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Nonadiabatic theory of the superconducting state
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The nonadiabatic theory of superconductivity has provided a useful tool to investigate the superconducting
properties of narrow-band systems where Fermi energyEF is comparable with the phonon frequenciesvph.
Here we present the extention of nonadiabatic theory to the superconducting state (T,Tc) and we derive the
generalized Eliashberg equations that include the first nonadiabatic diagrams arising from the breakdown of
Migdal’s theorem. We show that the opening of the superconducting gap modifies the momentum-frequency
structure of the electron-phonon vertex function with respect to normal state. We study the effects of nonadia-
batic terms on the superconducting gapD and on the ratio 2D/Tc in order to relate possible strong-coupling
phenomenology, signalized by 2D/Tc.3.53, and nonadiabatic effects.
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I. INTRODUCTION

High-Tc superconductors present a complex phenome
ogy that can be hardly understood within the concept of c
ventional metals and superconductors. Most remarkable
of course the high values of critical temperatures ranging
to Tc.135 K in cuprates,1 Tc.117 K in fullerenes doped
with field effect,2 and Tc.39 K in recently discovered
MgB2.3 While the phononic nature of the pairing seems
tablished in fullerenes and MgB2, the issue is still debated in
the case of the copper oxides.

In principle, such highTc’s could be easily accounted fo
in the conventional Migdal-Eliashberg~ME! theory by as-
suming a sufficiently strong superconducting pairing. T
simplistic point of view is, however, challenged by a qua
titative study. In fact, a crossed analysis of different expe
mental data, such as the critical temperatureTc , and the
isotope coefficientaTc

, and theTc vs lattice constanta in

MgB2 and in fullerene compounds~where there is a large
consensus about the phononic origin of the superconduc
pairing!, shows that the experimental scenario in these m
terials would imply extremely large values of the electro
phonon coupling constantl in the ME framework, respec
tively, l.1.4–1.7 for MgB2 ~Ref. 4! andl.1.3–2.6 for C60
compounds.5–7 These values ofl appear unrealistic with re
spect to the stability of these systems towards various st
tural transitions8,9 and are, at all cases, in strong disagre
ment with first-principles calculations that estimate, f
instance,l.0.7–0.9 in MgB2 ~Refs. 10–14! and l.0.5
20.8 in C60.15–19 Normal-state properties present a simi
discrepancy between theoretical and experimental estim
of the electron-phonon couplingl, as the photoemission dat
in electron doped C60 ~Refs. 20,21! or the mass enhanceme
measurements in MgB2.22 To summarize this scenario w
can say that, from the phenomenological point of view, th
high-Tc materials ‘‘look’’ like strong-coupling superconduc
ors. However, such strong-coupling phenomenology can
be simply related to unphysically large values of themicro-
scopicall parameter within a conventional ME framewor
0163-1829/2002/66~5!/054532~10!/$20.00 66 0545
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it requires a new scenario wherein the realistic value ol
based on local-density approximation~LDA ! calculations
can account for the strong-coupling phenomenology.

In previous papers we have proposed that nonadiab
effects can be responsible for the anomalous properties o
high-Tc superconductors.23–25 Fermi energy is indeed ex
tremely low in all these materials,26 thus comparable with
phonon frequencies. In such a situation the adiabatic assu
tion, on which Migdal-Eliashberg theory relies, breaks do
and new interaction channels arise. This framework is
pected to apply in cuprates even if nonphononic media
are taken into account~spin fluctuations,27,28 incommensu-
rate charge-density wave,29 stripes,30,31 etc! as soon as their
energy scales are comparable with the Fermi energyEF . We
have shown that under favorable conditions, which we
lieve are indeed realized in cuprates, fullerenes, and prob
in MgB2, these types of interactions could enhance the to
Cooper pairing and account for the high values of the criti
temperature.4,5,7 The high-Tc superconductivity in fullerenes
and MgB2 results thus being compatible, respectively, w
l;0.421 andl;0.620.9 are in good agreement with th
LDA calculations.

The opening of nonadiabatic channels of interaction c
therefore provide a new scenario wherein an effective stro
coupling phenomenology could arise from moderate mic
scopicall, at least as regards with the high critical tempe
ture values. We would like to stress again that this appa
strong-coupling phenomenology does not stem from an
tual large electron-phonon coupling constantl, but rather
from the effects of the nonadiabatic processes. This dist
tion has important consequences:~i! the microscopicl, as
said, can be moderate in agreement with first-principles
culations;~ii ! there is hence no inconsistency between v
high critical temperatures and the absence of any struct
instability; ~iii ! nonadiabatic interactions can affect differe
physical quantities in different ways: they can, in princip
enhance the total electron-phonon interaction in the parti
particle channel~Cooper pairing! and decrease it in othe
one-particle ~e.g., self-energy! or particle-hole ~transport,
spin/charge susceptibilities! properties.32–34
©2002 The American Physical Society32-1
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In this situation it is highly interesting to assess to whi
extent the nonadiabatic theory of superconductivity can
count for the anomalous ‘‘strong-coupling-like’’ features
high-Tc materials. Concerning this point it should be r
minded that the strong-coupling phenomenology is mai
related to the ratio between superconducting energiesTc ,
D! and phonon frequencies rather than to the underlying
croscopic pairing.35 One example can be considered, i.e.,
gap to critical temperature ratioR52D/Tc . In Migdal-
Eliashberg theory, the ratioR increases from the lowest BC
limit of R53.53 to larger values on going from the wea
(l!1) to the strong (l@1) coupling regime. Several de
tailed studies, however, showed that this trend is essent
related to the superconducting/phonon energy ratioD/vph:35

H R.3.53 D/vph!1

R.3.53 D/vph;1,
~1!

independent of the microscopic origin of the pairing. T
dependence of strong-coupling effects onD/vph is therefore
expected to hold true even in the nonadiabatic framewor

In this paper we provide a generalization of the nonad
batic theory of superconductivityinto the superconducting
phase to determine the zero-temperature supercondu
gapD and the ‘‘phenomenological’’ strong-coupling param
eterD/vph. We find an interesting competition between tw
features. On one hand, the opening of nonadiabatic chan
increases the ratioD/vph as well asTc /vph with respect to
the adiabatic analysis. On the other hand, the modificatio
the momentum-frequency structure of the nonadiabatic
tex processes belowTc makes the enhancement ofD/vph
less marked thanTc /vph. Also, this effect becomes mor
relevant as the temperature decreases. We anticipate,
ever, that the first trend is significantly stronger than the s
ond one, and an apparent strong-coupling phenomeno
(D/vph;1, 2D/Tc.3.53) can be consistent with a modera
coupling within the context of the nonadiabatic theory
superconductivity.

The paper is organized as follows. In the following se
tion, we use a perturbative approach to derive a diagr
matic theory of the superconducting state in nonadiab
regime, and we write the corresponding self-energy eq
tions. In Sec. III, we study the vertex function in the sup
conducting state and we compare its behavior with tha
the same function in the normal state. The last section
devoted to the discussion of some numerical solutions of
self-energy equations.

II. NONADIABATIC PERTURBATION THEORY IN
SUPERCONDUCTING STATE

The whole framework of the conventional theory of s
perconductivity strongly relies on the Migdal’s theorem36

that permits to obtain a closed set of equations for the
diagonal and off-diagonal parts of the self-energyS.37 In a
general way, the self-energy can be expressed as a funct
of the electronic Green’s functionG of the phonon propaga
tor D and of the electron-phonon vertex functionG: S
5S@G,D,G#. All the complexity of the problem is therefor
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contained in the functionG that includes infinite-order
electron-phonon processes, and which is in principle
known. In his pioneering work, however, Migdal was able
show that for generic exchanged phonon momenta and
quencies (q andv) non-zero-order terms of the vertex fun
tion were at least proportional to the ratio between phon
and electronic energiesvph/EF :36

G~q,v!.gF11OS l
vph

EF
D1•••G , ~2!

wherevph is a measure of the relevant phonon frequenc
and EF is the Fermi energy that defines the characteris
electronic energy scale. In conventional metals and su
conductors the adiabatic ratiovph/EF is of order
1023–1024, vertex corrections to the lowest order are neg
gible, and thetotal vertex function can be replaced with it
lowest orderG.g.

However, fullerenes, cuprates, and MgB2 do not fulfil the
adiabatic requirement, with typical adiabatic ratio abo
vph/EF;0.220.8.26 In such a situation Migdal’s theorem
clearly does not apply and higher-order vertex diagrams n
unavoidably to be taken into account. Different approac
have been employed in literature to address this issue, b
on diagrammatic techniques,23,24,38,39Ward’s identity40 or lo-
cal approximations,41–43 and generalized also to nonphono
~plasmons,44 antiferromagnetic fluctuations45,46! mediators.
In previous papers23,24we have pointed out the importance
retaining the whole momentum-frequency structure of
vertex function. In this respect a suitable controlled way
extend the study of electron-phonon interaction in nonad
batic regime is the use of a perturbation scheme in the
rameterlvph/EF , as proposed in Refs. 24 and 25. In tho
papers a nonadiabatic generalization of the standard
theory was obtained atT5Tc , by expanding the on-diagona
and off-diagonal self-energies to the first order inlvph/EF .
In the spirit of such a perturbation theory, only first-ord
vertex~or cross! corrections were needed to be retained. In
diagrammatic skeleton picture, the normal-state self-ene
in nonadiabatic regime would thus appear as shown in Fig

An important advantage of this approach is the definit
of the nonadiabatic theory in terms of skeleton diagram
This permits to take into account all the orders in t
electron-phonon couplingl without any restriction to the
weak-coupling case (l!1). Of course, for too strong
electron-phonon couplings the use of a perturbation exp
sion on the parameterlvph/EF is clearly inadequate, sinc
for l larger than some model dependent ‘‘critical’’ valuelc
nonperturbative polaron trapping becomes dominant.47–49

Superconductivity in this situation should be better describ
in terms of~bi!polarons and Bose-Einstein Cooper pair co

FIG. 1. First-order nonadiabatic expansion of the normal-s
self-energyS.
2-2
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NONADIABATIC THEORY OF THE SUPERCONDUCTING STATE PHYSICAL REVIEW B66, 054532 ~2002!
densation should be a better approach. Nevertheless
present approach is expected to be a good starting p
when considering nonadiabatic effects in metals. In that s
ation the electron-phonon system is expected to acquire c
acteristic nonadiabatic features, still retaining its metallic
havior. The perturbative approach appears thus to be a u
tool to investigate nonadiabatic effects in this regime and
gain some qualitative insight on this issue. Numeri
calculations43,50 and analytic studies based on Ward
identity51 show the reliableness of the this approach ev
beyond the perturbative range of validity provided the p
laronic instability is not reached.

The most straightforward way of generalizing a diagra
matic theory in the superconducting state is the use of
Nambu notation, where the electronic Green’s functio
self-energies, and vertices are expressed as 232 matrices.
We assume for the moment that Migdal’s theorem holds t
even in the Nambu version, namely,eachmatrix component
of the vertex corrections is proportional to the adiabatic
rameterlvph/EF ~we shall see later that this is correct!. The
diagrammatic expression of the Nambu self-energy in
superconducting state, depicted in Fig. 1, is thus identica
that of normal state, where each object~Green’s functions,
matrix elements! is now replaced by a 232 matrix.

Thus the analytic expression of the self-energy reads

Ŝ~k,vn!5T (
p1 ,vm

D~vn2vm!ugk2p1
u2t̂3Ĝ~p1 ,Wm!t̂3

1T2 (
vm ,v l

(
p1 ,p2

D~vn2vm!

3D~vm2v l !ugk2p1
u2ugp12p2

u2

3 t̂3Ĝ~p1 ,Wm!t̂3Ĝ~p2 ,Wl !

3 t̂3Ĝ~p22p11k,Wl 2m1n!t̂3 , ~3!

where t̂ i are Pauli matrices,D(vm2v l) is the phonon
propagator, andWn are renormalized Matsubara frequenc
~which will be defined below!.

Nambu notation is particularly efficient in identifying th
analytic correspondence of diagrammatic expressions.
practical purpose of calculation it is, however, more con
nient to deal separately with on-diagonal and off-diago
parts of the self-energy,S11, S12, where theS i j represents
the (i , j ) matrix element of the Nambu self-energy. The d
grammatic expressions ofS11 andS12 are shown in Fig. 2.
After explicitly performing all the matrix products and som
careful rearrangement, it is possible to write Eq.~3! as fol-
lows:

S11~k,vn!5T (
p,vm

$D~vn2vm!ugk2pu2

3@11Pnn~k,p;Wn ,Wm!22Paa~k,p;Wn ,Wm!#

1Caa~k,p;Wn ,Wm!%G11~p,Wm!, ~4!
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S12~k,vn!5T (
p,vm

$D~vn2vm!ugk2pu2

3@112Pnn~k,p;Wn ,Wm!2Paa~k,p;Wn ,Wm!#

1Cnn~k,p;Wn ,Wm!%G12~p,Wm!, ~5!

wherePnn, Paa, Cnn, andCaaare, respectively, the electron
phonon vertex and cross contributions arising in nonad
batic regime. They can be considered as the supercondu
state generalization of the vertex and cross functions
cussed in Refs. 23–25. Their expressions can be written
introducing theP̃nn(aa) andC̃nn(aa) functions in the following
way:

Pnn(aa)~k,k8;Wn ,Wm!

5T(
l

D~vn2v l !P̃nn(aa)~k,k8;Wl ,Wl 2n1m!, ~6!

Cnn(aa)~k,k8;Wn ,Wm!5T(
l

D~vn2v l !D~v l2vm!

3C̃nn(aa)~k,k8;Wl ,Wl 2n2m!. ~7!

FIG. 2. Diagrammatic expression of theS11 and S12 compo-
nents of the Nambu self-energy in nonadiabatic regime.
2-3
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BOTTI, CAPPELLUTI, GRIMALDI, AND PIETRONERO PHYSICAL REVIEW B66, 054532 ~2002!
P̃nn(aa) andC̃nn(aa) are purely electronic quantities defined

P̃nn~k,k8;Wl ,Wl 2n1m!

5(
p

ugk2pu2G11~p,Wl !G11~p2k1k8,Wl 2n1m!, ~8!

P̃aa~k,k8;Wl ,Wl 2n1m!

5(
p

ugk2pu2G12~p,Wl !G12~p2k1k8,Wl 2n1m!, ~9!

C̃nn~k,k8;Wl ,Wl 2n2m!

5(
p

ugk2pu2ugp2k8u
2G11~p,Wl !G11~p2k2k8,Wl 2n2m!,

~10!

C̃aa~k,k8;Wl ,Wl 2n2m!

5(
p

ugk2pu2ugp2k8u
2G12~p,Wl !G12~p2k2k8,Wl 2n2m!.

~11!

In this definition we made use of the following properties
the Gi j propagators:G11(k,Wn)5G22(2k,2Wn) , and
G12(k,Wn)5G21(2k,2Wn).

Equations~4! and~5! provide the formal generalization o
the nonadiabatic theory of superconductivity belowTc . A
major role is played by the vertex and cross functionsP and
C. It is easy to check that forT→Tc

2 vertex and cross con
tributions related to anomalous the Green’s functio
namely,PaaandCaa, vanish, whilePnn andCnn reduce to the
normal-state vertex and cross functions . We thus sim
recover the equations forTc in nonadiabatic regime~see
Refs. 24 and 25!, obtained asT→Tc

2 limit of Eqs. ~4! and
~5!.

The nonadiabatic equations of the superconducting s
outlined in Eqs.~4! and ~5!, with the full momentum and
icl
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frequency dependence, represent a formidable task to
solved from the practical point of view. Useful simplifica
tions arise, however, for an isotropic system, as conside
throughout the paper. In that case, the self-energy can
assumed to be weakly momentum dependent and can be
replaced by its angular-momentum average:

Ŝ~k,vn!.^Ŝ~k,vn!&5Ŝ~vn!. ~12!

Therefore, the electronic Green’s function simply reads

Ĝ~k,Wn!52
iWnÎ 1ekt̂31fnt̂1

Wn
21ek

21fn
2

, ~13!

where the renormalized Matsubara frequenciesWn are sim-
ply related to the bare one asiWn5 ivn2S11(vn), fn is the
superconducting order parameter,fn5S12(Wn), and ek is
the electronic dispersion.

Under the same assumption, the vertex and cross co
butionsP andC ~and correspondinglyP̃, C̃) can be shown
to depend on fermionic momenta mainly via the only e
changed phonon momentumuqu5uk2k8u:23–25

P̃nn(aa)~k,k8;Wl ,Wl 2n1m!. P̃nn(aa)~Q;Wl ,Wl 2n1m!,
~14!

C̃nn(aa)~k,k8;Wl ,Wl 2n2m!.C̃nn(aa)~Q;Wl ,Wl 2n2m!,
~15!

whereQ5uqu/2kF . As an immediate consequence, the se
consistent nonadiabatic equations~4! and ~5! become a
simple convolution.

We can now apply the angular-momentum average,
~12!, on each self-energy component. Consider Eqs.~4! and
~5!. It is straightforward to show that this step corresponds
perform a separate angular average for the nonadiab
electron-phonon kernel, enclosed in curly brackets, and
the internal Green’s function. Thus we end up with the f
lowing compact expressions for the nonadiabatic equati
of the superconducting state:
Wn5vn12lT(
m

Wm

am
arctanS EF

am
D $@11Pnn~Qc ;Wn ,Wm!22Paa~Qc ;Wn ,Wm!#D~vn2vm!1Caa~Qc ;Wn ,Wm!%,

~16!

fn52lT(
m

fm

am
arctanS EF

am
D $@112Pnn~Qc ;Wn ,Wm!2Paa~Qc ;Wn ,Wm!#D~vn2vm!1Cnn~Qc ;Wn ,Wm!%, ~17!
in
in-
non
where we have introduced the renormalized ‘‘quasipart
frequencies’’an , defined byan5AWn

21fn
2, and the terms

Pnn(aa)(Qc ;Wn ,Wm), Cnn(aa)(Qc ;Wn ,Wm) are the angular
averaged vertex and cross functions defined as

Pnn(aa)~Qc ;Wn ,Wm!5^ugqu2Pnn(aa)~q;Wn ,Wm!&,
~18!
e Cnn(aa)~Qc ;Wn ,Wm!5^ugqu2Cnn(aa)~q;Wn ,Wm!&.
~19!

The Qc parameter appearing in Eqs.~18! and ~19! gives an
estimate of the degree of correlation of the material. While
uncorrelated materials the electron-phonon scattering is
deed known to have only a weak dependence on the pho
2-4
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NONADIABATIC THEORY OF THE SUPERCONDUCTING STATE PHYSICAL REVIEW B66, 054532 ~2002!
momentumq,52 strongly correlated systems are characteriz
by a marked predominance of forward scattering with sm
momentaq, whereas large momenta are suppressed.53–55We
modelize this momentum structure as a step function:23,24

ugqu2.g2S 2kF

qc
D 2

u@qc2uqu#. ~20!

The momentum cutoffqc (Qc5qc/2kF) is inversely propor-
tional to the correlation lenghtj, qc;1/j, so that its result is
smaller for the more correlated systems and larger for
less correlated ones.

The last ingredient to obtain a closed set of equations
superconductivity in nonadiabatic regime is now the expl
knowledge of the vertex and cross functio
Pnn(aa)(Qc ;Wn ,Wm) andCnn(aa)(Qc ;Wn ,Wm) in the super-
conducting state. As we are just going to see, however,
can express these terms in a compact way as functions o
corresponding vertex and cross calculatedin the normal
state.

Let us consider theP̃nn function, defined in Eq.~8!. It can
be easily shown, starting from Eq.~13!, that theG11 elec-
tronic propagator can be written as a linear combination
the two terms: 1/@ ian2ek# and21/@2 ian2ek#. Moreover,
these two terms have the same form of free-electro
Green’s functions, with frequenciesian and2 ian instead of
the usual Matsubara frequencies. Indicating withun

2 and vn
2

the coefficients of such linear combination, we can fina
write theG11 function in the form

G11~k,Wn!5
un

2

ian2ek
1

vn
2

2 ian2ek

5un
2G0~k,an!1vn

2G0~k,2an!. ~21!

The un and vn quantities can be identified as ‘‘frequenc
coherence factors’’ and are given by

un5A11Wn /an

2
,

vn5A12Wn /an

2
. ~22!

Vertex functions belowTc can now be related in a straigh
forward way to the vertex function in the normal state
means of the coherence factorsun , vn . We obtain, for in-
stance,

P̃nn~k,k8;Wl ,Wl 2n1m!

5~ul
2ul 2n1m

2 1v l
2v l 2n1m

2 !P̃~k,k8;a l ,a l 2n1m!

1~ul
2v l 2n1m

2 1v l
2ul 2n1m

2 !P̃~k,k8;a l ,2a l 2n1m!,

~23!

whereP̃(k,k8;a l ,a l 2n1m) is the electronic part of the ver
tex function in the normal state, where the usual Matsub
05453
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frequencies must be replaced by the quasiparticlean ones.
Here we made use ofP̃(k,k8;x,y)5 P̃(k,k8;2x,2y).

Similar relations apply toP̃aa. We can expressG12 as
function of the coherence factors as follows:

G12~k,Wn!52 iunvn@G0~k,an!2G0~k,2an!#, ~24!

and we obtain

P̃aa~k,k8;Wl ,Wl 2n1m!5~22ulv lul 2n1mv l 2n1m!

3@ P̃~k,k8;a l ,a l 2n1m!2 P̃~k,k8;a l ,2a l 2n1m!#.

~25!

Equations~23! and~25! hold true also for the cross functio
substitutingC (C̃) for P ( P̃) and the frequencya l 2n2m for
a l 2n1m .

Explicit calculations for the vertex and cross functions
the normal state have been provided in Refs. 56 and
which we refer for their analytic expressions.

As a last result of this section, we are now in the positi
to check directly the validity of Migdal’s theorem in th
superconducting state. In particular, we are going to sh
that all the first-order nonadiabatic diagramsin the supercon-
ducting stateare at least linear in the adiabatic parame
vph/EF .

We consider thePnn function as a representative case.
similar derivation applies in a straightforward way also
Paa and to the cross functionsCnn, Caa, assuring that the
results hold true for all the nonadiabatic corrections appe
ing in Eqs.~16! and ~17!.

In order to prove the validity of Migdal’s theorem, in th
superconducting as well as in the normal state, we nee
evaluate thevph/EF→0 limit of the vertex functionPnn for
generic finite values of the exchanged momentumq (Q
5uqu/2kF) and frequencyv5vn2vm . For simplicity we
assume all through the paper that the phonon spectrum
given by a single Einstein mode with frequencyv0. The task
is hugely simplified by using Eqs.~23! and ~25! that relate,
through the coherence factors, the vertex functionPnn ~or
Paa, Cnn, Caa! with the P̃ function in the normal state. Re
minding that the coherence factorsun andvn do not depend
on the phonon properties, the validity of Migdal’s theorem
the superconducting state is trivially proven since it redu
to the corresponding one in the normal state.

By using the explicit expression of the vertex functio
P̃(Q,Q c ;Wm ,Wn) in the normal state for generic exchang
momentaQ andWn2Wm ~Refs. 56 and 34!, we obtain

lim
v0 /EF→0

P̃~Q,Qc ;Wm ,Wn!

5l
v0

EF
$p@sgn~Wm!2sgn~Wn!#22%, ~26!

and, replacingWn with an in Eq. ~23!,
2-5
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lim
v0 /EF→0

Pnn~Q,Q c ;Wm ,Wn!5l T(
l

D~vn2v l !

3
v0

EF
@22p~ul

2v l 2n1m
2 1v l

2ul 2n1m
2 !

22~ul
2ul 2n1m

2 1v l
2v l 2n1m

2 1ul
2v l 2n1m

2 1v l
2ul 2n1m

2 !#.

~27!

Reminding the definition~22! of the coherence factors, w
can write this expression in a more compact form as follo

lim
v0 /EF→0

Pnn~Q,Qc ;Wm ,Wn!

5l
v0

EF
T(

l
D~vn2v l !FpS WlWl 2n1m

a la l 2n1m
21D22G , ~28!

which clearly shows the linear dependence on the adiab
parameterlv0 /EF of the vertex function also in the supe
conducting state.

III. STUDY OF THE VERTEX FUNCTION BELOW Tc

In the last section we have derived a closed set of s
consistent equations, Eqs.~16! and ~17!, which will be nu-
merically solved in the following section to obtain the sup
conducting properties in the nonadiabatic regime. Bef
coming to this point, however, we think useful to analy
more closely the momentum-frequency structure of the v
tex function in the superconducting state to gain phys
insight about the effects of the nonadiabatic corrections
particular, an important feature to assess is the overall sig
the vertex function, where positive sign is expected to
hance the superconducting pairing and negative sign to
press it.23–25

Vertex function in the normal state was shown to depe
in a nontrivial way on the momentum and frequency of t
exchanged phonon. The complex structure can be sche
tized by the static and dynamic limits defined as23

Ps[ lim
Q→0

lim
v→0

P~Q,Qc ;vm ,vn!,

Pd[ lim
v→0

lim
Q→0

P~Q,Qc ;vm ,vn!. ~29!

In the normal state the difference ofPs andPd can be shown
to be finite, evidencing a point of nonanalyticity in (Q50,
v50). As a representative case the two limits were cal
lated in Ref. 23 at the lowest order inl and zero tempera
ture:

Ps52l
v0

EF1v0
, ~30!

Pd5l
EF

EF1v0
, ~31!
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where a flat density of state in a half filled system was
sumed. Note that a positive sign implies an enhancemen
the effective electron-phonon coupling, while a negative o
would reduce it.

From Eqs.~30! and~31!, we can see that the effects of th
nonadiabatic vertex function is nota priori defined, but it
depends on the specific region in theQ-v space probed by
the electron-phonon interaction. In particular, we can exp
that a dominance of forward~small-Q) scattering in the
electron-phonon interaction would mainly select the posit
part of the vertex terms, leading to a net enhancement of
pairing and an increase ofTc .24,25 This situation is indeed
encountered in strongly correlated systems, such as cup
and fullerenes, where the electronic correlation suppres
scattering with short-wavelength charge fluctuations.53–55

The opening of the superconducting gap forT,Tc
changes this scenario in a nontrivial way. On one hand
removes the point of nonanalyticity at (Q50, v50) by
introducing a new energy scale. On the other hand, it a
modifies the overall structure of the vertex function. In ord
to investigate this issue we consider the lowest-order ve
diagrams within a simple BCS model, with no frequen
renormalization and with a constant gap:

G11~k,vn!52
ivn1ek

vn
21ek

21D2
,

G12~k,vn!52
D

vn
21ek

21D2
. ~32!

Let us consider how the opening of the superconduct
gapD affects the nonadiabatic channels in the Cooper p
ing kernel of Eq.~17!. We can focalize on the vertex contr
butions 2Pnn2Paa, which are the leading terms for sma
Q’s. We denote for simplicityPD52Pnn2Paa.

One can show that in this BCS model the vertex funct
depends on frequencies only via the exchanged phonon
quencyv5vn2vm explicitly:

PD~Q,v!5
l

2EFQ
T(

l
F v0

2

v l
21v0

2G E
2EF

EF
deE

22EFQ

2EFQ

dy

3
2@e~e1y!2v l~v1v l !#2D2

@v l
21e21D2#@~v l1v!21~e1y!21D2#

,

~33!

where the electronic dispersion is assumed to be lin
namely:e(p1q).e(p)1vFuqucosf5e(p)1y, f being the
angle between the vectorsp and q and constant density o
states~DOS! was assumed extending from2EF to EF .

An interesting feature to be pointed out is that the appe
ance of the new energy scale driven byD removes the
nonanalyticity of the vertex function for zero-exchanged m
mentum frequency, and the static and dynamic limits beco
equal:
2-6
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PD
s 5PD

d 5lE
2EF

EF
deFv0

2

2~v02e!22D2

~v0
22e22D2!2

2
v0

2

v0
22e22D2

3D2

4~e21D2!3/2

2
v0

2

2~v0
22e22D2!2

2@e2Ae21D222D2#

Ae21D2 G .

~34!

In Fig. 3 we show the structure of the vertex functio
involved in the Cooper pairingPD(Q,v) as function of the
exchanged frequencyv for different momentaQ in the ab-
sence and in the presence of the superconducting gaD.
Once more, the analysis of the static and dynamic lim
~marked with filled circles in figure! can be used as a repre
sentative case. Quite generally, they are, respectively, p
tive and negative in the normal state (D50). We see that the
opening of the superconducting gap allows them to colla
to a unique intermediate value. This means that in the p
tive region of small-Q scattering, characterized by the d
namic limit, the enhancement of the Cooper pairing due
the nonadiabatic vertex corrections is effectively reduced
the superconducting state.

In Fig. 4 the value of the static~dynamic! limit in the
superconducting state is plotted as function of the gap m
nitudeD. We see how the opening of the gap suppresses
vertex function. The limit lim

D→0
PD(Q50,v50) can be

analytically evaluated from Eq.~34! and gives

FIG. 3. Frequency structure of the vertex function in the B
model for different values of the exchanged momentum~from top
line to the bottom! Q50.0, 0.2, 0.4, . . . ,1.0. The adiabatic pa
rameter is here set asv0 /EF50.2, andl51. Left panel refers to the
normal state (D50.0) and right panel to the superconducting st
(D50.1). Filled circles mark the static and dynamic limits in t
normal and superconducting states.
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lim
D→0

PD
s 5 lim

D→0
PD

d

5lE
2EF

EF
deF v0

~v01e!2
2

3

2
d~e!1

4v0
2e

~v0
22e2!2G

52l
3v02EF

2~v01EF!
. ~35!

Note that the positivity of the vertex function at the (Q
50,v50) point is now also affected and the quanti
lim

D→0
PD(Q50,v50) becomes, for instance, negative f

large enough adiabatic ratiosv0 /EF.1/3.
On the ground of the present analysis, we can expect

the superconducting pairing is effectively decreased be
the critical temperature with respect to the normal sta
which determines, for instance,Tc . This will be indeed con-
firmed by numerical calculations in the following section.

IV. RESULTS AND DISCUSSION

Equations~16! and ~17! represent a set of self-consiste
coupled equations, which can be solved numerically by ite
tion to extract the renormalized frequenciesWn and the su-
perconducting order parameterfn . Vertex and cross func-
tions Pnn(aa) , Cnn(aa) are expressed as a function ofWn and
fn through the coherence factorsun , andvn and through the
quantity P̃(Qc ;Wn ,Wm) calculated in the normal state.56,34

The imaginary-axis gap function is thus simply obtained
Dn5fn /Zn where Zn5Wn /vn21, and the corresponding
‘‘Matsubara’’ gaps defined asDn50. A simple Einstein pho-
non with frequencyv0 and a constant DOS half filled band
were assumed, consistent with the model used in Refs
and 25 for the normal-state nonadiabatic theory calculatio
An important parameter we are going to discuss is the r
2D/Tc , where D is the physical superconducting gap a
sumed to be evaluated by experimental techniques. In
theoretical framework the physical gapD(T) can be obtained
from Dn via the analytical continuation on the real axi
lim

iv →v1 id
Dn[D(v,T), and through the relation

FIG. 4. Dependence of thePD(Q50,v50) value of the vertex
in the superconducting state as a function of the superconduc
gapD. Parameter as in previous caption.
n

2-7
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D~T!5Re$D~v5D~T!,T!%. ~36!

The zero-temperature physical gapD is obtained asD(T
50), whereas the zero-temperature ‘‘Matsubara’’ gapD0 is
equivalent toD05 lim

T→0
Dn505D(v50,T50). Discrepan-

cies betweenD and D0 arise in the strong-coupling regim
when the superconducting energy scaleD is comparable to
the frequency structure of Re@D(v)#: D;v0.35 In this per-
spective we have performed a numerical comparison
tween the physical gapD and the imaginary-axis gapD0.
The discrepancy betweenD andD0 was found to be less tha
9% in the region 3.53,2D/Tc,6, and less than 2% fo
2D0 /Tc.4. Numerical solutions of the superconductin
equations in imaginary axis provide therefore a quite go
evaluation of the physical gapD. On this basis we shall us
D0, calculated from the solution of Eqs.~16! and ~17!, to
evaluate the physical gap and the ratio 2D/Tc in the nona-
diabatic regime.

The dependence of the superconducting gap as functio
the adiabatic ratiov0 /EF is shown in Fig. 5. The behavior i
quite similar to the corresponding dependence ofTc . In par-
ticular, we find that the superconducting gap is significan
enhanced by the nonadiabatic interaction with respect to
Migdal-Eliashberg case (v0 /EF50). The enhancement i
more marked for smallerQc where the positive region of th
vertex function is mainly probed. Note that the increase
D/v0 with respect to the adiabatic case is alone expecte
drive the system in an ‘‘effective’’ strong-coupling regim
(D/v0;1) that is now, however, not related with a partic
larly largel. This is indeed shown in Fig. 6 where the rat
2D/Tc is plotted as function ofl for both the adiabatic and
the nonadiabatic theories.

Figure 6 shows that large values of the strong-coupl
ratio 2D/Tc can be recovered in the nonadiabatic theory
relatively smaller values ofl than needed in the standa
ME theory. For instance, 2D/Tc55 is compatible withl
51.2 whereas it corresponds tol.1.8 in Migdal-Eliashberg
framework. From the phenomenological point of view, ho
ever, the microscopical electron-phonon couplingl is not an
accessible parameter. A much more useful investigatio

FIG. 5. Superconducting gap in units ofv0 , D/v0 as function
of the adiabatic parameterv0 /EF in the nonadiabatic theory forl
50.7 and differentQc’s is shown.
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the comparison between the ratios 2D/Tc55 in the adiabatic
and nonadiabatic theories forfixed critical temperatures Tc .

According to the analytic study of the preceding sectio
we expect the superconducting pairing to be decreased
vertex corrections in the superconducting statewith respect
to the normal one. This is confirmed by our numerical c
culations. In Fig. 7 we show the temperature evolution of
superconducting gap as obtained by the present nonadia
theory including vertex contributions~filled circles! and by
the adiabatic Migdal-Eliashberg theory~empty circles!. In
order to have a direct comparison of the gap values the
croscopic parameters of both the adiabatic and nonadiab
theories were constrained to reproduce the same fixed v
of Tc . The required values ofl are shown in the inset fo
v0 /EF50.2 (Qc50.1 in the nonadiabatic case!. Larger val-
ues ofl correspond to higherTc /v0. Figure 7 shows that the
nonadiabatic theory predicts 2D(T)/Tc curves that are al-
ways lower than the ME adiabatic ones.

This result can appear in contradiction with Fig. 6, whe
nonadiabatic effects were shown to enhance 2D/Tc . In order

FIG. 6. Ratio 2D/Tc as a function ofl for the Migdal-
Eliashberg adiabatic theory and the nonadiabatic one (v0 /EF

50.2, Qc50.1).

FIG. 7. Temperature evolution of the superconducting gapD, in
units of v0, for the Migdal-Eliashberg adiabatic theory and th
nonadiabatic one (v0 /EF50.2, Qc50.1). Also, dashed lines repre
sent the weak-coupling BCS case.
2-8



t

n
c
m

th
-
on

o
p
de
pe

ta
t
h

t
tic

ak

g
e
g
tio

m

-

to
ph
la
rre

?
r
u

st
ta
ro
ed
g

on

er

n

g
rom

lts
ting
g-

-
on

oes

na-
n-

qua-
m-

is

tic-

ory.

NONADIABATIC THEORY OF THE SUPERCONDUCTING STATE PHYSICAL REVIEW B66, 054532 ~2002!
to understand this apparent discrepancy, it is importan
distinguish two different effects. Let us consider a fixedl. In
this case the opening of nonadiabatic channels is know
enhanceTc with respect to the adiabatic theory. This effe
drives in general the system towards a strong-coupling li
since the parameterTc /v0, which rules the strong-coupling
effects, is correspondingly enhanced. On the basis of
argument, we can expect 2D/Tc to be stronger in the nona
diabatic theory than in the Migdal-Eliashberg one, as c
firmed by Fig. 6. On the other hand, the detailed analysis
the present paper has shown that the opening of the su
conducting gap deeply modifies the vertex function and
creases the strength of the nonadiabatic pairing with res
to the normal state. The ratio 2D/Tc is correspondingly re-
duced.

Thus the two effects act in opposite directions. The to
balance between these two effects is better pointed ou
Fig. 7. Here the enhancement of the strong-coupling p
nomenology driven by the increase ofTc /v0 is absent since
the microscopic parameters were chosen to reproduce
same value ofTc /v0 for both the adiabatic and nonadiaba
theories. We see thatD(T50) is significantly enhanced in
the Migdal-Eliashberg case with respect to the we
coupling BCS limit ~dashed lines!. This is only due to the
finite value ofTc /v0, which gives arise to strong-couplin
phenomenology (2D/Tc.3.53). This contribution is thus th
same in both the theories. The negative role of the openin
the superconducting gap in the nonadiabatic vertex func
can be, on the other hand, isolated by comparingD(T50) in
the nonadiabatic theory with the adiabatic result. This co
parison shows that the enhancement of 2D/Tc due to finite
Tc /v0 is partially,but not completely, suppressed. In particu
lar, we can still observe a significant increase ofD(T50) in
the nonadiabatic theory with respect to the BCS result.

We are now in the position to ask us how taking in
account the onset of nonadiabatic channels affects the
nomenologic analysis of the experimental data. In particu
we are interested in the basic issue: what can be infe
from the experimental valuesTc and 2D/Tc about the micro-
scopic couplingl in the framework of nonadiabatic theory

In order to answer this simple question we conside
representative example inspired by the cuprates. We wo
like to stress that this example should be considered ju
suitable tool to illustrate how the analysis of experimen
data is affected in the nonadiabatic theory, while the mic
scopic origin of superconductivity in cuprates is still debat
We thus analyzed a half filled system with Fermi ener
~half bandwidth! EF50.3 eV and critical temperatureTc
5100 K. We considered for simplicity an Einstein phon
spectrum with energyv0. The frequencyv0 was thus deter-
mined as a function of the electron-phonon couplingl to
give Tc5100 K, and the superconducting gapD was then
calculated. The results are shown in Fig. 8 where 2D/Tc and
v0 are plotted as a function ofl for different values ofQc
~solid line from the left to the right!: 0.1,0.3,0.5. For com-
parison, the data corresponding to a Migdal-Eliashb
analysis are also shown~dashed line!.

For a given value of 2D/Tc , assumed to be inferred from
experimental measurements, let us say 2D/Tc55, and given
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a value ofTc5100 K, we find in the nonadiabatic theory a
electron-phonon couplingl.1.1 for Qc50.1, significantly
smaller thanl.2.0 estimated within the Migdal-Eliashber
framework. Note that such a discrepancy does not stem f
a substantially different phonon energy scale (v0
.40 meV in ME theory,v0.34 meV in the nonadiabatic
one!. We can thus relate the origin of these different resu
to the onset of nonadiabatic channels in the superconduc
pairing. In particular, our results point out that a stron
coupling phenomenology~high Tc , large values of the ratio
2D/Tc! is compatible in a natural way in the nonadia
batic scenario with small values of the electron-phon
couplingl.

We would like to stress once more that this statement d
not imply that nonadiabatic superconductivityunavoidably
leads to large value of the ratio 2D/Tc , as it is confirmed by
Fig. 8 itself, where the sameTc5100 K corresponds to
much lower values of 2D/Tc (;3.53) if the characteristic
phonon frequencyv0 is increased.

V. CONCLUSIONS

In this paper, we have afforded the extension of the no
diabatic theory of superconductivity within the superco
ducting state atT,Tc . We have shown the validity of a
perturbative approach based on a smallvph/EF expansion
even in the superconducting state. The nonadiabatic e
tions for T,Tc have been derived by means of a diagra
matic approach. It has been shown that a crucial role
played by the opening of the superconducting gapD in the
nonadiabatic vertex diagrams. This removes the nonanaly

FIG. 8. Ratio 2D/Tc ~top panel! and phonon frequencyv0 ~bot-
tom panel! constrained to reproduceTc5100 K andEF50.3 eV.
Solid lines are for nonadiabatic theory with~from left to right line!
Qc50.1, 0.3, 0.5. Dashed line represents Migdal-Eliashberg the
2-9
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ity at Q50, v50 and modifies the overall momentu
structure of the vertex function. The generalized equation
the superconducting state are numerically solved to eval
the superconducting gapD in the nonadiabatic scenario. As
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physical consequence of our analysis we have shown th
strong-coupling phenomenology is naturally accounted fo
the nonadiabatic theory for small values of the electro
phonon couplingl.
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