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Stationary-phase slip state in quasi-one-dimensional rings
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The nonuniform superconducting state in a ring in which the order parameter vanishing at one point is
studied. This state is characterized by a jump of the phase dtythe point where the order parameter becomes
zero. In uniform rings such a state is a saddle-point state and consequently unstable. However, for nonuniform
rings with, e.g., variations of geometrical or physical parameters or with attached wires this state can be
stabilized and may be realized experimentally.
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In recent years3the existence of a single-connected state d2f
in a ring was proposed theoretically. Such a state implies that —+f(1-f2—p?)=0, (2a)
the relation between the phageof the order parametey ds’
=fe', the current densityj, and the magnetic flux®
through the ring(which follows from the single valuedness dj d
of y—see, for example, Ref.)4 —=—f2p=
P p ) 45— gsf P=0, (2b)
jg j—ds=277n—<D (1) where the gauge-invariant momentyn+V ¢ — A is scaled
f2 ’ in units of®y/(27¢&), the length of the ring i =27R and

the circular coordinateis in units of the coherence leng¢h
is no longer validthe flux is expressed i /27, the current  In these units, the magnetic field is scaled in units of the
density injo=c®/4m?\%¢, N is the London penetration second critical fieldH, and the magnetic flux id /27
length, ¢ the coherence length, anHl, is the quantum of The coupled Eqg2a) and(2b) have to be solved with the
magnetic fluy. The reason is that the order parameter in suchboundary conditiony(—L/2)=#(L/2). We use the method
a single-connected state is zero at one point. Moreover, proposed in Ref. §see also Ref. )6 These equations have
was claimed that under certain conditions, i.e., radius of théhe first integral,
ring less than¢é and the flux through the ring is aboun (

+1/2)d,, this state may become metastable in some range 1/df\2 f2 §4 2
of magnetic fields. _(_) IR S &)
In this paper we revisited this problem and we will show 2\ds 2 4 of?

that a state where the order parameter vanishes in one point

is still double connected. By this we mean that the phase qtrom a formal point of view, Eq3) is nothing else than the
the order parameter is not independent at both sides of th@)ndmon of “energy" (E), conservation for some “partide"
point wherey=0, and Eq(1) remains valid when the limit ith “coordinate” f and “momentum”j. The role of “time”
of j—0 is properly taken. We propose to call such a state g played by the circular coordinats In Fig. 1 we show the

one-dimensional1D) vortex stateg ODV statg, because like  dependence of the “potential energy” of this system,
for an ordinary two-dimensional Abrikosov vortex, there is a

jump in the phase of the order parametermofat the point 06
where ¢=0. In contrast to a two-dimensional Abrikosov
vortex the 1D vortex is an unstable structure in a uniform
ring. However, if some inhomogeneities are present in the
ring (defects, nonuniform thickness or nonuniform width of
the ring, attached superconducting wjrése ODV structure
can be stabilized and may consequently be realized experi-
mentally.

Consider a uniform ring with thickness<\ and width
w=¢. In addition, let the radius of the ring be much larger
thanw. Under these conditions we can neglect the screening
effects and the problem is reduced to a one-dimensional one. 00 02 04 06 08 10 12
The distribution of the current densifyand the order param-
etery of the system at a temperature not far from the critical FIG. 1. Dependence of the potential energ\f) for dif-
temperatureT. is described by the 1D Ginzburg-Landau ferent values of the currerjt 1: j=0.01; 2:j=0.05; 3:j=0.15;
equation(plus the condition diy=0), 4:j=j.=\4l27.
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for different values of. Possible solutions of Eqa) and !N the limit j<1 we can also firitithe dependence dfs)

(2b) are in the region where confined “trajectories” of our N€ar the minimum point of(s),

virtual particle exist. This is possible for currents<@<j a2, 2 < 3

(jc= V4/27j, is the depairing current densjty W(s)=2j"+s%2, L>m, s<l, (109
Using Eg.(3) we immediately can write the solution of .

Eqs.(2ag) ar?d((z)b) for the ring y t(s)=jY2E+2Es?, L-m<l, s<1. (10b

Using Eqs(109 and(10b) it is easy to show that in the limit
ft dt j—0 the gauge-invariant momentum is given by

to(t—to) (t1—to) (t—to) j

_ 2 ( [t /tl—t0> P(S)=/t(8) = 7 ma(s), (11)
— t2_t_0F sIin —tl—t’ = , (5)

where §(s) is the Dirac function. As a result the integral

wheret(s) = f?(s), F(6,m) is the elliptic integral of the first

kind, andty<t;=<t, are the solutions of the cubic equation im fﬁj—zdsz im fﬁ o(s)ds
3_ot2 2 j—o0 J f j—0
£3— 212+ 4Et— 2j2=0. ©6)
=¢(+e)—¢d(—¢)

Using the boundary condition férwe may conclude that for
a given current there exists a maximum of three solutions. =Ap==*, (12
There are two uniform solutionsn the points of the mini- . ) ) o ] o
mum E=E,,;, and the maximunE =E,y,,, of the potential  for arbitrary ring S|z_eq. Combining Eq(12) with Eq. (1) it is
energy(4)] and one nonuniform solution with enerd,, ~ €aSy to show that i =(k+1/2)®, (k is an integera so-
<E<E,a, Which is defined by the equation lution of Eq.(2a) can be found which vanishes at one point.
In previous 3 studies of this state Eq11) was not taken
3 t,—to into account(only the absolute value of the order parameter
L= \/t 3 K( \/t — | (7) was found. Furthermore, in Ref. 2 it was claimed that for
20 20 small rings there is a magnetic-field region in which such a
whereK (m) is the complete elliptic integral of the first kind. state exists and is metastable. But we find that in this region
Numerical analysis of Eq7) for 0<j<j. shows that there this state does not even exigxcept in one pointbecause
is a minimal value for the ring length,,;, for which there  Ed. (1) is not fulfilled!
exists a solution for this equation. When-j., Lyin— The distribution of the order parameter as obtained in the
and in the opposite limit—0 one can show thdt,,,—=. Present paper may also be applied to a ring in which some
dimensional units For a radiusR>1/2 metastable states Poundary between the normal metal and the superconductor
may exist and superconductivity is present for any value ofhe conditiony=0 is fulfilled (if the normal part is longer
the magnetic fluxat least in our one-dimensional mog2!  thané) and the distribution of the density/(s)|* coincides
In principle, Eqs.(5)—(7) define the nonuniform solution With the one obtained in Ref. [but the phasep(s) will be
of Egs.(2a) and(2b) for a ring. Unfortunately, even using the different for our previous ring geomefyBesides we cannot
explicit Kordano expressions for the roots of H@) the  call such a state single connected as in Refs. 1-3 because the
results are rather complicated for arbitrary values of the curtelation(1) is valid even for this case. Therefore it is better to
rentj. However, a tractable analytical solution is possible ifcall this state a one-dimensional vortex state because like the
we consider the case of low curreijts 1 for which the roots ~ two-dimensional Abrikosov vortex there is a point where

of Eq. (6) are simplified to |#/|=0 and the phase of the order parameter exhibits a jump
equal to7r (as the Abrikosov vortex with orbital momentum
to=j2/2E, (8a  2m).
Our numerical analysis of the time-dependent Ginzburg-
t;=1—\1-4E, (8b) Landau equations showed that this state is completely un-
stable for a uniform ring. However, for rings with nonuni-
t,=1+ m (80) form width (thicknes$ or attached wires a nonuniform

distribution of the order parameter becomes possiti&!!
After inserting these results into E¢7) we obtain the en- and for small rings withL~ 7 this state is realized in prac-
ergy. ForL> 7 the energyE=1/4 is practically independent tice (besides for the case of a ring, a ODV state can also exist
of L (e.g., forL=8 the difference 1/4 E(L=8) is less than in the Wheatstone bridge—see Refs. 12 and t8Fig. 2 the
0.002. Also in the limitL—7<1 we found that the energy distribution of the absolute value and the phase of the order
E is independent of, parameter is shown for different values of the magnetic field
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as function of the applied flux. The different curves are for different
circumference of thering. 1:=1; 2:L=2;3:L=3; 4:L=3.5; 5:
L=4. ForL=4 the ODV state does not exist in the ring and hys-
e g teresis appears. In the inset the dependencg/af® on the flux®
0.0 bovvr ooy RN VST S is shown for rings with lengths =1, 2, 3, 3.5(curves 1, 2, 3, 4,
T :::: respectively. Note that there are two maxima in the range (0,1).
433 With increasing length the two maxima merge into one and when

'50.0 01 02 03 04 05 06 07 08 09 1.0 one approaches the critical lengliiyd® diverges atb = d /2.
s/L

FIG. 2. Distribution of the absolute valu@) and phaseb) of ring experimgntally. .First, it is possible to include anothgr
the order parameter in a nonuniform ring for different values of thePhase in the ring. This leads to the appearance of a weak link
magnetic flux. 1:0=0.45b,; 2: ®=0.49D,; 3: ®=0.498D; 4: in the sample and if the radius of the ring is less than some

®=(0.5-0)Dy; 5 ®=(0.5+0)Dy; 6: &=0.502D,; 7: ® critical value (about¢) it also leads to the existence of the
=0.510,; 8: ®=0.55P,. Note that the order parameter fdr  ODV state in the ring atb = (n+ 1/2)®,. We modeled this
=®y/2+ « is the same as fob=®y/2— a whena<®y/2. In the  situation by introducing an additional terafs)f in Eq. (2a),
insets(a) f,;, and(b) the phase differencA ¢ near the poins/L and, as an example, we togKs)=—ad(s) and a=1 (it
=3/4 are shown as function db. should be noted that qualitatively the results do not depend
on the specific value od). We will not present the numeri-
for a nonuniform ring:* We used the following model where cal results of the modified Ginzburg-Landau equations but
the width of the ring was varied as we found that they are qualitatively similar to the behavior of
f and ¢ shown in Fig. 2. When approaching the fldx
=(n+1/2)d, the order parameter reaches zero in the defect
A 13 point and a jump in the phase equal tooccurs. Second,
such a ODV state should also appear in small rings with
The parameters used amg=0.1 andL=3.25. It is seen that attached wirés). As was shown in Refs. 10 and 11 an at-
with increasing magnetic flux the magnitude of the ordertached wire leads to a nonuniform distribution of the order
parameterf decreases in the thinner part of the riag s/L parameter in the ring. In Fig. 3 the dependence of the current
=3/4) and becomes zero whdnW®,=1/2. In Ref. 3itwas | in such a ring on the flux through the ring is shoygee
found that the ODV state is only possible dt=(n also Ref. 11 As for nonuniform rings, where the parameters
+1/2)d,. The reason is now clear—only at this value of theare chosen such that the ODV state may exist, there is no
magnetic flux the phase difference near the point where thbysteresis in such a systeémn addition for rings with at-
order parameter is zero will be compensated by the terntached wire the dependendg/d® on ® have two maxima
27n— & and the current density will be equal to zero. It is in the rangg0,1) for smallL in agreement with the case for
interesting to note that the current density is also zero fononuniform rings(see Ref. B In contrast to the nonuniform
d=nd, even in the case of a nonuniform ring, but for val- ring case superconductivity survives in a ring with attached
ues of the flux where the ODV state does not exist. At thesavire near® =dy(n+1/2) and forL<r.
values of the magnetic flux the order parameter is uniform Small inhomogeneities in rings gives us the unique possi-
along the ring and the termszh is completely compensated bility to study states close to the ODV state because there is
by the term® in Eq. (1). no sharp transition from the state with finite order parameter
Above we showed that the ODV state can be realized byo a state with vanishing order parameter at one p(iae
varying the geometrical parameters of the ring. But there ar&ig. 2). The latter is, in some sense, a “frozen” slip phase
two alternative approaches to realize the ODV state in thetate. A small variation of the flux through the ring ndar

o/

0.5

w(s)=1+wgsin
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FIG. 4. The Gibbs free energy and the magnetizatioght H/ch

lower insej of the asymmetric rindupper insetas function of the . . .
applied magnetic field. FIG. 5. The Gibbs free enerdy(H) near the first maximum. In

the inset the phase and the order parameter distribution at different

values of the applied magnetic fidlihdicated by the squares on the
=®y/2 leads to a change df¢ by 27 [from — to + 7 F(H) curve] are shown. The phase was calculated along the outer
with a concomitant change of the current from0 to perimeter of the ring. The open circle é{H) indicates the posi-
+0—see Fig. B)]. As a result an additional phase circula- tion at which the vorticity increases from 0 to 1.
tion $Vpds=2x appears in the system, not because the
magnetic flux® is changed, but because the tefiiif?ds
changes from- 7 to + 7 [see Eq.1)]. When such a jump vortex enters through the thickest part of the riisge Fig.
occursV ¢ does not change in the ring, except near the poin6). Because the width of thicker part of the ring 0.9¢) is
wheref=0, and as a result the current density in the systentonsiderably larger than the thinner patt@.1¢) and is of
changes continuously. In the usual case transitions of therder & the ODV for H/H.,=~4.6 becomes the usual two-
vorticity from a state with phase circulation? to a state dimensional vortex. As a result the order parameter is equal
with phase circulation 2(n+1) leads to a jump in the cur- to zero only in one point along the radial coordinate and the
renteverywherdn the ring becaus¢V ¢ds changes by 2 circulation of the phase of the order parameter now is also a
and the order parameter and the current density are finitinction of this coordinatgsee Fig. 6. When the vortex
everywherdn the system. enters/exits the ring at low magnetic fields there is also a

To supplement the above study we made also a numericalow dependence of the order parameter on the radial coor-

study of a nonuniform ring of finite width and thickness by dinate along the thinnest part of the ring. Therefore we can
implementing our previous finite difference solution of the conclude that in a ring with finite width the one-dimensional
coupled nonlinear Ginzburg-Landau equatibhAs an ex-  vortex is transformed into the usual two-dimensional vortex.
ample we took the following parameters: outer radius of the
ring R,=2¢, radius of the holeR;=1.5¢, displacement of

! ; -0.0490
the hole from the centea=0.4¢, ring thicknessd=0.001,
and Ginzburg-Landau parameter2. -0.0495
In Fig. 4 the dependence of the Gibbs free endfggnd

the magnetizatioM = — dF/JdH of this system on the mag- -0.0500
netic field are shown. As in the case of our one-dimensional

ring these dependencies are reversible and there are magnet&°-o,0505
fields at which the magnetization is equal to zé€no the L

points of local maximum and minimum of the free energy -0.0510

We found that the distribution of the order parameter and the -

phase in the ringsee inset of Fig. bis similar to analogical -0.0515

distributions for the above one-dimensional rifigg. 2) at -

low magnetic fields. But different with the one-dimensional -0.0520

system the phase circulation increase aof Pbetween the 4.59 460 4.61 4.62
points(2) and(3) in Fig. 5] does not occur at the magnetic- H/H

c2

field value where the free energy has a local maxintand
zero magnetization With decreasing width of the ring this  FiG. 6. The same as Fig. 5 but now for the last maximum in Fig.
point shifts towards the local maximum in the free energy. It4. |n the inset a contour plot of the order parameter is shown for
is interesting to note that for the system corresponding tajifferent values of the magnetic field which are given by the squares
Fig. 4 the vortex enters through the thinnest part of the ringn the main figureL ., is the vorticity as calculated along the
in the case of the first three maxima in the free energy whileuter perimeter of the ring ant;, ., is the vorticity calculated

for the highest magnetic field maxinfee., H/H.,=4.6) the  along the perimeter of the hole.
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-0.2 - - - - - - - found that for low magnetic field(H) is irreversible but

-0.3 for high magnetic fields the dependengéH) was revers-

0.4 ible. In high fields the transition from a state with vorticity

05 one to another state occurred through the same scenario as
L° 0.6 discussed at_)ove. A similar state was al_so cqnsidergd in Refs.
e 0'7 18 and 19 in the framework of the linearized Ginzburg-

Landau equations for a nonuniform ring of finite width. They
found that in such a system the vortex may be stable in some

magnetic-field region. In Ref. 19 analytical results for the
magnetic field ranges where the vortex enter through the
. . . . . . . thinner part of the ring and through the thicker part were
00 02 04 06 08 1.0 12 14 obtained. Our calculations generalize this result to lower

HH,, temperatures(i.e., where the nonlinear Ginzburg-Landau

. o equations must be usednd with inclusion of the nonzero
_FIG. 7. The Gibbs free enerdy(H) at low magnetic fields for  yemagnetization factor of the ring. We found the dependence
different displacementa of the hole from the center of the ring. of the Gibbs free energfand magnetizationof this sample
The thin solid curve(for a=0) corresponds to the saddle-point on the applied magnetic field. Our results also allowed us to
state. compare the results of the one-dimensional model with the
full two-dimensional one.

The process of the appearance of a stable vortex in a ring | € ODV (or stable phase sligstate may be observed by
with finite width is similar to the creation of a phase slip in Magnetic _experiments. ~ Magnetic  susceptibility s
wires of finite width in the presence of a transport current. [nProportionaf to dj/d® and the ODV state exhibits some
the latter case the distribution of the gauge-invariant momen¢haracteristic peculiarities as was shown in the inset of Fig.
tum is not exactly uniform over the wire width. The maxi- 3. MagnetizatiorM is proportional to the currefitand hence
mum value ofp is obtained at the edges and as a result théV(H) is reversible for samples where the ODV state exists
order parameter vanishes first in these points. When a phasgee Fig. 3 and the inset of Fig).FurthermoreM=0 at
slip is created the distribution of the order parameter is notb=(n+1/2)®,. Alternatively, because ab=(n+1/2)d,
uniform over the width. With decreasing wire width this non- there is a point in the ring where the order parameter is equal
uniformity decreases but it will be uniform, strictly speaking, to zero, this state may be found by transport measurements.
only in the limitw— 0. With increasing wire width the phase For example, in Ref. 20 the dependence of the resistance of a
slip transforms to the ordinary process of vortex/antivortexhollow cylinder with radius of ordeg was studied at tem-
pair nucleating at the edges, penetrating deep into the supgseratureT<T, far from T,. At ®=d,/2 the resistancéR)
conductor and annihilating. In nonuniform rings the distribu-axhibited a maximum but the value Bfwas a factor 3 less
tion of p over the width is nonuniform and in contrast t0 {han the normal-state resistanBg. If the cylinder has a
wires wi_th tra_nsport current _it is nonsymmetric with reSp?Ctnonuniform thickness the ODV state can be realizbe-
to the ring width. Suppressm_n of the_ order parameter f'rsfsause there is a similarity between cylinders of small thick-
oceurs only on the gxternal §|dwhen Increasing the mag- ness and rings of small widthas a stable state wheh
netic field or on the internal sidéwhen decreasing the mag- —®,/2 and it will lead to a resistivébut superconducting

netic field. As in the case of an one-dimensional ring we tate even for verv small currents and naturally the resistan
may call this state a stabléfrozen” ) phase slip state if the state even for very smail currents a aturafly the resistance
of such a state will be less thaR, as was found by Liu

width of the ring, where the vortex penetrates, is less than 0
The ODV state of a nonuniform ring is very similar to the &t @l- _ _ _ _
saddle-point state as found in Ref. 15 in case of a uniform N conclusion, we studied the nonuniform state in a super-
ring of finite width and in Ref. 16 for the case of a disk. Note copductmg ring in which th.e order parameter yamshes atone
that for a uniform ring with zero width the nonuniform so- POInt. It was shown that this state is characterized by a jump
lution Eq. (5) corresponds to a saddle point®fy). In Fig.  in the phase of the order parameter Bynear the pointy
7 the gradual decrease of the hysteresis with increasing dis=0. It allows, in correspondence with the ordinary two-
placement of the hole from the center of the ring is shown. dimensional Abrikosov vortex, us to call such a state a one-
It is seen that with increasing the region where metastable dimensional vortex. This state is unstable in a uniform ring.
states exist decreases and ultimately vanishes for some criti the case of a nonuniform rirjgvith variations of the geo-
cal displacemend, . The saddle-point stat@nly shown for  metrical d, w) or physical parameters(\) along the ring
a=0, by the thin full curvg approaches the stable phase slipor for a ring with an attached wire, this state may be realized
state wherma=a,. It corresponds to the boundary point of in practice. For rings with nonzero width the ODV state
existence of ODV in the phase diagram of normal-transforms into the usual two-dimensional vortex. We also
superconducting phasthe pointP, in the notations of Ref. showed that this state is the remnant of the saddle-point state
3). connecting two superconducting states with different vortic-
In Ref. 17 also nonuniform superconducting rings of finiteity as found in a uniform ring. The latter state becomes stable
width were investigatedbut with larger ring radius It was  in a nonuniform ring.
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054531-5



D. Y. VODOLAZQV, B. J. BAELUS, AND F. M. PEETERS PHYSICAL REVIEW B6, 054531 (2002

The work was supported by the Flemish Science Foundathe European ESF-Vortex Matter. One of (.Y.V.) was
tion (FWO-VI), the “Onderzoeksraad van de Universiteit supported by FWO-VI and partially by RFBR Grant No.
Antwerpen,” the “Interuniversity Poles of Attraction NO01-02-16593. Discussions with Professor A. Geim and
Program—-Belgian State, Prime Minister's Office—Federalcomments from Professor J. Berger are gratefully acknowl-
Office for Scientific, Technical and Cultural Affairs,” and edged.

*Electronic address: peeters@uia.ua.ac.be 13¢c. Ammann, P. Erdg and S.B. Haley, Phys. Rev. &, 11 739

1J. Berger and J. Rubinstein, Phys. Rev. Lég. 320 (1995. (1995.

2E.M. Horane, J.I. Castro, G.C. Buscaglia, and A. Lopez, Phys!*Itis interesting to note that the results shown in Fig. 2 correspond
Rev. B53, 9296(1996. qualitatively to the time evolution of the order parameter for a

3J. Berger and J. Rubinstein, Phys. Re\6® 5124 (1997). uniform ring in the case where the vorticity increases with one

4M. Tinkham, Phys. Rev129, 2413(1963. unit. The only difference is that for a uniform ring the current

5J.S. Langer and V. Ambegaokar, Phys. RE&4, 498 (1967). density, generally speaking, is not equal to zero at the point

6X. Zhang and J. Price, Phys. Rev.55, 3128(1997. where the order parameter vanishes. The reason is that for time-

"A. Bezryadin, A. Buzdin, and B. Pannetier, Phys. Re%1B3718 dependent processes the full current density is equal to the sum
(1995. of the superconductings and the normaj,, parts. In the point

8Numerical analysis shows that for large rings  the solution f=0, js=0 butj,#0.

t(s)=t,— (t;—to)/cosH[sy(t;—to)/2] found in Ref. 5 works !°B.J. Baelus, F.M. Peeters, and V.A. Schweigert, Phys. R&8,B

very well for arbitrary current§<j.. The reason is that for 144517(2009.

rings withR>1 the “energy”E is close toE,cand the roots;  '°V.A. Schweigert and F.M. Peeters, Phys. Rev. L&8, 2409

andt, practically coincide. As a result the situation is analogous  (1999.

to the one considered in Ref. 5. 17B.J. Baelus, F.M. Peeters, and V.A. Schweigert, Phys. Ré4,B
9This result is a generalization of a result obtained in Ref. 5 for the  9734(2000.

saddle-point of Eq(2) for the case of an infinite long wire with  18J. Berger and J. Rubinstein, Phys. Re\6® 8896(1999.

vanishing transport current. 193, BergerConnectivity and Superconductivigdited by J. Berger
101 3. Fink and V. Grunfeld, Phys. Rev. 33, 6088(1986. and J. RubensteitSpringer, New York, 2000 p. 138.
1H.J. Fink and V. Grunfeld, Phys. Rev. &, 600(1985. 20¥, Liu, Yu. Zadorozhny, M.M. Rosario, B.Y. Rock, P.T. Carrigan,
12 3. Fink, Phys. Rev. B5, 4799(1992); 48, 3579(1993. and H. Wang, Scienc94, 2332(2002J.

054531-6



