero aglenetration depths ~O(10%) A is lacking. Much work re-
plied field. One may argue that increasing the disorder idnains to be done to clarify experimental and theoretical situ-

equivalent to increasing the field at fixed disorder. At lowations. A challenge fo simulations is, in a single modgl, to
field or low disorder, the ground state issaperconducting d€monstrate unambiguously that only a Bragg glass exists in

Bragg glass withd=+ 1.0, exactly as with screening. With- the presence of screening and at weak disorder while, with-

out screening, the main difference is that the high-field, larg ut screening, a distinct vortex glass phase also exists at
disorder phase is a true superconducting voglsswith  1arge disorder.
stiffness exponend=+0.30, as proposed by Fishet al®!

We tentatively conjecture that a true superconducting vortex

glass phase does not exist in 3Xceptin the absence of Computations were performed at the Theoretical Physics
screening X —«). Unfortunately, this prediction about the Computing Facility at Brown University. J.M.K. thanks A.
existence of a superconducting phase in the presence of laryallat and B. Grossmann for many discussions about spin
disorder seems to contradict two recent stuffié§.These glasses, best twists, etc.
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