PHYSICAL REVIEW B 66, 054535 (2002

QED; theory of pairing pseudogap in cuprates: Fromd-wave superconductor
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High-T. cuprates differ from conventional superconductors in three crucial aspects: the superconducting
state descends from a strongly correlated Mott-Hubbard insulatoopposed to a Fermi liqyidthe order
parameter exhibitsl-wave symmetry, and fluctuations play an all important role. We formulate an effective
theory of underdoped cuprates within the pseudogap state by taking advantage of these unusual features. In
particular, we introduce a concept of “pairing protectorate” and we seek to describe various phases within this
protectorate by phase disorderingl-avave superconductor. The elementary excitations of the protectorate are
the Bogoliubov—de Gennes quasiparticles and topological defects in the phase of the pairing field—vortices
and antivortices—which appear as quantum and thermal fluctuations. The effective low-energy theory of these
elementary excitations is shown to be, apart from intrinsic anisotropy, equivalent to the quantum electrody-
namics in(2+1) spacetime dimensions (QEP A detailed derivation of this QEDtheory is given and some
of its main physical consequences are inferred for the pseudogap state. As the superconducting order is
destroyed by underdoping two possible outcomes eméigete system can go into a symmetric normal state
characterized as an “algebraic Fermi liquidAFL) before developing antiferromagneti&F) order or(ii) a
direct transition into the insulating AF state can occur. In both cases the AF order arises spontaneously through
an intrinsic “chiral” instability of QED,/AFL. Here we focus on the properties of the AFL and propose that
inside the pairing protectorate it assumes the role reminiscent of that played by the Fermi liquid theory in
conventional metals. We construct a gauge-invariant electron propagator of the AFL and show that within the
1/N expansion it has a non-Fermi-liquid, Luttinger-like form with positive anomalous dimension
=16/37°N, whereN denotes the number of pairs of nodes. We investigate the effects of Dirac anisotropy by
perturbative renormalization group analysis and find that the theory flows into an isotropic fixed point. We
therefore conclude that, at long length scales, the AFL is stable against anisotropy.
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[. INTRODUCTION romagnetism, and, of course, superconductivity. This re-
markable success story of the BCS-Eliashberg-FL theory
In the classic tradition of condensed matter physics, th@ave birth to the traditional paradigm: “one must understand
phenomenon of superconductivity is usually described as af'® normal sigte before one can understand the
instability of a normal metal towards a quantum state inSUPerconductor. _ ,
which electrons bind into Cooper pairghis traditional pic- The discovery of highF sgpercond_uctorssH'I_'S s) and
ture, further fortified within the Eliashberg formalighas the subsequent efforts to decipher their mysteries altered the

ith | h ied . bove state of affairs dramatically. As experimental informa-
met with spectacular success when applied to conventionaf, began to pour in, it became rapidly clear that HTS's

low T. superconductors. This success is no accident: thaepart qualitatively from the BCS-Eliashberg-FL orthodoxy
BCS-Eliashberg theory uses the Landau theory of Fermi ligin at least three important ways. First, the hifhsupercon-
uids as the underlying description of a normal metal. In turnducting copper oxides are strongly interacting systems in
the Landau theory of Fermi liquids is one of the most suc-which correlations play an essential role. Their parent com-
cessful theories in physics—by starting from the free gas ofpounds, believed to contain one hole per copper within LuO
fermions it exploits the constraint on the phase space imlayers, are far from good metals that simple band-structure
posed by the Pauli exclusion principle to provide a compretheory would predict and are instead insulatingeNantifer-

hensive understanding of the low-energy behavior ofran  fomagnets. Even when doped and the long-range antiferro-

teracting system. Among its many pleasing features themagnetic order had subsided, these materials do not seem to

Landau theory allows for methodical understanding of thefOIIOW the dictates of the Fermi liquid theory, except perhaps

. ) . -2 7 " Hn the heavily overdoped regime. Rather, the “normal” metal
seeds of its own destruction—while the Fermi liquid is giate of the cuprates is anything but, and has been routinely
hardly the true ground state of any systéwe routinely  gubbed “anomalous” or “strange.” In line with the tradi-
seek to understand such ground states by investigating vakipnal paradigm, a major theoretical effort, mainly inspired
ous instabilities of the Fermi liquidFL) description, either py Andersorf has been directed at first understanding this
in the particle-hole or particle-particle channel, few notableanomalous “normal” state as arising from the Hubbard-
examples being spin- and charge-density waves, itinerant femMott-Neel antiferromagnetic insulator at half-filling once a
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small density of mobile dopant holes has been induced in thapproach is the observation that, when compared to its
CuO, layers. The physics of such a “doped Mott insulator” neighbors in the phase diagram of cuprates, the supercon-
and particularly the microscopic mechanism through whichducting state appears to be the “least correlated” and its
the high-temperature superconductivity itself is generate(ﬁerm'on'c excitations best_defmé_EIA tantalizing theoretical
from within such a “normal” state, even after years of con- feature of this approach is that it holds promise to turn the

: : . above triple predicament of strong correlations, fluctuations,
centrated theoretical and experimental onslaught, remain %nd unconventional symmetry in HTS’s into an advantage by

deep challenge to the condensed matter phyS|c§ COmmuth’sing the superconducting state as its departure point. The
The second departure fr_om the B.CS'EI'aShb?rg'FLﬁrst step in constructing a theory based on this “inverted”
orthodoxy has by now been f'“.””'y establls_hgd EXPerMen-philosophy is to assume that the most important effect of
tally: the superconducting state in cuprates is itself of uncongyyong correlations at the basic microscopic level is to build a
ventional symmetry.Instead of a usual $-wave” gap func- large pseudogap of-wave symmetry, which is predomi-
tion whose magnitude generally varies over the Fermpantly pairing in origin, i.e., arises form the particle-particle
surface but whose sign does not, the cuprates drezdve”  (p-p) channel. In this regard, we are following the wisdom of
superconductors. It is believed at the present time that thighe FL theory but are replacing the free electron gas starting
d-wave symmetry reflects the presence of correlations causgsbint with the free Bogoliubov—de Genn¢BdG) d-wave
by strong on-site repulsion and is thus a close dynamicafjuasiparticles. Under the umbrella of this largdewvave
relative of the antiferromagnetic state at half-filling. The ma-pseudogap, the low-energy fermionic excitations enjoy a re-
jority of authors have focused on such a purely electronianarkably sheltered existence. Within this “pairing protector-
“mechanism” of superconductivity arising from strong cor- ate,” they are completely impervious to weak residual short-
relations in sharp distinction to the phonon-mediated pairingange interactions left over after the effect of the pseudogap
of the traditional BCS-Eliashberg approach. Such unconvenhad been built in.
tional symmetry of the superconducting state and the ensuing There is an important new element in this parallel with the
presence of low-energy fermionic excitations near the gafL. Our reference state being a superconductor, we must also
nodes result in a rich phenomenology of cuprates. Most reeonsider interactions of BAG quasiparticles with relevant col-
markably, however, this phenomenology, at low energies antéctive modes of the pairing pseudogap, i.e., fluctuating ther-
temperatures and deep inside the superconducting stat@al and quantum vortex-antivortex pairs. Within the theory
seems to fit within the theoretical mold of a model BCS-like of Ref. 15 this interaction is represented by twélgauge
d-wave superconductor, quite separately from the detaileieldsv, anda,. Herev, describes Doppler shift in quasi-
microscopic mechanism that is at its origin. We consider thigarticle energie§ and has been studied in Refs. 17 and 18.
an experimental fact of crucial significance which for the restits effect on low-energy fermions is rather modest singe
of this paper we intend to fully exploit to our advantage. gains mass from fermions both in a superconductor and in a
Finally, more than the intrinsic gap symmetry distin- phase-incoherent pseudogap state. In contrast, the Berry
guishes HTS’s from their conventional kin. They are alsogauge fielda, , minimally coupled to fermions and encoding
strongly fluctuating systenfsWhile strong fluctuations away the topological frustration inflicted upon BdG quasiparticles
from a simple mean-field description are a familiar occur-by fluctuating vortices, is massless in the pseudogap state
rence in magnets or liquid crystals they are a relatively noveand is the main source of strong scattering at low eneﬂ@ies.
phenomenon in superconductors. In most conventional SuFhe effective theory was found to take the form equivalent to
perconductors, well described by the BCS-Eliashberg-FL(2+1)-dimensional (anisotropi¢ quantum electrodynamics
theory—the fluctuations are simply not an issue: the dimen{QED;).!® In its symmetric phase, QEfJs governed by the
sionless parameter which controls the deviations from thénteracting critical point leading to a non-Fermi-liquid be-
mean-field theory—the inverse of the product of the BCShavior for its fermionic excitations. This “algebraic” Fermi
coherence lengtlj, and the Fermi wave vectd—is typi-  liquid'® (AFL) displaces conventional FL as the underlying
cally as small as 10° or 10 * and the fluctuation effects are theory of the pseudogap state.
rarely observabl@.In contrast, early experiments on HTS’s  The AFL (symmetric QEDR) suffers an intrinsic instabil-
clearly established strong fluctuations in numerous physicaty when vortex-antivortex fluctuations and residual interac-
guantities and various estimates put &ki)~10"1 or  tions becometoo strong The topological frustration is re-
larger. The strongly fluctuating nature of the superconductingieved by the spontaneous generation of mass for fermions,
state is particularly pronounced in underdoped cuprates anghile the Berry gauge field remains massless. In the field
is rather vividly manifested in recent experiments on thetheory literature on QEDthis instability is known as dy-
Nernst effect by the Princeton grothThe Nernst effect is namical chiral symmetry breakingCSB) and is a well-
routinely used to detect superconducting vortex fluctuationstudied and established phenomenbalthough few clouds
and a strong signal observed upTQemse> T, With Temst O uncertainty still hover over its more quantitative aspé2ts.
comparable to the pseudogap temperaiifeis most natu-  In cuprates, the region of such strong vortex fluctuations cor-
rally interpreted in those terms. Other experiments have alsmesponds to heavily underdoped samples and CSB leads to
provided both diredt and indirect? support for pairing fluc-  the spontaneous creation of a whole plethora of nearly de-
tuations far abové ;. The experimental evidence for such generate ordered and gapped states from within the &FL.
fluctuations has been compiled in Ref. 13. An important check on the internal consistency of the “in-
Recently, a different path toward the theory of HTS’s wasverted” approach is that the manifold of CSB states contains
proposed in Refs. 14 and 15. A key aspect of this “inverted”an incommensurate antiferromagnetic insulfsmin-density
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(a) our QED; theory. This is followed by applications to the
SMSC phase diagram of cuprates within the pseudogap state.
(b) II. PRELIMINARIES AND VORTEX-QUASIPARTICLE
csB\./dsc INTERACTIONS

A. Protectorate of the pairing pseudogap

Our starting point is the assumption that the pseudogap is
predominantly particle-particle or pairin@-p) in origin and
that it has ad,2_,2 symmetry. This assumption is given
dSC X mathematical expression in the partition function

X

— t —
FIG. 1. A schematic representation of the phase diagram of a z f bw (r'T)f D‘If(r,r)f De(r,r)exd —S],
cuprate superconductor. Below* (~Tpems), the symmetric

QED;/AFL replaces the Fermi liquid as the effective low-energy _ 5 T T .

theory. CSB denotes chiral-symmetry-broken states, the most o= | d7 | d{¥19, W+ WIHV+(1/g)A*A}, (D)
prominent among which is an incommensurate antiferromagnet ) ) ) ) ] .
(SDW). Panel(a) represents the path between dSC and an antiferWhere 7 is the imaginary timer=(x,y), g is an effective
romagnet via the intervening algebraic Fermi liq@kFL) ground  coupling constant in thel2_,2 channel, andPT=(z,//T W)
state. Pane(b) shows a direct dSC-CSB transition with AFL de- are the standard Grassmann variables. The effective Hamil-

scribing T<T* behavior. tonian’H is given by

wave (SDW)].24?2 Remarkably, both the “algebraic” Fermi M= He A K @
liquid and the SDW and other CSB insulating states arise LAY res:

from one and the same QB Eheory*® echoing the satisfying ) ¢

features of Fermi liquid theory in conventional metals. It with

therefore appears that the “inverted” approach can be used 1 e |2

to advance along the doping axis of the HTS phase diagram 7‘19:_( p— —A) — €,

(Fig. 1) in the “opposite” direction, from al-wave supercon- 2m c

ductor all the way to an antiferromagnetic insulator at very~ . B " .
low doping, the low-energy physics of the pairing protector-p_ _'Vrzgf‘z’xe take 7=1), and A the d-wave pairing
ate held under overall control of the symmetric QEBFL). operator,

In this paper we first present a detailed derivation of the 1 i
QED; theory of the pairing pseudogap state in underdoped A:_{E)X!{E)y!A}}_ — A{3,.0y} @), (3)
cuprates previously introduced in Ref. 15 and then embark kf: 4k,2:
on a systematic exploration of its fermionic excitation spec-
trum and other related properties. To keep the paper at?
manageable length we confine ourselves to the the chirall . .
symmetripphase of QEB, i.e., to the AFL and its main prop- he sec.ond t.erm in E(qg) is necessary to preserve the overall
erties. The chiral-symmetry-broken phase is discussed sepg@@uge invariance. Notice that we have rotateftom d,2_ 2
rately, in part Il of this paper. Section Il and Appendix A t0 dyy to simplify the continuum limitf De(r,7) denotes the
contain a step-by-step manual on vortex-quasiparticle intedntégral over smoott{*spin-wave”) and singular(vortex
actions and how the low-energy physics of such interactionphase fluctuations. Amplitude fluctuations Af are sup-
can be given its mathematical formulation in the language opressed at or just beloW* and the amplitude itself is frozen
the QED, effective theory. In Secs. Il and IV we focus on at 2A ~3.56T* for T<T*.
the AFL, give a detailed accounting of vortex-quasiparticle  The fermion fieldsy, and ¢, appearing in Eqs(1) and
interactions within QED, and compute quasiparticle spectral (2) do not necessarily refer to the bare electrons. Rather, they
properties within the pseudogap symmetric phase. In Sec. Yepresent someffectivelow-energy fermions of the theory,
we then discuss the effects of Dirac anisotropy on the QEDalready fully renormalized by high-energy interactions, ex-
infrared fixed point and demonstrate that, to leading order ipected to be strong in cuprates due to Mott-Hubbard corre-
a 1N expansion, the anisotropic QEBcales to an isotropic lations near half-fillind. The precise structure of such fermi-
limit. Finally, we present a brief summary of our results andonic effective fields follows from a more microscopic theory
conclusions in Sec. VI. and is not of our immediate concern here—we are only re-

In part Il of the paper, to appear separately, we introducdying on the absenceof true spin-charge separation which
the concept of chiral symmetry within thdtwave pairing allows us to write the effective pairing ter(g@) in BCS-like
pseudogap stafé:??We enumerate different physical states form. The experimental evidence that supports this reason-
within the chiral manifold and discuss in depth various pat-ing, at least within the superconducting state and its imme-
terns of CSB(Fig. 1) and fermion mass generation within diate vicinity, is rather overwhelmint~**FurthermoreH,

here A(r,7)=|Alexdie(r,7)] is the center-of-mass gap
nction and{a,b}=(ab+ba)/2. As discussed in Ref. 24
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represents the “residual” interactions, i.e., the part domi-renormalizations of various relevant parametérsore on
nated by the effective interactions in the p-h channel. Outhis in Sec. Il). As the system makes the transition from a
main assumption is equivalent to stating that such interacphase-coherent superconductor to a phase-incoherent
tions are in a certain sense a “weak” and less important parpseudogap state, the nodal BdG fermions interacting only
of the effective Hamiltoniar{ than the |arge pairing inter- through such residual interactions would hardly be noticed—

actions already incorporated throudhAs we progress, this the nodal BdG liquid is a better Fermi liquid than a conven-

: p " . . tional metal.
notion of the “weakness” ofH,.s will be defined more pre- : . .
: L : - There is, however, another source of interactions among
cisely and with it the region of validity of our theory.

. . ) BdG quasiparticles which ruins this state of affairs. Our ref-
The above dlscussmp reveals that our Fheory Is at Iea%rence state being a superconductor, we must consider the
partly of phenomenological character and it must rely on gpeactions of BAG fermions with collective modes &f
more microscopic description to fully define its basic form .oy ant near the superconductor-“normal” boundary, i.e.,
specified by Egs(1) and(2). While itis still far from estab-  q,cruating vortices. As we demonstrate next, these interac-
lished just what such a more microscopic description mightjons petween BdG quasiparticles and fluctuating vortex-

be in the case of cuprates, various gauge theories df-the antivortex excitations play the central dynamical role in our
and related modef3could all be used for this purpose at the theory.

present time. The main role played by such theories is pro-

viding rgllable values of parameters that fe_ed into the baSICB. Phase fluctuations, vortices, quasiparticles, and topological
formulation(1) and(2). These include, most importantly, the frustration

pairing pseudogap itself, the microscopic values of vortex he alobal ) i hat th
core energies, the strengths of residual interactions, etc. Once 1€ global Ul) gauge invariance mandates that the par-

these parameters have been supplied through such an extgp—on functionA(l) must be independent (_)f the oyergll choice
nal input, it is our task to solve for the low-energyeq),  Of phase forA. We should therefore aim to eliminate the

long-distance physics of Eqél) and (2). At present, these Phasep(r,7) from the pairing tern{2) in favor of 7, ¢ terms
needed parameters cannot be computed reliably from a fulle = (X,y,7)] in the fermionic action. For the reguléiispin-
microscopic approach. We therefore combine the availablé/ave”) piece ofe this is easily accomplished by absorbing a
theoretical arguments with the experimentally determineghase factor expfe) into both spin-up and spin-down fer-
phase diagraniFig. 1) and argue that the pseudogap is in-mionic fields. This amounts to “screening” the phase of
deed pairing in origin and that the transition from the super-A(r,7) (or an “XY phase,” as commonly knowrby a “half-
conductor to the pseudogap state must proceed via thermghase” field (or “half-XY phase’ attached toy; and ¢, .
and quantum unbinding of vortex-antivortex pairs. However, as discussed in Refs. 23 and 24, when dealing with
Our “inverted” approach is similar in spirit to the Landau the singular part ofp, such a transformation “screens”
theory of Fermi liquids as applied to conventional metals. Inphysical singly quantizechc/2e superconducting vortices
Fermi liquid theory the reference state is that of a noninterwith “half-vortices” in the fermionic fields. Consequently,
acting gas of fermions. As the interactions are turned onhis “half-angle” gauge transformation must be accompanied
adiabatically, the Pauli principle severely restricts the availby branch cuts in the fermionic fields which originate and
able phase space for scattering and many of the general fegerminate at vortex positions and across which the quasipar-
tures of free fermion system are preserved, albeit in a renoticle wave function must switch its sign. These branch cuts
malized form? In our case, the reference state is aare a mathematical manifestation of a fundamental physical
noninteracting system of Bogoliubov—de Gennes fermionseffect: in the presence of vortices, which are topological de-
One can think of the pairing pseudogadp as being our fects in the phase of the Cooper pair field and thus naturally
“Fermi energy” and the highest-energy scale in the problembind the elementary flux dfc/2e, the motion of quasiparti-
While our theory cannot account for the physics at energiesgles istopologically frustratedsince their natural elementary
(or temperaturgshigher thanA, we will endeavor to show flux is twice as largeffc/e). The physics of this topological
that the low-energy physics can be computed systematicallftustration is at the origin of all nontrivial dynamics dis-
and is parametrized by a handful of material constants whosgussed in this paper.
values can be extracted either from experiments or from a Dealing with branch cuts in a fluctuating vortex problem
more microscopic theory. is a rather cumbersome affair due to their nonlocal character
In this context, the residual interactions among the BdGand defeats the original purpose of reducing the problem to
fermions, both those arising from the p-p channel throughhat of fermions interacting with #ocal fluctuating super-
weak amplitude fluctuations of and the p-h interactions flow field, i.e., with d,¢. Instead, in order to avoid the
generated by the effective spin fluctuations within thebranch cuts, nonlocality, and non-single-valued wave func-
pseudogap staté,can be thought of as our version of “Lan- tions, we employ the singular gauge transformation devised
dau interaction parameterg§F3? ,}. These interactions are in Ref. 23, hereafter referred to as the “FT” transformation:
generically short ranged and are even less effective in dis-
turbing the coherence of nodal BdG fermions than their FL EI_)qu_i(PA)ETv El_,exp(_i%)%, (4)
counterpart. With all of the Fermi surface gapped apart from
the nodal regions, such interactions are irrelevant in thavhere oo+ ¢g=¢. Here gag) is the singular part of the
renormalization grougRG) sense and can be absorbed intophase due té\(B) vortex defects:
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. tained had we opted for the “half-angle” gauge transforma-
VXVoam =272, 6;8(r—r{® (1), (5 tion and implemented the branch céts.

' The above (1) prefactors of the BdG fermion loops
with g;= =1 denoting the topological charge of thi& vor-  come on top of general and everpresetil)lphase factors
tex andr®®)(7) its position. The labels\ and B represent €xp(d), where the phasé depends on the spacetime con-
some convenient but otherwise arbitrary division of vortexfiguration of vortices. These () phase factors are supplied
defects[loops or lines ing(r,7)] into two sets, although we by the “Doppler” gauge field
will soon discuss many virtues of treymmetrizedransfor- L
mation (4) which apportions vortex defecexqjually between _ _
setsA andB.2*?*The transformatioit4) “screens” the origi- V=75 (0uent 9uee)= 50,0, ®
nal superconducting phasge (or “ XY phase’) with two or-
dinary “XY phases”¢, and ¢ attached to fermions. Both Which denotes the classical part of the quasiparticle-vortex
©p and pg are themselves perfecﬂy |eg|t|mate phase Conjnteraction. The COUp”ng Ot# to fermions is the same as
figurations ofA(r,7) but simply with fewer vortex defects. that of the usual electromagnetic gauge fiéldand is there-
The key feature of the transformatidd) is that it accom- fore nonminimaj due to the pairing term in the original
p|ishes “Screening” of the physicd‘ic/Ze vortices by using Hamiltonian H, Eq (2) It is this nonminimal interaction
only “whole” (i.e., not “halved”) vortices in fermionic fields With v, which we call the Meissner coupling, that is re-
and thus guarantees that the quasiparticle wave functions réponsible for the ) phase factors expf). These U1)
main single valued. The topological frustration still remains,phase factors are “random,” in the sense that they are not
being the genuine physical effect of the branch cuts, but i$opological in nature—their values depend on a detailed dis-
now incorporated directly into the fermionic part of the ac- tribution of superfluid fields of all vortices and “spin waves”

tion: as well as on the internal structure of BdG fermion loops,
i.e., what is the sequence of spin-up and spin-down portions
L ZZT[ﬂﬁi(l%(PA)]lﬁﬁ%[ﬁﬁi(&‘PB)WW‘I’TH"IN along such loops. In this respect, while its minimal coupling

(6)  to BdG fermions means that within the lattidavave super-
conductor modéf one is naturally tempted to represent the
Berry gauge fielda, as acompactU(1) gauge field, the

1 Doppler gauge field , is decidedlynoncompagtlattice or

(V)2 e B no lattice?” The reader should be advised, however, that the

2m issue of the “compactness” ad,, versus the “noncompact-

where the transformed Hamiltonidn’ is

. 1 . ) ’ ness” ofv,, constitutes a moot point,, andv,, as defined
D - E(W—V) +er by Egs.(7) and (8) are not independensince the discrete
spacetime configurations of vortex defets(7)} serve as
with 6:(A0/2kl2=)(;7x%y+ ;Ty%x) andTr=p+a. sourcesfor bqth We will belabor this important issue in the
The singular gauge transformatiof4) generates a Next subsection. _ _
“Berry” gauge potential For now, note that all choices of the sefsand B in

transformation (4) are completely equivalent—different
1 choices represent different singular gadesnd v,, and
aMZE(%@A— d,¢8), (7) therefore expf), are invariant under such transformations.
a,, on the other hand, changes but only through the intro-
which describes half-flux Aharonov-Bohm scattering of qua-duction of (=) unit Aharonov-Bohm fluxes at locations of
siparticles on vorticesa, couples to BdG fermiongnini-  those vortex defects involved in the transformation. Conse-
mally and mimics the effect of branch cuts in quasiparticle-quently, theZ, style (=1) phase factors associated witf
vortex dynamic€®?4?% Closed fermion loops in the that multiply the fermion loops remain unchanged. We now
Feynman path-integral representation of EL). acquire the symmetrize the partition function with respect to this singu-
(—1) phase factors due to this half-flux Aharonov-Bohmlar gauge by defining a generalized transformat@nas the
effect just as they would from a branch cut attached to asum over all possible choices AfandB, i.e., over the entire
vortex defect. The topological frustration is now imple- family of singular gauge transformations. This is an Ising
mented through the fact thaj,¢ gy, minimally coupled to  sum  with 2N members, wherd\, is the total number of
a loop of BdG fermions in the partition functiofl) as it  vortex defects inp(r,7) and is itself yet another choice of
winds around the imaginary time direction, generates a phag@e singular gauge. The many benefits of such a symmetrized
equal to the advance in th&Y phasegag(r,7), which  gauge will be discussed shortly but we stress here that its
inhabits the same spacetime, along the closed path coinciddtimate function is calculational convenience. What actually
ing with the said fermion loop. Naturally, this advance mustmatters for the physics is that the origirabe split into two
be an integer multiple of 2—the overall factor oy in the XY phases so that the vortex defects of every distinct topo-
definition ofa, , Eq. (7), reduces this further to an integer logical class are apportionegqually betweene, and ¢g
multiple of 7. In the end, the phase factors of such fermion(4).2>2*
loops, which are gauge-invariant quantities, are all equal to The physics behind this last requirement can be intuitively
+1 and are furthermore precisely what we would have obappreciated as follows: imagine that we simplyhibit sin-
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gly quantized vortex excitations and replace them in &g. By recasting the original problem in terms of topological
by doubly quantizedhc/e) vortices. In this case, the Berry fermions we have accomplished our original goal: the inter-
gauge field attaches a multiple ofwl Aharonov-Bohm flux — actions between quasiparticles and vortices are now de-
to each vortex position and all the topological phase factorscribed solely in terms of two local superflow fieftfs:

in front of fermion loops equal unity—this is equivalent to

a, =0 and a complete absence of topological frustratibis. Vap=0,@n, UBu=d,¢8, (12

then natural to select the gauge which eliminates ato-
gether This is straightforwardly accomplished by screening
each doubly quantizech¢/e) vortex defect with a unit-flux
Dirac string iny; and an equivalent one i, . The resulting
sets of A and B vortices are two identical replicas of each
other anda,=1/2 (d,¢p—d,¢s)=0. Now, while still stay-
ing within the same gauge, we allow doubly quantize
vortices to relax into energetically more favorable

configurations—they will immediately decay into singly “spin-wave” fluctuations and all the spacetime configura-

guantized vortices and our sétsandB will end up contain- _ . T .
ing an equal number of singly quantized vortices of eaCH[rLOc?oTeIOf vortex defectri(n)} of this (2+1)-dimensiona ¥

distinct topological class. For example, in the case of two-

dimensional (2D) thermal fluctuationse,y should each ) )
contain a half of the original vortices ip and a half of ~C. “Coarse-grained” Doppler and Berry U (1) gauge fields(v,,

which we can think of as superfluid velocities associated
with the phase configurationgag(r,7) of a (2+1)-
dimensionalXY model with periodic boundary conditions
along ther axis. Our Doppler and Berry gauge fields and

a, are linear combinations af,, andvg, . Note thata,, is
dproduced exclusively by vortex defects since the “spin-
wave” configurations ofp can be fully absorbed into,, . All

that remains is to perform the sum in E®) over all the

antivortices. This is readily achieved by including théae- and a,) and their physical significance
ti)vortex variables whose positions are labeled rbywith Unfortunately, exact integration over the phasg, ) is
i eveninto ¢, , while the odd ones are absorbed intpg.  prohibitively difficult. To proceed by analytic means we must
The symmetrization is just a convenient mathematical tootjevise some approximate procedure to integrate over the
that automatically guarantees this goal. vortex-antivortex positionér;(7)} in Eq. (9) which will cap-
The above symmetrization leads to the new partition functure the qualitative features of at least the long-distance, low-
tion Z—7Z: energy physics of the original problem. This is where our
recasting of the problem in terms of BdG fermions interact-
~ ~ ~ ing with superflow field 5, andvg,, Eq. (12), will come
Z:f D‘Iﬁf D\Iff DUMJ Da, in handy. A hint as to how to devise such an approximation

comes from examining the role of the Doppler gauge field
(9) v, in the physics of this problem. To illustrate our reasoning
and for simplicity, we consider the finife-case where we
can ignore ther dependence ap(r, 7). The results are easily
generalized, with appropriate modifications, to include quan-
tum fluctuations.
~ o~ . . N We start by noting thatv,=2v—(2e/c)A is just the
L=V[(9,+ia,)ootiv0s] W+ WIH' W+ Lolv,,a,], physical superfluid velocit§f invariant under bothA—B

(10 singular gauge transformatio®) and ordinary electromag-

where L, is the “Jacobian” of the transformation given by netic U(1) gauge symmetry. The superfluid velocitfop-
plen field, swirling around eacliantijvortex defect, is re-

B ~
Xex;{—J' drf d’r L
0

in which the half-flux-to-minus-half-flux4,) symmetry of
the singular gauge transformati¢f) is now manifest:

B 2 AN sponsible for a vast majority of phenomena that we associate
exp ~ Jo d"J’ drLo|=2 '/;3 J De(r,7) with vortices: long-range interactions between vortex de-
' fects, coupling to an external magnetic field and the Abriko-
X 6lv,— %(aMQDAJr d,¢8)] sov lattice of the mixed state, the Kosterlitz-Thouless transi-
N tion, etc. Remarkably, we will show that its role is essential
X ola,=z(dupa=dupe)]- even for the physics discussed in the present paper, although

(1) it now appears as a supporting actor to the Berry gauge field
_ _ L _ a, which ultimately occupies the center stage. To see how
Hereo, are the Pauli matriceg=1/T, 7" is given in EQ.  this comes about, imagine that (a,) were absent—then,
(6), and, for later conveniencé,y will also include the en- upon integration over topological fermions in EQ.0), we

ergetics of vortex core overlap driven by amplitude fluctua-gptain the following term in the effective Largangian:
tions(see Appendix Aand is thus independent of long-range

superflow(and ofA). We call the transformed quasiparticles

U'=(4,,4,) appearing in Eq(10) “topological fermions” M?
(TF's). TF's are the natural fermionic excitations of the

pseudogapped normal state. They are electrically neutral anghere (- - -) denotes higher-order powers and derivatives of
are related to the original quasiparticles by the inversion oV ¢—(2e/c)A. In the above we have replaced- (1/2)V ¢
transformation(4). to emphasize that the leading term, with the coefficirit

2
() (13)

Voo A
"¢
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proportional to the bare superfluid density, is just the stanbirac (Aharonov-Bohm strings located atliscrete vortex
dard superfluid-velocity-squared term of the continudi¥  positions{r;}. Instead,a (a,) must be replaced by some
model—the notatio? for the coefficient will become clear new gauge field which reflects the “coarse graining” that has
in a moment. We can now Writ€ ¢ =V ¢yorext V @spin-wave  DEEN applied to/—simply put, theZ,-valued Berry gauge
and reexpress the transverse portion of @@) in terms of  field (7) of the original problem(10) must be“dressed” in
(ant)vortex positiong[r;} to obtain a familiar form such a way so as tieest compensatier the error introduced
by “coarse graining’v. In the language of the RG, we must
find such “dressing” of the Berry gauge field, i.e., the form
and the bare action fax (a,), which renders any such er-
) rors irrelevant for the low-energy physics.
or, by using V-Veyoex=0 and VXVeyore=2mp(r), The recipe for such a required “dressing” of the Berry
equivalently as gauge field is straightforward in the FT singular gauge—it
M2 takes the form of a noncompact(l) gauge field with a
_)_f dzrf d2r’ p(H)p(r)injr=r'], (15) simple Maxwellian action. To see how this comes about note
2w that if we insist on replacing by its “coarse-grained” form
(18), the only way to achieve this is to “coarse-graihbth
v, andvg in the same manner:

MZ
HEQEJ) |n|ri_rj| (14)

wherep(r)=2m2;q;6(r —r;) is the vortex density.

The Meissner coupling of to fermions is very strong—it
leads to familiar long-range interactions between vortices
which constrain vortex fluctuations to a remarkable degree.
To make this statement mathematically explicit we introducaNherepA’B(r) are now continuously distributed densities of
the Fourier transform of the vortex densjiyq)=>; exp(q  A(B) vortex defects[the reader should contrast this with

VXVpa—2mpps, VXvg—2wpg, (19

-r;) and observe that its variance satisfies Egs.(7) and(8)]. This is because thelementaryortex vari-
2 12 ables of our problem areot the sources o¥ anda; rather,
(p(@)p(—Qq))=g /M~ (16) they are the sources of, andvg. We cannot separately

Vortex defects form arincompressibleliquid—the long-  fluctuate or “coarse-grain” the Doppler and the Berry
distance vorticity fluctuations are strongly suppressed. Thishalves” of a given vortex defect—they arpermanently
“incompressibility constraint” is naturally enforced in Eq. confinedinto a physical fic/2e) vortex. On the other hand,
(9) by replacing the integral ovediscretevortex positions We can independently fluctuaté\ and B vortices—this is

{r;} with the integral over aontinuouslydistributed field ~Why it was important to use the singular gauggto rewrite

T L . the original problem solely in terms @& andB vortices and
p(r) with {p(r))=0. The Kosterlitz-Thouless transition and associated superflow field$2).

other vortex phenomenology are still maintained in the non- : . .
Following this recipe we can now reassemble the coarse-

trivial structure ofﬁo[;(r)]. But the long-wavelength form grained Doppler and Berry gauge fields as
of EqQ. (13) now reads

1 1
M2 Y an V=5 (VatVe),  a= 5(Va~Ve), (20

_ 2e
2v— —A
c

. . . i i izati +1)D:
and can be interpreted asnaassiveaction for a transverse with the straightforward generalization (@+1)D

U(1) gauge fieldv. The latter is ourcoarse-graineddoppler

1 1
gauge field defined by v=>5(vatve), a=35(va~ve) (21)
Vxv(r)=mp(r). (18)  The coupling ofva(v,) andvg(vg) to fermions is a hybrid

. . ' of Meissner and minimal couplind.They contribute a prod-

We have now gone full circle with the Doppler gauge field .

The coarse-graining procedure has made it into a massi ct Qf u) phas_e factors, ?X*I“A)XGXF’“ .53)' to _the “BdG
R : L ) ermion loops, with both expf,) and expidg) being “ran-

U(1) gauge field, whose influence on TF's disappears in the jom» iy the sense of the previous subsection. Upon coarse

long-wavelength limit. We can therefore drop it from our graining va(v,) and vg(vg) tumn into noncompact W)

low-energy fermiology. Hereafter we shall drop the ovgrbargauge fields and thereforgy) anda(a) must as well.
and use the symbdl for both the actual and coarse-grained

guantities, the meaning being obvious from the context.
The real problem also contains the Berry gauge field
a (a,) which now must be restored. However, if we are to  The above “coarse-grained” theory must have the follow-
take advantage of introducing continugp@) and eventu- ing symmetry: it has to be invariant under the exchange of
ally dispensing withv, a (a,) cannot remain the same spin-up and spin-down labelg; < , withoutany changes
gauge field we started with in EGL0) when we embarked in v (v). This symmetry ensures that ti@rbitrarily prese-
on our quest to derive the effective theory. Having replacedected S, component of thepin which is the same for TF’s
the Doppler fieldv with the distributed quantity (18), we  and real electrons, decouples from the physical superfluid
cannotsimply continue to keep (a,) specified by half-flux  velocity which naturally must couple only wharge When

D. Further remarks on the FT gauge
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dealing with discrete vortex defects this symmetry is guaran- The above discussion provides the rationale behind using
teed by the singular gauge symmetry defined by the familghe FT transformation in our quest for an effective theory. At
of transformationd4). However, if we replace, andvg by  low energies, the interactions between quasiparticles and
their distributed “coarse-grained” versions, the said symme-ortices are represented by twg1) gauge fieldsy and a,

try is preserved only in the FT gauge. This is seen by conEqgs.(20) and(21). The conversion o& from aZ,-valued to
sidering the effective Lagrangian expressed in terms oh noncompact (1) field with Maxwellian action is effected

coarse-grained quantities: by the confinement of the Doppler to the Berry half of a
o 5 singly quantized vortex—in the coarse-graining process the
L—VTo W+UTH T+ Lol pa,psl, (22 phase factors expf) of the noncompact Doppler part “con-

taminate” the original (1) factors supplied by, Eq. (7).
This contamination diminishes as doping-0 since then
velvy—0 and “vortices” are effectively liberated of their
Doppler content. In this limit, the pur&, nature ofa is
recovered and one enters the realm ofZheyauge theory of
Senthil and Fishe¥ In contrast, in the pairing pseudogap
IT’egime of this paper wherer/v,>1 and singly quantized
(hc/2e) vortices appear to be the relevant excitatidhae
expect the effective theory to take thég1l form described
by v anda, Egs.(20) and (21).

whereH' is given by Eq.(6), va, vg are connected tpy,,
pg via Eq.(19), and L, is independent of-.

The problem lurks inCq[ pa,pg]—this is just the entropy
functional of fluctuatingrree A(B) vortex-antivortex defects
and has the following symmetryig)— — pacg) With pga)
kept unchanged. This symmetry reflects the fact that the e
tropic “interactions” do not depend on vorticity. Above the
Kosterlitz-Thouless transition we can expand:

Ka , Kg 5

Lo (VXVRP+ - (VXVg) P+ (o), (23)
E. Jacobian £ ,a,] and its Maxwellian form
where the ellipsis denotes higher-order terms and the coeffi- ] ) oLy “], ) . ) ,
cientsKg(lB)—m,A(B) (see Appendix A for details Havmg elucidated the origin of the coarse-gralngd(]l)l

The above-discussed symmetry of Hamiltonigh, Eq.  9auge fieldw, anda, and settled on the symmetrized FT
(6), demands that anda, Egs.(20) and(21), be the natural transformat|or(4_) as the natural gauge choice for_thls prob-
choice for independent distributed vortex fluctuation gaugéem’ there remains one more task to be accompllshed befpre
fields which should appear in our ultimate effective theory, V& €an conclude this section. We need to derive a precise
Lo, however, collides with this symmetry {'—if we re-  €XPression for the Iong-qllstance, low-energy form qf the
placevag—v+a in Eq. (23), we realize thav anda are Jacobian” £y[v,,a,] which serves as the “bare action

coupledthroughZ, in the general cask ,# Kg: for the gauge fields, anda, of our effective theory. As
0 AT B shown below, this form is a noncompact Maxwellian whose

KatKg stiffnessK (or inverse “charge” 1¢>=K) stands in intimate
Lo— 7 [(VXV)2+(VXa)?] relation to the helicity modulus tensor of a dSC and, in the
pseudogap regime of strong superconducting fluctuations,
Ka—Kpg can be expressed in terms ofinite physical superconduct-
5 (VXa)-(VXv). (24 ing correlation lengthy,: Ko £2.[2D] andK o £ [(2+1)D].

As we enter the superconducting phase ggg->«, K—o
Therefore, via its coupling t@, the superfluid velocityy  as well (or e>—0), implying thatv,, anda, have become
couples to the “spin” of topological fermions and ultimately massive. Our derivation, the results of which were originally
to the truespin of the real electrons. This is an unacceptablequoted and used in Ref. 15, can be accomplished with re-
feature for the effective theory and seriously handicaps thenarkably little algebra and holds for the Ginzburg-Landau
general "A-B” gauge, in which the original phase is split model, XY model, or any other representation of supercon-
into ¢—@at+ @, With @, €ach containing somarbi- ducting fluctuations. This is no accident—the straightforward
trary fraction of the original vortex defects. In contrast, the relationship between the massléss massive character of
symmetrized transformatiof@) which apportions vortex de- Lo[v,.a,] and the superconducting phase disortter or-
fects equally betweerp, and ¢ (Ref. 23 leads toK,  dern is a consequence of rather general physical and symme-
=Kpg and to a decoupling of anda at quadratic order, thus try principles.
eliminating the problem at its root. Furthermore, even if we To make good on the above claim consider first a simple
start with the general A-B” gauge, the renormalization of example of answave superconductor with a large gap
Ly arising from integration over fermions will ultimately extending over all of the Fermi surface. We can also view
drive Ky—Kg—0 and make the coupling of and a irrel- this as a model for the high-energy BdG quasiparticles in
evantin the RG sensé This argument is actually quite rig- dSC, those far removed from the nodes. The action takes a
orous in the case of quantum fluctuations where the symméerm similar to Eq.(10):
trized gauge4) represents a fixed point in the RG analysis
(see below*° Consequently, it appears that the symmetrized . . : ) ) o mi o
singular transformatio4) employed in Eq(10) is the pre- L=VT(d,+ia)ogtiv 03]V +WHWY+ Lo[v,,a,l,
ferred gauge for the construction of the effective low-energy (29
theory>®3n this respect, while all the singul#-B gauges
are created equal some are ultimately more equal than othetsut with . defined as
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%(%+V)2—6F A F[VXAeXt]=F[O]+(

2
iei XJ d2r (VX A®Y 24 ...
c
. (26 (29)

1 - 2
A T om(TTV) e Note that ((2)2/c?)y is just the diamagnetic susceptibility
o in the pseudogap statg. determines the long-wavelength
with w=p+a. Herev, in the fermionic action(but not in  form of the helicity modulus tensor ,,(q) defined as
Lo) goes intaw ,— (e/c)A,, when the electromagnetic field is
included. The reader might wish to recall here that we have 5°F
definedLq[v,,a,] in this particular way to clearly separate YMV(Q):QéAext(q)aAext(_q)
superflow-mediated interactions among vortices, which in- ® v
cludeA,,, from entropic effects and short-range amplitude-
driven core-overlap interactions, which do not.

(30

Aext L,0
I

The above is the more general formf,,(q) applicable to
uniaxially symmetric 3D and2+1)D XY or Ginzburg-
Landau (GL) models; in 2D onlyY,,(q) appears. In the

' ' . long-wavelength limitY,,(q) vanishes ag’y:
We can now reap the benefits of this convenient separa-

tion. In the language of BAG fermions the syst€2h) is a c2
large gap “semiconductor” and the Berry gauge field >
couples to it minimally through “BdG” vector and scalar (2e)
potentialsa and a,. Such a BdG semiconductor is a poor for the isotropic case, while for the anisotropic situatjpn
dielectric diamagnet with respect &,. We proceed to ig- #X|»
nore its “diamagnetic susceptibility” and also sa&t=0 to
concentrate on thermal fluctuations. All this means is that the ¢?
Berry gauge field part of the coupling between quasiparticle?Ze)zYuv(Q): (X~ X1) €zan€28:9205 X1 €pan€ppralp-
and vortices in a large-gagpwave superconductor influences 32)
the latter only through weak short-range interactions which )
are unimportant in the region of strong vortex fluctuations€ag, iS the Levi-Civita symbol, summation over repeated
near the Kosterlitz-Thouless transition. We can thereforéndices is understood, and indeof the anisotropic 3D GL
drop a from the fermionic part of the action and integrate of XY model is replaced by for the (2+1)D case. (2)%/c?
over it to obtainL, in terms of physical vorticity(r)=(V is factored out for later convenience.
X v)/. Additional integration over the fermions produces So what isK? Let us compute the helicity modulus of the
the effective free energy functional for vortices: problem explicitly. This is done by absorbing the small trans-
verse vector potentiah®into v in Egs.(25) and(26) and
2 integrating over the new variable- (e/c)A® The hecility
+(--)+Lolpl,  (27)  modulus tensor measures the screening properties of the vor-
tex system. In a superconductor, with topological defects
where we have used our earlier notation and have introducdabund in vortex-antivortex dipoles, there is no screening at
a small external transverse vector potenfi&. The ellipsis  long distances. This translates into a Meissner effecAfdt
denotes higher-order contributions to the vortex interactionsWhen the dipoles unbind and some free vortex-antivortex
As discussed earlier in this section, the familiar long-rangeexcitations appear screening is now possible over all length
interactions between vortices lead directly to the standardcales and there is no Meissner effect A6t Information
Coulomb gas representation of the vortex-antivortex fluctuaen the presence or absence of such screening is actually
tion problem and Kosterlitz-Thouless transition. stored entirely inl,, where A®* reemerges after the above
The presence of these long-range interactions implies thathange of variables. We finally obtain
the vortex system is incompressible, Ed.6), and long-
distance vortex density fluctuations are suppressed. When
studying the coupling of BdG quasipatrticles to these fluctua-
tions it therefore suffices to expand the “entropic” part:

1. Thermal vortex-antivortex fluctuations

Y;LV(Q):XepauprVQaQB+ T (31)

— M2 _E ext
Fpl=M? 2v——A

2’772

lim szl’eiq'r<5p(r)5p(0)>, (33
la|—07"

dy=K-—

where the thermal averade- - ) is over the free energ§27)
1, ) 1 5 with A®'=0 or, equivalently(25). In the normal phase only
Lolp]=5mKép™ ... =5K(VXV)"+---. (28 the first term contributes in the long-wavelength limit, the
second being down by an extra power @f courtesy of
The above expansion is justified aboVg since we know long-range vortex interactions. Consequentfy=4y [the
that atT>T, we must match the purely entropic form of a factor of 4 is due to the fact that the true superfluid velocity
noninteracting particle systent,,x 8p? (see Appendix A is 2v (Ref. 28].

To uncover the physical meaning of the coeffici&ntve We see that in the pseudogap phase, with free vortex de-
expand the free energly of the vortex system to second fects available to screer(y[v] takes on a massless Max-
order in A® In the pseudogap state gauge invariance dewellian form, the stiffness of which is given by the diamag-
mands thafF depend only orV X A%< netic susceptibility of a strongly fluctuating superconductor.
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In the fluctuation regiory is given by the superconducting employs a Ginzburg-Landau theor)Y model, vortex-

correlation lengthég. (Ref. 34: antivortex Coulomb plasma, or any other description of
) strongly fluctuating dSC, as long as such a description prop-
K=4x=4C,TE, (34 erly takes into account vortex-antivortex fluctuations and re-

produces Kosterlitz-Thouless phenomenology. In Appendix
A we show that within the continuum vortex-antivortex Cou-
lomb plasma model,

where(C, is a numerical constant, intrinsic to a 2D GXY,
or some other model of superconducting fluctuations.

As we approaciT;, é,— o0 and the stiffness of the Max-
wellian term (28) diverges. This can be interpreted as the

Doppler gauge field becoming massive. Indeed, immediately 2 2
below the Kosterlitz-Thouless transition @, £,=m?v? Lo sznl[(va) +(Vxarl, 37
+---, wherem,<M andm,—0 asT—T, . This is just a
reflection of the helicity modulus tensor now becomfimite ~ Wheren, is the average density dfee vortex and antivortex
in the long-wavelength limit, defects. Comparison with Eq36) allows us to identify
£l amiyn, 1B
4e? m’m?
Yy i m 2. Quantum fluctuations of (2-1)D vortex loops

Topological defects are now bound in vortex-antivortex pairsti r'll'he fabove trii‘?mt/s fta?( Ibe gen_?rr]allzed tﬁclq\tﬁ?;lm fluctua-
and cannot screen, resulting in the Meissner effectAfsf. ons of spacetime vortex 10ops. he supertio )

The system is a superconductor antiad become massive. S2USTY OXVa®)) =27 a@g)u, WHere jae),(x) are the

Returning to ad-wave superconductor, we can retrace theSOarse-grained vorticities associated wAlB) vortex de-

steps in the above analysis but we must repiagein Eq. fect; and(j e),.) = 0. The topology of vortex Ioo'ps dE:tates

: , . that j ogy,(X) be a purely transverse field, i.@.; o) =0,
(25 with H’, Eg. (6). Now, instead of a large-gap BdG (B) : (B) .
“semiconducior ” We ére de,aling with a narrow-gap “semi- reflecting the fact that loops have no starting or ending point.

conductor” or BdG “semimetal” because of the low-energy Again, we begin with a large-gapwave superconductor and

nodal quasiparticles. This means that we must restore thyse its poor BAG diamagnetic and dielectric nature to justify

Berry gauge fielda to the fermionic action since the contri- 3ropp|ng the_Berry gauge f'emﬂ. from t“he fermlenlc part of
: L . . Eq. (25 and integrating ovea, in the “entropic” part con-
bution from nodal quasiparticles makes its BdG dlamag'tainin Lolv,.a.] m
netic susceptibility” very largexgqe~1/T>1/T* (see the hg ~OLU Gl he fermi . .
next sectiopn The long-distance fluctuations efanda are The Integration over the fermions contains an important
) novelty specific to thé2+1)D case: the appearance of Berry
now both strongly suppressed, the former through incom-

e phase terms for quantum vortices as they wind around fer-
.ﬁ’.ﬁ:s‘;ﬁgwsol:;hti \g(r;?;jyé(t&giand the latter througiic. mions. Such a Berry phase is the consequence of the first-

order time derivative in the original fermionic actigh). If
K Kg we think of spacetime vortex loops as world lines of some
Lo= T(VXVA)2+T(VXVB)2+(~ o), (35)  relativistic quantum bosons dual to the Cooper pair field
A(r,7), as we do in Appendix A, then these bosons see Coo-
whereK,=Kg=K is mandated by the FT singular gauge. Per pairs and quasiparticles as sources of “magnetic” Jffux.
Since in our gauge the fermion spin and charge channeldt the mean-field level, this translates into a dual “Abriko-
decouple, A% still couples only tov and the above argu- SOV lattice” or a Wigner crystal of holes in a dual superfluid.
ments connecting to the helicity modulus and diamagnetic Accordingly, the nonsuperconducting ground state in the

susceptibilityy follow through. This finally gives the Max- Pseudogap regime will likely contain a weak charge
wellian form of Ref. 15: modulation—the modulation is made weak by the same

strong fluctuations that makE,<T* (Tnems) . The focus of
K 5 5 the present paper being a symmetric AFL description of the
Lo— 5 (VXV)"+5(VXa)T, (36)  pseudogap, we postpone the discussion of this point to part II
and will ignore it for the rest of this paper. This is justified by
whereK is still given by Eq.(34). Note, however, thags.of  the fact thata, does not couple to charge directly and is
a d-wave and of ans-wave superconductor are two rather quantitatively valid in the windowl,A¢<(w,vg 4|0])<T*,
differentfunctions ofT, x, and other parameters of the prob- where A; is any small gap in the nodal TF spectrum pro-
lem, due to strong Berry gauge field renormalizations of vorduced by the said charge modulation.
tex interactions in thed-wave case. Nonetheless, ds Hereafter, we blissfully turn a blind eye to the above
—T,, the Kosterlitz-Thouless critical behavior remains un-subtleties and assume that the transition from a dSC into a
affected sinceygyg, While large, is still finite at all finiteT. pseudogap phase proceeds via the unbinding of vortex loops
Just as advertised, we have shown th&pa,pg] of a (2+1)D XY model or its GL counterpart or, equiva-
=Lo[Vv,a] in the pseudogap state takes on the massless Majently, an anisotropic 3IXY or GL model where the role of
wellian form (36), with the stiffnesK set by the true super- imaginary time is taken on by a third spatial axi® Having
conducting correlation lengtéy., Eq.(34). This result holds learned all we really need from an earlier 2D example we
as a general feature of our theory irrespective of whether onean now integrate the fermions to obtain the effective La-
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grangian for coarse-grained spacetime lodpsj,=(d

1
Xv),,]: 5 Xeac(®)(0%8,,—0,0,)a,(d)a,(—q)

2

+ ()t Lol 4], (43)

~|al[8,,,—(9,d,/9%)]a,(a)a,(—q).

In the terminology of our chimerical BAG “semimetal,” the
whereM,=M,=M andM .=M/cg, with cs~vg being the  “susceptibility” xgqg iS not merely very large; it diverges,
effective “speed of light” in the vortex loop spacetime. The y,.s~1/q, asq—0, and is computed in detail in Sec. IV. We
incompressibility condition readsj ,(q)] ,,(—q))~0|2[5,w use this pleasing fact to observe that we are fully justified in
—(0,9,/9%)] and in the pseudogap state permits the expanexpandingLo[ja,.jg,] and retaining only quadratic terms
sion as long as we keep a safe distance from the actual phase
transition:

(38)

2e
ext
2vﬂ— ?Aﬂ

L[j, =M%

R SR | .
Loli =5t 2 Kt (39

Ka Kg
Lo= 759X+ (9Xvp)y+ (), (44)
whereK,=K,=K#K_. Using an analogy with the uniaxi-
ally symmetric anisotropic 3IXY (or GL) model we can

expand the ground-state energy in the manner of(£9):

(2e)?
2¢c? % XLl

X J dx(Ix AT |,

whereK,, =Kz, =K, is again assured by our choice of the
FT singular gaugé4) and (11).

The above reasoning merits an amusing aside: beside the
ubiquitous incompressibility(((aXv)ﬂ(axU)V>~q2[5W
- (quqquz)]) the integration over nodal fermions now also
occasions  diverging xgqg, imMplying ((dxa),(d%xa),)
~q[5,w—(qﬂqy/q2)]. Had we chosen a singular gauge in
which the set#A andB were not equivalent, like the Ander-
son gaugé; and thereforeK,,,#Kg,, the ensuing {xv)
-(9xa) coupling in Ly, Egs.(44) and(24), would now be
driven tozeroin the long-distance limit as ainrelevant op-

E[ox A =E[0]+

(40)

with x| = xx=xy=x andx|= x,# x. Note that the form of
Lo, EQ.(39), follows directly from the requirement that there
be infinitely large vortex loops, resulting in vorticity fluctua- ; i a i
tions over all distances. Combined with Ed0) and then €rator in the RG sensé.The reason is simple: the coupling
translated to the language of(a+1)D XY (GL) model it of gauge fields, anda,, to topological fermlons mandates
tells us something already familiar: upon the transition to thghat they deco“uple at”the qyad_ra:(lmrmonu) level due to
pseudogap state generated by the vortex loop unbinding, tHcoupling of “charge” and “spin” channels for TF. Such a
superconductor has turned into an insulafoy. and y, de-  coupling ofv, anda, can only arise from’, by our unin-
termine the diamagnetic and dielectric susceptibilities of thid0'Med choice of a singular gauge. Since baix ()" and
insulating pseudogap state. (Qx a). terms in Eg.(44) are strqngly relevan.t due to the
The explicit computation o¥ ,,,(q), Egs.(30) and (32, diverging contributions they receive from fermions, the cou-
leads to pling constant in front of {Xv)-(d%Xa), proportional to
Ka.—Kg,, is driven to zero under repeated applications of
the RG transformation. Therefore, the FT gatgeand(11),
specifically designed to ensut€,,—Kg,=0 at the very
4y s is recovered as an RG fixed pofht.
_ _ o _ Finally, we rewrite Eq.(44) in terms ofv,,a,=(1/2)
where the second term is again eliminated by the iNCOMX (v, *0vg,),
pressibility of the vortex system. This result$in
&
K:4X:4C3§T‘ KT:4X’T:4C3§_’

4Xi,T:Ki,T_Ki2,TqT2 lim fdsxeiq'x<j(x)i,7'j(O)i,7>'
q—0"

K K
£0—>7"(a><v)i+7"(a><a)i, (45)

(42)
and observe that the fact thaftXt couples only taw , means
5 ! Ao that the expressiont42) for K, is still valid. Of course,
model:x, =C3T&, x|=C3T&L/§), Cs being the intrinsic nu- ¢ (x, T) is now truly different from itsswave counterpart,
merical constant for those model§;¢C,). In the case of including a possible difference in the critical exponent, since
(2+1)D vortex loops¢ 5. since our adopted model has the the coupling ofd-wave quasiparticles to the Berry gauge
dynamical critical exponert=1. Thus, we again encounter field is marginal at the RG engineering level and may change
a massless Maxwellian forg89) whose stiffness diverges as the quantum critical behavior of the superconductor-
we approach a superconductor except now this divergence jsseudogaginsulato transition.
linear in the superconducting correlation lendthg &..

The application to a-wave superconductor is straightfor-
ward: the nodal structure of BAG quasiparticles in dSC helps
along the way by providing an anomalous stiffness for the

where we used the result for the anisotropic ¥ or GL

Ill. QED 3: A LOW-ENERGY EFFECTIVE THEORY OF
THE PSEUDOGAP STATE

Berry gauge fielda,—upon integration over the nodal fer-
mions the following term emerges in the effective action:

We have now elucidated the nature of the coupling of our
two gauge fieldw , anda, to TF’'s and have specified their
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1 1
Eo[aﬂ]zEK#(axa)iEE(axa)i. (48)

ve=de/dk denotes the Fermi velocity at the node angd
=dA/ok denotes the gap velocity. Note that and v,
already contain renormalizations coming from high-energy
interactions and are effective material parameters of our
theory. Similarly,K ,= 1/ei, derived in the previous section
in terms of £,{x,T), are treated as adjustable parameters
which are matched to experimentally available information
on the range of superconducting correlations in the
pseudogap state.

The Doppler gauge field, has disappeared from the

FIG. 2. Schematic representation of the Fermi surface of thé20Ve expression. After informing us on how to properly

cuprate superconductors with the indicated nodal points of theCoarse-grain” the theory and dressing ofig-valued Berry
de2_y2 gap. gauge field in its ultimate (1) Maxwellian outfit, the time

has come to drop,, its eventual demise caused by the
“bare” thermal and quantum dynamics encoded inMeissner coupling to BdG fermions discussed in the previ-
Lo[v,.a,], Egs.(36) and (45). To make further progress ©US sect!on. After being “screened” by high-energy and
toward our ultimate goal of describing the low-energy fermi-nodal TF's it is rendered massive both in the superconduct-
ology in the pseudogap state, we now focus our attention off!d and pseudogap states and unimportant for low-energy
the nodal quasiparticle excitations of the Hamiltonia, ~ PhySiCS. Its legacy lives on, however, having given birth to
Eq. (6). This will enable us to apply the machinery of the the U1) noncompact character af, . _ ,
perturbative RG to noddimasslessTF's and rid our effec- 1N contrast, the Berry gauge fielr, remainsmasslessn
tive theory of all remaining excess baggage. the pseudogap state, as it cannot acquire mass by coupling to
the fermions. As seen from E¢7), a,, couples minimally
) ) ) to the Dirac fermions and therefore its massless character is
A. Farewell to v, and residual interactions protected by gauge invariance. Physically, one can also argue
As indicated in Fig. 2, the low-energy quasiparticles arethat a, couples to the TFspin three-current—in a spin-
located at the four nodal points of thi, gap function: singletd-wave superconductor $B) spin symmetry must
ki7=(*kg,0) and k,5=(0,+kg), hereafter denoted as remain unbroken, thereby ensuring tagtremains massless.
(1,1) and (2,2, respectively. To focus on the leading low- tS massless Maxwellian dynamidg8) in the pseudogap
energy behavior of the fermionic excitations near the node§tate can therefore be traced back to the topological state of
we follow the standard proceddfeand linearize the La- spacetime vortex loops and directly reflects the absence of

grangian(10). To this end we write our TF spind? as a true superconducting ordgiSec. 1) or, equivalently, the
sum of four ﬁodal Fermi fields presence of a “vortex loop condensate” and dual onder-

pendix A).

L S o o We have also dispensed with the residual interactions rep-
V=g 1"V +e 1 g, Wi+ e Wyt ek o,y resented byH,sin Eq. (2). These interactions are generically
(46) short-ranged contributions from the particle-hdfeh) and

. ) . amplitude fluctuations part of the p-p channel and in our new
The o, matrices have been inserted here for convenienceygtation are exemplified by

they ensure that we eventually recover the conventional form
of the QED; Lagrangian(Without theo, matrices the Dirac

velocities at 12 nodes would have been negativimserting

V¥ into Eq.(10) and systematically neglecting the irrelevant

higher order derivative¥, we obtain a nodal Lagrangian of The effective verte:, has a scaling dimension 1 at the
the form engineering level. This follows from the RG analysis near

the massless Dirac points which sets the dimensio¥f ofo
[length]~1. The implication is that,,. is irrelevantfor low-
Lp= E_{PF[DTJriv,:DXcr3+ivADycrl]\Tf| energy physics in the perturbative RG sense and we are
=11 therefore well within our rights in setting;,— 0. However,
_ 3 the residual interactions will not go so quietly into the night:
+ Eillfr[DTJrquDy<73+ivADXal]\IquEO[aM], such interactions are known to become important if stronger
1=22 than some critical valug,.3%°In the present theory, this is
47 bound to happen in the severely underdoped regime and at
half-filling, asx—0.22 In this case, the residual interactions
where D ,=d,+ia, denotes the covariant derivative and are becoming large and comparable in scale to the pairing
Lola,] is given by Eq.(45): pseudogap, and are likely to cause chiral symmetry break-
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ing which leads to spontaneous mass generation for massless oy 0 o 0
Dirac fermions. The CSB and its variety of patterns in the yo—< 0 - ) 712( 0 - ,
context of the theory47) and (48) in underdoped cuprates 72 71
were discussed in Refs. 21 and 22 and are the subject of part . 0
[l of this paper. Here, where we have limited ourselves to the 72:( 73 ) (53
chirally symmetric phase, we assume<I., which we ex- 0 o3
pegt to be the case for moderate underdoping, andset now form the usual Dirac algebra
—VU.
In the end, we are left with Eq$47) and (48) as our (v v,1=268,, (54)
effective low-energy theory for nodal TF’s. This theory, de- _ . .
rived previously in Ref. 15, is the chief dynamical muscle@nd furthermore satisfy
behind the physics discussed in this paper. It describes the . .
problem of massless topological fermions interacting with Tr(y,)=0, Try,7,)=46,,. (55

massless vortex “Beryons,” i.e., the quanta of the Berry
gauge fielda, , and is formally equivalent to the Euclidean
guantum electrodynamics of massless Dirac fermionstith 2
dimensions (QEB). It, however, suffers from an intrinsic
Dirac anisotropy by virtue obg#vy, .

The use of the adjoint spind¥ instead of the conven-
tional YT is a purely formal device which will simplify cal-
culations but does not alter the physical content of the theory.
At the end of the calculation we have to remember to undo
the transformatioit51) by multiplying the(Y (x) Y (x")) cor-

] relator by iy, to obtain the physical correlator
B. QED; Lagrangian for the pseudogap state <Y(X)YT(X’)>_

We are now in position to do some real calculations Next, to make the formalism simpler still we can elimi-
within our theory. Before we plunge into the algebra, how-nate the asymmetry between the two pairs of nodes by per-
ever, we first apply some cosmetics: The Lagrang®h is  forming an internal S(®) rotation at nodes 2, :2
not in the standard from as used in quantum electrodynamics _
where the matrices associated with the components of cova- Y,—e (T, Y, (56)
riant derivatives form a Dirac algebra and mutually anticom-
mute. In(47) the temporal derivative is associated with a unit
matrix and it therefore commutégsather than anticommutes o 1
with o1 and o3 matrices associated with the spatial deriva- o= > Yv{)y,(id,~a,)Y+ 5K (9% a)?, (57
tives. These nonstandard commutation relations, however, =12
lead to some rather unwieldy algebra. For this reason weg . 1) _ (2)_
manipulate the Lagrangia@?) into a slightly different form With 0})=(Log vs) andv?=(Los o).
that is consistent with the usual field-theoretic notation. First,
we combine each pair of antipod@lime-reversefl two-
component spinors into one four-component spinor,

leading to the anisotropic QEOL_agrangian

IV. SPECTRAL PROPERTIES OF TOPOLOGICAL
FERMIONS AND PHYSICAL ELECTRONS IN QED ;

We shall start by considering the isotropic case=uv,

¥, v, =1, which although unphysical in the strictest sense is com-
Yi=|. |, =~ | (50)  putationally much simpler and provides penetrating insights
W1, ¥3, into the physics embodied by the QERagrangian(57).

_ - _ After we have understood the isotropic case we will then be
Second, we define a new adjoint four-component spinor  ready to tackle the calculation for the general case and will
show that Dirac cone anisotropy does not modify the essen-
Y =—iyt 51 tial physics discussed here. To make contact with the stan-
==Y yo. (51) . .
dard literature on QER we further consider a more general

In terms of this new spinor the Lagrangian becomes problem withN pairs of nodes described by the Lagrangian

N
_ 1
— 1 Lo=2 Yy, (id,—a,)Y,+ =K (dxa)>. (58
Lo= 2> Y,7,D0Y+ EKM(&Xa)Z , (52 b 2’1 Yulidma)Yit 5 Ky(9xa),. (58
1=1,2
For the basic problem of a single CyQayer N=2. As we
with covariant derivatives will show in the next section itself is variable and can be
equal to 4 or 6 in bilayer and multilayer cuprates. Our ana-
DW=i[(d.4ia.).ve(dotiay).va(dy+iay)], lytic results can be viewed as arising from the formall 1/
i I8 weldctiay) valdytiay)] expansion, although we expect them to be qualitativahd
. . . . even quantitatively accurate even foN=2 as long as we
D@=i[(a,+ia,),ve(dy+iay) va(dytia,]. are within thesymmetricphase of QEB — the quantitative
accuracy stems from a fortuitous conspiracy of small numeri-
The 4x4 gamma matrices, defined as cal prefactors®

054535-13



M. FRANZ, Z. TEVSANOVI(,Z, AND O. VAFEK PHYSICAL REVIEW B 66, 054535 (2002

a) g+k tifies the quadratic level expansion 6§, Eq. (45), and ren-
ders higher-order termgrelevant in the RG sense. The
theory therefore clears an important self-consistency check.

At low energies the fully dressed Berryon propagator is
given as the inverse of the polarization,

D, (a)=11,(q). (62)

In order to perform this inversion we have to fix the gauge.
To this end we implement the usual gauge fixing procedure

b) by replacingqﬂqqu2—>(1—_§*1)qu,,/q2_in Eq. (60). Here
q £=0 parametrizes the orbit of all covariant gauges. For ex-

ample,£=0 corresponds to the Lorentz gaukga (k) =0
3 3 while £=1 corresponds to the Feynman gauge. Upon inver-
k k sion we obtain the low-energy Berryon propagator

k—q

8 v
FIG. 3. One-loop Berryon polarizatiof@ and TF self-energy D.(a)= IoIN Opv— qg?
(b).

in agreement with previous authds.

(1-9), (63

A. Berryon propagator

Ultimately, we are interested in the properties of physical B. TF self-energy and propagator
electrons. To describe those we need to understand the prop- the T propagator is a gauge-dependent entity and one
erties of the electron-electron interaction mediated by theq 4 therefore immediately object that as such it has no
gauge fielda,, . To this end we proceed to calculate the Berry yirect physical content and is of no interest. Such a view-
gauge field propagator by integrating out the fermion degreeﬁoim, while expressed frequently, is actually quite naive. The
of freedom from the Lagrangia($8). To one-loop order this ¢5ity s that in gauge theories various gauge-variant objects

corresponds to evaluating the vacuum polarization bubble,an often be connected to physical gauge-invariant quantities
Fig. 3@. Employing the standard rules for Feynman dia-\yhen computed within particular choice of gauge. In prac-

grams in the momentum spatehe vacuum polarization tice, a rather typical occurrence is that a gauge-invariant
reads physical propagator is given by a hugely nonlocal form
a3k which is basically impossible to compute except in a judi-

I,,(q)= Nf ———3T1[Go(K)7,Go(k+a)y,]. (59 ciously chosen gauge where it is related to a much simpler,

(2m) and therefore far easier to compute, gauge-variant propaga-

Here Go(k) =k, v, /k? is the free Dirac Green functiork tor. Consquently, a gauge_—variant propagator computed
=(ko,k) denotes the Euclidean three-momentum, and th&long a particular gauge orbit often contains relevant infor-

trace is performed over the matrices. mation about the true dynamics of a gauge theory—the trick
The integral in Eq(59) is a standard onsee Appendix B 1S t0 know how to extract this information.
for the details of computatiorand the result is This general statement holds in the case of QEBwell.

The TF propagator evaluated in an arbitrary covariant gauge
a,9, parametrized by contains useful information about the na-
rak (600 ture of the fermionic excitations of the system. We will show
that its coupling to the massless gauge field destroys the
where|q|=\/g?. The one-loop effective action for the Berry usual Fermi liquid pole and results in the propagator display-
gauge field therefore becomes# 3fd3qLg with ing a Luttinger-like behavior, characterized by a small
anomalous dimension. In the next subsection we argue that
the physical electron propagator of our theory, which can be
a,(q)a,(—a). related to a particular gauge-invariant fermion propagator of
(61)  QED;, exhibits the same Luttinger-like behavior.

. The lowest-order self-energy diagram is depicted in Fig.
2 _
At low energies and Iong Wavelengthqj/e <N/8, the fer 3(b) and reads

mion polarization completely overwhelms the original Max-

well bare action term and the Berryon properties become d3q

universal. In particular, the coupling constang¢?drops out (k)= f (ZT)sDMV(Q)?’MGo(k+ a7y, (64)

at low energies and only reappears as the ultraviolet cutoff.

Physically, the medium of massless Dirac fermions screenégain, the computation is rather straightforwasge Appen-

the long-range interactions mediated &y. In QED; this  dix B for detaily and the most divergent part is

screening is incomplete: the gauge field becomes stiffer by

one power ofj but still remainsmnasslessin accordance with ~4(2-3¢) ( A )
. ; . . = ———KIn| 7/,

our general expectations. This anomalous stiffness,glis- 37N [K|

N
H;LV(Q): §|Q| 5;LV_

N 1 q.9
_ g2 L.
16|q|+ 2e2q )(6/1.11 q2

Lgla]=

(65
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where we have introduced the Feynman “slash” notatkon R e iealX) 0
=K, ¥, . . . Q(x)= 0 oo | (71
To the leading I order, the inverse TF propagator is
given by we can writeG®®¢in terms of TF fields as
A ele 'Y=/ O J TFrtrv' YO Trvr
G (K=K 1+ nln M” 66 G x—x)=(Q0T)TI(x)Q'(x). (72
Ordinary spectroscopies reflect the diagonal part of the elec-
with tron propagator,
4(2-3¢) [GEoGx—x") Iy = (e~ 1ealI=eaCONT () T (x")]yy),
v NI (67) (73

and a similar expression f66*{x—x")],,. We may recast
Higher-order contributions in W will necessarily affect this  this in a more convenient form by writing the phase differ-
result. Renormalization group arguméfitand nonperturba- ence in the exponent as a line integral of a gradient along a
tive approaché‘é strongly suggest that Eq66) represents straight line connectingk andx’,
the start of a perturbative series that eventually resums into a
power law:

X!
o0 enx )= [“o0nds, 8
X
Ui
. (68) and then expressing the phase gradient in terms of the two
gauge fieldsa, andv ,:

Gl(k):k(A
K]

This implies a real-space propagator of the form
. [Ge'e%x—x’)]11=<ex;(ifx (vﬂ+aﬂ)dsﬁ)
X

r3+7]

G(r)=A""

(69

><[‘I’(X)‘I’*(X’)]u>- (79
Thus, the TF propagator exhibits a Luttinger-like algebraic

singularity at small momenta, characterized by an _anomalou*shis expression only involves the coarse-grained Doppler
exponent ». In the Lorentz gauge §=0) we find % and Berry gauge fields and TF's, which are precisely the
=—8/37°N=—0.13, forN=2. This rather small numerical fie|ds that enter our effective low-energy theory, and is there-
value_ for the anomalous dimension exppn@vlhmh is even  fore amenable to analysis. Note that Eff) is only a long-
considerably smaller foN=4 or N=6) indicates that the distance approximation to the exact electron propag@@r
unraveling of the Fermi liquid pole in the original TF propa- \which is defined through discrete vortex variables entering
gator brought about by its interaction with the masslessig oalep).

Berry gauge field is in a certain sense “weak.” Note also that  Ag discussed earlier, the Doppler gauge fieldis mas-

7 is negativein the Lorentz gauge while it becomes positive, sjve in both normal and superconducting phases and there-
7=4/37*N=0.06 forN=2, in the Feynman gaug&€1).  fore its fluctuations will not affect the low-energy, long-
The above results provide a strong indication that the phySiwaveIength properties of the electron propagator. We may

cal, gauge-invariant fermion propagator also has a Luttingefthys remove it from the line integral, EZ5), and focus on
like form, characterized by a small ambsitiveanomalous  the quantity

dimension'®> We now show that this indeed is the case.

g(x—x’):<exp(ifxra#dsﬂ)Y(x)\?(x’)>. (76)

C. Physical electron propagator

Various spectroscopies on cuprates, such as anglggy considering the transformation properties¥ofx) under
resolved photoemission spectrosC¢BRPES and scanning  ihe gauge transformations with respectap it is easy to

tunneli.ng microscopy(STM), as well as numerous optical_ verify that G(x—x') is gauge-invariant This quantity there-
and microwave techniques, all measure the spectral functiop represents a gauge invariant propagator of QEBory

Or a reall physical e(jleptron, not of T'ES' Therefore, wefz ahre(52) and its knowledge allows us to reconstruct the diagonal
ultimately Interested in computing the propagator of the.,mponents of the electron propagator by means of

physical electron in our theory,
[GEex—x")Tii=[1 7oG(x—x")];; - (77)

It seems natural to attempt to relate the components of the
whereW (x) is the original electron field operator appearing above gauge-invariant propagator to the physical electron
in Eq. (1) (the reader should recall that this operator alreadypropagator, since the latter by definition must be gauge in-
contains high-energy renormalizations built in at the veryvariant under the transformations of the internal gauge field
beginning. If we define a matrix a

G x—x")=(¥T(x)¥T(x")), (70

e
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The question arises as to how to evaluate the gaugezation which respects the gauge invariance and preserves
invariant propagatoj(x—x’). This turns out to be a non- the long-wavelength, low-energy properties of the physical
trivial issue since, despite its pleasing manifest invariancgropagators, and the offending linear part of the UV diver-
under gauge and spacetime symmetries,(E6). also exhib-  gence cancels out between numerator and denominator in a
its a severglinear ultraviolet divergence arising from the gauge-invariant mannéAppendix Q. This allows us to ex-

Straight line integral of the gauge field. This renders it ill tract a meaningful power-law behavior far To take advan-
defined in the absence of some proper regularizats®® tage of dimensional regularization we expre§(r)
below for more details Here we adopt the approach dis- =¢ D ,,(r)r, as a Fourier transform id dimensions,
cussed by BrowH*°in the context of QEDR. Brown shows g

that the following relation exists between gauge invariant ddk e"‘ r (k-r)?
propagatorG and gauge-dependent propaga®i(Ref. 46 J —¢) k2
(see also Appendix C

. (82

and treatd as a continuous variable. This Fourier transform

G(r)=eFOG(r) (78 is evaluated in Appendix B, giving the result
wherer =x—x’ and (d—l
4
B — _ 3—d
F(r)=5 [ %[ 63,0 uz-2)0,2), (79 POZN e 17207 0IE (89

SubstitutingP(r (a— B)) into Eq. (81) and performing the
remaining integrals by means of

1 1 : 2
Ld“LdB”‘B"@+1xg+a’ @4

we find, nead=3,

with

1
.Jﬂ(z)=rMJ0 dad(z—x'—ar) (80)

representing the source term for the line integral in &6).
In the aboveG(r) andD,,(r) refer to the real-space gauge-

dependent fermion and Berryon propagators, respectively, 4(2— &) p3-d

obtained by Fourier transforming the expressi¢é8) and F(ry=— lim ( )

(63). By definition, both are to be computed @ovariant N7* 4 53—d

gauge. Brown’s result, Eq78), is an explicit statement of 42— ¢)

the fact that one can construct two gauge-invariant propaga- S >~ In(Ar)+ } (85)
tors by using the line integral of the gauge fieldsand G. N 3-d d—3

This is a rather general feature of Abelian gauge thebties The UV divergence is now parametrized by the

and is easily generalized to QEDHere G and G can be  (r-independentsecond term in the angular brackets. The
formally related through a gauge transformatisee Appen-  |eading long-distance behavior is contained in the logarithm,
dix C) and one might think oG as representing suitably implying a power-law contributiog (D ocr ~4(2~ HINT {1 the

regularizedG.*’ Alternatively, we can simply think of as gauge-invariant propagatéi(r). Combining Eqs(85) with
being another QEP fermion propagator invariant under (69) we obtairf®
gauge and spacetime symmetries just ikeNe discuss the
details pertaining to Eq.78) in Appendix C. ~ ,
To calculateG(r) from Eq.(78) we need to evaluaté(r). gry=A"7 (37 (86)
We proceed by first performing the z' integrals to obtain
or, in momentum space,

JdaJdﬁu Wr@=p)r,. (8D 3 ,
G(k)=A"7

T (87)

P

By power counting the expression féi(r) suffers from a k=7

linear UV divergence, reflecting the singular behavior of thewhere the anomalous dimension exponghtis given by
gauge field line integral at short distances. This singularity is

the main reason why direct computation of EZg) is such a 4(2-§) 16

frustrating task, despite its deceivingly compact and elegant n'=n+ “N72  3m2N° (88)
form. A typical scheme to regularize this linear UV diver-

gence interferes with gauge invariance and corrupts the efforthe last equation informs us that in the exponeit the

to extract the true physical part of E6) which we expect gauge fixing parameterhas canceled out argg(r) is indeed

to be scale invariant. The advantage of Brown’s approaclyauge invariant. We have thus verified, by explicit calcula-
(78) is twofold: it permits computation of a gauge-invariant tion to leading order in N, that Eq.(78) yields a gauge-
propagatorG in the covariant gauge where the UV diver- invariant TF propagator which we can connect to the physi-
gence can be treated with the helpdfnensional regular- cal electron propagator by means of E@7) with G—G.
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An interesting feature of the above result is that for #'=0.13 forN=4 (bilayer like YBCO or »'=0.09 forN
=2 we haveF(r)=0. In the QED literature this is known as =6 (trilayer like HgBgCa&Cuw0Og). The actual numerical
“Yennie's gauge” and its significance is that in this particular value of the anomalous dimension expongntis the “fin-
gauge the diagonal components of the TF propagator ar@erprint,” a unique mathematical signature of the symmetric
directly equal toG(r). In Yennie’s gauge one can therefore Phase of QED and therefore of the AFL state within the

evaluate various electron observables in terms of the TPS€udogap regime of underdoped cuprates. Determining

propagator without worrying about the exponential factors.dlrectly from experiments, either through various spec-

This is just the situation we have anticipated in the previou%rOSCOIOIeS or transport measurements, would b_e a major step
. ) P S Joward testing the theoretical ideas expressed in this paper.
subsection. One could also define an “anti-Yennie’s gauge

. o . : The exponentp’ of the physical electron propagator had
(org _nonlopal gauge”as itis known in the QEg[uter_ature) come under much scrutiny as of late since several effective
&=1%, in which »=0 and the effect of the gauge field fluc-

_ theories related to QEPemerged recently in condensed mat-
tuations ong(r) is contained entirely irF(r). To leading ter physics, in problems like Heisenberg antiferromagnets or
order in 1N this observation further solidifies the expecta- spin liquids. While in each case the physical content of these
tion that the leading logarithm in the self-energy indeed exmultiple reincarnations of QEpdiffers completely from the
ponentiates and the low-energy, long-length-scale propagateme discussed in the present paper and from each other, the
behaves as a power law. issue of the gauge-invariant QgDermion propagator and
Another important feature to observe is thgit>0—the  the value ofy’ looms large in all these different contexts, for
electron has acquirEd mSitiveanomaIOUS dimension. The obvious reasons. |n particu|a7)’ has been calculated re-
positivity of »" is mandatory from general considerations— cently by Rantner and Weh°2and also by KhveshchenRd.
once we perform the Euclidean rotation and obtain the realThe former authors obtain’ = —32/372N (Ref. 54 by per-
time electron propagator the conditions of unitarity and cauforming a calculation of; in the so-called axial gaugé,in
sality of our original problem demang’>0. This is also a  which the line integral of the gauge field in E6) is taken
physically sensible result implying that the interacting elec-to vanish for a particular direction in real space. A negative
tron propagatot86) decays on long length scaléesterthan  anomalous dimensios’ <0 would imply that the interact-
the free BdG electron propagator. Interaction mediated ang electron propagator imore coherentat long distances
the massless gauge field destabilizes the Fermi liquid pole ithan the propagator of a free electron and this is prohibited
the original propagator and leads to a Luttinger liquid-likeon general grounds, as discussed above. For example, a
power-law fermionic correlator in the low-energy, long- negatives’ produces a divergent electronic density of states
wavelength limit—this is our algebraic Fermi liquid, a non- and leads to unphysical singular behavior in various thermo-
Fermi-liquid symmetricphase which governs the physics of dynamic and transport quantities. Thus, the negative anoma-
the pseudogap state. The positivity gf means that the |ous dimension for the physical electron should be, in our
interacting AFL propagator isess coherenthan the free view, rejected out of hand. For the reader's benefit, we
BdG electron propagator which is just what one expects oRhould stress that we believe that the calculations carried out
intuitive grounds. We therefore propose titabe identified in Refs. 51-53 are perfectly correct, in the sense that
as the true electron propagator in our theory. = —32/37°N indeed follows from the algebra once we adopt
The Luttinger-like electron propagator that follows from the axial gauge regularization of E.6) as implemented in
Eq. (87) leads to a characteristic asymmetry between thékef. 51 and 52 and perform the calculation with logarithmic
energy and momentum distribution curi&DC and MDQ  accuracy; we have done such a calculation ourselves and
observed in ARPES experimefits(note that, within our have obtained the same result. Operationally, the problem
theory, this behavior is limited to the pseudogap gtathe  with computation ofG, Eq. (76), is not in the algebra but
MDC is a very sharp Lorentzian close to the Fermi surfaceesides in the physical interpretation of the obtained results.
while the EDC is broad, reflecting the decoherence of physiin the axial gauge regularization followed by the momentum
cal electrons in the pseudogap stateThis decoherence is space computation employed by the authors of Refs. 51 and
relatively weak with the explicit value oy’ =0.27 for the 52, the negative value fop’ arises from the treatment of
case of an individual Cu®layer whereN=2. In bilayer or  spurious gauge singularities that are invariably introduced by
multilayer system#\ could be 4, 6, or even higher and is  writing the gauge boson propagator in the axial gatige.
even smaller. The reason for this increasdiis the anisot- These singularities then must be regularized in some way
ropy of the tunneling matrix element between the constituenand this is done using aad hocprincipal value prescription
CuO, planes within a multilayer unit cell. This matrix ele- for the momentum-space integrals. The problem with this
ment effectively vanishes near the nodes, alofgr(=+ ) prescription is that the momentum-space propagator in the
directions, but is appreciable elsewhere in the Brillouinaxial gaugedoes not exist® Axial gauge is an example of a
zone®® The result is that low-energy BdG fermions on dif- singularly noncovariant gauggéike Coulomb, temporal, or
ferent constituent Cu@layers remaindecoupledwhile the  similar gaugesand as such does not fully fix the gauge. The
vortex excitations on these same layers are strooglpled  gauge transformations which are independent of the space-
within the unit cell of a multilayer, since their coupling time variablex, singled out by the axial gauge but have
comes from an integral over the full Brillouin zone. This arbitrary dependence on the remainimy-1 variables
translates to a larger effectiné in our QED;, Eq.(58), and  (X,,X3, ...) arestill allowed and cost no energy. Conse-
to a corresponding reduction in the anomalous dimensionquently, the gauge-variant two-point fermion propagator
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G(x,x') must vanish whenever,#X}, Xg#X3, . .. 56 Finally, pulling different strands together, we can write
The same problem resurfaces in a different form when onglown the full electron Green function in the AFL phase of
computes Eq(76) directly in the covariant gaug¥:the ex-  the pseudogap state. To make a connection with the notation

pectation value of the transverse pa#t=(0) of the line in-  prevalent in condensed matter physics we perform a Euclid-
ean rotatiorky—1iw in Eq. (87) and with help of Eq(77) we
obtain

tegral, {(exp( fﬁlaﬂdsﬁ)), decouples from the rest of the ex-

pression. In fact, the resuly’=—32/37°N is easily
understood as arising from the TF propagator in the Lorentz

gauge G,—g (7.=—8/37?N) being made more coherent G4k, w)=A"" —,
through simply being multiplied by the said expectation [eE+AF—w?]t 72
value of the transverse part of line integray’'& 7+ 7,
where 5,= —8/m?N from the above computation &, with

w+ o036

(91)

where we have also restored the full electron dispergjon

) and the gap functiom\, with the understanding that the
¢=0). Since(exp(/y a,ds,)):—o is the expectation value of apove form for the propagator is strictly valid only in the
a phase factor, this is clearly a troubling result — such &icinity of the nodal point and close to the isotropic limit. We

multiplicative factor can make the full propagator only lessnote that Eq(91) implies an anomalous electron density of
coherent tharG,._ as|x—x'|—o. The problem is that the states

transverse part of the line integral is more divergent than just

a simple Inr appearing in the exponent. When the dominant N(w)~w'* 7' (92)

(linean divergence is included, the full propagat@ris ex-

ponentially suppressedp(—+ =) and cannot be computed at low energies. It would be very interesting if such an

without some physically motivated UV regularization anomalous electron density of states could be measured in

schemd%7 tunneling experiments. Similarly, the Luttinger-like behavior
We have also carried out our own calculation in the axialof the propagator, Eq91), will be reflected in other physical

gauge using a different regularization scheme and obtained@pservables.

different (negativeé exponentzn’=—16/37°N. We are thus

forced to conclude that the axial gauge calculations yield v EFFECTS OF DIRAC ANISOTROPY IN SYMMETRIC

values of ' that are regularization scheme dependent and QED,
are therefore inherently unreliable. By contrast no such am- . ] )
biguities arise when employing E(f8) and the computation It is natural to examine to what extent the theory is modi-

of G yields physically reasonable positive anomalous dimenf'fEd by the_ inclusion o_f the Dlrac anisotropy, 1.e., 'ghe finite
sion given by Eq(88). difference in the.Ferml vqumtyF and the gap velocity , .
We now discuss the off-diagon@nomalouscomponents In actual materials the Dirac anisotropyp=vg/v, de-

of the electron propagator. According to Hal h creases With-decreasing- doping fromil5 in the optimally
propag Ing to 1) we have doped to~ 3 in the heavily underdoped samples.

cle , Loa00+ ea N o Tt There are two key issues: first, for a large enough number
[GEE(x—x") J1p= (e 1eaOTesbII W ()W (X")]19), of Dirac fermion speciedN, how is the chirally symmetric
infrared(IR) fixed point modified by the fact thaty # 1, and
. _ ele , _ second, as we decreasedoes the chiral symmetry breaking
and a similar expression f@G**(x—x") J,y. It is now less o0 at the same value of as in the isotropic theory? In
straightforward to interpret the phase factor in terms of OURy,iq section we address in detail the first issue and defer the
gauge fieldsa, andv,. One way to do this is to add and Giscussion of the second one to part Il.

subtractea(x") and write We determine the effect of the Dirac anisotropy, marginal
by power counting, by the perturbative renormalization
ea(X) + ea(X") =[@a(X) = pa(X") ]+ [@a(X") + @a(X")] group to first order in the larghl expansion. To the leading
) ) order & in the small anisotropyrp =1+ 5, we obtain the
- JX (0,+ aﬂ)dsﬂ+2fx v,ds,. analytic value of the RG3, function and find that it is
0

proportional tod; i.e., in the infrared thexy decreases when
(90) 6>0 and the anisotropic theory flows to the isotropic fixed

point. On the other hand, whe# 0, a increases in the IR
The first term on the right-hand side is just like the one weand again the theory flows into the isotropic fixed point.
encountered in our discussion of the diagonal propagatoifhese results hold even when anisotropy is not small as
The second term, however, involves a line integralvgf ~ shown by numerical evaluation of ti&function. Therefore,
originating at ararbitrary fixed reference point in spacetime. we conclude that the isotropic fixed point is stable against
In the nonsuperconducting phase fluctuationsvip will small anisotropy.
clearly drive any such term to zero, making the off-diagonal Furthermore, we show that in any covariant gauge renor-
terms of the electron propagator vanish. This is consisteralization of, due to the unphysical longitudinal degrees of
with our general expectation that the electron propagatofreedom isexactlythe same along any spacetime direction.
does not exhibit anomalous off-diagonal correlations in theTherefore the only contribution to the RG flow of anisotropy
normal state. comes from the physical degrees of freedom and our results
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for Bag stated above are in fact gauge invariant. In the computation of the fermion self-energy, this discrete
symmetry allows us to concentrate on a particular pair of
A. Anisotropic QD nodes without any loss of generality.
In the realm of condensed matter physics there is no Lor- B. Gauge field propagator
entz symmetry to safeguard the spacetime isotropy of the ) . . _
theory. Rather, the intrinsic Dirac anisotropy is always AS discussed above in the isotropic case, the effect of
present since it ultimately arises from complicated micro-Vortéx-antivortex fluctuations &t=0 on the fermions can, at
scopic interactions in the solid which eventually renormalize/arge distances, be included by coupling the nodal fermions
to band and pairing amplitude dispersion. Thus there is nothMinimally to a fluctuating Wl) gauge field with a standard
ing to protect the difference in the Fermi velocity Maxwell_ action. _Upon integrating out _the fermlt_)ns,_ the
— de, 19k and the gap velocity y = A, /dk from vanishing ~9auge field acquires a stiffness proportlona[ktoNhlch is
and, in fact, all HTS materials are anisotropic. e_\nother way of saying t_hat at the charged, ch|rall_y symmetric
The value ofap can be directly measured by ARPES, fixed point the gauge field has an anomalous dimensjgn
which is ultimately a “high”-energy local probe af¢ and =1 (for a discussion of this point in bosonic QED, see Ref.

v, - Since QER is free on short distances, we can take thed®)-

experimental values as the starting bare parameters of the Ve first proceed in the transverse gaulgea, = 0) which

field theory. is in some sense the most physical one considering that the
The pairing amplitude of the HTS cuprates g 2 VxXais physically related to the vorticity, i.e., an intrinsi-

symmetry, and consequently there are four nodal points ofRally transver_se guantity. We later extend our results_ to a

the Fermi surface with Dirac dispersion around which wedeneral covariant gauge. To one-loop order the screening ef-

can linearize the theory. Note that the rolescaindy direc-  fects of the fermions on the gauge field are given by the

tions are interchanged between adjacent nodes. As before, JW@larization function
combine the four two-component Dirac spinors for the op- N o
po_sﬂe (time-reversep nodes into two four—?omponents HW(k):E Z f STF[GS(Q))’;GS(Q‘FK)YZ],
spinors and label them as (),and (2,9 (see Fig. 2 n=12J (2m)

Thus, the two-point vertex function of the noninteracting (97)

theory for, say, 1ifermions is where the indexh denotes the fermion “nodal” flavor. The
above expression can be evaluated straightforwardly by not-

= yoKot v y1Kitvayaks. (93)  ing that it reduces to the isotropl¢,, (k) once the integrals
are properly rescalelf. The result can be conveniently pre-

Therefore the corresponding noninteracting “nodal” Greensented by taking advantage of the “nodal” metg, as
functions are

(2)free
l_‘11

N 9, KeGmKa
N S H,uv(k):; m\/kagzlakﬁ( 9|

Gp(k)= = . (94 K.9,K
0 k,ug,uvkv k,ug,uvkv sTR (98)
Here we introduced thédiagonal “nodal” metric g7):  Note that this expression is explicitly transverkell ,, (k)
g0 =980=1, 9iY=0%=vZ, 0¥=0P=03, as well as =IT,,(k)k,=0, and symmetric in its spacetime indices. It

the “nodal” y matricesy". In what follows we assume that also properly reduces to the isotropic expression whgn
bothvg andv, are dimensionless and that eventually one of=v,=1.
them can be chosen to be unity by an appropriate choice of However, as opposed to the isotropic case, it is not quite
the “speed of light.” as straightforward to determine the gauge field propagator
Sinceap#1 breaks the Lorentz invariance of the theoryD ,, . For example, as it stands the polarization ma(@® is
and since it is the Lorentz invariance that protects the spaceot invertible, which makes it necessary to introduce some
time isotropy, we expect thg functions forap to acquire  gauge fixing conditions. In our case the direct inversion of
finite values. However, the theory still respects time reversathe 3x 3 matrix would obscure the analysis and, therefore,
and parity and forN large enough the system is in the we choose to follow a more physical and notationally trans-
chirally symmetric phase. These symmetries force the ferparent line of reasoning which eventually leads to the correct
mion self-energy of the interacting theory to have the form expression for the gauge field propagator. Upon integrating
out the fermions and expanding the effective action to one-
2 11=A(K11.K22) (voKotved1v1iKitvadov2Ke), (95  loop order, we find that

wherek;7=k,g{)k, andk,z=k,g{?)k, . The coefficients; Lorfa,]=3MQ+11,,)a,a,, (99)
are in general different from unity. FurthermorE, there is a h he b field stiff ]

discrete symmetry which relates flavors Bid 2,2and the where the bare gauge field stifiness is

x andy directions in such a way that

0) 1 5 k,uk,,
nQ==k 5,,~"|. (100
252=A(Kz2, kD) (vokotvaloy1Ki FvEL 1 Yv2K,). (96) e k
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At this point we introduce the dual field, which is related 1( 1 2K2 Kk K )
uNy
: (108
m Sy

toa, as L==|T,,+~—
. K (b?) KR

2
where the stiffness for the unphysical modes was judiciously

Physically, theb,, field represents vorticity and we integrate Chosen to scale asin a particular cor2r1bination of the physi-
over all possible vorticity configurations with the restriction c@l scalars of the theory. Note thet®) can be determined

b,=€,.,0,8, - (107

thatb, is transverse. We note that without ever considering gauge fixing terms. In this way, the
extension of a transverse gaug§e 0 to a general covariant
E[bﬂ]=)(ob3+xlbi+)(zb§, (1020  gauge is accomplished by a simple substitutigsk,— (1

—§&/2)k Kk, . The expressioni107) is our final result for the

Where)(!u,s are functions Oﬂ(,u and upon a Straightforward gauge field propagator in a covariant gauge.
calculation they can be found to read

C. TF self-energy

Xy=——=+t5— _ (103 As discussed in Sec. I¥, is not gauge invariant in that it
" 2e? 3Wpvan=iz \/kagz;;kﬁ has an explicit dependence on the gauge fixing parameter. As

where u#v#\ €{0,1,2}. At low energies we can neglect we will show in this _sec_tlor(and maore gen_erally m_Appen
. . , dix D), the renormalization o by unphysical longitudinal

the nondivergent bare stiffness and thus sef£0 in the . :
degrees of freedom does not depend on the spacetime direc-

above expression. tion: the term inX, which is proportional toy, is renormal-
The expressior{102 is manifestly gauge invariant and .~ prop 0Yo

has the merit of not only being quadratic but also diagonal irlZed the same way by the gauge-dependent part of the action

the individual components df,, . Thus, integration over the 2§ntt?i?aﬁigmniop:ﬁgolggr}%vs@éﬁ?nig;eTshgger;O:ﬁ’e thﬁ Zir::ZI
vorticity (even with the restriction of transverse,) is b phy

) . X ) . degrees of freedom.
simple and we can easily determine thg field correlation d h logical f . i h d
function We denote the topological fermion self-energy at the node

n by 2,(q). Hence, to the leading order in a laryeexpan-
-1 sion we have

(104

2

>

5, kK,
2(byby) == 2

Xu  XuXv

3

d°k
S Q)= f S Glq-k)yID,. (k) (109

The repeated indices are not summed in the above expres- (2m)®

sion. Note that, in addition to being transvergb,b,) is

C . o or, explicitly,
also symmetric in its spacetime indices.
It is now quite simple to determine the correlation func- d3k (q—K), 7"
tion for thea,, field and in the transverse gauge we obtain zn(q):f % A YD, (K),
(277)3 u(q_k)ﬂguv(q_k)v v

Qidx (110

D (@) =(a,a,)= € EVK'F<bJ'b'>‘ (109 where the gauge field propagafy,, is already screened by

the nodal fermion$107). Using the fact that
Using the transverse character(tf,b,) (which is indepen-

dent of the gaugethe above expression can be further re- YYo= 1€ Y5Y3T O Y= Ouuat Ohu Vs
duced to (111
whereu,v,\ €{0,1,2} andys=—iyy7y1v2Y3, We can easily
1 4.9, see that
D,w(q)=¥ (5,”— ?)(bz)%b#b» . (106

It can be easily checked that in the isotropic limit the expres
sion (106) properly reduces to the results obtained in a dif-
ferent way.

We can further extend this result to include a general
gauge by writing

1 £\4d,.0,
o g

where¢ is our continuous parametrization of the gauge fix-

A
ing. This expression can be justified by the Faddeev-Popov Sa(g)= —E nZ(quM)In<—n>. (114
type of procedure starting from the Lagrangian e Vda9apdp

where we used the symmetry of the gauge field propagator
tensorD,,, . Thus,

(2m)® (q—k),9%,(a—k),
(113

(b%y—(b,b,) ¢, . . . .
w and as shown in the Appendix D at low energies this can be
(107 written as

054535-20



QED; THEORY OF PAIRING PSEUDOGAP IN.. .. PHYSICAL REVIEW B 66, 054535 (2002

Here A is an upper cutoff and the coefficienisare func- rg):zwr(Z), (118
tions of the bare anisotropy, which have been reduced to a o
quadrature(see Appendix D It is straightforward, even if It is natural to demand that, for example, at nodes 1 aatl 1
somewhat tedious, to show that in case of weak anisotropyome renormalization scajg F(RZ)(p) will have the form
(ve=1+6, vy=1), to orderé?,

T'&(p)=yoPo+vFy1P1+ 05 v2P2. (119
,7(1)T: — iz( 1— §§_ £(40_ 78) 52) , (115  Thus, Eq.(1_19) corresponqls to our renormalization condition
37°N 27 35 through which we can eliminate the cutoff dependence and
calculate the RG flows.
— 8 3 6 1 To the order of I we can write
1t=- 1— S ¢+ 26— o (43-7£)8°
T e\t 25759 35 ‘

A
(116) rgZ)(p):zW;pM( 1+ ’7’”"”5)’ (120

1 8 3 1 5 where we used the fermionic self-ener@i4). Multiplying
=T 3 1-58-g0-35(1-795 ). both sides byy, and tracing the resulting expression deter-
7 (117) mines the field strength renormalization

In the isotropic limit pr=v,=1) we regainn;l:—S(l B 1 0 A
—3/2¢)/37*N as previously found by others. Zy=—~1- 770"15- (121
1+ 7]8'”5

D. Dirac anisotropy and its B function ) ] )
I . . . We can now determine the renormalized Fermi and gap ve-
Before plunging into any formal analysis, we wish to dis- |, .ities

cuss some immediate observations regarding the RG flow of

the anisotropy. Examining Eq114) it is clear that if 7} vl T A T A T g A
= 75, then the anisotropgioes noflow and remains equal to v ( 1-n |”E 1+m |”E) ~1=(np—m )|n5
its bare value. That would mean that anisotropy is marginal (122

and the theory flows into the anisotropic fixed point. In fact,
such a theory would have aitical line of ap. For this to ~ and
happen, however, there would have to be a symmetry which g

would protect the equality;2= 75. For example, in isotro- U_A%( 1— ml,Tlné 1+ nﬁllné) %1_(,73T_ n%T)mé_
pic QED; the symmetry which protects the equality 06 is VA p p
the Lorentz invariance. In the case at hand, this symmetry is (123

broken and therefore we expect thatwill be different from  The corresponding renormalized Dirac anisotropy is there-
75, suggesting that the anisotropy flows away from its barefore

value. If we start withep>1 and find thatys'> 71* at some
scalep<A, we would conclude that the anisotropy is mar- oR= U_Fma
ginally irrelevant and decreases towards 1. On the other D b

R
Ua

hand, if 77%1< 7;}1, then anisotropy continues increasing be-
yond its bare value and the theory flows interéical point
with (in)finite anisotropy. daR

The issue is further complicated by the fact thdtis not Bay= —2
a gauge-invariant quantity; i.e., it depends on the gauge fix- dinp
ing parameteré. The statement that, sayj;>75 makes In the case of weak anisotropwg{=1+36, va=1) the
sense only if thet dependence of;] and ) is exactly the above expression can be determined analytically as an ex-
same; otherwise, we could choose a gauge in which the difeansion ins. Using Egs.(116) and(117) we obtain
ferencen)— 7] can have either sign. However, we see from
Egs. (115—(117) that in fact the¢ dependence of ali’s is B
indeed the same. Although it was explicitly demonstrated Bap= 372N
only to O(5?), in Appendix D we show that it is in fact true
to all orders of anisotropy for any choice of covariant gaugeNote that this expression is independent of the gauge fixing
fixing. This fact provides the justification for our procedure. parameterf. For 0< <1 the 8 function is positive which
Now we supply the formal analysis reflecting the above disimeans that anisotropy decreases in the IR and thus aniso-
cussion. tropic QED; scales to an isotropic QEDFor — 1< §<0 the

The renormalized two-point vertex function is related to 8 function is negative and in this case the anisotropy in-
the “bare” two-point vertex function via a fermion field res- creases towards the fixed powat =1, i.e., again towards the
calingZ, as isotropic QER. Note that for6>2, <0, which may na-

R

A
1—(m3'— n%1>ln5). (124

The RG beta function can now be determined:

=ap(n3"— n1h). (125

6
55(1+ 8(2-8)+0(8%|. (126
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12 . . becoming massless. Such a massless gauge field mediates
10 ] long-range interactions between the fermions and becomes a
81 i relevant perturbation. Exactly what the consequence of this
relevant interaction is depends on the number of fermion
speciesN in the problem. For cuprates we argued tiwat

B%[8/3nzN]
o N B O

RN =2n¢cyo Wherengo is the number of Cu@ layers per unit

- . ‘ . cell. If N<N.=3° the interactions cause a spontaneous
0 1 2 3 4 5 opening of a gap for the fermionic excitationsTat 0, via
O the mechanism of chiral symmetry breaking in QE®The

formation of the gap corresponds to the onset of AF SDW
instability’’?2 which must be considered as a progenitor of
the Mott-Hubbard-Nel antiferromagnet at half-filling. If, on
the other handN>N; as will be the case in bilayer or
drilayer materials, the theory remains in its chirally symmet-
ric nonsuperconducting phase evenTas0 and AF order
arises from within such a state only upon further underdop-
ing (Fig. 1). We call this symmetric state of QEIan alge-
oE)raic Fermi liquid. In both cases the AFL controls the low-
emperature, low-energy behavior of the pseudogap state and
: . -~ in this sense assumes the role played by Fermi liquid theory
?_uagratgre n dEt?](DB) S:’]%VIVStha;, ap'a;t fro_rrg) the |sgtrop|c in conventional metals and superconductors. In the AFL the
Ixed point and the uns "f‘ _e |_xe pointa@$ =0, '_B“D oes_ quasiparticle pole is replaced by a branch cut—the quasipar-
not vanish(see Fig. 4. This indicates that to leading order in tjcle is no longer sharp—and the gauge-invariant electron
the 1N expansion, the theory flows into the isotropic fixed propagator acquires a Luttinger-like form, E@®7), with
point. positive anomalous dimensiapl = 16/372N. To our knowl-
edge this is one of the very few cases where a non-Fermi-
VI, SUMMARY AND CONCLUSIONS quuid nature of the excitatjons has been dempnstrated in
dimension greater than 1 in the absence of disorder or a
By appealing to the unique features of hih€uprates— magnetic field. This Luttinger-like behavior of the AFL will
strong electron correlations, unconventional order parametananifest itself in an anomalous power-law functional form of
symmetry, and pronounced fluctuation effects—we argued imany physical properties of the system.
favor of the inverted approach to the problem of describing Dirac anisotropy, i.e., the fact that#v,, plays an im-
various thermodynamic phases appearing in the underdopegmbrtant role in the cuprates where the ratig=vg/v, in
region. This inverted approach can be thought of as a “Fermimost materials ranges between 3 and 15—-20. Such anisotropy
liquid” theory of the phase fluctuatingl-wave supercon- is nontrivial as it cannot be rescaled and it significantly com-
ductor where the role of the Fermi energy as the large energplicates any calculation within the theory. Using the pertur-
scale of the problem is played hy, the amplitude of the bative renormalization group theory we have shown that an-
pseudogap, which we assume to be predominantly of pairingsotropic QELR flows back into an isotropic stable fixed
nature. Under the umbrella of this pseudogap—inside th@oint. This means that for weak anisotropy at long length
pairing protectorate—we identify the BAG quasiparticles asscales the universal properties of the theory are identical to
the relevant low-lying fermionic excitations of the theory those of the simple isotropic case. It remains to be seen what
and study their evolution under the effects of interactionshe properties of the theory are at intermediate length scales
mediated by vortex-antivortex fluctuations. By carefully when the anisotropy is strong.
treating these interactions we find that the low-energy effec- Our theory of the pseudogap state gets its inspiration and
tive theory for the quasiparticles inside the pairing protectorbuilds on the ideas originally articulated by Emery and Kiv-
ate is(2+1)-dimensional quantum electrodynamics (QED elson in Ref. 8 and by Randeria and collaboraf8rshese
with inherent spatial anisotropy, described by the Lagrangiaideas were later explored and extended in various directions
Lp specified by Eqs(47) and (57). by others'*17:1861-63These approaches share a common
Within the superconducting state the gauge fields of thephilosophical platform of assuming that the pseudogap is
theory are massive by virtue of vortex defects being boungrimarily due to pairing in the p-p channel and in the under-
into finite loops or vortex-antivortex pairs. Such massivedoped regime superconducting long-range coherence is de-
gauge fields produce only short-ranged interactions betweestroyed by the phase fluctuations. The essential differences in
our BdG quasiparticles and are therefore irrelevant: in thehysics lie in the implementation of these ideas. Balents
superconductor quasiparticles remain sharp in agreemest al,'* for instance, argue for a true separation of spin and
with prevailing experimental dafd.Loss of long-range su- chargé? in their “nodal liquid” phase which then gives way
perconducting order is brought about by unbinding the topoto an unconventional antiferromagnet “AF*” with decon-
logical defects—vortex loops or vortex-antivortex pairs—viafined spin-1/2 excitations. Our theory also shares consider-
a Kosterlitz-Thouless-type transition and its quantum cousinable formal similarities with the S@) gauge theories of
Remarkably, this is accompanied by the Berry gauge fielim, Lee, and Wef{ and works by Aitchinson and

FIG. 4. The RGg function for the Dirac anisotropy in units of
8/3m2N. The solid line is the numerical integration of the quadra-
ture in Eq.(D8) while the dash-dotted line is the analytical expan-
sion around the small anisotroggee Eq.(115-(117)]. At «p
=1, Ba, crosses zero with positive slope, and therefore at larg
length scales anisotropic QEBcales to an isotropic theory.

ively indicate that there is a fixed point &t=2; this, how-
ever, cannot be trusted as it is outside the range of validity
the power expansion af, . The numerical evaluation of the
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Mavromatos? in that their low-energy effective theory is Another notable feature of this theory is that it is fully cal-
also related to QER In those cases, however, the physicalculable: having the explicit form of the low-energy effective
contents of the theory—the identity of its excitations—areaction, free of constraints and uncertainties, physical observ-
totally different. ables can be computed through a systematic proc&dure.
Finally there is a class of theories where the pseudogap is
assumed to be due to some competing order, usually in the
p-h channel. This includes $8),%* d-density-wavé® and ACKNOWLEDGMENTS
various other competing ordet$ At the present time we
believe that experimental evidence favors the pairing origin  The authors are grateful to P. W. Anderson, A. Auerbach,
of the pseudogap; however, the evidence is far from concluT. Appelquist, G. Baskaran, A. Cohei, Bischer, M. P. A.
sive and experiments can be found to support virtually anyFisher, B. Giovannini, S. M. Girvin, L. P. Gor’kov, V. P.
aspect of the above-mentioned theories. We believe, ther&usynin, I. F. Herbut, C. Kallin, D. V. Khveshchenko, S. A.
fore, that the road ahead necessitates making specific prediivelson, R. B. Laughlin, A. J. Millis, H. Monien, N. P. Ong,
tions based on controlled and well-defined approaches. Thé/. Rantner, M. Reenders, S. Sachdev, T. Senthil, D. E.
QED; theory of the pairing pseudogap, as presented in thiSheehy, A. Sudhd.-M. Tremblay, P. B. Wiegmann, A. Zee,
paper, starts from a remarkably simple set of assumptiongnd S. C. Zhang for helpful discussions and correspondence.
and via manipulations that are controlled in the senseNf 1/ This research was supported in part by NSERCF.) and
expansion, arrives at nontrivial consequences, including ththe NSF Grant No. PHY99-0794@TP) and No. DMROO-
algebraic Fermi liquid and the insulating antiferromagnet.94981(Z.T., O.V).

APPENDIX A: JACOBIAN £,

Here we derive the explicit form of the “Jacobiarf; for two cases of interesti) the thermal vortex-antivortex fluctua-
tions in 2D layers anii) the spacetime vortex loop excitations relevant for low temperatdresT( ) deep in the underdoped
regime.

1. Two-dimensional thermal vortex-antivortex fluctuations

In order to perform specific computations we have to adopt a model for vortex-antivortex excitations. We will use a 2D
Coulomb gas picture of vortex-antivortex plasma. In this mddati)vortices are either pointlike objects or are assumed to
have a small hard-disk radius of size of the coherence lefigithich emulates the core region. As longé&s<n~(*2), where
n=n,+n, is the average density of vortex defects, the two models lead to very similar results and both undergo a vortex-
antivortex pair unbinding transition of the Kosterlitz-Thouless variety.

Above the transition we have

exp[—ﬁf dzrﬁo}zzNIAEB fD<p(r)5[v><v—%VX(V¢A+V¢B)]5[V><a—%Vx(wA—V(pB)]. (A1)

The phasep(r) is due solely to vortices and we can rewrite E41) as

Na
E N NS £ H der H fdzr @~ BEC(N, +Na)5<p (r 2 S(r—r) ) (pa(r)—; 5(r_rj))
Ny N, N NS
><6( b(r)—m> s(r—r)+m> 5(r—riB)+w2 s(r—rh—m>, 5(r—er)), (A2)

Here N,(N,) is the number of free vorticefantivorticeg, N;=N +Na, rI [r ] are vortex(antivortey coordinates, and
p,(r) [pa(r)] are the corresponding densitiégr) = (Vxa(r)),= 7T(pv —pv pa+pa) andE; is the core energy which we
have absorbed intd, for convenience. We now express the ab@vkinctions as functlonal integrals over three new fields
d,(r), da(r), and«(r):

N Ng

27N v
E NN 2% H szr,H jdz rie” AN, +Na)fDd Dd, Dk exp) i
as

fdzrd (pvm E S(r—ry)

NA

+ifd2rx[b(r)—wzv S(r—rf

Na

+ifd2rda(pa(r)—2 S(r—rj)
]

B A
Nv Na Na

+a7> Sr—r)+a Sr—r)—-m> 5(r—er)”. (A3)
i j i
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The integration oved functions in the exponential is easily performed and the summationA(R labels can be carried out
explicitly to obtain

e—BECNUNv
fdepdamexp[ifdzr(dvpv+dapa+,<b) > N 11 fdzriexp[—idv(ri)]
N, N, vt i
—BEN, Na
xcos{m(ri)]TH d?rjexy —id,(r;)]cog ma(r;)]. (A4)
a* ]

In the thermodynamic limit the surtA4) is dominated by — 7(p,—p.) ({VXv)=0). The last two terms encode the
N, (a)= (N, (a)), Where(N, ) is the average number of free “Berry phase” physics of topological frustration. Note that
(antivortices determined by solving the full problem. Fur- the “Berry” magnetic fieldb= (V X a), couples directly only
thermore, agN,))— in the thermodynamic limit the in- o thetotal densityof vortex defects, + p, and is insensi-
tegration overd,(r), da(r), and «(r) can be performed in tive to the vortex charge. This is a reflection of thg sym-
the saddle-point approximation, leading to the followingmetry of the original problem defined on discréte., not

saddle-point equations: coarse-grained vortices. We write p, 5 (1) =(p,(a))
+ 6p,a)(r) and expand EqA1l) to leading order inSp,
— P+ (N)Q, (1) =0, (a5) - Ohua(r) and expand EdALL 9 Puta
—pa(r)+{Ng)Qy(r)=0, (AB) Lol T—(VXV)2(272n)+(Vxa)%(2m72n),

~B(1)+ [(Ny) Q1)+ (N (1) tant (1) =0, (AL2
(A7)  wheren;=(p,)+(pa) is the average density of free vortex
defects. Bothv anda have a Maxwelliarbare stiffness and
aremasslessn the normal state. As one approachies n,
e9m(Dcosh i (r)] ~ gs‘cz—>0, whereé(x,T) is the sgperconducting correlation
Q. (r)= m=a,v. length, andv anda becomemassive(see the main text

szr’edm(“)cosr[wx(r’)]

with

2. Quantum fluctuations of (2+1)D vortex loops

Equations(AS)—(A?) follow from functional derivatiyes of The expression fotq[j,] given by Eq.(39) follows di-
Eq. (A4) with respect tad,(r), da(r), and«(r), respectively. rectly once the system contains unbound vortex loops in its
We have also built in the fact that the saddle-point solutionground state and thus can respond to the external perturba-
occur atd, —id, , da—id,, andk—ix. tion A over arbitrary large distances {@+1)-dimensional

The saddle-point equatio#5)—~(A7) can be solved ex-  gpacetime. This is already clear at intuitive level if we just
actly, leading to think of the geometry of infinite versus finite loops and the
(A8) fact that only unbound loops allow vorticity fluctuations, de-

d(r)=Inp(r)~In cosim(r)], scribed by(j ,(a)j,(—q)), to proceed unhindered. Still, it is

da(r)=In p(r)—Incost 7x(r)], (A9) useful to derive Eq(39) and its consequences belabored in
Sec. Il within an explicit model for vortex loop fluctuations.
where Here we consider fluctuating vortex loops in continuous
1 b (2+1)D spacetime and compui) j ,] using a duality map
x(r)=—tanh . (r) } (A10) to the relativistic Bose superfluff.We again start by using
™ Ly (1) +pa(r)] our model of a large-gap-wave superconductor which en-

Insertina Eas(A8)—(A10) back into Ea.(A4) finallv gives ables us to negleat, in the fermion action and integrate
thz er;tr%pig p(art )ofC(o/T') I a-(A4) finally giv over it in the expression fofg[v, ,a,], EQ.(11). This gives

] N
1 (VXa), Cfedo_ S 3g - %
i R e 0= — Dx[5]16() ,(X)—n (x))e >,
PN py+ paln pa— — (VX a),tanh m(p,+ pa) Nzo Nhﬂl (116G L(X) =N (X))
(A13)
+(p,+ pg)Incoshtanh? _(VXa), (All)  where
PuTPa m(pytpa)’
N N
wherep, (1) are densities diree (antivortices. We display =~ 1
Lo in this form to make contact with familiar physics: the S= .21 So P dst3 | szl ds ¢ ds g(xi[s]
first two terms in Eq(A11) are the entropic contribution of '
free (antjvortices and the Doppler gauge fiel& xv =x[s1]) (A14)
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and
In(k®+m3). (A19)

d3k
(27)
Combining Egs(A18) and (A19) and using

T In(— %+ m?)]=
(90X (X)), =2mN ,(X) rlIn(=ad°+mj)] f -

N
=27, 39 dx,8(x—x[s]). (A15)
PoJL Tr{In(— 3>+ m3)]=InDet{ — >+ m3)=W (A20)
In the above equationl is the number of loopss, is the

finally leads to
Schwinger proper timéor “proper length”) of loop|, Sy is y

the action per unit length associated with motion of vortex “ 1 ~ds, ,

cores in(2+1)-dimensional spacetim@n an analogous 3D e W= 2 _H { e amy § DX(s/)

model this would be:./T, wheree. is the core line energy M=o Nli=1 | Jo s

g(|x[s;1—x;:[si-]]) is the short-range penalty for core over- N

!ap, a_ndL denotes a I_ine integral. We kep_t_our_ practice of xex;{ — Slds,’i@(s{)} (A21)
including core terms independent of vorticity ify. Note 4i=1 Jo

that vortex loops must be periodic along reflecting the
original periodicity ofe(r,7).

We can think of vortex loops as world line trajectories of
some relativistic chargeécomplex bosons(charged since
the loops have two orientations two spatial dimensions.
Ly without the 6 function describes the vacuum Lagrangian
of such a theory, with vortex loops representing particle-
antiparticle virtual creation and annihilation processes. The
duality map is based on the following relation between the zdzf D¢* D eXF{ _f d3x£d>, (A22)
Green function of free charged bosons and a gas of free
oriented loops: where

G(x)=((0)¢* (X))

3 ik - 3
d’k  e'*X :f dse_smgf (gwk)seik.x_skz

This is nothing else but the partition function of the free loop
gas. The size of loops is regulated by. As my—0 the
average loop size diverges. On the other hand, thradgh
Eqg. (A20), we can also think of Eq(A21) as the partition
function of the free bosonic theory.

To exploit this equivalence further we write

g
La=]0|?+mgl o7+ o[, (A23)

2m° k2+m2  Jo and argue thaZy describes vortex loops with short range
3 interactions in Eq(A13). This can be easily demonstrated by

i) o ¥l (A16) decoupling|¢|* through a Hubbard-Stratonovich transfor-

4s ' mation and retracing the above steps. The reader is referred

= f dse M
0
) ] o to the book by Kleinert for further details of the above dual-
wheremy is the mass of the complex dual fiefe(x). Within jty mapping®®

the Feynman path integral representation we can write We can now rewrite thé function in Eq.(A13) as

3/2
1 e~ 14x2/s
41s

x(8)=x 1(s .
=f Dx(s')ex ——f ds'x3(s’)
X(0)=0 4)o

where x=dx/ds. Furthermore, by simple integration EQq.
(A16) can be manipulated into

6(jﬂ(x)—nﬂ(x))—>f ’DKMEX[{if dSXKM(jM—n,L))
(A24)

' and observe that in the above language of Feynman path

integrals in proper timdefd3x:<#nﬂ, Eq. (A15), assumes the
(A17)  meaning of a particle current three-vectoy coupled to a
three-vector potentiak,. Employing the same arguments
that led to Eq(A23) we now have

d%k
(2m)®

~ds )
:_JO ?S‘e s f# Dx(s') exp(—f d3x£o[jﬂ])—>f D¢* DpDr,,

1(s .
X _ I 2(a! Al
ex;{ 4fodsx (s")], (A18) xex;{—Jd3x(—ixﬂjM

where the path integral now runs over closed loppEs)
=x(0)]. In the dual theory this can be reexpressed as + Lyl x,])

. (i 2 2| 412 9 4
(- 4 i) - d?se_snﬁf o Ll r,)=|(0—i0) g2+ mEl 245l (A25)
0

which leads to

. (A26)
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In the pseudogap state vortex loop unbinding causes loss @liid. Thus, we can write the correct form @, with both
superconducting phase coherence. In the dual language, tb% anda,, fully included into our accounting, as
appearance of such infinite loopsrag— 0 implies superflu-

idity in the system of charged bosons describedZhy Eq. (0Xv),(dXv), (dXa),(dxXa),

(A23). The dual off-diagonal long range ordédDLRO) in Lolv,,a,]— 4772|(¢>|2 + 4772|<¢)|2 ,
(p(x)p*(x")) means that there are world line trajectories (A30)
that connect pointsx and x’ over infinite spacetime

distances—these infinite world lines are nothing else but unwhere our ignorance is now stored in computing the actual
bound vortex paths in this “vortex loop condensate.” Thus,value of (¢) from the original parameters of the d-wave
the dual and the true superconducting ODLRO’s are oppositsuperconductor problem. With anisotropy restored this is pre-
sides of the same coin. cisely Eq.(45) of Sec. II.

Lyl x,] is the Lagrangian of this dual superfluid in the
presence of the external vector potentgl. In the ordered
phase, the response of the system is just the dual version of
the Meissner effect. Consequently, upon functional integra- Many of the integrals encountered here are considered
tion over ¢ we are allowed to write standard in particle physics. Since the techniques involved

are not as common in condensed matter physics, we provide
exp(—f d3X Lol ,.]

some of the technical details in this appendix. A more in-
depth discussion can be found in many field theory

textbooks>®

=J DKﬂexp<—f dPx(—ik,) ,+ MiK,K,) |,
(A27) o :
The vacuum polarization, E¢59), can be written more

whereM2=(¢)|?, with (¢) being the dual order parameter. explicitly as
The remaining functional integration ovet, finally results

APPENDIX B: FEYNMAN INTEGRALS IN QED ;

1. Vacuum polarization bubble

in I, () =2NTryo v, ¥sYs]l ap(d), (B1)
i with
Loli )= Zii 2 (A28)
a 4|<¢>| | B d3k ka(kB+qB) 8o
We have tacitly assumed that the system of loops is isotropic. ap(d) = (27)® K(k+q)? " (B2)
The intrinsic anisotropy of thé+1)D theory is easily rein- _ _ _
stated and EqA28) becomes Eq(39) of the main text. The integrals of this type are most easily evaluated by em-

It is now time to recall that we are interested inkavave ~ ploying the Feynman parametrizatih.This consists in
superconductor. This means we must restgreo the prob- ~ combining denominators using the formula
lem. To accomplish this we engage in a bit of thievery: imag-
ine now that it wasv, whose coupling to fermions was 1 I'(a+b) (1 x3"(1—x)P?t
negligible and we could integrate over it in E(L1). We AFBP  T(a)T'(b) o X[xA+(1—x)B]a+b' (B3)
would then be left with only the5 function containinga,, .
Actually, we can compute suclig[b, /7], where dXda
=D, without any additional work. Note thal, contains only
vorticity-independent terms. We can equally well proclaim
that it is theA(B) labels that determine the true orientation

valid for any positive real numbers, b, A, B. Setting A
=k? andB=(k+q)? allows us to rewrite Eq(B2) as

_ nine the 1 1 d3k Ka(Kgt0p)
of our loops while the actual vorticity is simply a gauge Iaﬂ(q):f dxf . - .
label—in essencey, anda, trade places. After the same 0 (2m)° [(k+(1=x)a)*+x(1-x)q"]
algebra as before we obtain (B4)
We now shift the integration variable—k— (1—x)q to ob-
Lolb, /7] — — 0, A29) tain
which is just the Maxwell action foa,, . ([t A’k Kokg—X(1—X)0,0p
o K - lop(q)=| dx 3 T2 — 2, (BY
Of course, this simple argument that led to E429) is 0 (27)° [K°+x(1—X)q7]

illegal. We cannot just forget , . If we did, we would have

no right to coarse-graia,, to begin with and would have to where we have dropped terms odd knwhich vanish by
face up to its purelyZ, character(see Sec. )l Still, the  symmetry upon integration. We now notice that thgk,
above reasoning does illustrate that the Maxwellian stiffnesserm will only contribute ifa= 8 and we can therefore re-
of a, follows the same pattern as thatwf : both are deter- place it in Eq.(B5) by %5aﬁk2. With this replacement the
mined by the order parametép) of condensediual super-  angular integrals are trivial and we have
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1 (1, (= 50K —X(1-X)0,0p C(k)—§ ldx\/§ d?

_ 1 = q

Lap(a) 2w2jodxfodkk2 [kK2+x(1-x)g%]? ZJO j
(B6)

The only remaining difficulty stems from the fact that the
integral formally diverges at the upper bound. This diver-
gence is an artifact of our linearization of the fermionic spec- (B12)

trum which breaks down for energies approaching the sUpefrpg angular integrals are trivial and after introducing an ul-

conducting gap value. Itis therefore completely legitimate tQypyjolet cutoff A and rescaling the integration variable by
introduce an ultraviolet cutoff. Such UV cutoffs, however, Lk| the integral becomes

tend to interfere with gauge invariance, the preservation o

><(2x—1)(k- q)2— (1—x)k?g?+x(1—x)%k*
[92+x(1—x)k?]% '

which is crucial in this computation. A more physical way of NE AlJK|
regularizing the integral EqB6) is to recall that the gauge C(k)=2mk fo dX\/;JO dqg
field must remain massless, i.el,,,(q—0)=0. To enforce
this property we write Eq(B1) as (5x—4)q*+ 3x(1— x)2q?
X (B13)
(@) =2N T 747, 77ulllap(A) —1ap(0)], (BT) [a%+x(1-x)]%2

and we see that proper regu]arization of EEG) involves The remaining integrals are E|ementary. ISOIating the Ieading
subtracting the value of the integral @& 0. The remaining infrared divergent term we obtain
integral is convergent and elementary; explicit evaluation

. 41 A

gives e KAn—
C(k) 3 K In|k|. (B14)
lal 0ad e i
op(0) =1 4p(0)=— o Sapt ?ﬁ _ (B8)  Substituting this into Eq(B9) we get the self-energ{65).

Inserting this in Eq.(B7) and working out the trace using 3. Dimensionally regularized gauge field line integral
Egs.(54) and(55) we find the resul{60). Identical result can To evaluateP(r) specified by Eq(82) we write it as a
be obtained using dimensional regularization. sum of two contributions,

2

. If- : 8r
2. TF self-energy: Lorentz gauge P(r)= v N.[|l(r)_(1_§)|2(r)], (B15

For simplicity we evaluate the self-ener@4) in the Lor-
entz gauge §=0). Extension to arbitrary covariant gauge is ynere
trivial. Equation(64) can be written as

eik~r
2 Il(r)=fddk : (B16)
S0 = =~ Yl u(K), (BY) K
) eik-r (k r)2
with I2(r)=Jddk T (B17)
[ (k):f d3qq w (B10)  We first consided 1(r). It is convenient to exponentiate the
a *lal*(k+a) denominator by use of the formula
where we used an identity oc
i;ij dsle7sA (B18)
0.9, Au AT T(@Jo
YMyaYV 5;LV_ q2 :_Zq?' 1
Taking A=k?, a= 5 we have
Since the only three-vector availablekisclearly the vector
integrall ,(k) can only have components in tkg direction, 1 (ed
1,.(K)=C(K)k, /k?. By forming a scalar produdt,l (k) we ()= _f _Sf ik sk+iker (B19)
obtain Jmto s
(q-K)(q-k+q?) The k integral is now easy to evaluate by completing the
C(k):kﬂlﬂ(k)=f d3q FECEG (B11) square, shifting the integration variable, and making use of
ql*(k+a) [dkexp(—sk)=(/s)¥2. We thus obtain
Combining the denominators using E@®3) and following .
the same steps as in the computation of polarization bubble 14(r)= ﬂ.(d—l)/2f dsg (@+1)/2g—r%4s. (B20)
above we obtain 0
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The substitutiort =r?/4s transforms Eq(B20) to an integral
of the type shown in Eq(B18) and the result reads

d-1
Il(r)=(417)(dl)’2F(—2 )rld. (B21)

Using the same procedure we obtain
I2(r)=—(4w)(d‘1)’2(d—2)f‘<% (-4 (B22)

Substituting Eqs(B21) and (B22) back into Eq.(B15) we
obtain the result quoted in the text, E§3).

APPENDIX C: BROWN'S RELATION FOR A
GAUGE-INVARIANT PROPAGATOR

To derive Brown'’s relation, Eq.78), it is useful to intro-
duce a fermion propagator forfixedconfiguration of gauge
field a

M 1

G[x,x';a]=%f DIY,Y]Y ()Y (x')e~SV-Yal,
(C1

WhereS[?,Y,a]zfd?’rED and_ﬂD is the QELQ} Lagrangian
given by Eq.(59), zZ[a]=/D[Y,Y]e SY-Y-a |t is easy to
see thaiG[ x,x’;a] solves the Dirac equation

Yulid,—a,)G[x,x";a]=6(x—x"). (C2

Furthermore, in terms o6[x,x’;a] the TF propagator can
be written as

1
G(x—x’)zzf Da G[x,x";a]e” Selal, (C3

where Sg= [d®xLg is the effective actioffor our case, to
one loopLg is given by Eq.(61)] andZ=fDa e S8l We
now introduce agauge-invariantanalog ofG[ x,x’;a],

g[x,x’;a]=exp< —iJX,a-dr

X

G[x,x";a], (C4)

PHYSICAL REVIEW B 66, 054535 (2002

1 )
G(x—x')= ZJ Dag[x,x';a]e” 2 Ssla

Z\[1 .
= —|| = ’. —Sgla]
(Z)[ZJ Dag[x,x";ale B
J— 2 > !
= 2Jaox-x, (o
whereSg[a]=Ss[a]—id-a, Z=/Da e @, and the last

equality in Eq.(C6) should be taken as a definition Gfx
—x"). The source ternd is defined by Eq(80) andJ-a is

shorthand forf d3rJ(r) - a(r)EIfa- dr. Note that the linear
UV divergence of phase factor i cancels out between the

numerator and denominator, E@6).
We now observe that

Z 1 . . ,
Z: ZJ Da elJ-ae—SB[a]:<e|J-a>Ee—F(x—x ), (C7)

with F defined by Eq(79). Substituting this into EqC6) we
have, Eq.(78),

G(x—x")=e FOX)G(x—x"). (C9

To complete this part it remains to address the relation be-
tweenG(x—x') and G(x—x’). To this end we notice that

both G andG aregauge invariantthe former by construction
and the latter by the following simple observation. Since
both g[ x,x";a] and Sg[a] depend on the transverse part of
a, any dependence on the longitudinal part afcomes
through theiJ-a term and therefore identically cancels be-

tween the numerator and in the denominator. Therefore,
once defined by Eq(C6) as a ratio of two gauge-variant

objects computed in the same covariant gaugéakes on
life of its own and is equal to a fully gauge-invariant quan-

tity. We may further rewriteG as such a ratio in arbitrary
noncovariant linear gauge; specifically, we may chose the

axial gauge in which théJ-a vanishes. In this gaugé is
exactly equal taj. Since they are both gauge invariant, they
must be equal in arbitrary gauge. The reader should be cau-
tioned, however, that this last equality is a formal one since it
involves manipulations of gauge-dependent quantities which

where the integral in the exponent is taken along the straigtare ill defined in the absence of some specific regularization.

line connecting spacetime points and x. The gauge-
invariant TF propagator defined by E@6) is then given by
an expression analogous to EG.3),

1
G(x—x")= Zf Da([x,x’;ale Sslal, (C5)

Our task is to relate Brown's propagat@(x—x') to
G(x—x"), Eq.(78). To this end we rewrite EqC3) as fol-
lows:

APPENDIX D: FEYNMAN INTEGRALS FOR THE
ANISOTROPIC CASE: SELF-ENERGY

As shown in Sec. V, to first order in theN/expansion,
the topological fermion self-energy can be reduced to

d*k (q—Kk)\ (203, 70— 7G5, DX, (K)
(2m)® (a—k),95,(a—k),

En(q)=f
(D1)
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whereD ,,(q) is the screened gauge field propagator evaluwhere the coefficientﬁz are pure numbers depending on the

ated in Sec. Ill. In order to perform the radial integral, we bare anisotropy and are thereby reduced to a quadrature:
rescale the momenta as
dQ n A
K,u:@p,vkvv Q,LL:\/J,MVqV (DZ) WZ:J'—3 (ZKMKM_l)(ZgZMF,uM_E gngvv
. vrva(2m) v

and obtain

d3K + ; 4RMRV@MM@VVFMV . (D8)

s | #
I"I(q (277)3

Repeated indices are not summed in the above expression,

K, unless explicitly indicated. In the case of weak anisotropy
(Q—K)x(z\/ax,ﬂ’g— Y290 D s T (ve=1+¢€,0,=1) we can show that EqD8) reduces to
% 9 v Egs.(115—(117).
veEvA(Q—K)? ' Consider now the effect of thecovariant gauge fixing

D3 term onz,, . Let us define the part d% ,, which depends on

(D3) the gauge fixing parametér as Fifz. The general form of
At low energies we can neglect the contribution from thethis term iSF’Ej’?:g k,.k,f(k) wheref(k) is a scalar func-
bare field stiffnesp in the gauge propagatgsee Sec. Il tion of all three components df,; f(k) does in general
and the resultin® ,,(q) exhibits 14 scaling depend on the anisotropy. Upon rescaling with the nodal
metric [see Eq(D2)], we have

K, FL.(6,9)
D,, ): £ . (D4)
\/J,uv K] Fif,),zf_KﬂLK:f(K)a
Now we can explicitly integrate over the magnitude of the VOup VO

rescaled momenturd by introducing an upper cutoft and

in leading order we find that wheref (K) is the corresponding scalar functionkf, . Sub-

stituting F{?) into the Eq.(D8) we find

fAdK—KZ(Q_K)” AR, +1 A)(Q 2R,R-Q)
=T ARTIN G (R T 2R R-1), dofK) [ . . N o
o K(Q-K)? Q £ = f— 2KK—1<2KK— KK
(DY) Ta veva(27)3 (2K K= D 2K,K zv o
where K = (cosé, sinfcose, sinésing). Since RM is odd " A A A
under inversion while=,,, is even, it is not difficult to see + ; 4K K KK, |, (D9)
that the term proportional td vanishes upon angular inte- e
gration. Thus where 7%, is the part ofy, which comes entirely from the
™ gauge fixing term. Using the fact tha, K K,=1, it is a
En(Q):f —————(Q,—2K,K-Q) matter of simple algebra to show that
(2m)%vFv,
A - f dQf(K) (D10
><<2@w2—ng:V)F,w(a,@In(a). Tu=¢ vev (273

(D6) i.e., the dependence on the indexdrops out. That means
that the renormalization of;, due to the unphysical longi-

Using the fact that the diagonal elements 0,¢) are . : .
g g FaL.(6,4) idmal modes is exactly the same for all of its components.

even under parity, while the off-diagonal elements are od
under parity, the above expression can be further simplifie
to

herefore, the difference im, and 7,, which is related to
the RG flow of the Dirac anisotropy, comes entirely from the
physical modes and is a gauge-independent quantity. Note
that this statement does not depend on the choice of covari-

A
Sn(@)==2 (7,9 n“)ln( ) (D7) antgauge, i.e,, on the exact form of the functipenly on
n R m the fact that the gauge is covariant.
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