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Reentrant superconductivity in a strong applied field within the tight-binding model
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It was suggested by Rasolt and @asvic[Rev. Mod. Phys64, 709 (1992)] that the Landau level quanti-
zation in isotropic superconductors could enhance superconductivity in a very strong magnetic field, above the
upper critical field H,). We derive a generalized Harper equation for superconducting systems, and show that
a similar reentrant behavior appears in a lattice model, even though the Landau-level-structure is destroyed by
the periodic potential in that case. Both the orbital and the Zeeman field-induced effects are taken into account.
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[. INTRODUCTION Landau-level quantization in the BCS theory leads to a reen-
trant behavior at a very high magnetic fieltld.> eg). That
There are two mechanisms responsible for a suppressias, when only the lowest Landau level is occupigd,is an
of conventional superconductivity in an external magneticincreasing function oH, limited only by impurity scattering
field! the Pauli pair breaking and the diamagnetic pairand the Pauli pair breaking effect.
breaking. The first of them, the Pauli pair breaking, is con- The aim of this paper is to show that the reentrant behav-
nected with the Zeeman coupling. The magnetic field tend$or survives in the presence of a strong periodic lattice po-
to align the spins of the electrons forming the Cooper pairtential. A weak, unidirectional periodic potential removes
and the singlet superconductivity disappears at thet least, modifiesthe Landau-level structure: the levels are
Chandrasekhar-Clogstdi©C) limit.? However, this critical broadenedthey form “Landau bands}’ and the degeneracy
field for the majority of type-ll systems is found to be aboveis lifted.” The width of a Landau band oscillates as the mag-
H., determined by the orbitatliamagnetitpair breaking. In  netic field is tuned as a consequence of commensurability
particular, this effect is of minor significance in materials between the cyclotron diameter and the period of the poten-
with a low effectiveg factor. Another possibility is the su- tial. This results in magnetoresistance oscillatidigeiss
perconductivity with nonhomogeneous order paramgéter  oscillation$). If the periodic potential is modulated in two
Larkin-Ovchinnikov-Fulde-Ferrell state which can exist dimensions, “minigaps” open in the “Landau bands,” and
above the CC limit. One can also look for high-magnetic-the energy spectrum of the system plotted versus the applied
field superconductivity in superconductors with triplet equalfield composes the famous Hofstadter buttetflyrecently
spin pairing. observed experimentally in the quantized-Hall-conductance
The second effect, the diamagnetic pair breaking, usuallyneasuremenf The same spectrum can be obtained in a
crucial in determining the upper critical field, is connectedcomplementary limit, when the lattice potential is strdtige
with the orbital frustration of the superconducting order pa-tight-binding approachand the field is weak. It is interesting
rameter in a magnetic field. This frustration enlarges the fre¢hat when the periodic potential does not lead to a scattering
energy of the superconducting state, and, when the magnetietween states from different Landau levels, the eigenvalue
field is strong enough, the normal state becomes energetéquations in both the limiting cases are formally the sdme.
cally favorable. The orbital effect can be reduced in layeredOf course the parameters have different physical meanings.
two-dimensional superconductors, when the applied mag- The simplest model for the case where a applied field and
netic field is parallel to the conducting layers. Such a situaa lattice potential are present simultaneously is commonly
tion has been analyzed theoreticAlpnd recently observed referred to as the Hofstadter or Azbel-Hofstadter m8dél.
experimentally in organic conductats. The corresponding Hamiltonian describes electrons on a
However, it was shown that large values of the criticaltwo-dimensional square lattice with nearest-neighbor hop-
field are also possible in systems without two-dimensionaping in a perpendicular uniform magnetic field. The Sehro
layers, i.e., in systems where the orbital effects are presendinger equation takes the form of a one-dimensional differ-
When describing a superconductor within the Ginzburg-ence equation, known as the Harper equatmmthe almost
Landau-Abrikosov-Gor’kov theo§one treats the magnetic Mathieu equation®'?>*® It is also a model for a one-
field in the semiclassical phase-integral approximation, thuglimensional electronic system in two incommensurate peri-
neglecting the quantum effects of the magnetic field. Thisodic potentials. The Harper equation also has links to many
approximation is valid for relatively small fields, when other areas of interest, e.g., the quantum Hall effect, quasic-
hw.<kgT, (Or w,<2m/ 7 for large impurity concentration, rystals, localization—delocalization phenoméh& the non-
where 7 is the elastic scattering timeln this regime, the commutative geometry, the renormalization grous;*® the
number of occupied Landau levels is very large and the entheory of fractals, the number theory, and the functional
ergy spacing of them is very small, and therefore this disanalysis:®
crete structure is not observable. However, when the mag- The Hofstadter model is useful in an approach to the fun-
netic field increases, the Landau-level degeneracy alsdamental problem of the external magnetic-field influence on
increases; thus the number of occupied levels decreases atiee superconductivity. Most of the works devoted to super-
one has to take this into account. The inclusion of theconductors in the mixed state are based on the
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Bogolubov—de Gennes equatidilsparticularly useful for  pendicular, uniform magnetic field=(0,0H). We choose
spatially inhomogeneous systems, e.g., for an isolate¢he Landau gauged=(0,Hx,0). Since the vector potential
vortexX! or a vortex latticé? However, in the regimed; A is linear inx, the translation corresponding to the vecor
<H<H,, we can neglect contributions to the spectrum fromshifts the phase of the wave function. This shift can be com-
the inside of the vortex coréfor H<H,, the distance be- pensated for by a gauge transformation, introduaingag-
tween the vortices is largend regard the magnetic field as netic translations If the magnetic flux per unit cekb is a
uniform in the sampléfor H,;<H). We derive, under these rational multiple of the flux quantury=hcle, i.e., if

assumptions, a lattice model for the superconductor in ap- P
plied field (in the normal state such a system is described by — = E' 3
the Hofstadter modglIn this paper we present a generalized @, ¢

Harper equation that describes the influence of a magnetigith p and q coprime integers, we can definenaagnetic
field on two-dimensional tightly bound electrons in the su-jattice, with ga andb as the basis of theagnetic unit cell
perconducting state. Such an enlarged unit cell is penetrated ylux quanta.
Magnetic translations corresponding to timagnetic lattice

ll. MODEL vectors R=nga+ mb, with n,m as integerscommute with

In analogy to Hofstadter's approach, we couple the mag?aCh other and with the Hamiltonian. If the system is of a
netic field to the system via the Peierls substitufidig., rectangular shape with, sites in thex direction and.., sites

. . . in the y direction, andL, is a multiple ofg, we can find
multiply the hopping matrix elements by a phase factor . . . X . oo
whicrl? )éepends %F;] t%e field and on the gositign within theelgenfuncnons which diagonalize the Hamiltonian and the
magnetic translation operators simultaneously. Due to the ab-

lfitrtlgi?é;—ih;ﬁdtjhfsVgei\(/:;%r_&? tential-dependent hopping Integraslence of translational invariance wjth vectonb, vectorsk
=(ky,k,) from the first Brillouin zone |k =</a,
ie (R |ky| =< /a) are not good quantum numbers. Instead, we have
tij(A):teXF{%f A'C”), (1)  to use vectors from anagnetic (reduced) Brillouin zone
Ri (MBZ), defined bylk,|<7/qa,|k/|=<m/a, to enumerate the
wheret is the usual hopping integral. We also include theeigenstates. Hamiltoniafl) in the momentum space can be
Zeeman term. In effect, the BCS Hamiltonian has the form written as

- o t —ikyant
H= 20 (A)cl,ciot 2 (€.~ p)Cl,Ciy H__t;, [2 cogk,@)Ci o Lot € Chg o0 s
(e o '
ik T T
-> (AijCiTTCL-FAﬁCquT), ) +e yack+g,<rck,o]+kz” (€5 1)CyyoCke
(i)

where the Zeeman splitting is given lay=—ogugH, o bt
=1 for spin-up and- 1 for spin-downg is the Landéactor, - ; (AxCx €y TH.C, )
andu is the chemical potential. Here we have introduced the
spin-singlet pair amplitudé;; = (V/2)(c;;c;, —Ci cj;). The ~ WHEre
strength of the nearest-neighbor attractibis assumed to be
field independent. The validity of this assumption depends Ak=2 Vi {Ckr | Ckr1), 5
on the nature of pairing potential and the strength of the K’
magnetic field* For example, in thet-J model Jij(A) andg=(2p/q,0). Generally, in the presence of a magnetic
=4t;;(A)t;i(A)/U is strictly field independent, since the field the superconducting order parameter should also in-
change of the phase, generated when an electron hops froctude the off-diagonal termé.e., the averagec_y c,;) for
sitei to j and back, cancels out. Such an assumption has aldo#k'). However, without the restriction to the diagonal
been partially justified on the basis of antiferromagnetic-pairing one ends up with a large system of nonlinear equa-
spin-fluctuation-driven superconductivity. tions that is numerically intractable.

Our starting point is a two-dimensional square lattice with  In order to rewrite the above Hamiltonian as a sum over
basis vectorei=(a,0,0) andb=(0,a,0), immersed in a per- the MBZ we introduce a multicomponent Nambu spinors

Ci=(Ch1 1Chg 1 Ck=2g 1+ -+ Ck—(q-191 1Cl 1Cokrg i Cokrzg s -+ Coiera-Dal): 6)
Then Eq.(4) can be written as

A=>" C/H,Cx, @)
k
where the prime denotes summation over the MBZ Hpchas a block structure
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TkT Ak
Ay Ty

The diagonal blocks describe noninteracting lattice fermions under the influence of magnetic field, and have the form similar
to that derived by Hasegavet al,?®

H = : (8)

Mo, €% 0 . 0 e Ky
e™ My, e 0 - 0
. 0 e M,, ek :
Tio="1 . 0 , 9
0 0 e™ My, €%
e 0 0 e ™ Mg_1,

where M, ,=2 coska+ny)+e,—u, y=|g/=2mp/q, and even though Eq(11) is completely general. Generally, this
the diagonal matrixA, represents the pairing amplitudes: ~ €quation can be used, e.g., to analyze the magnetic—field—
induced change of gap parameter symnfétoy the upper
A =diag Ay Ap_gy DA go)g)- (10)  critical field in the systems with the spin-triplet pairing. The
latter area of application is especially attractive, since in
Diagonalization of Eq(8) provides a set of eigenenergies these systems the Pauli pair breaking mechanism is absent,

{&i}, wherei enumerates @ values corresponding to a and the upper critical field is expected to be very Hgh.
givenk from the MBZ.

The pairing amplitude in the presence of external mag-

netic field is determined self-consistently from the BCS-like lll. RESULTS
equation A. Orbital effects
1 20\ A < The transition linesT.(H) for a half-filled system, ob-
A, DS KK K o R (11)  tained in the absence of the Zeeman splittigg=0), are

2N 7 =1 28 2kg T’ presented in Fig. 1. Note that fer of the order of a few
. ) _angstrans, experimentally available magnetic fluxes are
where N=L,L, and the prime summation denotes againy,ch |ess thamb,. Consequently, these plots correspond to
summation over the MBZ. In the following we restrict our- ¢ yegion of an extremely high magnetic field. The size of
selves to the singlet pairing in treewave channel4=A),  he Hamiltonian matrixd, , that has to be diagonized for all
- . values ofk in each step of the iterative procedure, ig 2
3 € 7 o X 2q. Therefore, since the magnetic flux is proportional to
2 g1, the proposed approach does not allow one to carry out
‘ calculations for a small magnetic field. This is why the tran-
1 (a) sition lines in Fig. 1 start at a finite magnetic field.
For a weak field, thermal smearing and/or disorder-

3 3
8

b=

0 induced broadening destroy the Hofstadter butterfly struc-
02— T ture. In the absence of the Iattlce_ p_erlod|c potential this re-
~ / ~ gime corresponds to a classical limit, where the number of
§ 0.1 \ \ (b) occupied Landau levels is huge, and the Ginzburg-Landau
0 0.04
0.06
RN 0.03 -
0041, PRI DL S R BN (c)
eiores s, NP " N b A c = ]
0.02 - =, 0.02
0 0.1 0.2 0.3 0.4 0.5 0.1
/D,

0 T T T y y
0.0000 00002 0.0004 0.0006 0.0008 0.0010 0.0012
FIG. 1. Critical temperaturd&. as a function of®d/d,. Upper, /D,

middle, and lower panels show results ¥ft=7,2, and 1, respec-
tively. Small arrows indicate the transition temperature calculated FIG. 2. Critical temperaturd, as a function of®/®, in the
from the usual BCS equations in the absence of a magnetic field.low-field regime forV/t=1. Results are taken from Ref. 25.
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p/q=1/4 plg=1/5 plq=1/6 (a) plg =172 (b) plq = 10121 (©)
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FIG. 3. Normal-state density of states for different values of G, 4. Normal-state density of states fpfq=1/2 (a) and

magnetic field. The dotted line in the left panel represents the deny,q—10/21 (b). (c) Comparison of integrated densities of states for
sity of states in a superconducting state Aor0.7. p/q=1/2 (dotted liné and p/q=10/21 (solid line).

description of the mixed state is valid. In this regime, in The changes of the normal-state density of states result in

accordance with the common feeling, superconductivity inan oscillatory behavior of ;(H): T, approaches its maxima

the tight—binding system is suppressed by the magnetic fieldor oddq and is reduced for even Similar oscillations were

disappearing atl .,.2>?° The corresponding transition line is predicted by Rasolt and Tasovic in a homogeneous sys-

presented in Fig. 2. tem, where the Hofstadter spectrum is replaced by the
The method used in Ref. 25 does not work at low tem-Landau-level ladder. o _

perature and the present method does not work at weak field. The superconductivity suppression is especially apparent

Therefore, there is no crossover line from the low to high®r Small and eveng, when V is comparable with the
field regimes. central-gap width. The smooth character of the function

The transition lines for 1 ®/dy=<1 can be obtained Te(®) close to®/y=p/q and for smalh (e.g., close to the

reflecting the lines presented in Fig. 1 around the Iinevaluesp/qz1/2,1/3,1/4),seems counterintuitive, since a tiny

®/Dy=1/2, andT(®) is periodic ondy. Both these prop- detuning of the magnetic field completely changes the spec-

. . trum. Forp/g=1/2 the spectrum consists of two subbands,
erties reflect properties of the Hofstadter butterfly. Of COUTSE 1o forp/q=10/21 there are 21 narrow subbarigse

these_unphysical results are valid only when the Pauli_ p_ai[:ig. 4). However, in spite of this difference, the integrated
br_eakmg_ is neglected. The influence of _the Zeemar_w splittingya nsities of states, presented in Figc)4 are almost the
will be discussed later. For a strong pairing potential, COM4gme.
parable with the bandwidth, the critical temperature in the gq, largerq, the differences betweendland 1/@+ 1) are
reentrant regime is almost field independfstte Fig. 18)].  smaller, and consequently the distances between successive
As V is reduced, the influence of the nontrivial density of minima in the density of states decrease. For a strong pairing
states becomes apparent. It was shown by Hofstatlitet, in  potential (and highT,) there is large number of subbands
a normal state, the Bloch band f&/®,=p/q is symmetric  within a range of energy-kgT. and then the amplitude of
and broken up intg distinct energy bands. In the half-filling oscillations is strongly reduced. On the other hand, for the
case the Fermi levelHg) is located in the center of the weak potentiali.e., at low temperatujethese irregular os-
(unperturbedl subband. Therefore, i is odd, Er points to  cillations are visible even at low fieldsf. Fig. 19.
the singularity of the central subbarfa remnant of the origi-
nal van Hove singularity whereas for eveq it is in the gap
between two subband§in fact, for evenq these subbands
touch at the Fermi levelThis is depicted in Fig. 3. The previous discussion ignored the effect of Pauli pair
When the system goes beloly, superconducting gaps breaking. We consider this next. Since the Zeeman splitting
open up in the middle of every subband. Then there are gags proportional to the magnitude of the magnetic field and the
of two types in the spectrum, namely, gaps that open as arbital effect depends on the flux, we have to find a relation
result of the competition between the lattice constant and thbetween these two quantities. This can be done by using the
magnetic length(“commensurability gapsf and supercon- relationt=72/2m* a, wherem* is the effective mass. Then
ducting gaps. Variations of the Hofstadter butterfly for sys-the Zeeman splitting is given byugH=2mg* (p/q)t,
tems in the superconducting state with different pairing symwhereg* =g(m*/m).%!
metries are presented in Ref. 30. As the superconducting The inclusion of the Zeeman term results in a reduction of
gaps increase, the split subbands move about, strongly modihe phase space available for pairing. For a strong pairing
fying the normal-state density of states. When two subbandgotential, when the structure of the Hofstadter butterfly is
are close together, the splitting can close the commensurabifidden, this leads to a monotonic reductionTef with in-
ity gap (or the pseudogap in the case of the central twacreasing magnetic field. Such a situation is presented in Fig.
subbands for eveq) between them, simultaneously opening 5(a).
up two another(superconductinggaps. This can lead to an However, for smaller values of, whenkgT,. is compa-
interesting situation, where there is a gap at the Fermi levalable with the minibandor minigap widths, the situation is
in the normal state, which is closed when the system bemore complicated. The Zeeman term leads to a splitting of
comes superconducting. Such a case is presented in Fig. 2ach of the minibands into spin-up and spin-down mini-

B. Zeeman splitting
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15 T

FIG. 5. Critical temperaturd, as a function of®/®, in the 0 0.1 0.2 0.3 04 0.5
presence of the Zeeman splitting Méft=7 (a) andV/t=2 (b). /D,

o FIG. 7. Chemical potential as a function®i® for n=0.9 (a)
bands. To have nonzeflg. we need minibands of both types andn=0.8 (b). The solid line corresponds to the zero temperature
present close to the Fermi level. As the magnitude of thease, whereas the dashed one is determinelgfbit=0.15.
splitting is proportional to the magnetic field, will be an
oscillatory function of the magnetic field. When the spin-up _(°
and down minibands overlap at the Fermi levél, is Mprg= _xpp’q(E)dE‘ (13
strongly enhanced. This mechanism may induce supercon- . .
ductivity in regions, wherd, is zero or close to zero in the Where the density of statgs,4(E) is strongly dependent on
absence of the Zeeman splittifjgompare the solid and ]Ehe rgtlop/q.r;l'h?dshfaltpe Of. CurV‘%BF/qF(#) is generally re-
dashed lines in Fig.(8)]. For example, fob/do=1/4E, is  €/7ed (0 as the “devil's staircasqi. Fig. 4c)].

located in th tral mini far =0 wh th . As the magnetic field is changed, successive Landau
ocated in the central minigap fg* =0, whereas there is a minibands cross the Fermi level. For a fixed number of elec-

singularity atEg for g* =0.15. The corresponding densities yong per site the irregular changes of the density of states
of states are presented in Fig. 6. result in sawtooth oscillations of the chemical potential.
These oscillations are clearly visible at low temperature. At a
C. Away from half-filling higher temperature the thermal broadening smoothes out this
behavior. Figure 7 shows the zero- and finite-temperature
dependences gk on ®/®, for different fillings.
The influence of the band filling on the critical tempera-
; ! s . ture is analogous to that of the Zeeman splitting: both these
half-filled band. To gain an insight into the regime EL oo ctg chang?e the position of the Fermi Ievpel relegltively to the
one has to supplement ELL) with an equation for the  ayima of the density of states. Figure 8 shows the resulting
numbe_r of particles, that allows us to determine the chemicglgq dependence of, for different electron numbers. As
potential, by expected, the deepest minima have been shifted from the
strongly commensurate fields for eveq, i.e., ®/d,
1- %tanh Ei ) (12) =1/2,1/4,1/6. .. .Moreover, the minimum fob/d,=1/2
Ei 2kg has evolved into a wide region, where a superconducting
R solution does not exist. Comparing Figs. 7 and 8 one can
Heree, ;,, are eigenvalues of the matrix , describing non- notice the chemical potential junndicated by the vertical
interacting electrons, given by Eq(9). In the zero- arrows corresponding to the disappearance of superconduc-
temperature case the chemical potential can be determineity. The presence of such jump can be associated with the
from the formula appearance of the field-driven quantum phase transition.

The Hofstadter spectrueven in the presence of the pair-
ing potential is symmetric. Therefore, independently of the
applied magnetic field, the case=0 corresponds to the

>

=1

1 ,
Noia=5N %

IV. DISCUSSION

Let us comment on the possibility of observing the oscil-
latory behavior ofT. in real systems. Assuming a lattice
constanta=2 A the magnetic field required to obtain
®/Py~1 isO(10°) T, which is obviously too large. How-

L ever, there are some possibilities to overcome this problem.

T — For example, it was recently showhthat in some three-
dimensional systems fractal spectra, like Hofstadter’s butter-
fly, can be obtained fob/®d,<1. On the other hand, it is

FIG. 6. Normal-state densities of states fbf®,=1/4. Solid  possible to reach the needed increase of flux enlarging the
and dashed lines correspondgb=0 and 0.15, respectively. lattice constant. Two-dimensional superconducting wire net-

i
H
!
i
i

m

o ———:—:_}':;,;::;am..,________

-3 -2 -1

m
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02 = — =l also obtained.by. solving the Harpgr equation. Therefor'e, one
\/‘ can expect similar behavior of. in 2D superconducting

0.1 1 . systems modulated in two dimensions. Again, since the

modulation period is larger than the lattice constant, the re-

0 quired values ofb are well within the experimental accessi-

I bility.

: T i T n=0.9 Finally, we remark on yet another superconducting sys-
= o] e’ ~ tem, which exhibits commensurate effects of a similar type.
=~ That is, the properties of Josephson-junction arrays depend

0 | in an oscillatory manner on the value of the magnetic flux

piercing a plaquette. However, the origin of this dependence
0.2 1 — n=0.8 differs from that for the lattice fermions. As the magnetic
N field is increased from zero, a transition into a vortex state
A4 )
0.1 1 N occurs, for which the flux penetrates the array. This can be
o | Y seen as an array analog of flux penetration in type-Il super-

0 01 02 03 04 05 conductors. As a result of the competition between the peri-
odicity of the vortex lattice and the underlying pining poten-
tial provided by the array, different phase transitions are
FIG. 8. Comparison of the critical temperature determined fOfpossibIe when the field is changed. Generally, the supercon-
different filling factors:n=1 (a), n=0.9 (b), andn=0.8 (c). The  qycting properties of the Josephson-junction array, e.g., the
arrows indicate position of the largest chemical potential jump.  «ritical current or critical temperaturéhe transition tem-
perature to a macroscopically phase coherent)state en-
work can be suitable for this task, since the magnetic fielchanced forall commensurate fields. In contrast, the enhance-
corresponding tob, is about 1 mT for a network cell of ment of T, calculated in this paper for the lattice fermions
1 pm?, and the system can be mapped onto a tight-bindingccurs only for commensurate fields wheyés even.
one. Another possibility is cpnnected Wlth the case where the ACKNOWLEDGMENTS
influence of the modulation potential on the Landau-
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