
PHYSICAL REVIEW B 66, 054533 ~2002!
Reentrant superconductivity in a strong applied field within the tight-binding model

Maciej M. Maśka*
Department of Theoretical Physics, Institute of Physics, Silesian University, 40-007 Katowice, Poland

~Received 15 February 2002; published 23 August 2002!

It was suggested by Rasolt and Tesˇanović @Rev. Mod. Phys.64, 709 ~1992!# that the Landau level quanti-
zation in isotropic superconductors could enhance superconductivity in a very strong magnetic field, above the
upper critical field (Hc2). We derive a generalized Harper equation for superconducting systems, and show that
a similar reentrant behavior appears in a lattice model, even though the Landau-level-structure is destroyed by
the periodic potential in that case. Both the orbital and the Zeeman field-induced effects are taken into account.

DOI: 10.1103/PhysRevB.66.054533 PACS number~s!: 74.60.Ec, 74.25.Ha, 71.70.Di
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I. INTRODUCTION

There are two mechanisms responsible for a suppres
of conventional superconductivity in an external magne
field:1 the Pauli pair breaking and the diamagnetic p
breaking. The first of them, the Pauli pair breaking, is co
nected with the Zeeman coupling. The magnetic field te
to align the spins of the electrons forming the Cooper p
and the singlet superconductivity disappears at
Chandrasekhar-Clogston~CC! limit.2 However, this critical
field for the majority of type-II systems is found to be abo
Hc2 determined by the orbital~diamagnetic! pair breaking. In
particular, this effect is of minor significance in materia
with a low effectiveg factor. Another possibility is the su
perconductivity with nonhomogeneous order parameter~the
Larkin-Ovchinnikov-Fulde-Ferrell state3!, which can exist
above the CC limit. One can also look for high-magnet
field superconductivity in superconductors with triplet equ
spin pairing.

The second effect, the diamagnetic pair breaking, usu
crucial in determining the upper critical field, is connect
with the orbital frustration of the superconducting order p
rameter in a magnetic field. This frustration enlarges the f
energy of the superconducting state, and, when the mag
field is strong enough, the normal state becomes ener
cally favorable. The orbital effect can be reduced in laye
two-dimensional superconductors, when the applied m
netic field is parallel to the conducting layers. Such a sit
tion has been analyzed theoretically4 and recently observed
experimentally in organic conductors.5

However, it was shown that large values of the critic
field are also possible in systems without two-dimensio
layers, i.e., in systems where the orbital effects are pres
When describing a superconductor within the Ginzbu
Landau-Abrikosov-Gor’kov theory,6 one treats the magneti
field in the semiclassical phase-integral approximation, t
neglecting the quantum effects of the magnetic field. T
approximation is valid for relatively small fields, whe
\vc!kBTc ~or vc!2p/t for large impurity concentration
where t is the elastic scattering time!. In this regime, the
number of occupied Landau levels is very large and the
ergy spacing of them is very small, and therefore this d
crete structure is not observable. However, when the m
netic field increases, the Landau-level degeneracy
increases; thus the number of occupied levels decreases
one has to take this into account. The inclusion of
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Landau-level quantization in the BCS theory leads to a re
trant behavior at a very high magnetic field (\vc@eF). That
is, when only the lowest Landau level is occupied,Tc is an
increasing function ofH, limited only by impurity scattering
and the Pauli pair breaking effect.

The aim of this paper is to show that the reentrant beh
ior survives in the presence of a strong periodic lattice
tential. A weak, unidirectional periodic potential removes~or,
at least, modifies! the Landau-level structure: the levels a
broadened~they form ‘‘Landau bands’’! and the degenerac
is lifted.7 The width of a Landau band oscillates as the ma
netic field is tuned as a consequence of commensurab
between the cyclotron diameter and the period of the po
tial. This results in magnetoresistance oscillations~Weiss
oscillations8!. If the periodic potential is modulated in tw
dimensions, ‘‘minigaps’’ open in the ‘‘Landau bands,’’ an
the energy spectrum of the system plotted versus the app
field composes the famous Hofstadter butterfly,7,9 recently
observed experimentally in the quantized-Hall-conducta
measurement.10 The same spectrum can be obtained in
complementary limit, when the lattice potential is strong~the
tight-binding approach! and the field is weak. It is interestin
that when the periodic potential does not lead to a scatte
between states from different Landau levels, the eigenva
equations in both the limiting cases are formally the sam7

Of course the parameters have different physical meanin
The simplest model for the case where a applied field

a lattice potential are present simultaneously is commo
referred to as the Hofstadter or Azbel-Hofstadter model.9,11

The corresponding Hamiltonian describes electrons o
two-dimensional square lattice with nearest-neighbor h
ping in a perpendicular uniform magnetic field. The Sch¨-
dinger equation takes the form of a one-dimensional diff
ence equation, known as the Harper equation~or the almost
Mathieu equation!.9,12,13 It is also a model for a one
dimensional electronic system in two incommensurate p
odic potentials. The Harper equation also has links to m
other areas of interest, e.g., the quantum Hall effect, qua
rystals, localization–delocalization phenomena,14,15 the non-
commutative geometry,16 the renormalization group,17,18 the
theory of fractals, the number theory, and the functio
analysis.19

The Hofstadter model is useful in an approach to the f
damental problem of the external magnetic-field influence
the superconductivity. Most of the works devoted to sup
conductors in the mixed state are based on
©2002 The American Physical Society33-1
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Bogolubov–de Gennes equations,20 particularly useful for
spatially inhomogeneous systems, e.g., for an isola
vortex21 or a vortex lattice.22 However, in the regimeHc1
!H!Hc2 we can neglect contributions to the spectrum fro
the inside of the vortex core~for H!Hc2 the distance be-
tween the vortices is large! and regard the magnetic field a
uniform in the sample~for Hc1!H). We derive, under thes
assumptions, a lattice model for the superconductor in
plied field ~in the normal state such a system is described
the Hofstadter model!. In this paper we present a generaliz
Harper equation that describes the influence of a magn
field on two-dimensional tightly bound electrons in the s
perconducting state.

II. MODEL

In analogy to Hofstadter’s approach, we couple the m
netic field to the system via the Peierls substitution,23 i.e.,
multiply the hopping matrix elements by a phase fac
which depends on the field and on the position within
lattice. Thus the vector-potential-dependent hopping inte
for sitesi and j is given by

t i j ~A!5t expS ie

\cERj

Ri
A•dlD , ~1!

where t is the usual hopping integral. We also include t
Zeeman term. In effect, the BCS Hamiltonian has the for

Ĥ5 (
^ i j &,s

t i j ~A!cis
† cj s1(

i ,s
~es2m!cis

† cis

2(̂
i j &

~D i j ci↑
† cj↓

† 1D i j* ci↓cj↑!, ~2!

where the Zeeman splitting is given byes52 1
2 sgmBH, s

51 for spin-up and21 for spin-down,g is the Lande´ factor,
andm is the chemical potential. Here we have introduced
spin-singlet pair amplitudeD i j 5(V/2)^ci↑cj↓2ci↓cj↑&. The
strength of the nearest-neighbor attractionV is assumed to be
field independent. The validity of this assumption depen
on the nature of pairing potential and the strength of
magnetic field.24 For example, in thet-J model Ji j (A)
54t i j (A)t j i (A)/U is strictly field independent, since th
change of the phase, generated when an electron hops
site i to j and back, cancels out. Such an assumption has
been partially justified on the basis of antiferromagne
spin-fluctuation-driven superconductivity.25

Our starting point is a two-dimensional square lattice w
basis vectorsa5(a,0,0) andb5(0,a,0), immersed in a per
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pendicular, uniform magnetic fieldH5(0,0,H). We choose
the Landau gauge,A5(0,Hx,0). Since the vector potentia
A is linear inx, the translation corresponding to the vectora
shifts the phase of the wave function. This shift can be co
pensated for by a gauge transformation, introducingmag-
netic translations. If the magnetic flux per unit cellF is a
rational multiple of the flux quantumF05hc/e, i.e., if

F

F0
5

p

q
, ~3!

with p and q coprime integers, we can define amagnetic
lattice, with qa andb as the basis of themagnetic unit cell.
Such an enlarged unit cell is penetrated byp flux quanta.
Magnetic translations corresponding to themagnetic lattice
vectors (R5nqa1mb, with n,m as integers! commute with
each other and with the Hamiltonian. If the system is o
rectangular shape withLx sites in thex direction andLy sites
in the y direction, andLx is a multiple of q, we can find
eigenfunctions which diagonalize the Hamiltonian and
magnetic translation operators simultaneously. Due to the
sence of translational invariance with vectorsmb, vectorsk
5(kx ,ky) from the first Brillouin zone (ukxu<p/a,
ukyu<p/a) are not good quantum numbers. Instead, we h
to use vectors from amagnetic (reduced) Brillouin zone
~MBZ!, defined byukxu<p/qa,ukyu<p/a, to enumerate the
eigenstates. Hamiltonian~1! in the momentum space can b
written as

Ĥ52t(
k,s

@2 cos~kxa!ck,s
† ck,s1e2 ikyack2g,s

† ck,s

1eikyack1g,s
† ck,s#1(

ks
~es2m!cks

† cks

2(
k

~Dkck↑
† cÀk↓

† 1H.c.!, ~4!

where

Dk5(
k8

Vk,k8^cÀk8↓ck8↑&, ~5!

andg5(2pp/q,0). Generally, in the presence of a magne
field the superconducting order parameter should also
clude the off-diagonal terms~i.e., the averagêcÀk↓ck8↑& for
kÞk8). However, without the restriction to the diagon
pairing one ends up with a large system of nonlinear eq
tions that is numerically intractable.

In order to rewrite the above Hamiltonian as a sum o
the MBZ we introduce a multicomponent Nambu spinors
Ck
†5~ck,↑

† ,ck2g,↑
† ,ck22g,↑

† , . . . ,ck2(q21)g,↑
† ,c2k,↓ ,c2k1g,↓ ,c2k12g,↓ , . . . ,c2k1(q21)g,↓!. ~6!

Then Eq.~4! can be written as

Ĥ5(
k

8 Ck
†HkCk , ~7!

where the prime denotes summation over the MBZ andHk has a block structure
3-2



similar

REENTRANT SUPERCONDUCTIVITY IN A STRONG . . . PHYSICAL REVIEW B66, 054533 ~2002!
Hk5S T̂k↑ D̂k

D̂k* 2T̂2k↓
D . ~8!

The diagonal blocks describe noninteracting lattice fermions under the influence of magnetic field, and have the form
to that derived by Hasegawaet al.,26

T̂k,s52tS M0,s eiky 0 ••• 0 e2 iky

e2 iky M1,s eiky 0 ••• 0

0 e2 iky M2,s eiky
••• A

A A � � � 0

0 A 0 e2 iky Mq22,s eiky

eiky 0 A 0 e2 iky Mq21,s

D , ~9!
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where Mn,s52 cos(kxa1ng)1es2m, g5ugu52pp/q, and
the diagonal matrixD̂k represents the pairing amplitudes:

D̂k5diag~Dk ,Dk2g , . . . ,Dk2(q21)g!. ~10!

Diagonalization of Eq.~8! provides a set of eigenenergie
$Ek,i%, where i enumerates 2q values corresponding to
given k from the MBZ.

The pairing amplitude in the presence of external m
netic field is determined self-consistently from the BCS-li
equation

Dk5
1

2N (
k8

8 (
i 51

2q
Vk,k8Dk8

2Ek8,i

tanh
Ek8,i

2kBT
, ~11!

where N5LxLy and the prime summation denotes aga
summation over the MBZ. In the following we restrict ou
selves to the singlet pairing in thes-wave channel (Dk5D),

FIG. 1. Critical temperatureTc as a function ofF/F0. Upper,
middle, and lower panels show results forV/t57,2, and 1, respec
tively. Small arrows indicate the transition temperature calcula
from the usual BCS equations in the absence of a magnetic fie
05453
-

even though Eq.~11! is completely general. Generally, th
equation can be used, e.g., to analyze the magnetic–fi
induced change of gap parameter symmetry27 or the upper
critical field in the systems with the spin-triplet pairing. Th
latter area of application is especially attractive, since
these systems the Pauli pair breaking mechanism is ab
and the upper critical field is expected to be very high.28

III. RESULTS

A. Orbital effects

The transition linesTc(H) for a half-filled system, ob-
tained in the absence of the Zeeman splitting (g50), are
presented in Fig. 1. Note that fora of the order of a few
angstro¨ms, experimentally available magnetic fluxes a
much less thanF0. Consequently, these plots correspond
the region of an extremely high magnetic field. The size
the Hamiltonian matrixHk , that has to be diagonized for a
values ofk in each step of the iterative procedure, is 2q
32q. Therefore, since the magnetic flux is proportional
q21, the proposed approach does not allow one to carry
calculations for a small magnetic field. This is why the tra
sition lines in Fig. 1 start at a finite magnetic field.

For a weak field, thermal smearing and/or disord
induced broadening destroy the Hofstadter butterfly str
ture. In the absence of the lattice periodic potential this
gime corresponds to a classical limit, where the number
occupied Landau levels is huge, and the Ginzburg-Lan

d
.

FIG. 2. Critical temperatureTc as a function ofF/F0 in the
low-field regime forV/t51. Results are taken from Ref. 25.
3-3
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description of the mixed state is valid. In this regime,
accordance with the common feeling, superconductivity
the tight–binding system is suppressed by the magnetic fi
disappearing atHc2.25,29The corresponding transition line i
presented in Fig. 2.

The method used in Ref. 25 does not work at low te
perature and the present method does not work at weak fi
Therefore, there is no crossover line from the low to hi
field regimes.

The transition lines for 1/2,F/F0<1 can be obtained
reflecting the lines presented in Fig. 1 around the l
F/F051/2, andTc(F) is periodic onF0. Both these prop-
erties reflect properties of the Hofstadter butterfly. Of cour
these unphysical results are valid only when the Pauli p
breaking is neglected. The influence of the Zeeman split
will be discussed later. For a strong pairing potential, co
parable with the bandwidth, the critical temperature in
reentrant regime is almost field independent@see Fig. 1~a!#.
As V is reduced, the influence of the nontrivial density
states becomes apparent. It was shown by Hofstadter9 that, in
a normal state, the Bloch band forF/F05p/q is symmetric
and broken up intoq distinct energy bands. In the half-filling
case the Fermi level (EF) is located in the center of th
~unperturbed! subband. Therefore, ifq is odd,EF points to
the singularity of the central subband~a remnant of the origi-
nal van Hove singularity!, whereas for evenq it is in the gap
between two subbands.~In fact, for evenq these subband
touch at the Fermi level.! This is depicted in Fig. 3.

When the system goes belowTc , superconducting gap
open up in the middle of every subband. Then there are g
of two types in the spectrum, namely, gaps that open a
result of the competition between the lattice constant and
magnetic length~‘‘commensurability gaps’’! and supercon-
ducting gaps. Variations of the Hofstadter butterfly for sy
tems in the superconducting state with different pairing sy
metries are presented in Ref. 30. As the superconduc
gaps increase, the split subbands move about, strongly m
fying the normal-state density of states. When two subba
are close together, the splitting can close the commensur
ity gap ~or the pseudogap in the case of the central t
subbands for evenq! between them, simultaneously openin
up two another~superconducting! gaps. This can lead to a
interesting situation, where there is a gap at the Fermi le
in the normal state, which is closed when the system
comes superconducting. Such a case is presented in Fig

FIG. 3. Normal-state density of states for different values
magnetic field. The dotted line in the left panel represents the d
sity of states in a superconducting state forD50.7t.
05453
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The changes of the normal-state density of states resu
an oscillatory behavior ofTc(H): Tc approaches its maxima
for oddq and is reduced for evenq. Similar oscillations were
predicted by Rasolt and Tesˇanović1 in a homogeneous sys
tem, where the Hofstadter spectrum is replaced by
Landau-level ladder.

The superconductivity suppression is especially appa
for small and evenq, when V is comparable with the
central–gap width. The smooth character of the funct
Tc(F) close toF/F05p/q and for smallq ~e.g., close to the
valuesp/q51/2,1/3,1/4), seems counterintuitive, since a ti
detuning of the magnetic field completely changes the sp
trum. For p/q51/2 the spectrum consists of two subband
whereas forp/q510/21 there are 21 narrow subbands~see
Fig. 4!. However, in spite of this difference, the integrate
densities of states, presented in Fig. 4~c!, are almost the
same.

For largerq, the differences between 1/q and 1/(q11) are
smaller, and consequently the distances between succe
minima in the density of states decrease. For a strong pai
potential ~and highTc) there is large number of subband
within a range of energy;kBTc and then the amplitude o
oscillations is strongly reduced. On the other hand, for
weak potential~i.e., at low temperature!, these irregular os-
cillations are visible even at low fields~cf. Fig. 1c!.

B. Zeeman splitting

The previous discussion ignored the effect of Pauli p
breaking. We consider this next. Since the Zeeman split
is proportional to the magnitude of the magnetic field and
orbital effect depends on the flux, we have to find a relat
between these two quantities. This can be done by using
relationt5\2/2m* a2, wherem* is the effective mass. Then
the Zeeman splitting is given bygmBH52pg* (p/q)t,
whereg* 5g(m* /m).31

The inclusion of the Zeeman term results in a reduction
the phase space available for pairing. For a strong pai
potential, when the structure of the Hofstadter butterfly
hidden, this leads to a monotonic reduction ofTc with in-
creasing magnetic field. Such a situation is presented in
5~a!.

However, for smaller values ofV, whenkBTc is compa-
rable with the miniband~or minigap! widths, the situation is
more complicated. The Zeeman term leads to a splitting
each of the minibands into spin-up and spin-down mi

f
n-

FIG. 4. Normal-state density of states forp/q51/2 ~a! and
p/q510/21~b!. ~c! Comparison of integrated densities of states
p/q51/2 ~dotted line! andp/q510/21 ~solid line!.
3-4
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bands. To have nonzeroTc we need minibands of both type
present close to the Fermi level. As the magnitude of
splitting is proportional to the magnetic field,Tc will be an
oscillatory function of the magnetic field. When the spin-
and down minibands overlap at the Fermi level,Tc is
strongly enhanced. This mechanism may induce super
ductivity in regions, whereTc is zero or close to zero in th
absence of the Zeeman splitting@compare the solid and
dashed lines in Fig. 5~b!#. For example, forF/F051/4EF is
located in the central minigap forg* 50, whereas there is a
singularity atEF for g* 50.15. The corresponding densitie
of states are presented in Fig. 6.

C. Away from half-filling

The Hofstadter spectrum~even in the presence of the pai
ing potential! is symmetric. Therefore, independently of th
applied magnetic field, the casem50 corresponds to the
half-filled band. To gain an insight into the regime ofnÞ1
one has to supplement Eq.~11! with an equation for the
number of particles, that allows us to determine the chem
potential, by

np/q5
1

2N (
ks

8 (
i 51

2q S 12
ek,is

Ek,i
tanh

Ek,i

2kBTD . ~12!

Hereek,is are eigenvalues of the matrixT̂k,s describing non-
interacting electrons, given by Eq.~9!. In the zero-
temperature case the chemical potential can be determ
from the formula

FIG. 5. Critical temperatureTc as a function ofF/F0 in the
presence of the Zeeman splitting forV/t57 ~a! andV/t52 ~b!.

FIG. 6. Normal-state densities of states forF/F051/4. Solid
and dashed lines correspond tog* 50 and 0.15, respectively.
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np/q5E
2`

0

rp/q~E!dE, ~13!

where the density of statesrp/q(E) is strongly dependent on
the ratiop/q. The shape of curvesnp/q(m) is generally re-
ferred to as the ‘‘devil’s staircase’’@cf. Fig. 4~c!#.

As the magnetic field is changed, successive Lan
minibands cross the Fermi level. For a fixed number of el
trons per site the irregular changes of the density of sta
result in sawtooth oscillations of the chemical potenti
These oscillations are clearly visible at low temperature. A
higher temperature the thermal broadening smoothes out
behavior. Figure 7 shows the zero- and finite-temperat
dependences ofm on F/F0 for different fillings.

The influence of the band filling on the critical temper
ture is analogous to that of the Zeeman splitting: both th
effects change the position of the Fermi level relatively to
maxima of the density of states. Figure 8 shows the resul
field dependence ofTc for different electron numbers. As
expected, the deepest minima have been shifted from
strongly commensurate fields for evenq, i.e., F/F0
51/2,1/4,1/6, . . . . Moreover, the minimum forF/F051/2
has evolved into a wide region, where a superconduc
solution does not exist. Comparing Figs. 7 and 8 one
notice the chemical potential jump~indicated by the vertical
arrows! corresponding to the disappearance of supercond
tivity. The presence of such jump can be associated with
appearance of the field-driven quantum phase transition.

IV. DISCUSSION

Let us comment on the possibility of observing the osc
latory behavior ofTc in real systems. Assuming a lattic
constant a52 Å the magnetic field required to obtai
F/F0;1 is O(105) T, which is obviously too large. How-
ever, there are some possibilities to overcome this probl
For example, it was recently shown,32 that in some three-
dimensional systems fractal spectra, like Hofstadter’s but
fly, can be obtained forF/F0!1. On the other hand, it is
possible to reach the needed increase of flux enlarging
lattice constant. Two-dimensional superconducting wire n

FIG. 7. Chemical potential as a function ofF/F0 for n50.9 ~a!
andn50.8 ~b!. The solid line corresponds to the zero temperat
case, whereas the dashed one is determined forkBT/t50.15.
3-5
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work can be suitable for this task, since the magnetic fi
corresponding toF0 is about 1 mT for a network cell o
1 mm2, and the system can be mapped onto a tight-bind
one. Another possibility is connected with the case where
influence of the modulation potential on the Landa
quantized two-dimensional~2D! electron system may b
considered as a small perturbation. This situation is com
mentary to the tight-binding case, but the energy spectru

FIG. 8. Comparison of the critical temperature determined
different filling factors:n51 ~a!, n50.9 ~b!, andn50.8 ~c!. The
arrows indicate position of the largest chemical potential jump.
o
r

s

y,
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also obtained by solving the Harper equation. Therefore,
can expect similar behavior ofTc in 2D superconducting
systems modulated in two dimensions. Again, since
modulation period is larger than the lattice constant, the
quired values ofF are well within the experimental access
bility.

Finally, we remark on yet another superconducting s
tem, which exhibits commensurate effects of a similar ty
That is, the properties of Josephson-junction arrays dep
in an oscillatory manner on the value of the magnetic fl
piercing a plaquette. However, the origin of this depende
differs from that for the lattice fermions. As the magne
field is increased from zero, a transition into a vortex st
occurs, for which the flux penetrates the array. This can
seen as an array analog of flux penetration in type-II sup
conductors. As a result of the competition between the p
odicity of the vortex lattice and the underlying pining pote
tial provided by the array, different phase transitions
possible when the field is changed. Generally, the super
ducting properties of the Josephson-junction array, e.g.,
critical current or critical temperature~the transition tem-
perature to a macroscopically phase coherent state!, are en-
hanced forall commensurate fields. In contrast, the enhan
ment of Tc calculated in this paper for the lattice fermion
occurs only for commensurate fields whereq is even.
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