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QED3 theory of pairing pseudogap in cuprates: Fromd-wave superconductor
to antiferromagnet via an algebraic Fermi liquid
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High-Tc cuprates differ from conventional superconductors in three crucial aspects: the superconducting
state descends from a strongly correlated Mott-Hubbard insulator~as opposed to a Fermi liquid!, the order
parameter exhibitsd-wave symmetry, and fluctuations play an all important role. We formulate an effective
theory of underdoped cuprates within the pseudogap state by taking advantage of these unusual features. In
particular, we introduce a concept of ‘‘pairing protectorate’’ and we seek to describe various phases within this
protectorate by phase disordering ad-wave superconductor. The elementary excitations of the protectorate are
the Bogoliubov–de Gennes quasiparticles and topological defects in the phase of the pairing field—vortices
and antivortices—which appear as quantum and thermal fluctuations. The effective low-energy theory of these
elementary excitations is shown to be, apart from intrinsic anisotropy, equivalent to the quantum electrody-
namics in~211! spacetime dimensions (QED3). A detailed derivation of this QED3 theory is given and some
of its main physical consequences are inferred for the pseudogap state. As the superconducting order is
destroyed by underdoping two possible outcomes emerge:~i! the system can go into a symmetric normal state
characterized as an ‘‘algebraic Fermi liquid’’~AFL! before developing antiferromagnetic~AF! order or~ii ! a
direct transition into the insulating AF state can occur. In both cases the AF order arises spontaneously through
an intrinsic ‘‘chiral’’ instability of QED3 /AFL. Here we focus on the properties of the AFL and propose that
inside the pairing protectorate it assumes the role reminiscent of that played by the Fermi liquid theory in
conventional metals. We construct a gauge-invariant electron propagator of the AFL and show that within the
1/N expansion it has a non-Fermi-liquid, Luttinger-like form with positive anomalous dimensionh8
516/3p2N, whereN denotes the number of pairs of nodes. We investigate the effects of Dirac anisotropy by
perturbative renormalization group analysis and find that the theory flows into an isotropic fixed point. We
therefore conclude that, at long length scales, the AFL is stable against anisotropy.

DOI: 10.1103/PhysRevB.66.054535 PACS number~s!: 74.60.Ec, 74.72.2h
th
a
in

n
th
liq
rn

uc
o

im
re

th
th
is

va

bl
fe

re-
ory
nd
the

the
a-
’s

xy

in
m-
O
ure

rro-
m to
ps
tal
nely
-
ed
his
d-
a

I. INTRODUCTION

In the classic tradition of condensed matter physics,
phenomenon of superconductivity is usually described as
instability of a normal metal towards a quantum state
which electrons bind into Cooper pairs.1 This traditional pic-
ture, further fortified within the Eliashberg formalism,2 has
met with spectacular success when applied to conventio
low Tc superconductors. This success is no accident:
BCS-Eliashberg theory uses the Landau theory of Fermi
uids as the underlying description of a normal metal. In tu
the Landau theory of Fermi liquids is one of the most s
cessful theories in physics—by starting from the free gas
fermions it exploits the constraint on the phase space
posed by the Pauli exclusion principle to provide a comp
hensive understanding of the low-energy behavior of anin-
teracting system. Among its many pleasing features,
Landau theory allows for methodical understanding of
seeds of its own destruction—while the Fermi liquid
hardly the true ground state of any system,3 we routinely
seek to understand such ground states by investigating
ous instabilities of the Fermi liquid~FL! description, either
in the particle-hole or particle-particle channel, few nota
examples being spin- and charge-density waves, itinerant
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romagnetism, and, of course, superconductivity. This
markable success story of the BCS-Eliashberg-FL the
gave birth to the traditional paradigm: ‘‘one must understa
the normal state before one can understand
superconductor.’’4,5

The discovery of high-Tc superconductors~HTS’s! and
the subsequent efforts to decipher their mysteries altered
above state of affairs dramatically. As experimental inform
tion began to pour in, it became rapidly clear that HTS
depart qualitatively from the BCS-Eliashberg-FL orthodo
in at least three important ways. First, the high-Tc supercon-
ducting copper oxides are strongly interacting systems
which correlations play an essential role. Their parent co
pounds, believed to contain one hole per copper within Cu2
layers, are far from good metals that simple band-struct
theory would predict and are instead insulating Ne´el antifer-
romagnets. Even when doped and the long-range antife
magnetic order had subsided, these materials do not see
follow the dictates of the Fermi liquid theory, except perha
in the heavily overdoped regime. Rather, the ‘‘normal’’ me
state of the cuprates is anything but, and has been routi
dubbed ‘‘anomalous’’ or ‘‘strange.’’ In line with the tradi
tional paradigm, a major theoretical effort, mainly inspir
by Anderson,4 has been directed at first understanding t
anomalous ‘‘normal’’ state as arising from the Hubbar
Mott-Néel antiferromagnetic insulator at half-filling once
©2002 The American Physical Society35-1
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small density of mobile dopant holes has been induced in
CuO2 layers. The physics of such a ‘‘doped Mott insulato
and particularly the microscopic mechanism through wh
the high-temperature superconductivity itself is genera
from within such a ‘‘normal’’ state, even after years of co
centrated theoretical and experimental onslaught, rema
deep challenge to the condensed matter physics commu

The second departure from the BCS-Eliashberg-
orthodoxy6 has by now been firmly established experime
tally: the superconducting state in cuprates is itself of unc
ventional symmetry.7 Instead of a usual ‘‘s-wave’’ gap func-
tion whose magnitude generally varies over the Fe
surface but whose sign does not, the cuprates are ‘‘d-wave’’
superconductors. It is believed at the present time that
d-wave symmetry reflects the presence of correlations cau
by strong on-site repulsion and is thus a close dynam
relative of the antiferromagnetic state at half-filling. The m
jority of authors have focused on such a purely electro
‘‘mechanism’’ of superconductivity arising from strong co
relations in sharp distinction to the phonon-mediated pair
of the traditional BCS-Eliashberg approach. Such unconv
tional symmetry of the superconducting state and the ens
presence of low-energy fermionic excitations near the
nodes result in a rich phenomenology of cuprates. Most
markably, however, this phenomenology, at low energies
temperatures and deep inside the superconducting s
seems to fit within the theoretical mold of a model BCS-li
d-wave superconductor, quite separately from the deta
microscopic mechanism that is at its origin. We consider t
an experimental fact of crucial significance which for the r
of this paper we intend to fully exploit to our advantage.

Finally, more than the intrinsic gap symmetry disti
guishes HTS’s from their conventional kin. They are a
strongly fluctuating systems.8 While strong fluctuations away
from a simple mean-field description are a familiar occ
rence in magnets or liquid crystals they are a relatively no
phenomenon in superconductors. In most conventional
perconductors, well described by the BCS-Eliashberg
theory—the fluctuations are simply not an issue: the dim
sionless parameter which controls the deviations from
mean-field theory—the inverse of the product of the B
coherence lengthj0 and the Fermi wave vectorkF—is typi-
cally as small as 1023 or 1024 and the fluctuation effects ar
rarely observable.9 In contrast, early experiments on HTS
clearly established strong fluctuations in numerous phys
quantities and various estimates put (1/j0kF);1021 or
larger. The strongly fluctuating nature of the superconduc
state is particularly pronounced in underdoped cuprates
is rather vividly manifested in recent experiments on
Nernst effect by the Princeton group.10 The Nernst effect is
routinely used to detect superconducting vortex fluctuati
and a strong signal observed up toTNernst@Tc , with TNernst
comparable to the pseudogap temperatureT* , is most natu-
rally interpreted in those terms. Other experiments have
provided both direct11 and indirect12 support for pairing fluc-
tuations far aboveTc . The experimental evidence for suc
fluctuations has been compiled in Ref. 13.

Recently, a different path toward the theory of HTS’s w
proposed in Refs. 14 and 15. A key aspect of this ‘‘inverte
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approach is the observation that, when compared to
neighbors in the phase diagram of cuprates, the super
ducting state appears to be the ‘‘least correlated’’ and
fermionic excitations best defined.15 A tantalizing theoretical
feature of this approach is that it holds promise to turn
above triple predicament of strong correlations, fluctuatio
and unconventional symmetry in HTS’s into an advantage
using the superconducting state as its departure point.
first step in constructing a theory based on this ‘‘inverte
philosophy is to assume that the most important effect
strong correlations at the basic microscopic level is to buil
large pseudogap ofd-wave symmetry, which is predomi
nantly pairing in origin, i.e., arises form the particle-partic
~p-p! channel. In this regard, we are following the wisdom
the FL theory but are replacing the free electron gas star
point with the free Bogoliubov–de Gennes~BdG! d-wave
quasiparticles. Under the umbrella of this larged-wave
pseudogap, the low-energy fermionic excitations enjoy a
markably sheltered existence. Within this ‘‘pairing protecto
ate,’’ they are completely impervious to weak residual sho
range interactions left over after the effect of the pseudo
had been built in.

There is an important new element in this parallel with t
FL. Our reference state being a superconductor, we must
consider interactions of BdG quasiparticles with relevant c
lective modes of the pairing pseudogap, i.e., fluctuating th
mal and quantum vortex-antivortex pairs. Within the theo
of Ref. 15 this interaction is represented by two U~1! gauge
fields vm andam . Herevm describes Doppler shift in quas
particle energies16 and has been studied in Refs. 17 and 1
Its effect on low-energy fermions is rather modest sincevm
gains mass from fermions both in a superconductor and
phase-incoherent pseudogap state. In contrast, the B
gauge fieldam , minimally coupled to fermions and encodin
the topological frustration inflicted upon BdG quasiparticl
by fluctuating vortices, is massless in the pseudogap s
and is the main source of strong scattering at low energie15

The effective theory was found to take the form equivalen
~211!-dimensional ~anisotropic! quantum electrodynamic
(QED3).15 In its symmetric phase, QED3 is governed by the
interacting critical point leading to a non-Fermi-liquid b
havior for its fermionic excitations. This ‘‘algebraic’’ Ferm
liquid15 ~AFL! displaces conventional FL as the underlyin
theory of the pseudogap state.

The AFL ~symmetric QED3) suffers an intrinsic instabil-
ity when vortex-antivortex fluctuations and residual intera
tions becometoo strong. The topological frustration is re
lieved by the spontaneous generation of mass for fermio
while the Berry gauge field remains massless. In the fi
theory literature on QED3 this instability is known as dy-
namical chiral symmetry breaking~CSB! and is a well-
studied and established phenomenon,19 although few clouds
of uncertainty still hover over its more quantitative aspects20

In cuprates, the region of such strong vortex fluctuations c
responds to heavily underdoped samples and CSB lead
the spontaneous creation of a whole plethora of nearly
generate ordered and gapped states from within the AF22

An important check on the internal consistency of the ‘‘i
verted’’ approach is that the manifold of CSB states conta
an incommensurate antiferromagnetic insulator@spin-density
5-2
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QED3 THEORY OF PAIRING PSEUDOGAP IN . . . PHYSICAL REVIEW B 66, 054535 ~2002!
wave ~SDW!#.21,22 Remarkably, both the ‘‘algebraic’’ Ferm
liquid and the SDW and other CSB insulating states a
from one and the same QED3 theory,15 echoing the satisfying
features of Fermi liquid theory in conventional metals.
therefore appears that the ‘‘inverted’’ approach can be u
to advance along the doping axis of the HTS phase diag
~Fig. 1! in the ‘‘opposite’’ direction, from ad-wave supercon-
ductor all the way to an antiferromagnetic insulator at ve
low doping, the low-energy physics of the pairing protect
ate held under overall control of the symmetric QED3 ~AFL!.

In this paper we first present a detailed derivation of
QED3 theory of the pairing pseudogap state in underdo
cuprates previously introduced in Ref. 15 and then emb
on a systematic exploration of its fermionic excitation sp
trum and other related properties. To keep the paper
manageable length we confine ourselves to the the chir
symmetricphase of QED3, i.e., to the AFL and its main prop
erties. The chiral-symmetry-broken phase is discussed s
rately, in part II of this paper. Section II and Appendix
contain a step-by-step manual on vortex-quasiparticle in
actions and how the low-energy physics of such interacti
can be given its mathematical formulation in the language
the QED3 effective theory. In Secs. III and IV we focus o
the AFL, give a detailed accounting of vortex-quasiparti
interactions within QED3, and compute quasiparticle spectr
properties within the pseudogap symmetric phase. In Se
we then discuss the effects of Dirac anisotropy on the QE3
infrared fixed point and demonstrate that, to leading orde
a 1/N expansion, the anisotropic QED3 scales to an isotropic
limit. Finally, we present a brief summary of our results a
conclusions in Sec. VI.

In part II of the paper, to appear separately, we introd
the concept of chiral symmetry within thed-wave pairing
pseudogap state.21,22 We enumerate different physical stat
within the chiral manifold and discuss in depth various p
terns of CSB~Fig. 1! and fermion mass generation with

FIG. 1. A schematic representation of the phase diagram
cuprate superconductor. BelowT* (;TNernst), the symmetric
QED3 /AFL replaces the Fermi liquid as the effective low-ener
theory. CSB denotes chiral-symmetry-broken states, the m
prominent among which is an incommensurate antiferromag
~SDW!. Panel~a! represents the path between dSC and an ant
romagnet via the intervening algebraic Fermi liquid~AFL! ground
state. Panel~b! shows a direct dSC-CSB transition with AFL de
scribingT!T* behavior.
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our QED3 theory. This is followed by applications to th
phase diagram of cuprates within the pseudogap state.

II. PRELIMINARIES AND VORTEX-QUASIPARTICLE
INTERACTIONS

A. Protectorate of the pairing pseudogap

Our starting point is the assumption that the pseudoga
predominantly particle-particle or pairing~p-p! in origin and
that it has adx22y2 symmetry. This assumption is give
mathematical expression in the partition function

Z5E DC†~r ,t!E DC~r ,t!E Dw~r ,t!exp@2S#,

S5E dtE d2r $C†]tC1C†HC1~1/g!D* D%, ~1!

where t is the imaginary time,r5(x,y), g is an effective
coupling constant in thedx22y2 channel, andC†5(c̄↑ ,c↓)
are the standard Grassmann variables. The effective Ha
tonianH is given by

H5S Ĥe D̂

D̂* 2Ĥe*
D 1Hres, ~2!

with

Ĥe5
1

2m S p̂2
e

c
AD 2

2eF ,

p̂52 i¹ ~we take \51), and D̂ the d-wave pairing
operator,23,24

D̂5
1

kF
2 $ p̂x ,$ p̂y ,D%%2

i

4kF
2

D~$]x,]y%w!, ~3!

where D(r ,t)5uDuexp@iw(r ,t)# is the center-of-mass ga
function and$a,b%[(ab1ba)/2. As discussed in Ref. 24
the second term in Eq.~3! is necessary to preserve the over
gauge invariance. Notice that we have rotatedD̂ from dx22y2

to dxy to simplify the continuum limit.*Dw(r ,t) denotes the
integral over smooth~‘‘spin-wave’’! and singular~vortex!
phase fluctuations. Amplitude fluctuations ofD̂ are sup-
pressed at or just belowT* and the amplitude itself is frozen
at 2D;3.56T* for T!T* .

The fermion fieldsc↑ and c↓ appearing in Eqs.~1! and
~2! do not necessarily refer to the bare electrons. Rather,
represent someeffectivelow-energy fermions of the theory
already fully renormalized by high-energy interactions, e
pected to be strong in cuprates due to Mott-Hubbard co
lations near half-filling.4 The precise structure of such ferm
onic effective fields follows from a more microscopic theo
and is not of our immediate concern here—we are only
lying on the absenceof true spin-charge separation whic
allows us to write the effective pairing term~2! in BCS-like
form. The experimental evidence that supports this reas
ing, at least within the superconducting state and its imm
diate vicinity, is rather overwhelming.10–13Furthermore,Hres
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M. FRANZ, Z. TEŠANOVIĆ, AND O. VAFEK PHYSICAL REVIEW B 66, 054535 ~2002!
represents the ‘‘residual’’ interactions, i.e., the part dom
nated by the effective interactions in the p-h channel. O
main assumption is equivalent to stating that such inte
tions are in a certain sense a ‘‘weak’’ and less important p
of the effective HamiltonianH than the large pairing inter

actions already incorporated throughD̂. As we progress, this
notion of the ‘‘weakness’’ ofHres will be defined more pre-
cisely and with it the region of validity of our theory.

The above discussion reveals that our theory is at le
partly of phenomenological character and it must rely o
more microscopic description to fully define its basic for
specified by Eqs.~1! and~2!. While it is still far from estab-
lished just what such a more microscopic description mi
be in the case of cuprates, various gauge theories of thet-J
and related models25 could all be used for this purpose at th
present time. The main role played by such theories is p
viding reliable values of parameters that feed into the ba
formulation~1! and~2!. These include, most importantly, th
pairing pseudogapD itself, the microscopic values of vorte
core energies, the strengths of residual interactions, etc. O
these parameters have been supplied through such an e
nal input, it is our task to solve for the low-energy (!D),
long-distance physics of Eqs.~1! and ~2!. At present, these
needed parameters cannot be computed reliably from a
microscopic approach. We therefore combine the availa
theoretical arguments with the experimentally determin
phase diagram~Fig. 1! and argue that the pseudogap is
deed pairing in origin and that the transition from the sup
conductor to the pseudogap state must proceed via the
and quantum unbinding of vortex-antivortex pairs.

Our ‘‘inverted’’ approach is similar in spirit to the Landa
theory of Fermi liquids as applied to conventional metals.
Fermi liquid theory the reference state is that of a nonin
acting gas of fermions. As the interactions are turned
adiabatically, the Pauli principle severely restricts the av
able phase space for scattering and many of the general
tures of free fermion system are preserved, albeit in a re
malized form.5 In our case, the reference state is
noninteracting system of Bogoliubov–de Gennes fermio
One can think of the pairing pseudogapD as being our
‘‘Fermi energy’’ and the highest-energy scale in the proble
While our theory cannot account for the physics at energ
~or temperatures! higher thanD, we will endeavor to show
that the low-energy physics can be computed systematic
and is parametrized by a handful of material constants wh
values can be extracted either from experiments or from
more microscopic theory.

In this context, the residual interactions among the B
fermions, both those arising from the p-p channel throu
weak amplitude fluctuations ofD and the p-h interactions
generated by the effective spin fluctuations within t
pseudogap state,14 can be thought of as our version of ‘‘Lan
dau interaction parameters’’$F2l 11

s,a %. These interactions ar
generically short ranged and are even less effective in
turbing the coherence of nodal BdG fermions than their
counterpart. With all of the Fermi surface gapped apart fr
the nodal regions, such interactions are irrelevant in
renormalization group~RG! sense and can be absorbed in
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renormalizations of various relevant parameters~more on
this in Sec. III!. As the system makes the transition from
phase-coherent superconductor to a phase-incohe
pseudogap state, the nodal BdG fermions interacting o
through such residual interactions would hardly be noticed
the nodal BdG liquid is a better Fermi liquid than a conve
tional metal.

There is, however, another source of interactions am
BdG quasiparticles which ruins this state of affairs. Our r
erence state being a superconductor, we must conside
interactions of BdG fermions with collective modes ofD
relevant near the superconductor-‘‘normal’’ boundary, i.
fluctuating vortices. As we demonstrate next, these inte
tions between BdG quasiparticles and fluctuating vort
antivortex excitations play the central dynamical role in o
theory.

B. Phase fluctuations, vortices, quasiparticles, and topological
frustration

The global U~1! gauge invariance mandates that the p
tition function ~1! must be independent of the overall choi
of phase forD̂. We should therefore aim to eliminate th
phasew(r ,t) from the pairing term~2! in favor of ]mw terms
@m5(x,y,t)# in the fermionic action. For the regular~‘‘spin-
wave’’! piece ofw this is easily accomplished by absorbing

phase factor exp(i 1
2w) into both spin-up and spin-down fer

mionic fields. This amounts to ‘‘screening’’ the phase
D(r ,t) ~or an ‘‘XY phase,’’ as commonly known! by a ‘‘half-
phase’’ field ~or ‘‘half-XY phase’’! attached toc↑ and c↓ .
However, as discussed in Refs. 23 and 24, when dealing
the singular part ofw, such a transformation ‘‘screens
physical singly quantizedhc/2e superconducting vortices
with ‘‘half-vortices’’ in the fermionic fields. Consequently
this ‘‘half-angle’’ gauge transformation must be accompan
by branch cuts in the fermionic fields which originate a
terminate at vortex positions and across which the quasi
ticle wave function must switch its sign. These branch c
are a mathematical manifestation of a fundamental phys
effect: in the presence of vortices, which are topological
fects in the phase of the Cooper pair field and thus natur
bind the elementary flux ofhc/2e, the motion of quasiparti-
cles istopologically frustrated, since their natural elementar
flux is twice as large (hc/e). The physics of this topologica
frustration is at the origin of all nontrivial dynamics dis
cussed in this paper.

Dealing with branch cuts in a fluctuating vortex proble
is a rather cumbersome affair due to their nonlocal chara
and defeats the original purpose of reducing the problem
that of fermions interacting with alocal fluctuating super-
flow field, i.e., with ]mw. Instead, in order to avoid the
branch cuts, nonlocality, and non-single-valued wave fu
tions, we employ the singular gauge transformation devi
in Ref. 23, hereafter referred to as the ‘‘FT’’ transformatio

c̄↑→exp~2 iwA!c̄↑ , c̄↓→exp~2 iwB!c̄↓ , ~4!

where wA1wB5w. Here wA(B) is the singular part of the
phase due toA(B) vortex defects:
5-4
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QED3 THEORY OF PAIRING PSEUDOGAP IN . . . PHYSICAL REVIEW B 66, 054535 ~2002!
¹3¹wA(B)52p ẑ(
i

qid„r2r i
A(B)~t!…, ~5!

with qi561 denoting the topological charge of thei th vor-
tex andr i

A(B)(t) its position. The labelsA and B represent
some convenient but otherwise arbitrary division of vort
defects@loops or lines inw(r ,t)] into two sets, although we
will soon discuss many virtues of thesymmetrizedtransfor-
mation ~4! which apportions vortex defectsequallybetween
setsA andB.23,24The transformation~4! ‘‘screens’’ the origi-
nal superconducting phasew ~or ‘‘ XY phase’’! with two or-
dinary ‘‘XY phases’’wA andwB attached to fermions. Both
wA and wB are themselves perfectly legitimate phase c
figurations ofD(r ,t) but simply with fewer vortex defects
The key feature of the transformation~4! is that it accom-
plishes ‘‘screening’’ of the physicalhc/2e vortices by using
only ‘‘whole’’ ~i.e., not ‘‘halved’’! vortices in fermionic fields
and thus guarantees that the quasiparticle wave function
main single valued. The topological frustration still remain
being the genuine physical effect of the branch cuts, bu
now incorporated directly into the fermionic part of the a
tion:

L85c̄↑@]t1 i ~]twA!#c↑1c̄↓@]t1 i ~]twB!#c↓1C†H8C,
~6!

where the transformed HamiltonianH8 is

S 1

2m
~p̂1v!22eF D̂

D̂ 2
1

2m
~p̂2v!21eF

D ,

with D̂5(D0/2kF
2)(p̂xp̂y1p̂yp̂x) and p̂5p̂1a.

The singular gauge transformation~4! generates a
‘‘Berry’’ gauge potential

am5
1

2
~]mwA2]mwB!, ~7!

which describes half-flux Aharonov-Bohm scattering of qu
siparticles on vortices.am couples to BdG fermionsmini-
mally and mimics the effect of branch cuts in quasipartic
vortex dynamics.23,24,26 Closed fermion loops in the
Feynman path-integral representation of Eq.~1! acquire the
(21) phase factors due to this half-flux Aharonov-Boh
effect just as they would from a branch cut attached t
vortex defect. The topological frustration is now impl
mented through the fact that]mwA(B) , minimally coupled to
a loop of BdG fermions in the partition function~1! as it
winds around the imaginary time direction, generates a ph
equal to the advance in theXY phasewA(B)(r ,t), which
inhabits the same spacetime, along the closed path coin
ing with the said fermion loop. Naturally, this advance mu
be an integer multiple of 2p—the overall factor of12 in the
definition of am , Eq. ~7!, reduces this further to an intege
multiple of p. In the end, the phase factors of such fermi
loops, which are gauge-invariant quantities, are all equa
61 and are furthermore precisely what we would have
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tained had we opted for the ‘‘half-angle’’ gauge transform
tion and implemented the branch cuts.24

The above (61) prefactors of the BdG fermion loop
come on top of general and everpresent U~1! phase factors
exp(id), where the phased depends on the spacetime co
figuration of vortices. These U~1! phase factors are supplie
by the ‘‘Doppler’’ gauge field

vm5
1

2
~]mwA1]mwB![

1

2
]mw, ~8!

which denotes the classical part of the quasiparticle-vor
interaction. The coupling ofvm to fermions is the same a
that of the usual electromagnetic gauge fieldAm and is there-
fore nonminimal, due to the pairing term in the origina
Hamiltonian H, Eq. ~2!. It is this nonminimal interaction
with vm , which we call the Meissner coupling, that is r
sponsible for the U~1! phase factors exp(id). These U~1!
phase factors are ‘‘random,’’ in the sense that they are
topological in nature—their values depend on a detailed
tribution of superfluid fields of all vortices and ‘‘spin waves
as well as on the internal structure of BdG fermion loop
i.e., what is the sequence of spin-up and spin-down porti
along such loops. In this respect, while its minimal coupli
to BdG fermions means that within the latticed-wave super-
conductor model24 one is naturally tempted to represent t
Berry gauge fieldam as a compactU~1! gauge field, the
Doppler gauge fieldvm is decidedlynoncompact, lattice or
no lattice.27 The reader should be advised, however, that
issue of the ‘‘compactness’’ ofam versus the ‘‘noncompact
ness’’ of vm constitutes a moot point:am andvm as defined
by Eqs. ~7! and ~8! are not independentsince the discrete
spacetime configurations of vortex defects$r i(t)% serve as
sourcesfor both. We will belabor this important issue in th
next subsection.

For now, note that all choices of the setsA and B in
transformation ~4! are completely equivalent—different
choices represent different singular gauges24 and vm , and
therefore exp(id), are invariant under such transformation
am , on the other hand, changes but only through the in
duction of (6) unit Aharonov-Bohm fluxes at locations o
those vortex defects involved in the transformation. Con
quently, theZ2 style (61) phase factors associated witham
that multiply the fermion loops remain unchanged. We n
symmetrize the partition function with respect to this sing
lar gauge by defining a generalized transformation~4! as the
sum over all possible choices ofA andB, i.e., over the entire
family of singular gauge transformations. This is an Isi
sum with 2Nl members, whereNl is the total number of
vortex defects inw(r ,t) and is itself yet another choice o
the singular gauge. The many benefits of such a symmetr
gauge will be discussed shortly but we stress here tha
ultimate function is calculational convenience. What actua
matters for the physics is that the originalw be split into two
XY phases so that the vortex defects of every distinct to
logical class are apportionedequally betweenwA and wB
~4!.23,24

The physics behind this last requirement can be intuitiv
appreciated as follows: imagine that we simplyprohibit sin-
5-5
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gly quantized vortex excitations and replace them in Eq.~6!
by doubly quantized(hc/e) vortices. In this case, the Berr
gauge field attaches a multiple of afull Aharonov-Bohm flux
to each vortex position and all the topological phase fac
in front of fermion loops equal unity—this is equivalent
am50 and a complete absence of topological frustration.It is
then natural to select the gauge which eliminates am alto-
gether. This is straightforwardly accomplished by screeni
each doubly quantized (hc/e) vortex defect with a unit-flux
Dirac string inc↑ and an equivalent one inc↓ . The resulting
sets ofA and B vortices are two identical replicas of eac
other andam51/2 (]mwA2]mwB)[0. Now, while still stay-
ing within the same gauge, we allow doubly quantiz
vortices to relax into energetically more favorab
configurations—they will immediately decay into sing
quantized vortices and our setsA andB will end up contain-
ing an equal number of singly quantized vortices of ea
distinct topological class. For example, in the case of tw
dimensional ~2D! thermal fluctuationswA(B) should each
contain a half of the original vortices inw and a half of
antivortices. This is readily achieved by including those~an-
ti!vortex variables whose positions are labeled byr i with
i even into wA , while the odd ones are absorbed intowB .
The symmetrization is just a convenient mathematical t
that automatically guarantees this goal.

The above symmetrization leads to the new partition fu
tion Z→Z̃:

Z̃5E DC̃†E DC̃E DvmE Dam

3expF2E
0

b

dtE d2r L̃G , ~9!

in which the half-flux-to-minus-half-flux (Z2) symmetry of
the singular gauge transformation~4! is now manifest:

L̃5C̃†@~]t1 iat!s01 ivts3#C̃1C̃†H8C̃1L0@vm ,am#,
~10!

whereL0 is the ‘‘Jacobian’’ of the transformation given by

expS 2E
0

b

dtE d2rL0D 522Nl(
A,B

E Dw~r ,t!

3d@vm2 1
2 ~]mwA1]mwB!#

3d@am2 1
2 ~]mwA2]mwB!#.

~11!

Heresm are the Pauli matrices,b51/T, H8 is given in Eq.
~6!, and, for later convenience,L0 will also include the en-
ergetics of vortex core overlap driven by amplitude fluctu
tions~see Appendix A! and is thus independent of long-rang
superflow~and ofA). We call the transformed quasiparticle
C̃†5(cD ↑ ,c̃↓) appearing in Eq.~10! ‘‘topological fermions’’
~TF’s!. TF’s are the natural fermionic excitations of th
pseudogapped normal state. They are electrically neutral
are related to the original quasiparticles by the inversion
transformation~4!.
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By recasting the original problem in terms of topologic
fermions we have accomplished our original goal: the int
actions between quasiparticles and vortices are now
scribed solely in terms of two local superflow fields:23

vAm5]mwA , vBm5]mwB , ~12!

which we can think of as superfluid velocities associa
with the phase configurationswA(B)(r ,t) of a ~211!-
dimensionalXY model with periodic boundary condition
along thet axis. Our Doppler and Berry gauge fieldsvm and
am are linear combinations ofvAm andvBm . Note thatam is
produced exclusively by vortex defects since the ‘‘spin
wave’’ configurations ofw can be fully absorbed intovm . All
that remains is to perform the sum in Eq.~9! over all the
‘‘spin-wave’’ fluctuations and all the spacetime configur
tions of vortex defects$r i(t)% of this ~211!-dimensionalXY
model.

C. ‘‘Coarse-grained’’ Doppler and Berry U „1… gauge fields„vµ

and aµ… and their physical significance

Unfortunately, exact integration over the phasew(r ,t) is
prohibitively difficult. To proceed by analytic means we mu
devise some approximate procedure to integrate over
vortex-antivortex positions$r i(t)% in Eq. ~9! which will cap-
ture the qualitative features of at least the long-distance, l
energy physics of the original problem. This is where o
recasting of the problem in terms of BdG fermions intera
ing with superflow fieldsvAm andvBm , Eq. ~12!, will come
in handy. A hint as to how to devise such an approximat
comes from examining the role of the Doppler gauge fi
vm in the physics of this problem. To illustrate our reasoni
and for simplicity, we consider the finite-T case where we
can ignore thet dependence ofw(r ,t). The results are easily
generalized, with appropriate modifications, to include qu
tum fluctuations.

We start by noting thatVs52v2(2e/c)A is just the
physical superfluid velocity,28 invariant under bothA↔B
singular gauge transformations~4! and ordinary electromag
netic U~1! gauge symmetry. The superfluid velocity~Dop-
pler! field, swirling around each~anti!vortex defect, is re-
sponsible for a vast majority of phenomena that we assoc
with vortices: long-range interactions between vortex d
fects, coupling to an external magnetic field and the Abrik
sov lattice of the mixed state, the Kosterlitz-Thouless tran
tion, etc. Remarkably, we will show that its role is essent
even for the physics discussed in the present paper, altho
it now appears as a supporting actor to the Berry gauge fi
am which ultimately occupies the center stage. To see h
this comes about, imagine thata (am) were absent—then
upon integration over topological fermions in Eq.~10!, we
obtain the following term in the effective Largangian:

M2S ¹w2
2e

c
AD 2

1~••• !, ~13!

where (•••) denotes higher-order powers and derivatives
¹w2(2e/c)A. In the above we have replacedv→(1/2)¹w
to emphasize that the leading term, with the coefficientM2
5-6
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QED3 THEORY OF PAIRING PSEUDOGAP IN . . . PHYSICAL REVIEW B 66, 054535 ~2002!
proportional to the bare superfluid density, is just the st
dard superfluid-velocity-squared term of the continuumXY
model—the notationM2 for the coefficient will become clea
in a moment. We can now write¹w5¹wvortex1¹wspin-wave
and reexpress the transverse portion of Eq.~13! in terms of
~anti!vortex positions$r i% to obtain a familiar form

→ M2

2p (
^ i , j &

lnur i2r j u ~14!

or, by using ¹•¹wvortex50 and ¹3¹wvortex52pr(r ),
equivalently as

→ M2

2pE d2r E d2r 8r~r !r~r 8!lnur2r 8u, ~15!

wherer(r )52p( iqid(r2r i) is the vortex density.
The Meissner coupling ofv to fermions is very strong—it

leads to familiar long-range interactions between vorti
which constrain vortex fluctuations to a remarkable degr
To make this statement mathematically explicit we introdu
the Fourier transform of the vortex densityr(q)5( i exp(iq
•r i) and observe that its variance satisfies

^r~q!r~2q!&}q2/M2. ~16!

Vortex defects form anincompressibleliquid—the long-
distance vorticity fluctuations are strongly suppressed. T
‘‘incompressibility constraint’’ is naturally enforced in Eq
~9! by replacing the integral overdiscretevortex positions
$r i% with the integral over acontinuouslydistributed field
r̄(r ) with ^r̄(r )&50. The Kosterlitz-Thouless transition an
other vortex phenomenology are still maintained in the n
trivial structure ofL0@ r̄(r )#. But the long-wavelength form
of Eq. ~13! now reads

M2S 2v̄2
2e

c
AD 2

1~••• !, ~17!

and can be interpreted as amassiveaction for a transverse
U~1! gauge fieldv̄. The latter is ourcoarse-grainedDoppler
gauge field defined by

¹3 v̄~r !5pr̄~r !. ~18!

We have now gone full circle with the Doppler gauge fieldv.
The coarse-graining procedure has made it into a mas
U~1! gauge fieldv̄ whose influence on TF’s disappears in t
long-wavelength limit. We can therefore drop it from o
low-energy fermiology. Hereafter we shall drop the overb
and use the symbolv for both the actual and coarse-grain
quantities, the meaning being obvious from the context.

The real problem also contains the Berry gauge fi
a (am) which now must be restored. However, if we are
take advantage of introducing continuousr(r ) and eventu-
ally dispensing withv, a (am) cannot remain the sam
gauge field we started with in Eq.~10! when we embarked
on our quest to derive the effective theory. Having replac
the Doppler fieldv with the distributed quantity ~18!, we
cannotsimply continue to keepa (am) specified by half-flux
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Dirac ~Aharonov-Bohm! strings located atdiscrete vortex
positions $r i%. Instead,a (am) must be replaced by som
new gauge field which reflects the ‘‘coarse graining’’ that h
been applied tov—simply put, theZ2-valued Berry gauge
field ~7! of the original problem~10! must be‘‘dressed’’ in
such a way so as tobest compensatefor the error introduced
by ‘‘coarse graining’’v. In the language of the RG, we mu
find such ‘‘dressing’’ of the Berry gauge field, i.e., the for
and the bare action fora (am), which renders any such er
rors irrelevant for the low-energy physics.

The recipe for such a required ‘‘dressing’’ of the Ber
gauge field is straightforward in the FT singular gauge—
takes the form of a noncompact U~1! gauge field with a
simple Maxwellian action. To see how this comes about n
that if we insist on replacingv by its ‘‘coarse-grained’’ form
~18!, the only way to achieve this is to ‘‘coarse-grain’’both
vA andvB in the same manner:

¹3vA→2prA , ¹3vB→2prB , ~19!

whererA,B(r ) are now continuously distributed densities
A(B) vortex defects@the reader should contrast this wit
Eqs.~7! and~8!#. This is because theelementaryvortex vari-
ables of our problem arenot the sources ofv anda; rather,
they are the sources ofvA and vB . We cannot separately
fluctuate or ‘‘coarse-grain’’ the Doppler and the Ber
‘‘halves’’ of a given vortex defect—they arepermanently
confinedinto a physical (hc/2e) vortex. On the other hand
we can independently fluctuateA and B vortices—this is
why it was important to use the singular gauge~4! to rewrite
the original problem solely in terms ofA andB vortices and
associated superflow fields~12!.

Following this recipe we can now reassemble the coa
grained Doppler and Berry gauge fields as

v5
1

2
~vA1vB!, a5

1

2
~vA2vB!, ~20!

with the straightforward generalization to~211!D:

v5
1

2
~vA1vB!, a5

1

2
~vA2vB!. ~21!

The coupling ofvA(vA) andvB(vB) to fermions is a hybrid
of Meissner and minimal coupling.27 They contribute a prod-
uct of U~1! phase factors, exp(idA)3exp(idB), to the BdG
fermion loops, with both exp(idA) and exp(idB) being ‘‘ran-
dom’’ in the sense of the previous subsection. Upon coa
graining vA(vA) and vB(vB) turn into noncompact U~1!
gauge fields and thereforev(v) anda(a) must as well.

D. Further remarks on the FT gauge

The above ‘‘coarse-grained’’ theory must have the follo
ing symmetry: it has to be invariant under the exchange
spin-up and spin-down labels,c↑↔c↓ , withoutany changes
in v (v). This symmetry ensures that the~arbitrarily prese-
lected! Sz component of thespin, which is the same for TF’s
and real electrons, decouples from the physical superfl
velocity which naturally must couple only tocharge. When
5-7
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M. FRANZ, Z. TEŠANOVIĆ, AND O. VAFEK PHYSICAL REVIEW B 66, 054535 ~2002!
dealing with discrete vortex defects this symmetry is guar
teed by the singular gauge symmetry defined by the fam
of transformations~4!. However, if we replacevA andvB by
their distributed ‘‘coarse-grained’’ versions, the said symm
try is preserved only in the FT gauge. This is seen by c
sidering the effective Lagrangian expressed in terms
coarse-grained quantities:

L→C̃†]tC̃1C̃†H8C̃1L0@rA ,rB#, ~22!

whereH8 is given by Eq.~6!, vA , vB are connected torA ,
rB via Eq. ~19!, andL0 is independent oft.

The problem lurks inL0@rA ,rB#—this is just the entropy
functional of fluctuatingfree A(B) vortex-antivortex defects
and has the following symmetry:rA(B)→2rA(B) with rB(A)
kept unchanged. This symmetry reflects the fact that the
tropic ‘‘interactions’’ do not depend on vorticity. Above th
Kosterlitz-Thouless transition we can expand:

L0→
KA

4
~¹3vA!21

KB

4
~¹3vB!21~••• !, ~23!

where the ellipsis denotes higher-order terms and the co
cientsKA(B)

21 →nl
A(B) ~see Appendix A for details!.

The above-discussed symmetry of HamiltonianH8, Eq.
~6!, demands thatv anda, Eqs.~20! and~21!, be the natural
choice for independent distributed vortex fluctuation gau
fields which should appear in our ultimate effective theo
L0, however, collides with this symmetry ofH8—if we re-
placevA(B)→v6a in Eq. ~23!, we realize thatv and a are
coupledthroughL0 in the general caseKAÞKB :

L0→
KA1KB

4
@~¹3v!21~¹3a!2#

1
KA2KB

2
~¹3a!•~¹3v!. ~24!

Therefore, via its coupling toa, the superfluid velocityv
couples to the ‘‘spin’’ of topological fermions and ultimate
to the truespin of the real electrons. This is an unaccepta
feature for the effective theory and seriously handicaps
general ‘‘A-B’’ gauge, in which the original phase is spl
into w→wA1wB , with wA(B) each containing somearbi-
trary fraction of the original vortex defects. In contrast, t
symmetrized transformation~4! which apportions vortex de
fects equally betweenwA and wB ~Ref. 23! leads toKA
5KB and to a decoupling ofv anda at quadratic order, thus
eliminating the problem at its root. Furthermore, even if
start with the general ‘‘A-B’’ gauge, the renormalization o
L0 arising from integration over fermions will ultimatel
drive KA2KB→0 and make the coupling ofv and a irrel-
evantin the RG sense.29 This argument is actually quite rig
orous in the case of quantum fluctuations where the sym
trized gauge~4! represents a fixed point in the RG analys
~see below!.30 Consequently, it appears that the symmetriz
singular transformation~4! employed in Eq.~10! is thepre-
ferredgauge for the construction of the effective low-ener
theory.30,31 In this respect, while all the singularA-B gauges
are created equal some are ultimately more equal than ot
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The above discussion provides the rationale behind us
the FT transformation in our quest for an effective theory.
low energies, the interactions between quasiparticles
vortices are represented by two U~1! gauge fieldsv and a,
Eqs.~20! and~21!. The conversion ofa from aZ2-valued to
a noncompact U~1! field with Maxwellian action is effected
by the confinement of the Doppler to the Berry half of
singly quantized vortex—in the coarse-graining process
phase factors exp(id) of the noncompact Doppler part ‘‘con
taminate’’ the original (61) factors supplied bya, Eq. ~7!.
This contamination diminishes as dopingx→0 since then
vF /vD→0 and ‘‘vortices’’ are effectively liberated of thei
Doppler content. In this limit, the pureZ2 nature ofa is
recovered and one enters the realm of theZ2 gauge theory of
Senthil and Fisher.32 In contrast, in the pairing pseudoga
regime of this paper wherevF /vD.1 and singly quantized
(hc/2e) vortices appear to be the relevant excitations,33 we
expect the effective theory to take the U~1! form described
by v anda, Eqs.~20! and ~21!.

E. JacobianL0†vµ ,aµ‡ and its Maxwellian form

Having elucidated the origin of the ‘‘coarse-grained’’ U~1!
gauge fieldsvm and am and settled on the symmetrized F
transformation~4! as the natural gauge choice for this pro
lem, there remains one more task to be accomplished be
we can conclude this section. We need to derive a pre
expression for the long-distance, low-energy form of t
‘‘Jacobian’’ L0@vm ,am# which serves as the ‘‘bare action
for the gauge fieldsvm and am of our effective theory. As
shown below, this form is a noncompact Maxwellian who
stiffnessK ~or inverse ‘‘charge’’ 1/e25K) stands in intimate
relation to the helicity modulus tensor of a dSC and, in t
pseudogap regime of strong superconducting fluctuatio
can be expressed in terms of afinite physical superconduct
ing correlation lengthjsc: K}jsc

2 @2D# andK}jsc @~211!D#.
As we enter the superconducting phase andjsc→`, K→`
as well ~or e2→0), implying thatvm and am have become
massive. Our derivation, the results of which were origina
quoted and used in Ref. 15, can be accomplished with
markably little algebra and holds for the Ginzburg-Land
model,XY model, or any other representation of superco
ducting fluctuations. This is no accident—the straightforwa
relationship between the massless~or massive! character of
L0@vm ,am# and the superconducting phase disorder~or or-
der! is a consequence of rather general physical and sym
try principles.

To make good on the above claim consider first a sim
example of ans-wave superconductor with a large gapD
extending over all of the Fermi surface. We can also vi
this as a model for the high-energy BdG quasiparticles
dSC, those far removed from the nodes. The action take
form similar to Eq.~10!:

L̃5C̃†@~]t1 iat!s01 ivts3#C̃1C̃†Hs8C̃1L0@vm ,am#,
~25!

but with Hs8 defined as
5-8
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S 1

2m
~p̂1v!22eF D

D 2
1

2m
~p̂2v!21eF

D , ~26!

with p̂5p̂1a. Herevm in the fermionic action~but not in
L0) goes intovm2(e/c)Am when the electromagnetic field i
included. The reader might wish to recall here that we h
definedL0@vm ,am# in this particular way to clearly separa
superflow-mediated interactions among vortices, which
cludeAm , from entropic effects and short-range amplitud
driven core-overlap interactions, which do not.

1. Thermal vortex-antivortex fluctuations

We can now reap the benefits of this convenient sep
tion. In the language of BdG fermions the system~25! is a
large gap ‘‘semiconductor’’ and the Berry gauge fie
couples to it minimally through ‘‘BdG’’ vector and scala
potentialsa and at . Such a BdG semiconductor is a po
dielectric diamagnet with respect toam . We proceed to ig-
nore its ‘‘diamagnetic susceptibility’’ and also setat50 to
concentrate on thermal fluctuations. All this means is that
Berry gauge field part of the coupling between quasipartic
and vortices in a large-gaps-wave superconductor influence
the latter only through weak short-range interactions wh
are unimportant in the region of strong vortex fluctuatio
near the Kosterlitz-Thouless transition. We can theref
drop a from the fermionic part of the action and integra
over it to obtainL0 in terms of physical vorticityr(r )5(¹
3v)/p. Additional integration over the fermions produc
the effective free energy functional for vortices:

F@r#5M2S 2v2
2e

c
AextD 2

1~••• !1L0@r#, ~27!

where we have used our earlier notation and have introdu
a small external transverse vector potentialAext. The ellipsis
denotes higher-order contributions to the vortex interactio
As discussed earlier in this section, the familiar long-ran
interactions between vortices lead directly to the stand
Coulomb gas representation of the vortex-antivortex fluct
tion problem and Kosterlitz-Thouless transition.

The presence of these long-range interactions implies
the vortex system is incompressible, Eq.~16!, and long-
distance vortex density fluctuations are suppressed. W
studying the coupling of BdG quasiparticles to these fluct
tions it therefore suffices to expand the ‘‘entropic’’ part:

L0@r#>
1

2
p2Kdr21 . . . 5

1

2
K~¹3v!21•••. ~28!

The above expansion is justified aboveTc since we know
that atT@Tc we must match the purely entropic form of
noninteracting particle system,L 0}dr2 ~see Appendix A!.

To uncover the physical meaning of the coefficientK we
expand the free energyF of the vortex system to secon
order in Aext. In the pseudogap state gauge invariance
mands thatF depend only on¹3Aext:
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F@¹3Aext#5F@0#1
~2e!2

2c2
xE d2r ~¹3Aext!21•••.

~29!

Note that ((2e)2/c2)x is just the diamagnetic susceptibilit
in the pseudogap state.x determines the long-wavelengt
form of the helicity modulus tensorYmn(q) defined as

Ymn~q!5V
d2F

dAm
ext~q!dAn

ext~2q!
U

A
m
ext→0

. ~30!

The above is the more general form ofYmn(q) applicable to
uniaxially symmetric 3D and~211!D XY or Ginzburg-
Landau ~GL! models; in 2D onlyYxy(q… appears. In the
long-wavelength limitYmn(q) vanishes asq2x:

c2

~2e!2
Ymn~q!5xeramerbnqaqb1•••, ~31!

for the isotropic case, while for the anisotropic situationx'

Þx i ,

c2

~2e!2
Ymn~q!5~x i2x'!ezamezbnqaqb1x'eramerbnqaqb .

~32!

eabg is the Levi-Civitá symbol, summation over repeate
indices is understood, and indexz of the anisotropic 3D GL
or XY model is replaced byt for the ~211!D case. (2e)2/c2

is factored out for later convenience.
So what isK? Let us compute the helicity modulus of th

problem explicitly. This is done by absorbing the small tran
verse vector potentialAext into v in Eqs. ~25! and ~26! and
integrating over the new variablev2(e/c)Aext. The hecility
modulus tensor measures the screening properties of the
tex system. In a superconductor, with topological defe
bound in vortex-antivortex dipoles, there is no screening
long distances. This translates into a Meissner effect forAext.
When the dipoles unbind and some free vortex-antivor
excitations appear screening is now possible over all len
scales and there is no Meissner effect forAext. Information
on the presence or absence of such screening is act
stored entirely inL0, whereAext reemerges after the abov
change of variables. We finally obtain

4x5K2
K2p2

T
lim

uqu→01

E d2reiq•r^dr~r !dr~0!&, ~33!

where the thermal average^•••& is over the free energy~27!
with Aext50 or, equivalently,~25!. In the normal phase only
the first term contributes in the long-wavelength limit, th
second being down by an extra power ofq2 courtesy of
long-range vortex interactions. Consequently,K54x @the
factor of 4 is due to the fact that the true superfluid veloc
is 2v ~Ref. 28!#.

We see that in the pseudogap phase, with free vortex
fects available to screen,L0@v# takes on a massless Max
wellian form, the stiffness of which is given by the diama
netic susceptibility of a strongly fluctuating superconduct
5-9
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In the fluctuation regionx is given by the superconductin
correlation lengthjsc ~Ref. 34!:

K54x54C2Tjsc
2 , ~34!

whereC2 is a numerical constant, intrinsic to a 2D GL,XY,
or some other model of superconducting fluctuations.

As we approachTc , jsc→` and the stiffness of the Max
wellian term ~28! diverges. This can be interpreted as t
Doppler gauge field becoming massive. Indeed, immedia
below the Kosterlitz-Thouless transition atTc , L 0>mv

2v2

1•••, wheremv!M andmv→0 asT→Tc
2 . This is just a

reflection of the helicity modulus tensor now becomingfinite
in the long-wavelength limit,

Yxy→
4e2

c2

mv
2M2

4M21mv
2 .

Topological defects are now bound in vortex-antivortex pa
and cannot screen, resulting in the Meissner effect forAext.
The system is a superconductor andv had become massive

Returning to ad-wave superconductor, we can retrace t
steps in the above analysis but we must replaceHs8 in Eq.
~25! with H8, Eq. ~6!. Now, instead of a large-gap BdG
‘‘semiconductor,’’ we are dealing with a narrow-gap ‘‘sem
conductor’’ or BdG ‘‘semimetal’’ because of the low-energ
nodal quasiparticles. This means that we must restore
Berry gauge fielda to the fermionic action since the contr
bution from nodal quasiparticles makes its BdG ‘‘diama
netic susceptibility’’ very large,xBdG;1/T@1/T* ~see the
next section!. The long-distance fluctuations ofv and a are
now both strongly suppressed, the former through inco
pressibility of the vortex system and the latter throughxBdG.
This allows us to expand Eq.~23!:

L0>
KA

4
~¹3vA!21

KB

4
~¹3vB!21~••• !, ~35!

whereKA5KB5K is mandated by the FT singular gaug
Since in our gauge the fermion spin and charge chan
decouple,Aext still couples only tov and the above argu
ments connectingK to the helicity modulus and diamagnet
susceptibilityx follow through. This finally gives the Max-
wellian form of Ref. 15:

L0→
K

2
~¹3v!21

K

2
~¹3a!2, ~36!

whereK is still given by Eq.~34!. Note, however, thatjsc of
a d-wave and of ans-wave superconductor are two rath
different functions ofT, x, and other parameters of the pro
lem, due to strong Berry gauge field renormalizations of v
tex interactions in thed-wave case. Nonetheless, asT
→Tc , the Kosterlitz-Thouless critical behavior remains u
affected sincexBdG, while large, is still finite at all finiteT.

Just as advertised, we have shown thatL0@rA ,rB#
5L0@v,a# in the pseudogap state takes on the massless M
wellian form ~36!, with the stiffnessK set by the true super
conducting correlation lengthjsc, Eq. ~34!. This result holds
as a general feature of our theory irrespective of whether
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employs a Ginzburg-Landau theory,XY model, vortex-
antivortex Coulomb plasma, or any other description
strongly fluctuating dSC, as long as such a description pr
erly takes into account vortex-antivortex fluctuations and
produces Kosterlitz-Thouless phenomenology. In Appen
A we show that within the continuum vortex-antivortex Co
lomb plasma model,

L 0→
T

2p2nl
@~¹3v!21~¹3a!2#, ~37!

wherenl is the average density offreevortex and antivortex
defects. Comparison with Eq.~36! allows us to identify
jsc

22↔4p2C2nl .15

2. Quantum fluctuations of (2¿1)D vortex loops

The above results can be generalized to quantum fluc
tions of spacetime vortex loops. The superflow fieldsvA(B)m
satisfy (]3vA(B))m52p j A(B)m , where j A(B)m(x) are the
coarse-grained vorticities associated withA(B) vortex de-
fects and̂ j A(B)m&50. The topology of vortex loops dictate
that j A(B)m(x) be a purely transverse field, i.e.,]• j A(B)50,
reflecting the fact that loops have no starting or ending po
Again, we begin with a large-gaps-wave superconductor an
use its poor BdG diamagnetic and dielectric nature to jus
dropping the Berry gauge fieldam from the fermionic part of
Eq. ~25! and integrating overam in the ‘‘entropic’’ part con-
taining L0@vm ,am#.

The integration over the fermions contains an import
novelty specific to the~211!D case: the appearance of Ber
phase terms for quantum vortices as they wind around
mions. Such a Berry phase is the consequence of the fi
order time derivative in the original fermionic action~1!. If
we think of spacetime vortex loops as world lines of som
relativistic quantum bosons dual to the Cooper pair fi
D(r ,t), as we do in Appendix A, then these bosons see C
per pairs and quasiparticles as sources of ‘‘magnetic’’ flux14

At the mean-field level, this translates into a dual ‘‘Abriko
sov lattice’’ or a Wigner crystal of holes in a dual superflui
Accordingly, the nonsuperconducting ground state in
pseudogap regime will likely contain a weak char
modulation—the modulation is made weak by the sa
strong fluctuations that makeTc!T* (TNernst). The focus of
the present paper being a symmetric AFL description of
pseudogap, we postpone the discussion of this point to pa
and will ignore it for the rest of this paper. This is justified b
the fact thatam does not couple to charge directly and
quantitatively valid in the windowT,D f!(v,vF,Duqu)!T* ,
where D f is any small gap in the nodal TF spectrum pr
duced by the said charge modulation.

Hereafter, we blissfully turn a blind eye to the abo
subtleties and assume that the transition from a dSC in
pseudogap phase proceeds via the unbinding of vortex lo
of a ~211!D XY model or its GL counterpart or, equiva
lently, an anisotropic 3DXY or GL model where the role o
imaginary time is taken on by a third spatial axisz.35 Having
learned all we really need from an earlier 2D example
can now integrate the fermions to obtain the effective L
5-10
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grangian for coarse-grained spacetime loops@p j m5(]
3v)m#:

L@ j m#5Mm
2 S 2vm2

2e

c
Am

extD 2

1~••• !1L0@ j m#, ~38!

whereMx5M y5M andM t5M /cs , with cs;vF being the
effective ‘‘speed of light’’ in the vortex loop spacetime. Th
incompressibility condition readŝj m(q) j n(2q)&;q2@dmn

2(qmqn /q2)# and in the pseudogap state permits the exp
sion

L0@ j m#>
1

2
p2Kt j t

21
1

2
p2 (

i 5x,y
Ki j i

2 , ~39!

whereKx5Ky5KÞKt . Using an analogy with the uniaxi
ally symmetric anisotropic 3DXY ~or GL! model we can
expand the ground-state energy in the manner of Eq.~29!:

E@]3Aext#5E@0#1
~2e!2

2c2 (
',i

x',i

3E d3x~]3Aext!',i
2 , ~40!

with x'5xx5xy5x andx i5xtÞx. Note that the form of
L0, Eq. ~39!, follows directly from the requirement that ther
be infinitely large vortex loops, resulting in vorticity fluctua
tions over all distances. Combined with Eq.~40! and then
translated to the language of a~211!D XY ~GL! model it
tells us something already familiar: upon the transition to
pseudogap state generated by the vortex loop unbinding
superconductor has turned into an insulator.14 x and xt de-
termine the diamagnetic and dielectric susceptibilities of t
insulating pseudogap state.

The explicit computation ofYmn(q), Eqs.~30! and ~32!,
leads to

4x i ,t5Ki ,t2Ki ,t
2 p2 lim

q→01

E d3xeiq•x^ j ~x! i ,t j ~0! i ,t&,

~41!

where the second term is again eliminated by the inco
pressibility of the vortex system. This results in15

K54x54C3jt , Kt54xt54C3

jsc
2

jt
, ~42!

where we used the result for the anisotropic 3DXY or GL
model:x'5C3Tj i , x i5C3Tj'

2 /j i , C3 being the intrinsic nu-
merical constant for those models (C3ÞC2). In the case of
~211!D vortex loopsjt}jsc since our adopted model has th
dynamical critical exponentz51. Thus, we again encounte
a massless Maxwellian form~39! whose stiffness diverges a
we approach a superconductor except now this divergen
linear in the superconducting correlation length,K}jsc.

The application to ad-wave superconductor is straightfo
ward: the nodal structure of BdG quasiparticles in dSC he
along the way by providing an anomalous stiffness for
Berry gauge fieldam—upon integration over the nodal fe
mions the following term emerges in the effective action:
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xBdG~q!~q2dmn2qmqn!am~q!an~2q!

;uqu@dmn2~qmqn /q2!#am~q!an~2q!. ~43!

In the terminology of our chimerical BdG ‘‘semimetal,’’ th
‘‘susceptibility’’ xBdG is not merely very large; it diverges
xBdG;1/q, asq→0, and is computed in detail in Sec. IV. W
use this pleasing fact to observe that we are fully justified
expandingL0@ j Am , j Bm# and retaining only quadratic term
as long as we keep a safe distance from the actual p
transition:

L0>
KAm

4
~]3vA!m

2 1
KBm

4
~]3vB!m

2 1~••• !, ~44!

whereKAm5KBm5Km is again assured by our choice of th
FT singular gauge~4! and ~11!.

The above reasoning merits an amusing aside: beside
ubiquitous incompressibility „^(]3v)m(]3v)n&;q2@dmn

2(qmqn /q2)#… the integration over nodal fermions now als
occasions divergingxBdG, implying ^(]3a)m(]3a)n&
;q@dmn2(qmqn /q2)#. Had we chosen a singular gauge
which the setsA andB were not equivalent, like the Ander
son gauge,29 and thereforeKAmÞKBm , the ensuing (]3v)
•(]3a) coupling inL0, Eqs.~44! and ~24!, would now be
driven tozero in the long-distance limit as anirrelevant op-
erator in the RG sense.36 The reason is simple: the couplin
of gauge fieldsvm andam to topological fermions mandate
that they decouple at the quadratic~harmonic! level due to
decoupling of ‘‘charge’’ and ‘‘spin’’ channels for TF. Such
coupling ofvm andam can only arise fromL0 by our unin-
formed choice of a singular gauge. Since both (]3v)2 and
(]3a)2 terms in Eq.~44! are strongly relevant due to th
diverging contributions they receive from fermions, the co
pling constant in front of (]3v)•(]3a), proportional to
KAm2KBm , is driven to zero under repeated applications
the RG transformation. Therefore, the FT gauge~4! and~11!,
specifically designed to ensureKAm2KBm50 at the very
start, is recovered as an RG fixed point.30

Finally, we rewrite Eq.~44! in terms of vm ,am5(1/2)
3(vAm6vBm),

L0→
Km

2
~]3v !m

2 1
Km

2
~]3a!m

2 , ~45!

and observe that the fact thatAm
ext couples only tovm means

that the expression~42! for Km is still valid. Of course,
jsc(x,T) is now truly different from itss-wave counterpart,
including a possible difference in the critical exponent, sin
the coupling ofd-wave quasiparticles to the Berry gaug
field is marginal at the RG engineering level and may cha
the quantum critical behavior of the superconduct
pseudogap~insulator! transition.

III. QED 3: A LOW-ENERGY EFFECTIVE THEORY OF
THE PSEUDOGAP STATE

We have now elucidated the nature of the coupling of o
two gauge fieldsvm andam to TF’s and have specified the
5-11
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‘‘bare’’ thermal and quantum dynamics encoded
L0@vm ,am#, Eqs. ~36! and ~45!. To make further progres
toward our ultimate goal of describing the low-energy ferm
ology in the pseudogap state, we now focus our attention
the nodal quasiparticle excitations of the HamiltonianH8,
Eq. ~6!. This will enable us to apply the machinery of th
perturbative RG to nodal~massless! TF’s and rid our effec-
tive theory of all remaining excess baggage.

A. Farewell to vµ and residual interactions

As indicated in Fig. 2, the low-energy quasiparticles a
located at the four nodal points of thedxy gap function:
k1,1̄5(6kF,0) and k2,2̄5(0,6kF), hereafter denoted a
(1,1̄) and (2,2̄), respectively. To focus on the leading low
energy behavior of the fermionic excitations near the no
we follow the standard procedure37 and linearize the La-
grangian~10!. To this end we write our TF spinorC̃ as a
sum of four nodal Fermi fields,

C̃5eik1•rC̃11eik1̄•rs2C̃ 1̄1eik2•rC̃21eik2̄•rs2C̃ 2̄ .
~46!

The s2 matrices have been inserted here for convenien
they ensure that we eventually recover the conventional f
of the QED3 Lagrangian.~Without thes2 matrices the Dirac
velocities at 1̄,2̄ nodes would have been negative.! Inserting
C̃ into Eq. ~10! and systematically neglecting the irreleva
higher order derivatives,37 we obtain a nodal Lagrangian o
the form

LD5 (
l 51,1̄

C̃ l
†@Dt1 ivFDxs31 ivDDys1#C̃ l

1 (
l 52,2̄

C̃ l
†@Dt1 ivFDys31 ivDDxs1#C̃ l1L0@am#,

~47!

where Dm5]m1 iam denotes the covariant derivative an
L0@am# is given by Eq.~45!:

FIG. 2. Schematic representation of the Fermi surface of
cuprate superconductors with the indicated nodal points of
dx22y2 gap.
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L0@am#5
1

2
Km~]3a!m

2 [
1

2em
2 ~]3a!m

2 . ~48!

vF5]ek /]k denotes the Fermi velocity at the node andvD

5]Dk /]k denotes the gap velocity. Note thatvF and vD

already contain renormalizations coming from high-ene
interactions and are effective material parameters of
theory. Similarly,Km51/em

2 , derived in the previous sectio
in terms of jsc(x,T), are treated as adjustable paramet
which are matched to experimentally available informati
on the range of superconducting correlations in
pseudogap state.

The Doppler gauge fieldvm has disappeared from th
above expression. After informing us on how to prope
‘‘coarse-grain’’ the theory and dressing ourZ2-valued Berry
gauge field in its ultimate U~1! Maxwellian outfit, the time
has come to dropvm , its eventual demise caused by th
Meissner coupling to BdG fermions discussed in the pre
ous section. After being ‘‘screened’’ by high-energy a
nodal TF’s it is rendered massive both in the supercond
ing and pseudogap states and unimportant for low-ene
physics. Its legacy lives on, however, having given birth
the U~1! noncompact character ofam .

In contrast, the Berry gauge fieldam remainsmasslessin
the pseudogap state, as it cannot acquire mass by couplin
the fermions. As seen from Eq.~47!, am couples minimally
to the Dirac fermions and therefore its massless charact
protected by gauge invariance. Physically, one can also a
that am couples to the TFspin three-current—in a spin-
singlet d-wave superconductor SU~2! spin symmetry must
remain unbroken, thereby ensuring thatam remains massless
Its massless Maxwellian dynamics~48! in the pseudogap
state can therefore be traced back to the topological stat
spacetime vortex loops and directly reflects the absenc
true superconducting order~Sec. II! or, equivalently, the
presence of a ‘‘vortex loop condensate’’ and dual order~Ap-
pendix A!.

We have also dispensed with the residual interactions
resented byHres in Eq. ~2!. These interactions are generical
short-ranged contributions from the particle-hole~p-h! and
amplitude fluctuations part of the p-p channel and in our n
notation are exemplified by

Hres→
1

2 (
l ,l 8

I l l 8C̃ l
†C̃ lC̃ l 8

† C̃ l 8 . ~49!

The effective vertexI l l 8 has a scaling dimension21 at the
engineering level. This follows from the RG analysis ne
the massless Dirac points which sets the dimension ofC̃ l to
@ length#21. The implication is thatI l l 8 is irrelevant for low-
energy physics in the perturbative RG sense and we
therefore well within our rights in settingI l l 8→0. However,
the residual interactions will not go so quietly into the nigh
such interactions are known to become important if stron
than some critical valueI c .38,40 In the present theory, this is
bound to happen in the severely underdoped regime an
half-filling, as x→0.22 In this case, the residual interaction
are becoming large and comparable in scale to the pai
pseudogapD, and are likely to cause chiral symmetry brea

e
e
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QED3 THEORY OF PAIRING PSEUDOGAP IN . . . PHYSICAL REVIEW B 66, 054535 ~2002!
ing which leads to spontaneous mass generation for mas
Dirac fermions. The CSB and its variety of patterns in t
context of the theory~47! and ~48! in underdoped cuprate
were discussed in Refs. 21 and 22 and are the subject of
II of this paper. Here, where we have limited ourselves to
chirally symmetric phase, we assumeI l l 8,I c , which we ex-
pect to be the case for moderate underdoping, and seI l l 8→0.

In the end, we are left with Eqs.~47! and ~48! as our
effective low-energy theory for nodal TF’s. This theory, d
rived previously in Ref. 15, is the chief dynamical musc
behind the physics discussed in this paper. It describes
problem of massless topological fermions interacting w
massless vortex ‘‘Beryons,’’ i.e., the quanta of the Be
gauge fieldam , and is formally equivalent to the Euclidea
quantum electrodynamics of massless Dirac fermions in 211
dimensions (QED3). It, however, suffers from an intrinsic
Dirac anisotropy by virtue ofvFÞvD .

B. QED3 Lagrangian for the pseudogap state

We are now in position to do some real calculatio
within our theory. Before we plunge into the algebra, ho
ever, we first apply some cosmetics: The Lagrangian~47! is
not in the standard from as used in quantum electrodynam
where the matrices associated with the components of c
riant derivatives form a Dirac algebra and mutually antico
mute. In~47! the temporal derivative is associated with a u
matrix and it therefore commutes~rather than anticommutes!
with s1 ands3 matrices associated with the spatial deriv
tives. These nonstandard commutation relations, howe
lead to some rather unwieldy algebra. For this reason
manipulate the Lagrangian~47! into a slightly different form
that is consistent with the usual field-theoretic notation. Fi
we combine each pair of antipodal~time-reversed! two-
component spinors into one four-component spinor,

Y15S C̃1

C̃ 1̄
D , Y25S C̃2

C̃ 2̄
D . ~50!

Second, we define a new adjoint four-component spinor

Ȳ l52 iY l
†g0 . ~51!

In terms of this new spinor the Lagrangian becomes

LD5 (
l 51,2

Ȳ lgmDm
( l )Y l1

1

2
Km~]3a!m

2 , ~52!

with covariant derivatives

Dm
(1)5 i @~]t1 iat!,vF~]x1 iax!,vD~]y1 iay!#,

Dm
(2)5 i @~]t1 iat!,vF~]y1 iay!,vD~]x1 iax!#.

The 434 gamma matrices, defined as
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g05S s2 0

0 2s2
D , g15S s1 0

0 2s1
D ,

g25S 2s3 0

0 s3
D ~53!

now form the usual Dirac algebra

$gm ,gn%52dmn ~54!

and furthermore satisfy

Tr~gm!50, Tr~gmgn!54dmn . ~55!

The use of the adjoint spinorȲ instead of the conven
tional Y† is a purely formal device which will simplify cal-
culations but does not alter the physical content of the the
At the end of the calculation we have to remember to un
the transformation~51! by multiplying the^Y(x)Ȳ(x8)& cor-
relator by ig0 to obtain the physical correlato
^Y(x)Y†(x8)&.

Next, to make the formalism simpler still we can elim
nate the asymmetry between the two pairs of nodes by
forming an internal SU~2! rotation at nodes 2, 2:̄

Y2→e2 i (p/4)g0g1Y2 , ~56!

leading to the anisotropic QED3 Lagrangian

LD5 (
l 51,2

Ȳ lvm
( l )gm~ i ]m2am!Y l1

1

2
Km~]3a!m

2 , ~57!

with vm
(1)5(1,vF ,vD) andvm

(2)5(1,vD ,vF).

IV. SPECTRAL PROPERTIES OF TOPOLOGICAL
FERMIONS AND PHYSICAL ELECTRONS IN QED 3

We shall start by considering the isotropic casevF5vD

51, which although unphysical in the strictest sense is co
putationally much simpler and provides penetrating insig
into the physics embodied by the QED3 Lagrangian~57!.
After we have understood the isotropic case we will then
ready to tackle the calculation for the general case and
show that Dirac cone anisotropy does not modify the ess
tial physics discussed here. To make contact with the s
dard literature on QED3, we further consider a more gener
problem withN pairs of nodes described by the Lagrangia

LD5(
l 51

N

Ȳ lgm~ i ]m2am!Y l1
1

2
Km~]3a!m

2 . ~58!

For the basic problem of a single CuO2 layer N52. As we
will show in the next section,N itself is variable and can be
equal to 4 or 6 in bilayer and multilayer cuprates. Our an
lytic results can be viewed as arising from the formal 1N
expansion, although we expect them to be qualitatively~and
even quantitatively! accurate even forN52 as long as we
are within thesymmetricphase of QED3 – the quantitative
accuracy stems from a fortuitous conspiracy of small num
cal prefactors.38
5-13
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A. Berryon propagator

Ultimately, we are interested in the properties of physi
electrons. To describe those we need to understand the p
erties of the electron-electron interaction mediated by
gauge fieldam . To this end we proceed to calculate the Be
gauge field propagator by integrating out the fermion degr
of freedom from the Lagrangian~58!. To one-loop order this
corresponds to evaluating the vacuum polarization bub
Fig. 3~a!. Employing the standard rules for Feynman d
grams in the momentum space39 the vacuum polarization
reads

Pmn~q!5NE d3k

~2p!3Tr@G0~k!gmG0~k1q!gn#. ~59!

Here G0(k)5kaga /k2 is the free Dirac Green function,k
5(k0 ,k) denotes the Euclidean three-momentum, and
trace is performed over theg matrices.

The integral in Eq.~59! is a standard one~see Appendix B
for the details of computation! and the result is

Pmn~q!5
N

8
uquS dmn2

qmqn

q2 D , ~60!

whereuqu5Aq2. The one-loop effective action for the Berr
gauge field therefore becomes (2p)23*d3qLB with

LB@a#5S N

16
uqu1

1

2e2 q2D S dmn2
qmqn

q2 Dam~q!an~2q!.

~61!

At low energies and long wavelengths,uqu/e2!N/8, the fer-
mion polarization completely overwhelms the original Ma
well bare action term and the Berryon properties beco
universal. In particular, the coupling constant 1/e2 drops out
at low energies and only reappears as the ultraviolet cu
Physically, the medium of massless Dirac fermions scre
the long-range interactions mediated byam . In QED3 this
screening is incomplete: the gauge field becomes stiffer
one power ofq but still remainsmassless, in accordance with
our general expectations. This anomalous stiffness ofam jus-

FIG. 3. One-loop Berryon polarization~a! and TF self-energy
~b!.
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tifies the quadratic level expansion ofL0, Eq. ~45!, and ren-
ders higher-order termsirrelevant in the RG sense. The
theory therefore clears an important self-consistency che

At low energies the fully dressed Berryon propagator
given as the inverse of the polarization,

Dmn~q!5Pmn
21~q!. ~62!

In order to perform this inversion we have to fix the gaug
To this end we implement the usual gauge fixing proced
by replacingqmqn /q2→(12j21)qmqn /q2 in Eq. ~60!. Here
j>0 parametrizes the orbit of all covariant gauges. For
ample,j50 corresponds to the Lorentz gaugekmam(k)50
while j51 corresponds to the Feynman gauge. Upon inv
sion we obtain the low-energy Berryon propagator

Dmn~q!5
8

uquN S dmn2
qmqn

q2 ~12j! D , ~63!

in agreement with previous authors.41

B. TF self-energy and propagator

The TF propagator is a gauge-dependent entity and
could therefore immediately object that as such it has
direct physical content and is of no interest. Such a vie
point, while expressed frequently, is actually quite naive. T
reality is that in gauge theories various gauge-variant obje
can often be connected to physical gauge-invariant quant
when computed within aparticular choice of gauge. In prac
tice, a rather typical occurrence is that a gauge-invari
physical propagator is given by a hugely nonlocal fo
which is basically impossible to compute except in a ju
ciously chosen gauge where it is related to a much simp
and therefore far easier to compute, gauge-variant prop
tor. Consequently, a gauge-variant propagator compu
along a particular gauge orbit often contains relevant inf
mation about the true dynamics of a gauge theory—the t
is to know how to extract this information.

This general statement holds in the case of QED3 as well.
The TF propagator evaluated in an arbitrary covariant ga
parametrized byj contains useful information about the n
ture of the fermionic excitations of the system. We will sho
that its coupling to the massless gauge field destroys
usual Fermi liquid pole and results in the propagator displ
ing a Luttinger-like behavior, characterized by a sm
anomalous dimension. In the next subsection we argue
the physical electron propagator of our theory, which can
related to a particular gauge-invariant fermion propagato
QED3, exhibits the same Luttinger-like behavior.

The lowest-order self-energy diagram is depicted in F
3~b! and reads

S~k!5E d3q

~2p!3Dmn~q!gmG0~k1q!gn . ~64!

Again, the computation is rather straightforward~see Appen-
dix B for details! and the most divergent part is

S~k!5
4~223j!

3p2N
k” lnS L

uku D , ~65!
5-14
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where we have introduced the Feynman ‘‘slash’’ notationk”
5kmgm .

To the leading 1/N order, the inverse TF propagator
given by

G21~k!5k” F11h lnS L

uku D G , ~66!

with

h52
4~223j!

3p2N
. ~67!

Higher-order contributions in 1/N will necessarily affect this
result. Renormalization group arguments42 and nonperturba-
tive approaches43 strongly suggest that Eq.~66! represents
the start of a perturbative series that eventually resums in
power law:

G21~k!5k” S L

uku D
h

. ~68!

This implies a real-space propagator of the form

G~r !5L2h
r”

r 31h
. ~69!

Thus, the TF propagator exhibits a Luttinger-like algebr
singularity at small momenta, characterized by an anoma
exponent h. In the Lorentz gauge (j50) we find h
528/3p2N.20.13, forN52. This rather small numerica
value for the anomalous dimension exponent~which is even
considerably smaller forN54 or N56) indicates that the
unraveling of the Fermi liquid pole in the original TF prop
gator brought about by its interaction with the massl
Berry gauge field is in a certain sense ‘‘weak.’’ Note also th
h is negativein the Lorentz gauge while it becomes positiv
h54/3p2N.0.06 forN52, in the Feynman gauge (j51).
The above results provide a strong indication that the ph
cal, gauge-invariant fermion propagator also has a Lutting
like form, characterized by a small andpositiveanomalous
dimension.15 We now show that this indeed is the case.

C. Physical electron propagator

Various spectroscopies on cuprates, such as an
resolved photoemission spectroscopy~ARPES! and scanning
tunneling microscopy~STM!, as well as numerous optica
and microwave techniques, all measure the spectral func
of a real physical electron, not of TF’s. Therefore, we a
ultimately interested in computing the propagator of t
physical electron in our theory,

Gelec~x2x8!5^C~x!C†~x8!&, ~70!

whereC(x) is the original electron field operator appeari
in Eq. ~1! ~the reader should recall that this operator alrea
contains high-energy renormalizations built in at the ve
beginning!. If we define a matrix
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V̂~x!5S e2 iwA(x) 0

0 eiwB(x)D , ~71!

we can writeGelec in terms of TF fields as

Gelec~x2x8!5^V̂~x!C̃~x!C̃†~x8!V̂†~x8!&. ~72!

Ordinary spectroscopies reflect the diagonal part of the e
tron propagator,

@Gelec~x2x8!#115^e2 i [wA(x)2wA(x8)]@C̃~x!C̃†~x8!#11&,
~73!

and a similar expression for@Gelec(x2x8)#22. We may recast
this in a more convenient form by writing the phase diffe
ence in the exponent as a line integral of a gradient alon
straight line connectingx andx8,

wA~x!2wA~x8!→2E
x

x8
]mwAdsm , ~74!

and then expressing the phase gradient in terms of the
gauge fieldsam andvm :

@Gelec~x2x8!#115K expS i E
x

x8
~vm1am!dsmD

3@C̃~x!C̃†~x8!#11L . ~75!

This expression only involves the coarse-grained Dopp
and Berry gauge fields and TF’s, which are precisely
fields that enter our effective low-energy theory, and is the
fore amenable to analysis. Note that Eq.~75! is only a long-
distance approximation to the exact electron propagator~73!
which is defined through discrete vortex variables enter
via wA(wB).

As discussed earlier, the Doppler gauge fieldvm is mas-
sive in both normal and superconducting phases and th
fore its fluctuations will not affect the low-energy, long
wavelength properties of the electron propagator. We m
thus remove it from the line integral, Eq.~75!, and focus on
the quantity

G~x2x8!5K expS i E
x

x8
amdsmDY~x!Ȳ~x8!L . ~76!

By considering the transformation properties ofY(x) under
the gauge transformations with respect toam it is easy to
verify thatG(x2x8) is gauge-invariant. This quantity there-
fore represents a gauge invariant propagator of QED3 theory
~52! and its knowledge allows us to reconstruct the diago
components of the electron propagator by means of

@Gelec~x2x8!# i i 5@ ig0G~x2x8!# i i . ~77!

It seems natural to attempt to relate the components of
above gauge-invariant propagator to the physical elec
propagator, since the latter by definition must be gauge
variant under the transformations of the internal gauge fi
am .
5-15
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The question arises as to how to evaluate the gau
invariant propagatorG(x2x8). This turns out to be a non
trivial issue since, despite its pleasing manifest invaria
under gauge and spacetime symmetries, Eq.~76! also exhib-
its a severe~linear! ultraviolet divergence arising from th
straight line integral of the gauge field. This renders it
defined in the absence of some proper regularization~see
below for more details!. Here we adopt the approach di
cussed by Brown44,45 in the context of QED4. Brown shows
that the following relation exists between gauge invari
propagatorG̃ and gauge-dependent propagatorG ~Ref. 46!
~see also Appendix C!:

G̃~r !5eF(r )G~r !, ~78!

wherer 5x2x8 and

F~r !5
1

2E d3zE d3z8Jm~z!Dmn~z2z8!Jn~z8!, ~79!

with

Jm~z!5r mE
0

1

dad~z2x82ar ! ~80!

representing the source term for the line integral in Eq.~76!.
In the aboveG(r ) andDmn(r ) refer to the real-space gaug
dependent fermion and Berryon propagators, respectiv
obtained by Fourier transforming the expressions~68! and
~63!. By definition, both are to be computed incovariant
gauge. Brown’s result, Eq.~78!, is an explicit statement o
the fact that one can construct two gauge-invariant propa
tors by using the line integral of the gauge fieldsG and G̃.
This is a rather general feature of Abelian gauge theorie45

and is easily generalized to QED3. Here G and G̃ can be
formally related through a gauge transformation~see Appen-
dix C! and one might think ofG̃ as representing suitabl
regularizedG.47 Alternatively, we can simply think ofG̃ as
being another QED3 fermion propagator invariant unde
gauge and spacetime symmetries just likeG. We discuss the
details pertaining to Eq.~78! in Appendix C.

To calculateG̃(r ) from Eq.~78! we need to evaluateF(r ).
We proceed by first performing thez, z8 integrals to obtain

F~r !5
1

2E0

1

daE
0

1

dbr mDmn„r ~a2b!…r n . ~81!

By power counting the expression forF(r ) suffers from a
linear UV divergence, reflecting the singular behavior of t
gauge field line integral at short distances. This singularit
the main reason why direct computation of Eq.~76! is such a
frustrating task, despite its deceivingly compact and eleg
form. A typical scheme to regularize this linear UV dive
gence interferes with gauge invariance and corrupts the e
to extract the true physical part of Eq.~76! which we expect
to be scale invariant. The advantage of Brown’s appro
~78! is twofold: it permits computation of a gauge-invaria
propagatorG̃ in the covariant gauge where the UV diver
gence can be treated with the help ofdimensional regular-
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ization, which respects the gauge invariance and prese
the long-wavelength, low-energy properties of the physi
propagators, and the offending linear part of the UV div
gence cancels out between numerator and denominator
gauge-invariant manner~Appendix C!. This allows us to ex-
tract a meaningful power-law behavior forG̃. To take advan-
tage of dimensional regularization we expressP(r )
[r mDmn(r )r n as a Fourier transform ind dimensions,

P~r !5
8

NE ddk

~2p!d

eik•r

k F r 22~12j!
~k•r !2

k2 G , ~82!

and treatd as a continuous variable. This Fourier transfo
is evaluated in Appendix B, giving the result

P~r !5
4

N

GS d21

2 D
p (d11)/2

@11~d22!~12j!#r 32d. ~83!

SubstitutingP„r (a2b)… into Eq. ~81! and performing the
remaining integrals by means of

E
0

1

daE
0

1

dbua2buz5
2

~z11!~z12!
, ~84!

we find, neard53,

F~r !52
4~22j!

Np2 lim
d→3

S r 32d

32dD
52

4~22j!

Np2 F ln~Lr !1
1

32dG
d→3

. ~85!

The UV divergence is now parametrized by th
(r -independent! second term in the angular brackets. T
leading long-distance behavior is contained in the logarith
implying a power-law contributioneF(r )}r 24(22j)/Np2

to the
gauge-invariant propagatorG̃(r ). Combining Eqs.~85! with
~69! we obtain48

G̃~r !5L2h8
r”

r 31h8
~86!

or, in momentum space,

G̃~k!5L2h8
k”

k22h8
, ~87!

where the anomalous dimension exponenth8 is given by

h85h1
4~22j!

Np2 5
16

3p2N
. ~88!

The last equation informs us that in the exponenth8 the
gauge fixing parameterj has canceled out andG̃(r ) is indeed
gauge invariant. We have thus verified, by explicit calcu
tion to leading order in 1/N, that Eq.~78! yields a gauge-
invariant TF propagator which we can connect to the phy
cal electron propagator by means of Eq.~77! with G→G̃.
5-16
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An interesting feature of the above result is that forj
52 we haveF(r )50. In the QED literature this is known a
‘‘Yennie’s gauge’’ and its significance is that in this particul
gauge the diagonal components of the TF propagator

directly equal toG̃(r ). In Yennie’s gauge one can therefo
evaluate various electron observables in terms of the
propagator without worrying about the exponential facto
This is just the situation we have anticipated in the previo
subsection. One could also define an ‘‘anti-Yennie’s gau
~or a ‘‘nonlocal gauge’’ as it is known in the QED3 literature!
j5 2

3 , in which h50 and the effect of the gauge field fluc

tuations onG̃(r ) is contained entirely inF(r ). To leading
order in 1/N this observation further solidifies the expect
tion that the leading logarithm in the self-energy indeed
ponentiates and the low-energy, long-length-scale propag
behaves as a power law.

Another important feature to observe is thath8.0—the
electron has acquired apositiveanomalous dimension. Th
positivity of h8 is mandatory from general considerations
once we perform the Euclidean rotation and obtain the r
time electron propagator the conditions of unitarity and c
sality of our original problem demandh8.0. This is also a
physically sensible result implying that the interacting ele
tron propagator~86! decays on long length scalesfasterthan
the free BdG electron propagator. Interaction mediated
the massless gauge field destabilizes the Fermi liquid po
the original propagator and leads to a Luttinger liquid-li
power-law fermionic correlator in the low-energy, lon
wavelength limit—this is our algebraic Fermi liquid, a no
Fermi-liquid symmetricphase which governs the physics
the pseudogap state. The positivity ofh8 means that the
interacting AFL propagator isless coherentthan the free
BdG electron propagator which is just what one expects
intuitive grounds. We therefore propose thatG̃ be identified
as the true electron propagator in our theory.

The Luttinger-like electron propagator that follows fro
Eq. ~87! leads to a characteristic asymmetry between
energy and momentum distribution curves~EDC and MDC!
observed in ARPES experiments49 ~note that, within our
theory, this behavior is limited to the pseudogap state!—the
MDC is a very sharp Lorentzian close to the Fermi surfa
while the EDC is broad, reflecting the decoherence of ph
cal electrons in the pseudogap state15!. This decoherence is
relatively weak with the explicit value ofh8.0.27 for the
case of an individual CuO2 layer whereN52. In bilayer or
multilayer systemsN could be 4, 6, or even higher andh8 is
even smaller. The reason for this increase inN is the anisot-
ropy of the tunneling matrix element between the constitu
CuO2 planes within a multilayer unit cell. This matrix ele
ment effectively vanishes near the nodes, along (6p,6p)
directions, but is appreciable elsewhere in the Brillou
zone.50 The result is that low-energy BdG fermions on d
ferent constituent CuO2 layers remaindecoupledwhile the
vortex excitations on these same layers are stronglycoupled
within the unit cell of a multilayer, since their couplin
comes from an integral over the full Brillouin zone. Th
translates to a larger effectiveN in our QED3, Eq. ~58!, and
to a corresponding reduction in the anomalous dimens
05453
re

F
.
s
’’

-
tor

l-
-

-

y
in

n

e

e
i-

t

n:

h8.0.13 for N54 ~bilayer like YBCO! or h8.0.09 for N
56 ~trilayer like HgBa2Ca2Cu3O8). The actual numerica
value of the anomalous dimension exponenth8 is the ‘‘fin-
gerprint,’’ a unique mathematical signature of the symme
phase of QED3 and therefore of the AFL state within th
pseudogap regime of underdoped cuprates. Determiningh8
directly from experiments, either through various spe
troscopies or transport measurements, would be a major
toward testing the theoretical ideas expressed in this pap

The exponenth8 of the physical electron propagator ha
come under much scrutiny as of late since several effec
theories related to QED3 emerged recently in condensed ma
ter physics, in problems like Heisenberg antiferromagnets
spin liquids. While in each case the physical content of th
multiple reincarnations of QED3 differs completely from the
one discussed in the present paper and from each other
issue of the gauge-invariant QED3 fermion propagator and
the value ofh8 looms large in all these different contexts, fo
obvious reasons. In particular,h8 has been calculated re
cently by Rantner and Wen51,52and also by Khveshchenko.53

The former authors obtainh85232/3p2N ~Ref. 54! by per-
forming a calculation ofG in the so-called axial gauge,55 in
which the line integral of the gauge field in Eq.~76! is taken
to vanish for a particular direction in real space. A negat
anomalous dimensionh8,0 would imply that the interact-
ing electron propagator ismore coherentat long distances
than the propagator of a free electron and this is prohib
on general grounds, as discussed above. For examp
negativeh8 produces a divergent electronic density of sta
and leads to unphysical singular behavior in various therm
dynamic and transport quantities. Thus, the negative ano
lous dimension for the physical electron should be, in o
view, rejected out of hand. For the reader’s benefit,
should stress that we believe that the calculations carried
in Refs. 51–53 are perfectly correct, in the sense thath8
5232/3p2N indeed follows from the algebra once we ado
the axial gauge regularization of Eq.~76! as implemented in
Ref. 51 and 52 and perform the calculation with logarithm
accuracy; we have done such a calculation ourselves
have obtained the same result. Operationally, the prob
with computation ofG, Eq. ~76!, is not in the algebra bu
resides in the physical interpretation of the obtained resu
In the axial gauge regularization followed by the momentu
space computation employed by the authors of Refs. 51
52, the negative value forh8 arises from the treatment o
spurious gauge singularities that are invariably introduced
writing the gauge boson propagator in the axial gaug55

These singularities then must be regularized in some w
and this is done using anad hocprincipal value prescription
for the momentum-space integrals. The problem with t
prescription is that the momentum-space propagator in
axial gaugedoes not exist.56 Axial gauge is an example of a
singularly noncovariant gauge~like Coulomb, temporal, or
similar gauges! and as such does not fully fix the gauge. T
gauge transformations which are independent of the sp
time variablex1 singled out by the axial gauge but hav
arbitrary dependence on the remainingd21 variables
(x2 ,x3 , . . . ) arestill allowed and cost no energy. Cons
quently, the gauge-variant two-point fermion propaga
5-17
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G(x,x8) must vanish wheneverx2Þx28 , x3Þx38 , . . . .56

The same problem resurfaces in a different form when
computes Eq.~76! directly in the covariant gauge:57 the ex-
pectation value of the transverse part (j50) of the line in-

tegral, ^exp(i*x
x8amdsm)&, decouples from the rest of the ex

pression. In fact, the resulth85232/3p2N is easily
understood as arising from the TF propagator in the Lore
gaugeGj50 (hL528/3p2N) being made more coheren
through simply being multiplied by the said expectati
value of the transverse part of line integral (h85hL1h t
whereh t528/p2N from the above computation ofF, with

j50). Since^exp(i*x
x8amdsm)&j50 is the expectation value o

a phase factor, this is clearly a troubling result – such
multiplicative factor can make the full propagator only le
coherent thanGj50 as ux2x8u→`. The problem is that the
transverse part of the line integral is more divergent than
a simple lnr appearing in the exponent. When the domina
~linear! divergence is included, the full propagatorG is ex-
ponentially suppressed (h→1`) and cannot be compute
without some physically motivated UV regularizatio
scheme.47,57

We have also carried out our own calculation in the ax
gauge using a different regularization scheme and obtain
different ~negative! exponenth85216/3p2N. We are thus
forced to conclude that the axial gauge calculations yi
values ofh8 that are regularization scheme dependent
are therefore inherently unreliable. By contrast no such a
biguities arise when employing Eq.~78! and the computation
of G̃ yields physically reasonable positive anomalous dim
sion given by Eq.~88!.

We now discuss the off-diagonal~anomalous! components
of the electron propagator. According to Eq.~71! we have

@Gelec~x2x8!#125^e2 i [wA(x)1wB(x8)]@C̃~x!C̃†~x8!#12&,
~89!

and a similar expression for@Gelec(x2x8)#21. It is now less
straightforward to interpret the phase factor in terms of
gauge fieldsam and vm . One way to do this is to add an
subtractwA(x8) and write

wA~x!1wB~x8!5@wA~x!2wA~x8!#1@wA~x8!1wB~x8!#

52E
x

x8
~vm1am!dsm12E

0

x8
vmdsm .

~90!

The first term on the right-hand side is just like the one
encountered in our discussion of the diagonal propaga
The second term, however, involves a line integral ofvm
originating at anarbitrary fixed reference point in spacetime
In the nonsuperconducting phase fluctuations invm will
clearly drive any such term to zero, making the off-diago
terms of the electron propagator vanish. This is consis
with our general expectation that the electron propaga
does not exhibit anomalous off-diagonal correlations in
normal state.
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Finally, pulling different strands together, we can wri
down the full electron Green function in the AFL phase
the pseudogap state. To make a connection with the nota
prevalent in condensed matter physics we perform a Euc
ean rotationk0→ iv in Eq. ~87! and with help of Eq.~77! we
obtain

Gelec~k,v!5L2h8
v1s3ek

@ek
21Dk

22v2#12h8/2
, ~91!

where we have also restored the full electron dispersionek
and the gap functionDk with the understanding that th
above form for the propagator is strictly valid only in th
vicinity of the nodal point and close to the isotropic limit. W
note that Eq.~91! implies an anomalous electron density
states

N~v!;v11h8 ~92!

at low energies. It would be very interesting if such
anomalous electron density of states could be measure
tunneling experiments. Similarly, the Luttinger-like behavi
of the propagator, Eq.~91!, will be reflected in other physica
observables.

V. EFFECTS OF DIRAC ANISOTROPY IN SYMMETRIC
QED3

It is natural to examine to what extent the theory is mo
fied by the inclusion of the Dirac anisotropy, i.e., the fin
difference in the Fermi velocityvF and the gap velocityvD .
In actual materials the Dirac anisotropyaD5vF /vD de-
creases with decreasing doping from;15 in the optimally
doped to;3 in the heavily underdoped samples.

There are two key issues: first, for a large enough num
of Dirac fermion speciesN, how is the chirally symmetric
infrared~IR! fixed point modified by the fact thataDÞ1, and
second, as we decreaseN, does the chiral symmetry breakin
occur at the same value ofN as in the isotropic theory? In
this section we address in detail the first issue and defer
discussion of the second one to part II.

We determine the effect of the Dirac anisotropy, margin
by power counting, by the perturbative renormalizati
group to first order in the largeN expansion. To the leading
order d in the small anisotropyaD511d, we obtain the
analytic value of the RGbaD

function and find that it is

proportional tod; i.e., in the infrared theaD decreases when
d.0 and the anisotropic theory flows to the isotropic fix
point. On the other hand, whend,0, aD increases in the IR
and again the theory flows into the isotropic fixed poi
These results hold even when anisotropy is not small
shown by numerical evaluation of theb function. Therefore,
we conclude that the isotropic fixed point is stable agai
small anisotropy.

Furthermore, we show that in any covariant gauge ren
malization ofS due to the unphysical longitudinal degrees
freedom isexactly the same along any spacetime directio
Therefore the only contribution to the RG flow of anisotro
comes from the physical degrees of freedom and our res
5-18
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for baD
stated above are in fact gauge invariant.

A. Anisotropic QED3

In the realm of condensed matter physics there is no L
entz symmetry to safeguard the spacetime isotropy of
theory. Rather, the intrinsic Dirac anisotropy is alwa
present since it ultimately arises from complicated mic
scopic interactions in the solid which eventually renormal
to band and pairing amplitude dispersion. Thus there is n
ing to protect the difference in the Fermi velocityvF
5]ek /]k and the gap velocityvD5]Dk /]k from vanishing
and, in fact, all HTS materials are anisotropic.

The value ofaD can be directly measured by ARPE
which is ultimately a ‘‘high’’-energy local probe ofvF and
vD . Since QED3 is free on short distances, we can take t
experimental values as the starting bare parameters o
field theory.

The pairing amplitude of the HTS cuprates hasdx22y2

symmetry, and consequently there are four nodal points
the Fermi surface with Dirac dispersion around which
can linearize the theory. Note that the roles ofx andy direc-
tions are interchanged between adjacent nodes. As before
combine the four two-component Dirac spinors for the o
posite ~time-reversed! nodes into two four-component
spinors and label them as (1,1)̄ and (2,2̄) ~see Fig. 2!.

Thus, the two-point vertex function of the noninteracti
theory for, say, 11̄fermions is

G11̄
(2) f ree

5g0k01vFg1k11vDg2k2 . ~93!

Therefore the corresponding noninteracting ‘‘nodal’’ Gre
functions are

G0
n~k!5

Agn
mngmkn

kmgmnkn
[

gm
n km

kmgmnkn
. ~94!

Here we introduced the~diagonal! ‘‘nodal’’ metric gmn
(n) :

g00
(1)5g00

(2)51, g11
(1)5g22

(2)5vF
2 , g22

(1)5g11
(2)5vD

2 , as well as
the ‘‘nodal’’ g matricesgn. In what follows we assume tha
bothvF andvD are dimensionless and that eventually one
them can be chosen to be unity by an appropriate choic
the ‘‘speed of light.’’

SinceaDÞ1 breaks the Lorentz invariance of the theo
and since it is the Lorentz invariance that protects the sp
time isotropy, we expect theb functions foraD to acquire
finite values. However, the theory still respects time reve
and parity and forN large enough the system is in th
chirally symmetric phase. These symmetries force the
mion self-energy of the interacting theory to have the for

S11̄5A~k11̄ ,k22̄!~g0k01vFz1g1k11vDz2g2k2!, ~95!

wherek11̄[kmgmn
(1)kn andk22̄[kmgmn

(2)kn . The coefficientsz i

are in general different from unity. Furthermore, there is
discrete symmetry which relates flavors 1,1¯and 2,2̄and the
x andy directions in such a way that

S22̄5A~k22̄ ,k11̄!~g0k01vDz2g1k11vFz1g2k2!. ~96!
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In the computation of the fermion self-energy, this discre
symmetry allows us to concentrate on a particular pair
nodes without any loss of generality.

B. Gauge field propagator

As discussed above in the isotropic case, the effec
vortex-antivortex fluctuations atT50 on the fermions can, a
large distances, be included by coupling the nodal fermi
minimally to a fluctuating U~1! gauge field with a standard
Maxwell action. Upon integrating out the fermions, th
gauge field acquires a stiffness proportional tok, which is
another way of saying that at the charged, chirally symme
fixed point the gauge field has an anomalous dimensionhA
51 ~for a discussion of this point in bosonic QED, see R
58!.

We first proceed in the transverse gauge (kmam50) which
is in some sense the most physical one considering that
¹3a is physically related to the vorticity, i.e., an intrins
cally transverse quantity. We later extend our results t
general covariant gauge. To one-loop order the screening
fects of the fermions on the gauge field are given by
polarization function

Pmn~k!5
N

2 (
n51,2

E d3q

~2p!3
Tr@G0

n~q!gm
n G0

n~q1k!gn
n#,

~97!

where the indexn denotes the fermion ‘‘nodal’’ flavor. The
above expression can be evaluated straightforwardly by
ing that it reduces to the isotropicPmn(k) once the integrals
are properly rescaled.15 The result can be conveniently pre
sented by taking advantage of the ‘‘nodal’’ metricgmn

n as

Pmn~k!5(
n

N

16vFvD
Akagab

n kbS gmn
n 2

gmr
n krgnl

n kl

kagab
n kb

D .

~98!

Note that this expression is explicitly transverse,kmPmn(k)
5Pmn(k)kn50, and symmetric in its spacetime indices.
also properly reduces to the isotropic expression whenvF
5vD51.

However, as opposed to the isotropic case, it is not q
as straightforward to determine the gauge field propag
Dmn . For example, as it stands the polarization matrix~98! is
not invertible, which makes it necessary to introduce so
gauge fixing conditions. In our case the direct inversion
the 333 matrix would obscure the analysis and, therefo
we choose to follow a more physical and notationally tra
parent line of reasoning which eventually leads to the corr
expression for the gauge field propagator. Upon integra
out the fermions and expanding the effective action to o
loop order, we find that

Le f f@am#5 1
2 ~Pmn

(0)1Pmn!aman , ~99!

where the bare gauge field stiffness is

Pmn
(0)5

1

e2
k2S dmn2

kmkn

k2 D . ~100!
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At this point we introduce the dual fieldbm which is related
to am as

bm5emnlqnal . ~101!

Physically, thebm field represents vorticity and we integra
over all possible vorticity configurations with the restrictio
that bm is transverse. We note that

L@bm#5x0b0
21x1b1

21x2b2
2 , ~102!

wherexm’s are functions ofkm and upon a straightforward
calculation they can be found to read

xm5
1

2e2
1

N

32vFvD
(

n51,2

gnn
n gll

n

Akagab
n kb

, ~103!

where mÞnÞlP$0,1,2%. At low energies we can neglec
the nondivergent bare stiffness and thus set 1/e250 in the
above expression.

The expression~102! is manifestly gauge invariant an
has the merit of not only being quadratic but also diagona
the individual components ofbm . Thus, integration over the
vorticity ~even with the restriction of transversebm) is
simple and we can easily determine thebm field correlation
function

2^bmbn&5
dmn

xm
2

kmkn

xmxn
S (

i

ki
2

x i
D 21

. ~104!

The repeated indices are not summed in the above exp
sion. Note that, in addition to being transverse,^bmbn& is
also symmetric in its spacetime indices.

It is now quite simple to determine the correlation fun
tion for theam field and in the transverse gauge we obtai

Dmn~q!5^aman&5em i j enkl

qiqk

q4
^bjbl&. ~105!

Using the transverse character of^bmbn& ~which is indepen-
dent of the gauge! the above expression can be further
duced to

Dmn~q!5
1

q2 F S dmn2
qmqn

q2 D ^b2&2^bmbn&G . ~106!

It can be easily checked that in the isotropic limit the expr
sion ~106! properly reduces to the results obtained in a d
ferent way.

We can further extend this result to include a gene
gauge by writing

Dmn~q!5
1

q2 H Fdmn2S 12
j

2Dqmqn

q2 G ^b2&2^bmbn&J ,

~107!

wherej is our continuous parametrization of the gauge fi
ing. This expression can be justified by the Faddeev-Po
type of procedure starting from the Lagrangian
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L5
1

2S Pmn1
1

j

2k2

^b2&

kmkn

k2 D aman , ~108!

where the stiffness for the unphysical modes was judiciou
chosen to scale ask in a particular combination of the phys
cal scalars of the theory. Note that^b2& can be determined
without ever considering gauge fixing terms. In this way, t
extension of a transverse gaugej50 to a general covarian
gauge is accomplished by a simple substitutionkmkn→(1
2j/2)kmkn . The expression~107! is our final result for the
gauge field propagator in a covariant gauge.

C. TF self-energy

As discussed in Sec. IV,S is not gauge invariant in that i
has an explicit dependence on the gauge fixing paramete
we will show in this section~and more generally in Appen
dix D!, the renormalization ofS by unphysical longitudinal
degrees of freedom does not depend on the spacetime d
tion: the term inS which is proportional tog0 is renormal-
ized the same way by the gauge-dependent part of the ac
as the terms proportional tog1 and g2. Therefore, the only
contribution to the RG flow ofaD comes from the physica
degrees of freedom.

We denote the topological fermion self-energy at the no
n by Sn(q). Hence, to the leading order in a large-N expan-
sion we have

Sn~q!5E d3k

~2p!3
gm

n G0
n~q2k!gn

nDmn~k! ~109!

or, explicitly,

Sn~q!5E d3k

~2p!3
gm

n
~q2k!lgl

n

~q2k!mgmn~q2k!n
gn

nDmn~k!,

~110!

where the gauge field propagatorDmn is already screened b
the nodal fermions~107!. Using the fact that

gmglgn5 i emlng5g31dmlgn2dmngl1dlngm ,
~111!

wherem,n,lP$0,1,2% andg5[2 ig0g1g2g3, we can easily
see that

gm
n gl

ngn
nDmn5~2glm

n gn
n2gl

ngmn
n !Dmn , ~112!

where we used the symmetry of the gauge field propag
tensorDmn . Thus,

Sn~q!5E d3k

~2p!3

~q2k!l~2glm
n gn

n2gl
ngmn

n !Dmn~k!

~q2k!mgmn
n ~q2k!n

,

~113!

and as shown in the Appendix D at low energies this can
written as

Sn~q!52(
m

hm
n ~gm

n qm!lnS L

Aqagab
n qb

D . ~114!
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Here L is an upper cutoff and the coefficientsh are func-
tions of the bare anisotropy, which have been reduced
quadrature~see Appendix D!. It is straightforward, even if
somewhat tedious, to show that in case of weak anisotr
(vF511d, vD51), to orderd2,

h0
11̄52

8

3p2N
S 12

3

2
j2

1

35
~4027j!d2D , ~115!

h1
11̄52

8

3p2N
S 12

3

2
j1

6

5
d2

1

35
~4327j!d2D ,

~116!

h2
11̄52

8

3p2N
S 12

3

2
j2

6

5
d2

1

35
~127j!d2D .

~117!

In the isotropic limit (vF5vD51) we regainhm
n 528(1

23/2j)/3p2N as previously found by others.

D. Dirac anisotropy and its b function

Before plunging into any formal analysis, we wish to d
cuss some immediate observations regarding the RG flow
the anisotropy. Examining Eq.~114! it is clear that if h1

n

5h2
n , then the anisotropydoes notflow and remains equal to

its bare value. That would mean that anisotropy is marg
and the theory flows into the anisotropic fixed point. In fa
such a theory would have acritical line of aD . For this to
happen, however, there would have to be a symmetry wh
would protect the equalityh1

n5h2
n . For example, in isotro-

pic QED3 the symmetry which protects the equality ofh ’s is
the Lorentz invariance. In the case at hand, this symmetr
broken and therefore we expect thath1

n will be different from
h2

n , suggesting that the anisotropy flows away from its b

value. If we start withaD.1 and find thath2
11̄.h1

11̄ at some
scalep,L, we would conclude that the anisotropy is ma
ginally irrelevant and decreases towards 1. On the o

hand, ifh2
11̄,h1

11̄ , then anisotropy continues increasing b
yond its bare value and the theory flows into acritical point
with ~in!finite anisotropy.

The issue is further complicated by the fact thathm
n is not

a gauge-invariant quantity; i.e., it depends on the gauge
ing parameterj. The statement that, say,h1

n.h2
n makes

sense only if thej dependence ofh1
n andh2

n is exactly the
same; otherwise, we could choose a gauge in which the
ferenceh2

n2h1
n can have either sign. However, we see fro

Eqs. ~115!–~117! that in fact thej dependence of allh ’s is
indeed the same. Although it was explicitly demonstra
only to O(d2), in Appendix D we show that it is in fact true
to all orders of anisotropy for any choice of covariant gau
fixing. This fact provides the justification for our procedur
Now we supply the formal analysis reflecting the above d
cussion.

The renormalized two-point vertex function is related
the ‘‘bare’’ two-point vertex function via a fermion field res
caling Zc as
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GR
(2)5ZcG (2). ~118!

It is natural to demand that, for example, at nodes 1 and¯at
some renormalization scalep, GR

(2)(p) will have the form

GR
(2)~p!5g0p01vF

Rg1p11vD
Rg2p2 . ~119!

Thus, Eq.~119! corresponds to our renormalization conditio
through which we can eliminate the cutoff dependence
calculate the RG flows.

To the order of 1/N we can write

GR
(2)~p!5Zcgm

n pmS 11hm
n ln

L

p D , ~120!

where we used the fermionic self-energy~114!. Multiplying
both sides byg0 and tracing the resulting expression dete
mines the field strength renormalization

Zc5
1

11h0
nln

L

p

'12h0
nln

L

p
. ~121!

We can now determine the renormalized Fermi and gap
locities

vF
R

vF
'S 12h0

11̄ln
L

p D S 11h1
11̄ln

L

p D'12~h0
11̄2h1

11̄!ln
L

p
~122!

and

vD
R

vD
'S 12h0

11̄ln
L

p D S 11h2
11̄ln

L

p D'12~h0
11̄2h2

11̄!ln
L

p
.

~123!

The corresponding renormalized Dirac anisotropy is the
fore

aD
R[

vF
R

vD
R

'aDS 12~h2
11̄2h1

11̄!ln
L

p D . ~124!

The RG beta function can now be determined:

baD
5

daD
R

d ln p
5aD~h2

11̄2h1
11̄!. ~125!

In the case of weak anisotropy (vF511d, vD51) the
above expression can be determined analytically as an
pansion ind. Using Eqs.~116! and ~117! we obtain

baD
5

8

3p2N
S 6

5
d~11d!~22d!1O~d3! D . ~126!

Note that this expression is independent of the gauge fix
parameterj. For 0,d!1 the b function is positive which
means that anisotropy decreases in the IR and thus an
tropic QED3 scales to an isotropic QED3. For21!d,0 the
b function is negative and in this case the anisotropy
creases towards the fixed pointaD51, i.e., again towards the
isotropic QED3. Note that ford.2, b,0, which may na-
5-21
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M. FRANZ, Z. TEŠANOVIĆ, AND O. VAFEK PHYSICAL REVIEW B 66, 054535 ~2002!
ively indicate that there is a fixed point atd52; this, how-
ever, cannot be trusted as it is outside the range of validit
the power expansion ofhm . The numerical evaluation of th
quadrature in Eq.~D8! shows that, apart from the isotrop
fixed point and the unstable fixed point ataD50, baD

does
not vanish~see Fig. 4!. This indicates that to leading order i
the 1/N expansion, the theory flows into the isotropic fixe
point.

VI. SUMMARY AND CONCLUSIONS

By appealing to the unique features of high-Tc cuprates—
strong electron correlations, unconventional order param
symmetry, and pronounced fluctuation effects—we argue
favor of the inverted approach to the problem of describ
various thermodynamic phases appearing in the underdo
region. This inverted approach can be thought of as a ‘‘Fe
liquid’’ theory of the phase fluctuatingd-wave supercon-
ductor where the role of the Fermi energy as the large ene
scale of the problem is played byD, the amplitude of the
pseudogap, which we assume to be predominantly of pai
nature. Under the umbrella of this pseudogap—inside
pairing protectorate—we identify the BdG quasiparticles
the relevant low-lying fermionic excitations of the theo
and study their evolution under the effects of interactio
mediated by vortex-antivortex fluctuations. By carefu
treating these interactions we find that the low-energy eff
tive theory for the quasiparticles inside the pairing protect
ate is~211!-dimensional quantum electrodynamics (QED3)
with inherent spatial anisotropy, described by the Lagrang
LD specified by Eqs.~47! and ~57!.

Within the superconducting state the gauge fields of
theory are massive by virtue of vortex defects being bou
into finite loops or vortex-antivortex pairs. Such mass
gauge fields produce only short-ranged interactions betw
our BdG quasiparticles and are therefore irrelevant: in
superconductor quasiparticles remain sharp in agreem
with prevailing experimental data.59 Loss of long-range su
perconducting order is brought about by unbinding the to
logical defects—vortex loops or vortex-antivortex pairs—v
a Kosterlitz-Thouless-type transition and its quantum cou
Remarkably, this is accompanied by the Berry gauge fi

FIG. 4. The RGb function for the Dirac anisotropy in units o
8/3p2N. The solid line is the numerical integration of the quad
ture in Eq.~D8! while the dash-dotted line is the analytical expa
sion around the small anisotropy@see Eq.~115!–~117!#. At aD

51, baD
crosses zero with positive slope, and therefore at la

length scales anisotropic QED3 scales to an isotropic theory.
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becoming massless. Such a massless gauge field med
long-range interactions between the fermions and becom
relevant perturbation. Exactly what the consequence of
relevant interaction is depends on the number of ferm
speciesN in the problem. For cuprates we argued thatN
52nCuO wherenCuO is the number of CuO2 layers per unit
cell. If N,Nc.3,20 the interactions cause a spontaneo
opening of a gap for the fermionic excitations atT50, via
the mechanism of chiral symmetry breaking in QED3.19 The
formation of the gap corresponds to the onset of AF SD
instability21,22 which must be considered as a progenitor
the Mott-Hubbard-Ne´el antiferromagnet at half-filling. If, on
the other hand,N.Nc as will be the case in bilayer o
trilayer materials, the theory remains in its chirally symm
ric nonsuperconducting phase even asT→0 and AF order
arises from within such a state only upon further underd
ing ~Fig. 1!. We call this symmetric state of QED3 an alge-
braic Fermi liquid. In both cases the AFL controls the low
temperature, low-energy behavior of the pseudogap state
in this sense assumes the role played by Fermi liquid the
in conventional metals and superconductors. In the AFL
quasiparticle pole is replaced by a branch cut—the quasi
ticle is no longer sharp—and the gauge-invariant elect
propagator acquires a Luttinger-like form, Eq.~87!, with
positive anomalous dimensionh8516/3p2N. To our knowl-
edge this is one of the very few cases where a non-Fe
liquid nature of the excitations has been demonstrated
dimension greater than 1 in the absence of disorder o
magnetic field. This Luttinger-like behavior of the AFL wi
manifest itself in an anomalous power-law functional form
many physical properties of the system.

Dirac anisotropy, i.e., the fact thatvFÞvD , plays an im-
portant role in the cuprates where the ratioaD5vF /vD in
most materials ranges between 3 and 15–20. Such anisot
is nontrivial as it cannot be rescaled and it significantly co
plicates any calculation within the theory. Using the pert
bative renormalization group theory we have shown that
isotropic QED3 flows back into an isotropic stable fixe
point. This means that for weak anisotropy at long leng
scales the universal properties of the theory are identica
those of the simple isotropic case. It remains to be seen w
the properties of the theory are at intermediate length sc
when the anisotropy is strong.

Our theory of the pseudogap state gets its inspiration
builds on the ideas originally articulated by Emery and K
elson in Ref. 8 and by Randeria and collaborators.60 These
ideas were later explored and extended in various direct
by others.14,17,18,61–63These approaches share a comm
philosophical platform of assuming that the pseudogap
primarily due to pairing in the p-p channel and in the und
doped regime superconducting long-range coherence is
stroyed by the phase fluctuations. The essential difference
physics lie in the implementation of these ideas. Bale
et al.,14 for instance, argue for a true separation of spin a
charge32 in their ‘‘nodal liquid’’ phase which then gives way
to an unconventional antiferromagnet ‘‘AF*’’ with decon
fined spin-1/2 excitations. Our theory also shares consi
able formal similarities with the SU~2! gauge theories of
Kim, Lee, and Wen41 and works by Aitchinson and

-

e
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Mavromatos,19 in that their low-energy effective theory i
also related to QED3. In those cases, however, the physic
contents of the theory—the identity of its excitations—a
totally different.

Finally there is a class of theories where the pseudoga
assumed to be due to some competing order, usually in
p-h channel. This includes SO~5!,64 d-density-wave,65 and
various other competing orders.66 At the present time we
believe that experimental evidence favors the pairing ori
of the pseudogap; however, the evidence is far from con
sive and experiments can be found to support virtually a
aspect of the above-mentioned theories. We believe, th
fore, that the road ahead necessitates making specific pr
tions based on controlled and well-defined approaches.
QED3 theory of the pairing pseudogap, as presented in
paper, starts from a remarkably simple set of assumpti
and via manipulations that are controlled in the sense ofN
expansion, arrives at nontrivial consequences, including
algebraic Fermi liquid and the insulating antiferromagn
05453
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Another notable feature of this theory is that it is fully ca
culable: having the explicit form of the low-energy effectiv
action, free of constraints and uncertainties, physical obs
ables can be computed through a systematic procedure.67
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APPENDIX A: JACOBIAN L0

Here we derive the explicit form of the ‘‘Jacobian’’L0 for two cases of interest:~i! the thermal vortex-antivortex fluctua
tions in 2D layers and~ii ! the spacetime vortex loop excitations relevant for low temperatures (T!T* ) deep in the underdope
regime.

1. Two-dimensional thermal vortex-antivortex fluctuations

In order to perform specific computations we have to adopt a model for vortex-antivortex excitations. We will us
Coulomb gas picture of vortex-antivortex plasma. In this model~anti!vortices are either pointlike objects or are assumed
have a small hard-disk radius of size of the coherence lengthj0 which emulates the core region. As long asj0!n2(1/2), where
n5nv1na is the average density of vortex defects, the two models lead to very similar results and both undergo a
antivortex pair unbinding transition of the Kosterlitz-Thouless variety.

Above the transition we have

expF2bE d2rL0G522Nl(
A,B

E Dw~r !d@¹3v2 1
2 ¹3~¹wA1¹wB!#d@¹3a2 1

2 ¹3~¹wA2¹wB!#. ~A1!

The phasew(r ) is due solely to vortices and we can rewrite Eq.~A1! as

(
Nv ,Na

22Nl

Nv!Na! (
A,B

)
i

Nv E d2r i)
j

Na E d2r je
2bEc(Nv1Na)dS rv~r !2(

i

Nv

d~r2r i !D dS ra~r !2(
j

Na

d~r2r j !D
3dS b~r !2p(

i

Nv
A

d~r2r i
A!1p(

i

Nv
B

d~r2r i
B!1p(

j

Na
A

d~r2r j
A!2p(

i

Na
B

d~r2r j
B!D . ~A2!

Here Nv(Na) is the number of free vortices@antivortices#, Nl5Nv1Na , r i @r j # are vortex~antivortex! coordinates, and
rv(r ) @ra(r )# are the corresponding densities.b(r )5„¹3a(r )…z5p(rv

A2rv
B2ra

A1ra
B) andEc is the core energy which we

have absorbed intoL0 for convenience. We now express the aboved functions as functional integrals over three new fie
dv(r ), da(r ), andk(r ):

(
Nv ,Na

22Nl

Nv!Na! (
A,B

)
i

Nv E d2r i)
j

Na E d2r je
2bEc(Nv1Na)E DdvDdaDk expH i E d2rdvS rv~r !2(

i

Nv

d~r2r i !D
1 i E d2rdaS ra~r !2(

j

Na

d~r2r j !D 1 i E d2rkFb~r !2p(
i

Nv
A

d~r2r i
A!

1p(
i

Nv
B

d~r2r i
B!1p(

j

Na
A

d~r2r j
A!2p(

i

Na
B

d~r2r j
B!G J . ~A3!
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The integration overd functions in the exponential is easily performed and the summation overA(B) labels can be carried ou
explicitly to obtain

E DdvDdaDkexpF i E d2r ~dvrv1dara1kb!G (
Nv ,Na

e2bEcNv

Nv! )
i

Nv E d2r iexp@2 idv~r i !#

3cos@pk~r i !#
e2bEcNa

Na! )
j

Na E d2r jexp@2 ida~r j !#cos@pk~r j !#. ~A4!
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In the thermodynamic limit the sum~A4! is dominated by
Nv(a)5^Nv(a)&, where^Nv(a)& is the average number of fre
~anti!vortices determined by solving the full problem. Fu
thermore, aŝNv(a)&→` in the thermodynamic limit the in-
tegration overdv(r ), da(r ), and k(r ) can be performed in
the saddle-point approximation, leading to the followi
saddle-point equations:

2rv~r !1^Nv&Vv~r !50, ~A5!

2ra~r !1^Na&Va~r !50, ~A6!

2b~r !1@^Nv&Vv~r !1^Na&Va~r !#p tanh@pk~r !#50,
~A7!

with

Vm~r !5
edm(r )cosh@pk~r !#

E d2r 8edm(r8)cosh@pk~r 8!#

, m5a,v.

Equations~A5!–~A7! follow from functional derivatives of
Eq. ~A4! with respect todv(r ), da(r ), andk(r ), respectively.
We have also built in the fact that the saddle-point solutio
occur atdv→ idv , da→ ida , andk→ ik.

The saddle-point equations~A5!–~A7! can be solved ex-
actly, leading to

dv~r !5 ln rv~r !2 ln cosh@pk~r !#, ~A8!

da~r !5 ln ra~r !2 ln cosh@pk~r !#, ~A9!

where

k~r !5
1

p
tanh21F b~r !

p@rv~r !1ra~r !#G . ~A10!

Inserting Eqs.~A8!–~A10! back into Eq.~A4! finally gives
the entropic part ofL0 /T:

rvln rv1raln ra2
1

p
~¹3a!ztanh21F ~¹3a!z

p~rv1ra!G
1~rv1ra!ln cosh tanh21F ~¹3a!z

p~rv1ra!G , ~A11!

whererv(a)(r ) are densities offree~anti!vortices. We display
L0 in this form to make contact with familiar physics: th
first two terms in Eq.~A11! are the entropic contribution o
free ~anti!vortices and the Doppler gauge field¹3v
05453
s

→p(rv2ra) (^¹3v&50). The last two terms encode th
‘‘Berry phase’’ physics of topological frustration. Note tha
the ‘‘Berry’’ magnetic fieldb5(¹3a)z couples directly only
to the total densityof vortex defectsrv1ra and is insensi-
tive to the vortex charge. This is a reflection of theZ2 sym-
metry of the original problem defined on discrete~i.e., not
coarse-grained! vortices. We write rv(a)(r )5^rv(a)&
1drv(a)(r ) and expand Eq.~A11! to leading order indrv(a)
and¹3a:

L0 /T→~¹3v!2/~2p2nl !1~¹3a!2/~2p2nl !,
~A12!

wherenl5^rv&1^ra& is the average density of free vorte
defects. Bothv anda have a Maxwellianbare stiffness and
are masslessin the normal state. As one approachesTc , nl

;jsc
22→0, wherejsc(x,T) is the superconducting correlatio

length, andv anda becomemassive~see the main text!.

2. Quantum fluctuations of „2¿1…D vortex loops

The expression forL0@ j m# given by Eq.~39! follows di-
rectly once the system contains unbound vortex loops in
ground state and thus can respond to the external pertu
tion Am

ext over arbitrary large distances in~211!-dimensional
spacetime. This is already clear at intuitive level if we ju
think of the geometry of infinite versus finite loops and t
fact that only unbound loops allow vorticity fluctuations, d
scribed bŷ j m(q) j n(2q)&, to proceed unhindered. Still, it is
useful to derive Eq.~39! and its consequences belabored
Sec. II within an explicit model for vortex loop fluctuation

Here we consider fluctuating vortex loops in continuo
~211!D spacetime and computeL0@ j m# using a duality map
to the relativistic Bose superfluid.68 We again start by using
our model of a large-gaps-wave superconductor which en
ables us to neglectam in the fermion action and integrat
over it in the expression forL0@vm ,am#, Eq. ~11!. This gives

e2*d3xL05 (
N50

`
1

N!)l 51

N R Dxl@sl #d„j m~x!2nm~x!…e2S̃,

~A13!

where

S̃5(
l 51

N

S0 R dsl1
1

2 (
l ,l 851

N R dsl R dsl 8g~ uxl@sl #

2xl 8@sl 8#u! ~A14!
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and

„]3]w~x!…m52pnm~x!

52p(
l

N R
L
dxlmd~x2xl@sl # !. ~A15!

In the above equationsN is the number of loops,sl is the
Schwinger proper time~or ‘‘proper length’’! of loop l, S0 is
the action per unit length associated with motion of vor
cores in~211!-dimensional spacetime~in an analogous 3D
model this would be«c /T, where«c is the core line energy!,
g(uxl@sl #2xl 8@sl 8#u) is the short-range penalty for core ove
lap, andL denotes a line integral. We kept our practice
including core terms independent of vorticity inL0. Note
that vortex loops must be periodic alongt, reflecting the
original periodicity ofw(r ,t).

We can think of vortex loops as world line trajectories
some relativistic charged~complex! bosons~charged since
the loops have two orientations! in two spatial dimensions
L0 without thed function describes the vacuum Lagrangi
of such a theory, with vortex loops representing partic
antiparticle virtual creation and annihilation processes. T
duality map is based on the following relation between
Green function of free charged bosons and a gas of
oriented loops:

G~x!5^f~0!f* ~x!&

5E d3k

~2p!3

eik•x

k21md
2

5E
0

`

dse2smd
2E d3k

~2p!3eik•x2sk2

5E
0

`

dse2smd
2S 1

4psD
3/2

e2x2/4s, ~A16!

wheremd is the mass of the complex dual fieldf(x). Within
the Feynman path integral representation we can write

S 1

4psD
3/2

e~21/4!x2/s

5E
x(0)50

x(s)5x

Dx~s8!expF2
1

4E0

s

ds8ẋ2~s8!G ,
~A17!

where ẋ[dx/ds. Furthermore, by simple integration Eq
~A16! can be manipulated into

Tr@ ln~2]21md
2!#52E

0

`ds

s
e2smd

2E d3k

~2p!3
e2sk2

52E
0

`ds

s
e2smd

2 R Dx~s8!

3expF2
1

4E0

s

ds8ẋ2~s8!G , ~A18!

where the path integral now runs over closed loops@x(s)
5x(0)#. In the dual theory this can be reexpressed as
05453
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Tr@ ln~2]21md
2!#5E d3k

~2p!3
ln~k21md

2!. ~A19!

Combining Eqs.~A18! and ~A19! and using

Tr@ ln~2]21md
2!#5 ln Det~2]21md

2![W ~A20!

finally leads to

e2W5 (
N50

`
1

N!)l 51

N F E
0

`dsl

sl
e2slmd

2 R Dx~sl8!G
3expF2

1

4 (
l 51

N E
0

sl
dsl8ẋ

2~sl8!G . ~A21!

This is nothing else but the partition function of the free lo
gas. The size of loops is regulated bymd . As md→0 the
average loop size diverges. On the other hand, throughW,
Eq. ~A20!, we can also think of Eq.~A21! as the partition
function of the free bosonic theory.

To exploit this equivalence further we write

Zd5E Df* Df expS 2E d3xLdD , ~A22!

where

Ld5u]fu21md
2ufu21

g

2
ufu4, ~A23!

and argue thatZd describes vortex loops with short rang
interactions in Eq.~A13!. This can be easily demonstrated b
decoupling ufu4 through a Hubbard-Stratonovich transfo
mation and retracing the above steps. The reader is refe
to the book by Kleinert for further details of the above du
ity mapping.68

We can now rewrite thed function in Eq.~A13! as

d„j m~x!2nm~x!…→E DkmexpS i E d3xkm~ j m2nm! D
~A24!

and observe that in the above language of Feynman
integrals in proper timei *d3xkmnm , Eq. ~A15!, assumes the
meaning of a particle current three-vectornm coupled to a
three-vector potentialkm . Employing the same argumen
that led to Eq.~A23! we now have

Ld@km#5u~]2 ik!fu21md
2ufu21

g

2
ufu4, ~A25!

which leads to

expS 2E d3xL0@ j m# D→E Df* DfDkm

3expS 2E d3x~2 ikm j m

1Ld@km#! D . ~A26!
5-25
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In the pseudogap state vortex loop unbinding causes los
superconducting phase coherence. In the dual language
appearance of such infinite loops asmd→0 implies superflu-
idity in the system of charged bosons described byLd , Eq.
~A23!. The dual off-diagonal long range order~ODLRO! in
^f(x)f* (x8)& means that there are world line trajectori
that connect pointsx and x8 over infinite spacetime
distances—these infinite world lines are nothing else but
bound vortex paths in this ‘‘vortex loop condensate.’’ Thu
the dual and the true superconducting ODLRO’s are oppo
sides of the same coin.

Ld@km# is the Lagrangian of this dual superfluid in th
presence of the external vector potentialkm . In the ordered
phase, the response of the system is just the dual versio
the Meissner effect. Consequently, upon functional integ
tion overf we are allowed to write

expS 2E d3xL0@ j m# D
5E DkmexpS 2E d3x~2 ikm j m1Md

2kmkm! D ,

~A27!

whereMd
25u^f&u2, with ^f& being the dual order paramete

The remaining functional integration overkm finally results
in

L0@ j m#→ j m j m

4u^f&u2
. ~A28!

We have tacitly assumed that the system of loops is isotro
The intrinsic anisotropy of the~211!D theory is easily rein-
stated and Eq.~A28! becomes Eq.~39! of the main text.

It is now time to recall that we are interested in ad-wave
superconductor. This means we must restoream to the prob-
lem. To accomplish this we engage in a bit of thievery: ima
ine now that it wasvm whose coupling to fermions wa
negligible and we could integrate over it in Eq.~11!. We
would then be left with only thed function containingam .
Actually, we can compute suchL0@bm /p#, where ]3]a
5b, without any additional work. Note thatL0 contains only
vorticity-independent terms. We can equally well procla
that it is theA(B) labels that determine the true orientatio
of our loops while the actual vorticity is simply a gaug
label—in essence,vm and am trade places. After the sam
algebra as before we obtain

L0@bm /p#→ bmbm

4p2u^f&u2 , ~A29!

which is just the Maxwell action foram .
Of course, this simple argument that led to Eq.~A29! is

illegal. We cannot just forgetvm . If we did, we would have
no right to coarse-grainam to begin with and would have to
face up to its purelyZ2 character~see Sec. II!. Still, the
above reasoning does illustrate that the Maxwellian stiffn
of am follows the same pattern as that ofvm : both are deter-
mined by the order parameter^f& of condenseddual super-
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fluid. Thus, we can write the correct form ofL0, with both
vm andam fully included into our accounting, as

L0@vm ,am#→ ~]3v !m~]3v !m

4p2u^f&u2
1

~]3a!m~]3a!m

4p2u^f&u2 ,

~A30!

where our ignorance is now stored in computing the act
value of ^f& from the original parameters of the d-wav
superconductor problem. With anisotropy restored this is p
cisely Eq.~45! of Sec. II.

APPENDIX B: FEYNMAN INTEGRALS IN QED 3

Many of the integrals encountered here are conside
standard in particle physics. Since the techniques invol
are not as common in condensed matter physics, we pro
some of the technical details in this appendix. A more
depth discussion can be found in many field theo
textbooks.39

1. Vacuum polarization bubble

The vacuum polarization, Eq.~59!, can be written more
explicitly as

Pmn~q!52N Tr@gagmgbgn#I ab~q!, ~B1!

with

I ab~q!5E d3k

~2p!3

ka~kb1qb!

k2~k1q!2 . ~B2!

The integrals of this type are most easily evaluated by e
ploying the Feynman parametrization.39 This consists in
combining denominators using the formula

1

AaBb 5
G~a1b!

G~a!G~b!
E

0

1

dx
xa21~12x!b21

@xA1~12x!B#a1b
, ~B3!

valid for any positive real numbersa, b, A, B. Setting A
5k2 andB5(k1q)2 allows us to rewrite Eq.~B2! as

I ab~q!5E
0

1

dxE d3k

~2p!3

ka~kb1qb!

@~k1~12x!q!21x~12x!q2#2 .

~B4!

We now shift the integration variablek→k2(12x)q to ob-
tain

I ab~q!5E
0

1

dxE d3k

~2p!3

kakb2x~12x!qaqb

@k21x~12x!q2#2 , ~B5!

where we have dropped terms odd ink which vanish by
symmetry upon integration. We now notice that thekakb
term will only contribute ifa5b and we can therefore re
place it in Eq.~B5! by 1

3 dabk2. With this replacement the
angular integrals are trivial and we have
5-26
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I ab~q!5
1

2p2E
0

1

dxE
0

`

dkk2
1
3 dabk22x~12x!qaqb

@k21x~12x!q2#2
.

~B6!

The only remaining difficulty stems from the fact that th
integral formally diverges at the upper bound. This div
gence is an artifact of our linearization of the fermionic sp
trum which breaks down for energies approaching the su
conducting gap value. It is therefore completely legitimate
introduce an ultraviolet cutoff. Such UV cutoffs, howeve
tend to interfere with gauge invariance, the preservation
which is crucial in this computation. A more physical way
regularizing the integral Eq.~B6! is to recall that the gauge
field must remain massless, i.e.,Pmn(q→0)50. To enforce
this property we write Eq.~B1! as

Pmn~q!52N Tr@gagmgbgn#@ I ab~q!2I ab~0!#, ~B7!

and we see that proper regularization of Eq.~B6! involves
subtracting the value of the integral atq50. The remaining
integral is convergent and elementary; explicit evaluat
gives

I ab~q!2I ab~0!52
uqu
64S dab1

qaqb

q2 D . ~B8!

Inserting this in Eq.~B7! and working out the trace usin
Eqs.~54! and~55! we find the result~60!. Identical result can
be obtained using dimensional regularization.

2. TF self-energy: Lorentz gauge

For simplicity we evaluate the self-energy~64! in the Lor-
entz gauge (j50). Extension to arbitrary covariant gauge
trivial. Equation~64! can be written as

SL~k!52
2

p3N
gmI m~k!, ~B9!

with

I m~k!5E d3qqm

q•~k1q!

uqu3~k1q!2 , ~B10!

where we used an identity

gmgagnS dmn2
qmqn

q2 D522q”
qa

q2 .

Since the only three-vector available isk, clearly the vector
integralI m(k) can only have components in thekm direction,
I m(k)5C(k)km /k2. By forming a scalar productkmI m(k) we
obtain

C~k!5kmI m~k!5E d3q
~q•k!~q•k1q2!

uqu3~k1q!2 . ~B11!

Combining the denominators using Eq.~B3! and following
the same steps as in the computation of polarization bu
above we obtain
05453
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C~k!5
3

2E0

1

dxAxE d3q

3
~2x21!~k•q!22~12x!k2q21x~12x!2k4

@q21x~12x!k2#5/2
.

~B12!

The angular integrals are trivial and after introducing an
traviolet cutoff L and rescaling the integration variable b
uku the integral becomes

C~k!52pk2E
0

1

dxAxE
0

L/uku
dq

3
~5x24!q413x~12x!2q2

@q21x~12x!#5/2
. ~B13!

The remaining integrals are elementary. Isolating the lead
infrared divergent term we obtain

C~k!→2
4p

3
k2ln

L

uku
. ~B14!

Substituting this into Eq.~B9! we get the self-energy~65!.

3. Dimensionally regularized gauge field line integral

To evaluateP(r ) specified by Eq.~82! we write it as a
sum of two contributions,

P~r !5
8r 2

~2p!dN
@ I 1~r !2~12j!I 2~r !#, ~B15!

where

I 1~r !5E ddk
eik•r

k
, ~B16!

I 2~r !5E ddk
eik•r

k

~k•r !2

k2r 2 . ~B17!

We first considerI 1(r ). It is convenient to exponentiate th
denominator by use of the formula

1

Aa 5
1

G~a!
E

0

`

dssa21e2sA. ~B18!

Taking A5k2, a5
1
2

we have

I 1~r !5
1

Ap
E

0

` ds

As
E ddke2sk21 ik•r . ~B19!

The k integral is now easy to evaluate by completing t
square, shifting the integration variable, and making use
*ddkexp(2sk2)5(p/s)d/2. We thus obtain

I 1~r !5p (d21)/2E
0

`

dss2(d11)/2e2r 2/4s. ~B20!
5-27
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The substitutiont5r 2/4s transforms Eq.~B20! to an integral
of the type shown in Eq.~B18! and the result reads

I 1~r !5~4p!(d21)/2GS d21

2 D r 12d. ~B21!

Using the same procedure we obtain

I 2~r !52~4p!(d21)/2~d22!GS d21

2 D r 12d. ~B22!

Substituting Eqs.~B21! and ~B22! back into Eq.~B15! we
obtain the result quoted in the text, Eq.~83!.

APPENDIX C: BROWN’S RELATION FOR A
GAUGE-INVARIANT PROPAGATOR

To derive Brown’s relation, Eq.~78!, it is useful to intro-
duce a fermion propagator for afixedconfiguration of gauge
field am ,

G@x,x8;a#5
1

z@a#
E D@Ȳ,Y#Y~x!Ȳ~x8!e2S[ Ȳ,Y,a] ,

~C1!

whereS@Ȳ,Y,a#5*d3rLD andLD is the QED3 Lagrangian
given by Eq.~58!, z@a#5*D@Ȳ,Y#e2S[ Ȳ,Y,a] . It is easy to
see thatG@x,x8;a# solves the Dirac equation

gm~ i ]m2am!G@x,x8;a#5d~x2x8!. ~C2!

Furthermore, in terms ofG@x,x8;a# the TF propagator can
be written as

G~x2x8!5
1

ZE Da G@x,x8;a#e2SB[a] , ~C3!

whereSB5*d3xLB is the effective action@for our case, to
one loopLB is given by Eq.~61!# andZ5*Da e2SB[a] . We
now introduce agauge-invariantanalog ofG@x,x8;a#,

G@x,x8;a#5expS 2 i E
x

x8
a•dr DG@x,x8;a#, ~C4!

where the integral in the exponent is taken along the stra
line connecting spacetime pointsx8 and x. The gauge-
invariant TF propagator defined by Eq.~76! is then given by
an expression analogous to Eq.~C3!,

G~x2x8!5
1

ZE Da G@x,x8;a#e2SB[a] . ~C5!

Our task is to relate Brown’s propagatorG̃(x2x8) to
G(x2x8), Eq. ~78!. To this end we rewrite Eq.~C3! as fol-
lows:
05453
ht

G~x2x8!5
1

ZE Da G@x,x8;a#eiJ•a2SB[a]

5S Z̃

Z
D F 1

Z̃
E Da G@x,x8;a#e2S̃B[a] G

5S Z̃

Z
D G̃~x2x8!, ~C6!

whereS̃B@a#5SB@a#2 iJ•a, Z̃5*Da e2S̃B[a] , and the last
equality in Eq.~C6! should be taken as a definition ofG̃(x
2x8). The source termJ is defined by Eq.~80! andJ•a is

shorthand for*d3rJ(r )•a(r )[*x
x8a•dr. Note that the linear

UV divergence of phase factor inZ̃ cancels out between th
numerator and denominator, Eq.~C6!.

We now observe that

Z̃

Z
5

1

ZE Da eiJ•ae2SB[a]5^eiJ•a&[e2F(x2x8), ~C7!

with F defined by Eq.~79!. Substituting this into Eq.~C6! we
have, Eq.~78!,

G~x2x8!5e2F(x2x8)G̃~x2x8!. ~C8!

To complete this part it remains to address the relation
tween G̃(x2x8) and G(x2x8). To this end we notice tha
bothG andG̃ aregauge invariant: the former by construction
and the latter by the following simple observation. Sin
both G@x,x8;a# andSB@a# depend on the transverse part
a, any dependence on the longitudinal part ofa comes
through theiJ•a term and therefore identically cancels b
tween the numerator andZ̃ in the denominator. Therefore
once defined by Eq.~C6! as a ratio of two gauge-varian
objects computed in the same covariant gauge,G̃ takes on
life of its own and is equal to a fully gauge-invariant qua
tity. We may further rewriteG̃ as such a ratio in arbitrary
noncovariant linear gauge; specifically, we may chose
axial gauge in which theiJ•a vanishes. In this gaugeG̃ is
exactly equal toG. Since they are both gauge invariant, th
must be equal in arbitrary gauge. The reader should be
tioned, however, that this last equality is a formal one sinc
involves manipulations of gauge-dependent quantities wh
are ill defined in the absence of some specific regularizat

APPENDIX D: FEYNMAN INTEGRALS FOR THE
ANISOTROPIC CASE: SELF-ENERGY

As shown in Sec. V, to first order in the 1/N expansion,
the topological fermion self-energy can be reduced to

Sn~q!5E d3k

~2p!3

~q2k!l~2glm
n gn

n2gl
ngmn

n !Dxmn~k!

~q2k!mgmn
n ~q2k!n

,

~D1!
5-28
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whereDmn(q) is the screened gauge field propagator eva
ated in Sec. III. In order to perform the radial integral, w
rescale the momenta as

Km5Agn
mnkn , Qm5Agn

mnqn ~D2!

and obtain

Sn~q!5E d3K

~2p!3

3

~Q2K !l~2Agn
lmgn

n2glgmn
n !DmnS Kn

Agn
mn

D
vFvD~Q2K !2

.

~D3!

At low energies we can neglect the contribution from t
bare field stiffnessr in the gauge propagator~see Sec. III!
and the resultingDmn(q) exhibits 1/q scaling

DmnS Kn

Agn
mn

D 5
Fmn~u,f!

uKu
. ~D4!

Now we can explicitly integrate over the magnitude of t
rescaled momentumK by introducing an upper cutoffL and
in leading order we find that

E
0

L

dK
K2~Q2K !l

K~Q2K !2
52LK̂l1 lnS L

QD ~Ql22K̂lK̂•Q!,

~D5!

where K̂5(cosu, sinu cosf, sinu sinf). Since K̂m is odd
under inversion whileFmn is even, it is not difficult to see
that the term proportional toL vanishes upon angular inte
gration. Thus

Sn~q!5E dV

~2p!3vFvD

~Ql22K̂lK̂•Q!

3~2Agn
lmgn

n2glgmn
n !Fmn~u,f!lnS L

QD .

~D6!

Using the fact that the diagonal elements ofFmn(u,f) are
even under parity, while the off-diagonal elements are o
under parity, the above expression can be further simpli
to

Sn~q!52(
m

~gm
n qmhm

n !lnS L

Aqagab
n qb

D , ~D7!
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where the coefficientshm
n are pure numbers depending on t

bare anisotropy and are thereby reduced to a quadrature

hm
n 5E dV

vFvD~2p!3 F ~2K̂mK̂m21!S 2gmm
n Fmm2(

n
gnn

n FnnD
1 (

nÞm
4K̂mK̂nAgn

mmAgn
nnFmnG . ~D8!

Repeated indices are not summed in the above expres
unless explicitly indicated. In the case of weak anisotro
(vF511e,vD51) we can show that Eq.~D8! reduces to
Eqs.~115!–~117!.

Consider now the effect of the~covariant! gauge fixing
term onhm . Let us define the part ofFmn which depends on
the gauge fixing parameterj as Fmn

(j) . The general form of
this term isFmn

(j)5j kmkn f (k) where f (k) is a scalar func-
tion of all three components ofkm ; f (k) does in general
depend on the anisotropy. Upon rescaling with the no
metric @see Eq.~D2!#, we have

Fmn
(j)5j

1

Agmm

Km

1

Agnn

Kn f̃ ~K !,

wheref̃ (K) is the corresponding scalar function ofKm . Sub-
stituting Fmn

(j) into the Eq.~D8! we find

hm
j 5jE dV f̃ ~K !

vFvD~2p!3 F ~2K̂mK̂m21!S 2K̂mK̂m2(
n

K̂nK̂nD
1 (

nÞm
4K̂mK̂nK̂mK̂nG , ~D9!

wherehm
j is the part ofhm which comes entirely from the

gauge fixing term. Using the fact that(nK̂nK̂n51, it is a
matter of simple algebra to show that

hm
j 5jE dV f̃ ~K !

vFvD~2p!3
; ~D10!

i.e., the dependence on the indexm drops out. That means
that the renormalization ofhm due to the unphysical longi
tudinal modes is exactly the same for all of its componen
Therefore, the difference inh1 and h2, which is related to
the RG flow of the Dirac anisotropy, comes entirely from t
physical modes and is a gauge-independent quantity. N
that this statement does not depend on the choice of cov
ant gauge, i.e., on the exact form of the functionf, only on
the fact that the gauge is covariant.
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34Z. Tešanović, Phys. Rev. B59, 6449 ~1999!; see Appendices A

and B.
35A. Nguyen and A. Sudbo”, Phys. Rev. B60, 15 307~1999!.
36Irrelevant, butdangerouslyso, since it breaks the discrete sym

metry of the fermion Lagrangian.
37S. H. Simon and P. A. Lee, Phys. Rev. Lett.78, 1548~1997!.
38V. Gusynin, A. Hams, and M. Reenders, Phys. Rev. D63, 045025

~2001!.
39See, e.g., M. E. Peskin and D. V. Schroeder,An Introduction to

Quantum Field Theory~Addison-Wesley, Reading, MA, 1995!.
40M. Reenders, cond-mat/0110168~unpublished!.
41D. H. Kim, P. A. Lee, and X.-G. Wen, Phys. Rev. Lett.79, 2109

~1997!; D. H. Kim and P. A. Lee, Ann. Phys.~N.Y.! 272, 130
~1999!.

42T. W. Appelquist and U. Heinz, Phys. Rev. D24, 2169~1981!; D.
Atkinson, P. W. Johnson, and P. Maris,ibid. 42, 602 ~1990!.

43M. R. Pennington and D. Walsh, Phys. Lett. B253, 246 ~1991!.
44L. S. Brown, Quantum Field Theory~Cambridge University

Press, Cambridge, 1992!, pp. 521–524.
45D. G. Boulware, Phys. Rev.151, 1024~1966!.
46We note that, superficially, Eq.~78! resembles a result one woul

obtain by decoupling the fermion fields from the line integral
5-30



m
oc

led
n

be

in
lti

us

in

,
an
u
in

m-

-
-

N.

s.

r

QED3 THEORY OF PAIRING PSEUDOGAP IN . . . PHYSICAL REVIEW B 66, 054535 ~2002!
Eq. ~76! and then evaluated the latter in the leading-order cu
mulant expansion. However, it is easy to see that such a pr
dure would yield awrong signfor F(r ) and the resulting ex-
pression would not be gauge invariant. A more detai
consideration based on a careful treatment of gauge invaria
~Ref. 44! leads to correct result, Eq.~78!.

47It is not immediately obvious what such regularization might
within QED3 itself—it might involve replacing the straight line
integral with a more ramified path or a family of paths. With
our theory, however, it is clear that such a regularization u
mately reduces Eq.~76! to the original expression~73!, with
discrete vortex variables.

48This result was originally obtained by V.P. Gusynin~unpub-
lished!. We are indebted to him for generously sharing it with
and especially for drawing our attention to Ref. 44.

49T. Valla et al., Phys. Rev. Lett.85, 828 ~2000!.
50O. K. Andersen, O. Jepsen, A. I. Liechteinstein, and I. I. Maz

Phys. Rev. B49, 4145~1994!.
51W. Rantner and X.-G. Wen, Phys. Rev. Lett.86, 3871~2001!.
52W. Rantner and X.-G. Wen, cond-mat/0010378~unpublished!.
53D. V. Khveshchenko, cond-mat/0112202~unpublished!.
54References 51 and 52 quote a positive value forh8. We find that

this is a result of an overall sign error andh8 should be negative
in agreement with Ref. 53. We are indebted to W. Rantner
D. V. Khveshchenko for communications regarding this iss
and for their many insightful comments concerning gauge
variance.
05453
-
e-

ce

-

,

d
e
-

55G. Leibbrandt and K. A. Richardson, Phys. Rev. D46, 2578
~1992!.

56L. Baulieu and D. Zwanziger, Nucl. Phys. B548, 527 ~1999!.
57A. Melikyan and Z. Tesˇanović ~unpublished!.
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