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The nonadiabatic theory of superconductivity has provided a useful tool to investigate the superconducting
properties of narrow-band systems where Fermi en&igis comparable with the phonon frequencieg, .
Here we present the extention of nonadiabatic theory to the superconductingTstalg) (and we derive the
generalized Eliashberg equations that include the first nonadiabatic diagrams arising from the breakdown of
Migdal's theorem. We show that the opening of the superconducting gap modifies the momentum-frequency
structure of the electron-phonon vertex function with respect to normal state. We study the effects of nonadia-
batic terms on the superconducting gapand on the ratio &/T, in order to relate possible strong-coupling
phenomenology, signalized byA2T .>3.53, and nonadiabatic effects.
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[. INTRODUCTION it requires a new scenario wherein the realistic valuex of
based on local-density approximatidahDA) calculations
High-T. superconductors present a complex phenomenolean account for the strong-coupling phenomenology.

ogy that can be hardly understood within the concept of con- In previous papers we have proposed that nonadiabatic
ventional metals and superconductors. Most remarkable arffects can be responsible for the anomalous properties of the
of course the high values of critical temperatures ranging ufigh-T. superconductor$: ?®> Fermi energy is indeed ex-
to T,=135 K in cuprate$, T,=117 K in fullerenes doped tremely low in all these materiafS, thus comparable with
with field effect? and T,~39 K in recently discovered Phonon frequencies. In such a situation the adiabatic assump-
MgB,.2 While the phononic nature of the pairing seems es{ion, on which Migdal-Eliashberg theory relies, breaks down
tablished in fullerenes and MgBthe issue is still debated in @"d Néw interaction channels arise. This framework is ex-
the case of the copper oxides. pected to apply in cuprates even if nonphononic mediators

; ; : 7,28 ; _
In principle, such highT’s could be easily accounted for are taken into accour(spin fluctuationg/?® incommensu

_ ; 230,31 ;
in the conventional Migdal-Eliashber@/E) theory by as- rate charge-density wavé stripes’®>! etg) as soon as their

suming a sufficiently strong superconducting pairing Thiso 'Y scales are comparable with the I_:_erm| enE_ngyVVe
N . R ' have shown that under favorable conditions, which we be-
S.'mPI'St'C point of view s, however, ch_alleng_ed by a quan-jieve are indeed realized in cuprates, fullerenes, and probably
titative study. In fact, a crossgc_i analysis of different experi;, MgB,, these types of interactions could enhance the total
mental data, such as the critical temperatlite and the  cqoper pairing and account for the high values of the critical
isotope coefficienter, and theT, vs lattice constana in - temperaturd:®’ The highT, superconductivity in fullerenes
MgB, and in fullerene compoundsvhere there is a large and MgB, results thus being compatible, respectively, with
consensus about the phononic origin of the superconducting~0.4—1 and\~0.6—0.9 are in good agreement with the
pairing), shows that the experimental scenario in these matrDA calculations.
terials would imply extremely large values of the electron-  The opening of nonadiabatic channels of interaction can
phonon coupling constant in the ME framework, respec- therefore provide a new scenario wherein an effective strong-
tively, \=1.4-1.7 for MgB (Ref. 4 and\=1.3-2.6 for G,  coupling phenomenology could arise from moderate micro-
compounds:’ These values of appear unrealistic with re- scopical\, at least as regards with the high critical tempera-
spect to the stability of these systems towards various strugure values. We would like to stress again that this apparent
tural transition&® and are, at all cases, in strong disagree-strong-coupling phenomenology does not stem from an ac-
ment with first-principles calculations that estimate, fortual large electron-phonon coupling constantbut rather
instance,A=0.7-0.9 in MgB (Refs. 10-1%# and A\=0.5  from the effects of the nonadiabatic processes. This distinc-
—0.8 in Gy.**'?Normal-state properties present a similartion has important consequencés: the microscopic\, as
discrepancy between theoretical and experimental estimatesid, can be moderate in agreement with first-principles cal-
of the electron-phonon coupling as the photoemission data culations;(ii) there is hence no inconsistency between very
in electron doped £ (Refs. 20,2) or the mass enhancement high critical temperatures and the absence of any structural
measurements in MQBZZ To summarize this scenario we instability; (iii) nonadiabatic interactions can affect different
can say that, from the phenomenological point of view, thesghysical quantities in different ways: they can, in principle,
high-T. materials “look” like strong-coupling superconduct- enhance the total electron-phonon interaction in the particle-
ors. However, such strong-coupling phenomenology canngtarticle channelCooper pairingg and decrease it in other
be simply related to unphysically large values of thiero-  one-patrticle (e.g., self-energy or patrticle-hole (transport,
scopical\ parameter within a conventional ME framework; spin/charge susceptibilitieproperties:2—34
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In this situation it is highly interesting to assess to which
extent the nonadiabatic theory of superconductivity can ac- Z

count for the anomalous “strong-coupling-like” features of
high-T. materials. Concerning this point it should be re-
minded that the strong-coupling phenomenology is mainly
related to the ratio between superconducting energigs ( FIG. 1. First-order nonadiabatic expansion of the normal-state
A) and phonon frequencies rather than to the underlying miself-energys..

croscopic pairing> One example can be considered, i.e., the

gap to critical temperature rati®=2A/T.. In Migdal-  contained in the functionl that includes infinite-order
Eliashberg theory, the ratig increases from the lowest BCS electron-phonon processes, and which is in principle un-
limit of R=3.53 to larger values on going from the weak known. In his pioneering work, however, Migdal was able to
(A<1) to the strong X>1) coupling regime. Several de- show that for generic exchanged phonon momenta and fre-
tailed studies, however, showed that this trend is essentia"quencies ¢ and w) non-zero-order terms of the vertex func-
related to the superconducting/phonon energy rzéltioph:35 tion were at least proportional to the ratio between phonon

and electronic energies,,/Eg: %
R=3.53 Alwy<l

R>3.53 Alwy~1, @

Wph
A
F

I'(q,0)=g/1+0 +een 2

independent of the microscopic origin of the pairing. The
dependence of strong-coupling effects dhw,, is therefore  wherewy, is a measure of the relevant phonon frequencies
expected to hold true even in the nonadiabatic framework. and Eg is the Fermi energy that defines the characteristic
In this paper we provide a generalization of the nonadia€lectronic energy scale. In conventional metals and super-
batic theory of superconductivitinto the superconducting conductors the adiabatic ratiow,,/Er is of order
phase to determine the zero-temperature superconductidd 3—10 4, vertex corrections to the lowest order are negli-
gapA and the “phenomenological” strong-coupling param- gible, and thetotal vertex function can be replaced with its
eterA/w,,. We find an interesting competition between two lowest orderd”=g.
features. On one hand, the opening of nonadiabatic channels However, fullerenes, cuprates, and Mg@o not fulfil the
increases the ratid/w,, as well asT./wp, with respect to  adiabatic requirement, with typical adiabatic ratio about
the adiabatic analysis. On the other hand, the modification ofn/E~0.2-0.82° In such a situation Migdal’s theorem
the momentum-frequency structure of the nonadiabatic verelearly does not apply and higher-order vertex diagrams need
tex processes beloW, makes the enhancement afw,,  unavoidably to be taken into account. Different approaches
less marked thaff;/wp,. Also, this effect becomes more have been employed in literature to address this issue, based
relevant as the temperature decreases. We anticipate, hown diagrammatic techniqué®?*3#3%ard’s identity° or lo-
ever, that the first trend is significantly stronger than the seccal approximation§}~**and generalized also to nonphonon
ond one, and an apparent strong-coupling phenomenologiplasmons;® antiferromagnetic fluctuatiofs*9 mediators.
(Alwy~1, 2A/T>3.53) can be consistent with a moderaten previous papef$**we have pointed out the importance of
coupling within the context of the nonadiabatic theory ofretaining the whole momentum-frequency structure of the
superconductivity. vertex function. In this respect a suitable controlled way to
The paper is organized as follows. In the following sec-extend the study of electron-phonon interaction in nonadia-
tion, we use a perturbative approach to derive a diagrampatic regime is the use of a perturbation scheme in the pa-
matic theory of the superconducting state in nonadiabatitameter\ w,,/Eg, as proposed in Refs. 24 and 25. In those
regime, and we write the corresponding self-energy equapapers a nonadiabatic generalization of the standard ME
tions. In Sec. Ill, we study the vertex function in the super-theory was obtained dt=T,, by expanding the on-diagonal
conducting state and we compare its behavior with that ofind off-diagonal self-energies to the first ordenia,/Er.
the same function in the normal state. The last section i$n the spirit of such a perturbation theory, only first-order
devoted to the discussion of some numerical solutions of thgertex(or cross corrections were needed to be retained. In a
self-energy equations. diagrammatic skeleton picture, the normal-state self-energy
in nonadiabatic regime would thus appear as shown in Fig. 1.
An important advantage of this approach is the definition
of the nonadiabatic theory in terms of skeleton diagrams.
This permits to take into account all the orders in the
The whole framework of the conventional theory of su-electron-phonon coupling. without any restriction to the
perconductivity strongly relies on the Migdal's theom weak-coupling case N<1). Of course, for too strong
that permits to obtain a closed set of equations for the onelectron-phonon couplings the use of a perturbation expan-
diagonal and off-diagonal parts of the self-enelyy’ In a  sion on the parameteNw,/Eg is clearly inadequate, since
general way, the self-energy can be expressed as a functiorfak \ larger than some model dependent “critical” valng
of the electronic Green’s functio of the phonon propaga- nonperturbative polaron trapping becomes domifiart
tor D and of the electron-phonon vertex functidh 2 Superconductivity in this situation should be better described
=3[G,D,T']. All the complexity of the problem is therefore in terms of(bi)polarons and Bose-Einstein Cooper pair con-

1. NONADIABATIC PERTURBATION THEORY IN
SUPERCONDUCTING STATE
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densation should be a better approach. Nevertheless, the
present approach is expected to be a good starting point 2 _
11 =

when considering nonadiabatic effects in metals. In that situ-
ation the electron-phonon system is expected to acquire char-
acteristic nonadiabatic features, still retaining its metallic be-
havior. The perturbative approach appears thus to be a useful
tool to investigate nonadiabatic effects in this regime and to
gain some qualitative insight on this issue. Numerical

S
calculation§®*® and analytic studies based on Ward's S’L.VJ,)

+

PPPPPP

identity®® show the reliableness of the this approach even
beyond the perturbative range of validity provided the po-
laronic instability is not reached.

The most straightforward way of generalizing a diagram-
matic theory in the superconducting state is the use of the
Nambu notation, where the electronic Green’s functions,
self-energies, and vertices are expressed a2 2Znatrices.
We assume for the moment that Migdal's theorem holds true
even in the Nambu version, namegachmatrix component
of the vertex corrections is proportional to the adiabatic pa- = +
rameter\ o,/ Er (we shall see later that this is correcthe
diagrammatic expression of the Nambu self-energy in the
superconducting state, depicted in Fig. 1, is thus identical to
that of normal state, where each objéGreen’s functions,
matrix elementsis now replaced by a 2 2 matrix.

Thus the analytic expression of the self-energy reads

2(K,0n)=T 2 D(wq—0m)|k-p,[*73G(P1, W) 75

P1,om
+
+T2 2 > D(wy—op)
®m,0) P1.P2

|2 FIG. 2. Diagrammatic expression of ti¥&;; and 3, compo-
nents of the Nambu self-energy in nonadiabatic regime.

XD(wmn— wl)lgk7p1|2|gplfp2
X 73G(p1, W) 735G (p2, W)

X 73G(Po— 1t KW, s ) 7a, @) S1ke)=T2 {D(w,—omn|gcl?

pP,om

where 7, are Pauli matricesD(wy,— ) is the phonon X[1+2Pnq(K,p;Wn ,Win) = Pad K, p; Wy, W) |
propagator, andV, are renormalized Matsubara frequencies +Cn(K,P; Wiy , Win) G P, Wi, (5)
(which will be defined below

Nambu notation is particularly efficient in identifying the whereP,,, P4, Cy,, andCy,are, respectively, the electron-
analytic correspondence of diagrammatic expressions. Fgrhonon vertex and cross contributions arising in nonadia-
practical purpose of calculation it is, however, more conve-batic regime. They can be considered as the superconducting
nient to deal separately with on-diagonal and off-diagonaktate generalization of the vertex and cross functions dis-
parts of the self-energ® 15, 21,, where theX;; represents cussed in Refs. 23—-25. Their expressions can be written by
the (i,j) matrix element of the Nambu self-energy. The dia-introducing theP s andCpnea) functions in the following
grammatic expressions &f;; and> ;, are shown in Fig. 2. way:
After explicitly performing all the matrix products and some
careful rearrangement, it is possible to write E8). as fol-  Ppnaa) (K KW, ,Wy,)
lows:

=T2, D(@n=©)Praa(KK W Winim), (6

Sk, wp) =T 2 {D(0n— om)|gk—pl?

P.om
Cnn(aa)(kyk,;wn W) :TE D(wp— w))D(w—on)
X[l+Pnn(kap;Wn=Wm)_2Paa(kap;Wn=Wm)] !
+Caa{k!p;wner)}Gll(pan)a (4) ><Eznn(aa)(kvk,;\NI rWI—n—m)- (7)
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frequency dependence, represent a formidable task to be
solved from the practical point of view. Useful simplifica-

Pk KWW ) tions arise, however, for an isotropic system, as considered

throughout the paper. In that case, the self-energy can be

B 2 B , assumed to be weakly momentum dependent and can be thus

_zp: |9k—pl “Cra(P W) G (P—K+K' Wipim),  (8) replaced by its angular-momentum average:

|3nn(aa) andﬁnn(aa) are purely electronic quantities defined as

Pad kK T W Wi - m) % (k,wp)=(Z(K,0p)) =Z(wy). (12
Therefore, the electronic Green’s function simply reads

=> |gkfp|2G12(paW|)G12(p_k+k,yW|7n+m)a ©) A - .
p Wyl + €3+ 71

2 2 2
Wp+ e+ o,

G(k,W,) = : (13
Cnn(kak,;wl vWI—n—m)
where the renormalized Matsubara frequentéésare sim-
_ 121G 112G (D W) G ya(p—K— K" Wi ), ply related to the bare one &&/,,=iw,—211(w,), ¢, is the
% 19-pl71Gp-101*GualP. W) G =n-m) superconducting order parameter,=3,,(W,), and ¢ is
(10 the electronic dispersion.
_ Under the same assumption, the vertex and cross contri-
Cad KK Wi, Wi - m) butionsP and C (and correspondingl?, C) can be shown
to depend on fermionic momenta mainly via the only ex-

— | _'|-23-25
:Ep 19— p|21Gp— 112G 1P W) G p— K — K/ Wi ). changed phonon momentulg| = |k—k’|:

(11) F)nn(aa)(kvk,;wl ,W| —n+m)2]3nn(aa)(Q;WI iWI—n+m)a

In this definition we made use of the following properties of (14

the G;; propagators: Gy (k,W,,)=G(—k,—W,) , and ~ , ~

Glz(k,l\JNn)ZGzl(—k,—Wn). " ) Chinaa) (KK s Wi, Wi _— ) = Chn@a)(Qs Wi , Wi ),
Equationg4) and(5) provide the formal generalization of (15

the nonadiabatic theory of superconductivity beIEFW A WhereQ:|q|/2kF_ As an immediate consequence, the self-
major role is played by the vertex and cross functiBrend  consistent nonadiabatic equatiofd) and (5) become a
C. It is easy to check that fof — T, vertex and cross con- simple convolution.
tributions related to anomalous the Green’s functions, We can now apply the angular-momentum average, Eq.
namely,P,,andC,,, vanish, whileP,,andC,,reduce to the (12), on each self-energy component. Consider Edjsand
normal-state vertex and cross functions . We thus simply5). It is straightforward to show that this step corresponds to
recover the equations fof. in nonadiabatic regimésee perform a separate angular average for the nonadiabatic
Refs. 24 and 25 obtained asT— T, limit of Egs. (4) and  electron-phonon kernel, enclosed in curly brackets, and for
(5). the internal Green’s function. Thus we end up with the fol-
The nonadiabatic equations of the superconducting statewing compact expressions for the nonadiabatic equations
outlined in Egs.(4) and (5), with the full momentum and of the superconducting state:

{[1+ Pian(Qc s Wi W) — 2P Q¢ i W, , W) ID (@0 — 0py) + Co Q¢ s W, va)}a
(16)

W, E
W,=w,+2\T>, —marctaré—F
m dm Am

{[1+ 2P Qe s Wi ,Win) = P Qc s Wi \Wi) ID (@ — @) + Crn( Qe s W va)}a (17)

bm Er
b= 2)\T§ a—marcta o

where we have introduced the renormalized “quasiparticle Cnn(aa)(Qc;Wnan):<|gq|2Cnn(aa)(q;Wner)>-

frequencies’a,,, defined bya,= \/W2n+ qbzn, and the terms (29
P (QciW,,W,), C (Qc; W, ,W,,) are the angular . .
acg(?gz:]edcver?ex and c?g(gg) functions defined as The Q. parameter appearing in Eqd.8) and(19) gives an
estimate of the degree of correlation of the material. While in
Pn@a)(Qc: Wa , Win) = (94| *Panaa) (6 Wi , W) ), uncorrelated materials the electron-phonon scattering is in-

(18  deed known to have only a weak dependence on the phonon
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momentun,>? strongly correlated systems are characterizedrequencies must be replaced by the quasipartigleones.
by a marked predominance of forward scattering with smalHere we made use d#(k,k’;x,y)=P(k,k’; —x,—y).

momentad, whereas large momenta are suppres$edwe Similar relations apply tdP,,. We can expresSy, as
2 2 2k|: 2 . 0 _ 0 _
19q"=9 o olac—all. (20) Gaa(K,Wp) = —iuqun[ G7(K, an) =G (K, — ) ], (24)
c

The momentum cutofél, (Q.=qJ2ke) is inversely propor- and we obtain
tional to the correlation lenglit, q.~ 1/¢, so that its result is
smaller for the more correlated systems and larger for thg_ (i k":W, W, _ . )= (= 2U,0,U; s m01 — s m)
less correlated ones.

The last ingredient to obtain a closed set of equations of 5 _
superconductivity in nonadiabatic regime is now the explicit X[P(K,K" ;) 0 nem) —PKK 50, —aj—pim) ]
knowledge of the vertex and cross functions (25)
Pnn(aa)(Qc;Wn 1Wm) and Cnn(aa)(Qc;Wn an) in the super-
conducting state. As we are just going to see, however, wequations(23) and(25) hold true also for the cross function
can express these terms in a compact way as functions of thgbstitutingC (C) for P (P) and the frequency,_,,_, for
corresponding vertex and cross calculaiedthe normal o, . .
state Explicit calculations for the vertex and cross functions in

Let us consider th®,,, function, defined in Eq(8). It can  the normal state have been provided in Refs. 56 and 34,
be easily shown, starting from E¢L3), that theG,; elec-  which we refer for their analytic expressions.
tronic propagator can be written as a linear combination of As a last result of this section, we are now in the position
the two terms: Tha,,— €] and — 1[ —ia,— €. Moreover, to check directly the validity of Migdal's theorem in the
these two terms have the same form of free-electronisuperconducting state. In particular, we are going to show
Green'’s functions, with frequenciéa, and—i«,, instead of  that all the first-order nonadiabatic diagramshe supercon-
the usual Matsubara frequencies. Indicating wiﬁ‘]and Uﬁ ducting stateare at least linear in the adiabatic parameter
the coefficients of such linear combination, we can finallywpn/EF-

write the G, function in the form We consider theP,,, function as a representative case. A
similar derivation applies in a straightforward way also to
u? v2 P.a and to the cross function§,,,, C,,, assuring that the
n n

results hold true for all the nonadiabatic corrections appear-
ing in Eqs.(16) and (17).
zuﬁGO(k,an)+v§G°(k,—an). (21 In order to prove the validity of Migdal's theorem, in the
superconducting as well as in the normal state, we need to
The u, and v, quantities can be identified as “frequency evaluate thev,,/Er—0 limit of the vertex functionP,, for

Gui(k,Wo)=
n

+—
— €y —Ian—ek

coherence factors” and are given by generic finite values of the exchanged momentgn{Q
=|qg|/2ks) and frequencyw=w,— w,,. For simplicity we

[1+W,/ap, assume all through the paper that the phonon spectrum is
Uh=V\V—>% given by a single Einstein mode with frequensy. The task

is hugely simplified by using Eq$23) and (25) that relate,
1-W,/a, through the coherence~factors, the vertex functiyp (or
Un= VT' (220 P, Cphny Cgad with the P function in the normal state. Re-
minding that the coherence factars andv, do not depend
Vertex functions belowT, can now be related in a straight- ©n the phonon properties, the validity of Migdal's theorem in

forward way to the vertex function in the normal state bythe superconducting state is trivially proven since it reduces
means of the coherence factars, v,,. We obtain, for in- (O the corresponding one in the normal state.

stance, By using the explicit expression of the vertex function

F’(Q,Q o; Wy, W,) in the normal state for generic exchanged
Pk, KW W) momentaQ andW,—W,, (Refs. 56 and 34 we obtain

:(ulzulz—n+m+Uﬁvf—n+m)ﬁ(k!k/;alial—n+m) lim F)(Q!Qc;wmiwn)
~ wg/E—0
+(Ufvipmtoful ) PKK @, — @), o
o
23 =\ g {9 W) —sgrWy)] -2}, (26)

whereP(k,k’;a;,a;_n+m) is the electronic part of the ver-
tex function in the normal state, where the usual Matsubarand, replacingV, with «, in Eq. (23),

054532-5



BOTTI, CAPPELLUTI, GRIMALDI, AND PIETRONERO PHYSICAL REVIEW B66, 054532 (2002

where a flat density of state in a half filled system was as-
im  Poi(Q,Q ;Wi W) =N T, D(wy— ) sumed. Note that a positive sign implies an enhancement of
©o/Bp—0 ! the effective electron-phonon coupling, while a negative one
would reduce it.
From Eqs(30) and(31), we can see that the effects of the
nonadiabatic vertex function is neat priori defined, but it
—2(UPUl o PvE e mt UPOE L mtofui s )] depends on the specific region in tRew space probed by
27) the electron-phonon interaction. In particular, we can expect
that a dominance of forwardsmall-Q) scattering in the
Reminding the definitior(22) of the coherence factors, we €lectron-phonon interaction would mainly select the positive

can write this expression in a more compact form as followspart of the vertex terms, leading to a net enhancement of the
pairing and an increase df,.2*? This situation is indeed

@o 2 2 2,2
XE—F[—ZW(LM VinemtTOTU nem)

im Pp(Q,Q¢; W, W,,) encountered in strongly correlated systems, such as cuprates
wo/Eg—0 and fullerenes, where the electronic correlation suppresses
scattering with short-wavelength charge fluctuatiohs®
WIWI —n+m

1

™

_ The opening of the superconducting gap for T,
2|, (28 i o - .
changes this scenario in a nontrivial way. On one hand, it

removes the point of nonanalyticity aQEO, «=0) by
which clearly shows the linear dependence on the adiabatintroducing a new energy scale. On the other hand, it also
parameten wq/Ep of the vertex function also in the super- modifies the overall structure of the vertex function. In order

w
=\ =T, D(wp— @)
EF |

A& —n+m

conducting state. to investigate this issue we consider the lowest-order vertex
diagrams within a simple BCS model, with no frequency

lll. STUDY OF THE VERTEX FUNCTION BELOW T, renormalization and with a constant gap:
In the last section we have derived a closed set of self- o+ e

consistent equations, Eq&6) and (17), which will be nu- Gyy(K,wn)=— #

merically solved in the following section to obtain the super- wpt €+ A2

conducting properties in the nonadiabatic regime. Before

coming to this point, however, we think useful to analyze

more closely the momentum-frequency structure of the ver- Gk, )= — —————. (32)

tex function in the superconducting state to gain physical wﬁ+ eﬁ+ A2

insight about the effects of the nonadiabatic corrections. In
particular, an important feature to assess is the overall sign of | ot ;s consider how the opening of the superconducting

the vertex function, where positive sign is expected t0 ey, A affects the nonadiabatic channels in the Cooper pair-
hance the superconducting pairing and negative sign to su ig kernel of Eq.(17). We can focalize on the vertex contri-

423-25
pre\?s it function in th | h q cgutions P~ Paa which are the leading terms for small
ertex function in the normal state was shown to dependy.s ‘e denote for simplicityPy = 2Py~ P.a.

in a nontrivial way on the momentum and frequency of the One can show that in this BCS model the vertex function

tized by the static and dynamic limits defined“as quency=wn— o, explicitly:

P’=lim IlimP(Q,Q¢;wm,wy),

2
0—0 w—0 A w3 fEF 2EFQ
P W)= T de d
sQo=gEa T2 || | e8] o™
P= lim |im P(Q,Q.;®m,wy). (29
0—0 Q-0 2[6(6+y)—w|(w+w|)]—A2
2 1

In the normal state the difference Bf andP? can be shown [wf + €+ A%][(0+ 0)?+(e+y)?+A%]
to be finite, evidencing a point of nonanalyticity iIQEO0, (33

w=0). As a representative case the two limits were calcu-
lated in Ref. 23 at the lowest order lnand zero tempera- where the electronic dispersion is assumed to be linear,

ture: namely: e(p+ q)=e€(p) + ve g|cosp=€(p) +y, ¢ being the
angle between the vectopsand q and constant density of
s o states(DOS) was assumed extending fromEg to Ef.
=-A Ert+ wp’ (30 An interesting feature to be pointed out is that the appear-

ance of the new energy scale driven By removes the
nonanalyticity of the vertex function for zero-exchanged mo-
Er . e
Pl=)\ ———, (31  Mmentum frequency, and the static and dynamic limits become
Ert o equal:
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012 |
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0.10

A=0.0 A=0.1 0.08

1 . , , . 0.0 0.1 0.2 0.3 0.4 0.5
0 1 2 0 1 2 3 A
/e, /e, FIG. 4. Dependence of the,(Q=0,0=0) value of the vertex

in the superconducting state as a function of the superconducting
gapA. Parameter as in previous caption.

FIG. 3. Frequency structure of the vertex function in the BCS
model for different values of the exchanged momentfmom top
line to the bottorh Q=0.0, 0.2, 0.4...,1.0. The adiabatic pa-

rameter is here set agy/Ex=0.2, and\=1. Left panel refers to the lim P{ = lim Pg
normal state 4 =0.0) and right panel to the superconducting state  A—0 A—0
(A=0.1). Filled circles mark the static and dynamic limits in the )
normal and superconducting states. EF wg 3 dwge
=\ de 5506t —5———
& [(wote)? 2 (05— €
E V2 A2
Z:Pi:)\f FdéﬂM N 3wO—EF (35)
B | 2 (03— €?—A?)? 2(wo+Ep)
Note that the positivity of the vertex function at th€ (
wﬁ 3A2 =0,0=0) point is now also affected and the quantity
- wg—eZ—AZ PIERIET IlmAHOPA(Q:O@:O). bec_omes, for instance, negative for
large enough adiabatic raties,/E>1/3.
On the ground of the present analysis, we can expect that
the superconducting pairing is effectively decreased below
2
B w 2[e—e*+A%?—A?] the critical temperature with respect to the normal state,
2(w2— 2—A?)? [e21 A2 ' which determines, for instancé&,. This will be indeed con-

(34)  firmed by numerical calculations in the following section.

IV. RESULTS AND DISCUSSION
In Fig. 3 we show the structure of the vertex function

involved in the Cooper pamn@’A(Q,w) as funcgon of the coupled equations, which can be solved numerically by itera-
exchanged frequencga for different momentaQ in the ab- tion to extract the renormalized frequench and the su-
sence and in the presence of the superconductinggap hereonducting order parametesr,. Vertex and cross func-
Once more, the anfalysus.of _the static and dynamic limitg;q,g Pon@ay» Crnaa) ar€ expressed as a function\wf, and
(marked with filled circles in figunecan be used as a repre- ¢, through the coherence factars, andv,, and through the
s_entative case. Q_uite generally, they are, respectively, pos&’uantityﬁ(Qc;Wn \W,.) calculated in the normal stat&
tive a_nd negative in the norm_al staté £ 0). We see that the The imaginary-axis gap function is thus simply obtained as
opening of the superconducting gap allows them to Collapsgn: é,1Z,, where Z, =W, /w,— 1, and the corresponding
to a unique intermediate value. This means that in the posiyatsubara” gaps defined a&,_,. A simple Einstein pho-
tive region of smalk scattering, characterized by the dy- hon with frequencyw, and a constant DOS half filled bands
namic limit, the enhancement of the Cooper pairing due Qyere assumed, consistent with the model used in Refs. 24
the nonadiabatic vertex corrections is effectively reduced inyg 25 for the normal-state nonadiabatic theory calculations.
the superconducting state. , o An important parameter we are going to discuss is the ratio
In Fig. 4 the value of the statidynamio limit in the 557 " \yhere A is the physical superconducting gap as-
Sl_Jperconductlng state Is pIotte(_j as function of the gap mags meq to be evaluated by experimental techniques. In our
nitudeA. We see how the opening of the gap SUppresses th e qretical framework the physical gagT) can be obtained
vertex function. The limit lim_ ,P(Q=0w=0) can be  gqn, A, via the analytical continuation on the real axis,
analytically evaluated from Ed34) and gives lim, A,=A(w,T), and through the relation

Equations(16) and (17) represent a set of self-consistent

wn—w+id
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0.5 7
———- ME adiab. theory
nonadiab. theory
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< g I
02 4t /,//’
0.1 : : : : 3 : :
0.0 0.1 0.2 0.3 0.4 0.5 0.5 1.0 15 2.0
o,/ E; A
FIG. 5. Superconducting gap in units @f, A/wg as function FIG. 6. Ratio 2/T, as a function of\ for the Migdal-
of the adiabatic parameter,/E¢ in the nonadiabatic theory for ~ Eliashberg adiabatic theory and the nonadiabatic ong/Er
=0.7 and differenQ.’s is shown. =0.2,Q.,=0.1).
A(T)=ReA(w=A(T),T)}. (36) the comparison between the ratiod/Z ;=5 in the adiabatic
_ . _ and nonadiabatic theories féiked critical temperatures T
The zero-temperature physical gdpis obtained asA(T According to the analytic study of the preceding section,

=0), whereas the zero-temperature “Matsubara” gapis  we expect the superconducting pairing to be decreased by

equivalent tdAg=lim_ A,_o=A(w=0,T=0). Discrepan- vertex corrections in the superconducting statth respect

cies between\ and A, arise in the strong-coupling regime to thg normal one. This is confirmed by our nume_rical cal-
when the superconducting energy scAlds comparable to culations. In Fig. 7 we show the temperature evolution o_f the_
the frequency structure of R&(w)]: A~ we.® In this per- superconducting gap as obtained by the present nonadiabatic

spective we have performed a numerical comparison be€ory including vertex contribution§illed circles and by
tween the physical gap and the imaginary-axis gaf\,. the adiabatic Migdal-Eliashberg theofgmpty circles. In

The discrepancy betweenandA , was found to be less than order to have a direct comparison of the gap values the mi-
9% in the region 3.58 2A/T.<6, and less than 2% for croscopic parameters of both the adiabatic and nonadiabatic
) <6,

2Ao/T,~4. Numerical solutions of the superconducting theories were constrained to reproduce the same fixed value

equations in imaginary axis provide therefore a quite good®’ Tc- The required values of are shown in the inset for

evaluation of the physical gapp. On this basis we shall use wo/Ep=0.2 (Qc=0.1 in the nonadiabatic casd arger val-
Ao, calculated from the solution of Eqél6) and (17), to ues of)_\ cor_respond to hlghe'fc/a)o. Figure 7 shows that the
evaluate the physical gap and the ratid/Z, in the nona- nonadiabatic theory predictsAZT)/T,. curves that are al-
diabatic regime. ways lower than the ME adiabatic ones.

The dependence of the superconducting gap as function of 1S result can appear in contradiction with Fig. 6, where
the adiabatic ratiaq/Ef is shown in Fig. 5. The behavior is nonadiabatic effects were shown to enhandéT. In order

quite similar to the corresponding dependencé af In par-

ticular, we find that the superconducting gap is significantly 0.8

enhanced by the nonadiabatic interaction with respect to the nonadiab. | ME
Migdal-Eliashberg casedy/Er=0). The enhancement is A=0.7| A=1.5
more marked for smalle®. where the positive region of the 0.6 1=0.9| A=2.4

vertex function is mainly probed. Note that the increase of A=1.1| A=3.5
Al wq with respect to the adiabatic case is alone expected to o
drive the system in an “effective” strong-coupling regime S 04 (oo
(A/wg~1) that is now, however, not related with a particu- <

larly large\. This is indeed shown in Fig. 6 where the ratio

2A/T is plotted as function ok for both the adiabatic and 02+ o oME
the nonadiabatic theories. oo nonadiab
Figure 6 shows that large values of the strong-coupling -——- BCS \
ratio 2A/T, can be recovered in the nonadiabatic theory by 0.000 o1 % 0.3

relatively smaller values ok than needed in the standard
ME theory. For instance, 2/T,=5 is compatible with\
=1.2 whereas it corresponds xe= 1.8 in Migdal-Eliashberg FIG. 7. Temperature evolution of the superconducting §ajmn
framework. From the phenomenological point of view, how-units of w,, for the Migdal-Eliashberg adiabatic theory and the
ever, the microscopical electron-phonon coupling not an  nonadiabatic oned/Ex=0.2, Q.=0.1). Also, dashed lines repre-
accessible parameter. A much more useful investigation isent the weak-coupling BCS case.

T/ o,
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to understand this apparent discrepancy, it is important to 6
distinguish two different effects. Let us consider a fixedn

this case the opening of nonadiabatic channels is known to

enhanceT ;. with respect to the adiabatic theory. This effect 5F
drives in general the system towards a strong-coupling limit
since the parametélr,/wq, which rules the strong-coupling
effects, is correspondingly enhanced. On the basis of this 4t
argument, we can expectA2T. to be stronger in the nona-

diabatic theory than in the Migdal-Eliashberg one, as con-

firmed by Fig. 6. On the other hand, the detailed analysis of 3
the present paper has shown that the opening of the super-
conducting gap deeply modifies the vertex function and de-
creases the strength of the nonadiabatic pairing with respect
to the normal state. The ratioAZT, is correspondingly re-
duced.

Thus the two effects act in opposite directions. The total
balance between these two effects is better pointed out in
Fig. 7. Here the enhancement of the strong-coupling phe-
nomenology driven by the increase Bf/ wq is absent since
the microscopic parameters were chosen to reproduce the
same value off ./ w, for both the adiabatic and nonadiabatic
theories. We see that(T=0) is significantly enhanced in _
the Migdal-Eliashberg case with respect to the weak- ''C-8. Ratio 2/T (top paneland phonon frequenay, (bot-
coupling BCS limit(dashed lines This is only due to the tom panel constrained to reproduck, =100 K andg=0.3 ev.
finite value of T./wq, Which gives arise to strong-coupling So“_d lines are for nonadlapatlc theory w(dno_m left to right line
phenomenology (&/T.>3.53). This contribution is thus the Q.=0.1, 0.3, 0.5. Dashed line represents Migdal-Eliashberg theory.
same in both the theories. The negative role of the opening of
the superconducting gap in the nonadiabatic vertex functioa value ofT,=100 K, we find in the nonadiabatic theory an
can be, on the other hand, isolated by compafif@=0) in  electron-phonon coupling=1.1 for Q.=0.1, significantly
the nonadiabatic theory with the adiabatic result. This comsmaller tharh =2.0 estimated within the Migdal-Eliashberg
parison shows that the enhancement &f 2 due to finite  framework. Note that such a discrepancy does not stem from
Tc/wg is partially,but not completelysuppressed. In particu- a substantially different phonon energy scalawg (
lar, we can still observe a significant increaseA¢T=0) i ~40 meV in ME theorywo=34 meV in the nonadiabatic
the nonadiabatic theory with respect to the BCS result.  ong. We can thus relate the origin of these different results

We are now in the position to ask us how taking intoto the onset of nonadiabatic channels in the superconducting
account the onset of nonadiabatic channels affects the ph9a|r|ng In particu|ar, our results point out that a Strong-

nomeno!ogic analy§is of the expgrimental data. In pa(ticularcoup|ing phenomenologghigh T, large values of the ratio
we are interested in the basic issue: what can be inferrega/T ) is compatiblein a natural way in the nonadia-

from the experimental valuék; and 2A/T. about the micro-  patic scenario with small values of the electron-phonon
scopic couplings in the framework of nonadiabatic theory? coupling\.

In order to answer this simple question we consider a \we would like to stress once more that this statement does
representative example inspired by the cuprates. We woulflot imply that nonadiabatic superconductivityavoidably
like to stress that this example should be considered JUSt %ads to |arge value of the raticAZTC’ as it is confirmed by

suitable tool to illustrate how the analysis of experimentalrig. 8 jtself, where the sam&.=100 K corresponds to
data is affected in the nonadiabatic theory, while the micromych lower values of &/T, (~3.53) if the characteristic

scopic origin of superconductivity in cuprates is still debated pnonon frequency,, is increased.
We thus analyzed a half filled system with Fermi energy
(half bandwidth Er=0.3 eV and critical temperaturé,
=100 K. We considered for simplicity an Einstein phonon
spectrum with energw,. The frequencyw, was thus deter-
mined as a function of the electron-phonon couplingo In this paper, we have afforded the extension of the nona-
give T.=100 K, and the superconducting gapwas then diabatic theory of superconductivity within the supercon-
calculated. The results are shown in Fig. 8 whetd P, and  ducting state alf<T.. We have shown the validity of a
wq are plotted as a function of for different values ofQ, perturbative approach based on a smaj},/Er expansion
(solid line from the left to the right 0.1,0.3,0.5. For com- even in the superconducting state. The nonadiabatic equa-
parison, the data corresponding to a Migdal-Eliashbergions for T<T. have been derived by means of a diagram-
analysis are also showidashed ling matic approach. It has been shown that a crucial role is
For a given value of &/T,, assumed to be inferred from played by the opening of the superconducting dapm the
experimental measurements, let us sy B.=5, and given nonadiabatic vertex diagrams. This removes the nonanalytic-

AT,

nonadiab. theory -
ME adiab. theory

60

0, (MmeV)

40 b

20
0

V. CONCLUSIONS
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ity at Q=0, »=0 and modifies the overall momentum physical consequence of our analysis we have shown that a
structure of the vertex function. The generalized equations a$trong-coupling phenomenology is naturally accounted for in
the superconducting state are numerically solved to evaluatde nonadiabatic theory for small values of the electron-
the superconducting gap in the nonadiabatic scenario. As a phonon coupling\.
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