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Stationary-phase slip state in quasi-one-dimensional rings

D. Y. Vodolazov, B. J. Baelus, and F. M. Peeters*
Departement Natuurkunde, Universiteit Antwerpen (UIA), Universiteitsplein 1, B-2610 Antwerpen, Belgium

~Received 15 February 2002; published 22 August 2002!

The nonuniform superconducting state in a ring in which the order parameter vanishing at one point is
studied. This state is characterized by a jump of the phase byp at the point where the order parameter becomes
zero. In uniform rings such a state is a saddle-point state and consequently unstable. However, for nonuniform
rings with, e.g., variations of geometrical or physical parameters or with attached wires this state can be
stabilized and may be realized experimentally.
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In recent years1–3 the existence of a single-connected st
in a ring was proposed theoretically. Such a state implies
the relation between the phasef of the order parameterc
5 f eif, the current densityj, and the magnetic fluxF
through the ring~which follows from the single valuednes
of c—see, for example, Ref. 4!,

R j

f 2
ds52pn2F, ~1!

is no longer valid~the flux is expressed inF0/2p, the current
density in j 05cF0/4p2l2j, l is the London penetration
length, j the coherence length, andF0 is the quantum of
magnetic flux!. The reason is that the order parameter in su
a single-connected state is zero at one point. Moreove
was claimed that under certain conditions, i.e., radius of
ring less thanj and the flux through the ring is about (n
11/2)F0, this state may become metastable in some ra
of magnetic fields.2

In this paper we revisited this problem and we will sho
that a state where the order parameter vanishes in one
is still double connected. By this we mean that the phase
the order parameter is not independent at both sides of
point wherec50, and Eq.~1! remains valid when the limit
of j→0 is properly taken. We propose to call such a stat
one-dimensional~1D! vortex state~ODV state!, because like
for an ordinary two-dimensional Abrikosov vortex, there is
jump in the phase of the order parameter ofp at the point
where c50. In contrast to a two-dimensional Abrikoso
vortex the 1D vortex is an unstable structure in a unifo
ring. However, if some inhomogeneities are present in
ring ~defects, nonuniform thickness or nonuniform width
the ring, attached superconducting wires! the ODV structure
can be stabilized and may consequently be realized exp
mentally.

Consider a uniform ring with thicknessd&l and width
w&j. In addition, let the radius of the ringR be much larger
thanw. Under these conditions we can neglect the screen
effects and the problem is reduced to a one-dimensional
The distribution of the current densityj and the order param
eterc of the system at a temperature not far from the criti
temperatureTc is described by the 1D Ginzburg-Landa
equation~plus the condition divj50),
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d2f

ds2
1 f ~12 f 22p2!50, ~2a!

d j

ds
5

d

ds
f 2p50, ~2b!

where the gauge-invariant momentump5¹f2A is scaled
in units ofF0 /(2pj), the length of the ring isL52pR and
the circular coordinates is in units of the coherence lengthj.
In these units, the magnetic field is scaled in units of
second critical fieldHc2 and the magnetic flux inF0/2p.

The coupled Eqs.~2a! and~2b! have to be solved with the
boundary conditionc(2L/2)5c(L/2). We use the method
proposed in Ref. 5~see also Ref. 6!. These equations hav
the first integral,

1

2 S d f

dsD
2

1
f 2

2
2

f 4

4
1

j 2

2 f 2
5E. ~3!

From a formal point of view, Eq.~3! is nothing else than the
condition of ‘‘energy’’ (E), conservation for some ‘‘particle’’
with ‘‘coordinate’’ f and ‘‘momentum’’j. The role of ‘‘time’’
is played5 by the circular coordinates. In Fig. 1 we show the
dependence of the ‘‘potential energy’’ of this system,

FIG. 1. Dependence of the potential energyU( f ) for dif-
ferent values of the currentj. 1: j 50.01; 2: j 50.05; 3: j 50.15;
4: j 5 j c5A4/27.
©2002 The American Physical Society31-1



r

f

n

r
n

.

s
o

e

u
i

t

y

t

t.

ter
r
a

ion

the
me
he
ctor

t
e the
to
the

re
mp

rg-
un-
i-

-
xist

der
eld

D. Y. VODOLAZOV, B. J. BAELUS, AND F. M. PEETERS PHYSICAL REVIEW B66, 054531 ~2002!
U~ f !5
f 2

2
2

f 4

4
1

j 2

2 f 2
, ~4!

for different values ofj. Possible solutions of Eqs.~2a! and
~2b! are in the region where confined ‘‘trajectories’’ of ou
virtual particle exist. This is possible for currents 0, j < j c

( j c5A4/27j 0 is the depairing current density!.
Using Eq.~3! we immediately can write the solution o

Eqs.~2a! and ~2b! for the ring

A2s5E
t0

t dt

A~ t2t0!~ t12t0!~ t22t0!

5
2

At22t0

FS sin21A t2t0

t12t0
,At12t0

t22t0
D , ~5!

wheret(s)5 f 2(s), F(u,m) is the elliptic integral of the first
kind, andt0<t1<t2 are the solutions of the cubic equatio

t322t214Et22 j 250. ~6!

Using the boundary condition forf we may conclude that fo
a given current there exists a maximum of three solutio
There are two uniform solutions@in the points of the mini-
mum E5Emin and the maximumE5Emax of the potential
energy~4!# and one nonuniform solution with energyEmin
,E,Emax which is defined by the equation

L5A 8

t22t0
KSAt12t0

t22t0
D , ~7!

whereK(m) is the complete elliptic integral of the first kind
Numerical analysis of Eq.~7! for 0, j , j c shows that there
is a minimal value for the ring lengthLmin for which there
exists a solution for this equation. Whenj→ j c , Lmin→`
and in the opposite limitj→0 one can show thatLmin→p.
The latter corresponds to a ring radiusR51/2 ~or j/2 in
dimensional units!. For a radiusR.1/2 metastable state
may exist and superconductivity is present for any value
the magnetic flux~at least in our one-dimensional model!.2,7

In principle, Eqs.~5!–~7! define the nonuniform solution
of Eqs.~2a! and~2b! for a ring. Unfortunately, even using th
explicit Kordano expressions for the roots of Eq.~6! the
results are rather complicated for arbitrary values of the c
rent j. However, a tractable analytical solution is possible
we consider the case of low currentsj !1 for which the roots
of Eq. ~6! are simplified to

t0. j 2/2E, ~8a!

t1.12A124E, ~8b!

t2.11A124E. ~8c!

After inserting these results into Eq.~7! we obtain the en-
ergy. ForL@p the energyE.1/4 is practically independen
of L ~e.g., forL58 the difference 1/42E(L58) is less than
0.002!. Also in the limit L2p!1 we found that the energ
E is independent ofj,
05453
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E~L !.
1

2 S L2p

p/8 D 2

. ~9!

In the limit j !1 we can also find8 the dependence oft(s)
near the minimum point oft(s),

t~s!52 j 21s2/2, L@p, s!1, ~10a!

t~s!5 j 2/2E12Es2, L2p!1, s!1. ~10b!

Using Eqs.~10a! and~10b! it is easy to show that in the limi
j→0 the gauge-invariant momentum is given by

p~s!5 j /t~s!5
j

u j u
pd~s!, ~11!

whered(s) is the Dirac function. As a result the integral

lim
j→0

R j

f 2
ds5 lim

j→0
R p~s!ds

5f~1e!2f~2e!

5Df56p, ~12!

for arbitrary ring size.9 Combining Eq.~12! with Eq. ~1! it is
easy to show that ifF5(k11/2)F0 (k is an integer! a so-
lution of Eq. ~2a! can be found which vanishes at one poin

In previous1–3 studies of this state Eq.~11! was not taken
into account~only the absolute value of the order parame
was found!. Furthermore, in Ref. 2 it was claimed that fo
small rings there is a magnetic-field region in which such
state exists and is metastable. But we find that in this reg
this state does not even exist~except in one point! because
Eq. ~1! is not fulfilled!

The distribution of the order parameter as obtained in
present paper may also be applied to a ring in which so
part of the ring consists of a normal metal. Then at t
boundary between the normal metal and the supercondu
the conditionc.0 is fulfilled ~if the normal part is longer
thanj) and the distribution of the densityuc(s)u2 coincides
with the one obtained in Ref. 2@but the phasef(s) will be
different for our previous ring geometry#. Besides we canno
call such a state single connected as in Refs. 1–3 becaus
relation~1! is valid even for this case. Therefore it is better
call this state a one-dimensional vortex state because like
two-dimensional Abrikosov vortex there is a point whe
ucu50 and the phase of the order parameter exhibits a ju
equal top ~as the Abrikosov vortex with orbital momentum
2p).

Our numerical analysis of the time-dependent Ginzbu
Landau equations showed that this state is completely
stable for a uniform ring. However, for rings with nonun
form width ~thickness! or attached wires a nonuniform
distribution of the order parameter becomes possible1,3,10,11

and for small rings withL;p this state is realized in prac
tice ~besides for the case of a ring, a ODV state can also e
in the Wheatstone bridge—see Refs. 12 and 13!. In Fig. 2 the
distribution of the absolute value and the phase of the or
parameter is shown for different values of the magnetic fi
1-2
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STATIONARY-PHASE SLIP STATE IN QUASI-ONE- . . . PHYSICAL REVIEW B 66, 054531 ~2002!
for a nonuniform ring.14 We used the following model wher
the width of the ring was varied as

w~s!511w0sinS 2ps

L D . ~13!

The parameters used arew050.1 andL53.25. It is seen tha
with increasing magnetic flux the magnitude of the ord
parameterf decreases in the thinner part of the ring~at s/L
53/4) and becomes zero whenF/F051/2. In Ref. 3 it was
found that the ODV state is only possible atF5(n
11/2)F0. The reason is now clear—only at this value of t
magnetic flux the phase difference near the point where
order parameter is zero will be compensated by the t
2pn2F and the current density will be equal to zero. It
interesting to note that the current density is also zero
F5nF0 even in the case of a nonuniform ring, but for va
ues of the flux where the ODV state does not exist. At th
values of the magnetic flux the order parameter is unifo
along the ring and the term 2pn is completely compensate
by the termF in Eq. ~1!.

Above we showed that the ODV state can be realized
varying the geometrical parameters of the ring. But there
two alternative approaches to realize the ODV state in

FIG. 2. Distribution of the absolute value~a! and phase~b! of
the order parameter in a nonuniform ring for different values of
magnetic flux. 1:F50.45F0; 2: F50.49F0; 3: F50.498F0; 4:
F5(0.520)F0; 5: F5(0.510)F0; 6: F50.502F0; 7: F
50.51F0; 8: F50.55F0. Note that the order parameter forF
5F0/21a is the same as forF5F0/22a whena,F0/2. In the
insets~a! f min and ~b! the phase differenceDf near the points/L
53/4 are shown as function ofF.
05453
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ring experimentally. First, it is possible to include anoth
phase in the ring. This leads to the appearance of a weak
in the sample and if the radius of the ring is less than so
critical value~aboutj) it also leads to the existence of th
ODV state in the ring atF5(n11/2)F0. We modeled this
situation by introducing an additional termr(s) f in Eq. ~2a!,
and, as an example, we tookr(s)52ad(s) and a51 ~it
should be noted that qualitatively the results do not dep
on the specific value ofa). We will not present the numeri
cal results of the modified Ginzburg-Landau equations
we found that they are qualitatively similar to the behavior
f and f shown in Fig. 2. When approaching the fluxF
5(n11/2)F0 the order parameter reaches zero in the de
point and a jump in the phase equal top occurs. Second
such a ODV state should also appear in small rings w
attached wire~s!. As was shown in Refs. 10 and 11 an a
tached wire leads to a nonuniform distribution of the ord
parameter in the ring. In Fig. 3 the dependence of the cur
j in such a ring on the flux through the ring is shown~see
also Ref. 11!. As for nonuniform rings, where the paramete
are chosen such that the ODV state may exist, there is
hysteresis in such a system.3 In addition for rings with at-
tached wire the dependenced j /dF on F have two maxima
in the range~0,1! for small L in agreement with the case fo
nonuniform rings~see Ref. 3!. In contrast to the nonuniform
ring case superconductivity survives in a ring with attach
wire nearF5F0(n11/2) and forL,p.

Small inhomogeneities in rings gives us the unique po
bility to study states close to the ODV state because ther
no sharp transition from the state with finite order parame
to a state with vanishing order parameter at one point~see
Fig. 2!. The latter is, in some sense, a ‘‘frozen’’ slip pha
state. A small variation of the flux through the ring nearF

e

FIG. 3. The current in the ring~with attached wire of length 5j)
as function of the applied flux. The different curves are for differe
circumference of the ring. 1:L51; 2: L52; 3: L53; 4: L53.5; 5:
L54. For L54 the ODV state does not exist in the ring and hy
teresis appears. In the inset the dependence ofd j /dF on the fluxF
is shown for rings with lengthsL51, 2, 3, 3.5~curves 1, 2, 3, 4,
respectively!. Note that there are two maxima in the range (0,
With increasing length the two maxima merge into one and wh
one approaches the critical lengthd j /dF diverges atF5F0/2.
1-3
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5F0/2 leads to a change ofDf by 2p @from 2p to 1p
with a concomitant change of the current from20 to
10—see Fig. 2~b!#. As a result an additional phase circul
tion r¹fds52p appears in the system, not because
magnetic fluxF is changed, but because the termr j / f 2ds
changes from2p to 1p @see Eq.~1!#. When such a jump
occurs¹f does not change in the ring, except near the po
wheref 50, and as a result the current density in the syst
changes continuously. In the usual case transitions of
vorticity from a state with phase circulation 2pn to a state
with phase circulation 2p(n11) leads to a jump in the cur
rent everywherein the ring becauser¹fds changes by 2p
and the order parameter and the current density are fi
everywherein the system.

To supplement the above study we made also a nume
study of a nonuniform ring of finite width and thickness b
implementing our previous finite difference solution of t
coupled nonlinear Ginzburg-Landau equations.15 As an ex-
ample we took the following parameters: outer radius of
ring Ro52j, radius of the holeRi51.5j, displacement of
the hole from the centera50.4j, ring thicknessd50.001j,
and Ginzburg-Landau parameterk52.

In Fig. 4 the dependence of the Gibbs free energyF and
the magnetizationM52]F/]H of this system on the mag
netic field are shown. As in the case of our one-dimensio
ring these dependencies are reversible and there are mag
fields at which the magnetization is equal to zero~in the
points of local maximum and minimum of the free energ!.
We found that the distribution of the order parameter and
phase in the ring~see inset of Fig. 5! is similar to analogical
distributions for the above one-dimensional ring~Fig. 2! at
low magnetic fields. But different with the one-dimension
system the phase circulation increase of 2p @between the
points ~2! and ~3! in Fig. 5# does not occur at the magneti
field value where the free energy has a local maximum~and
zero magnetization!. With decreasing width of the ring thi
point shifts towards the local maximum in the free energy
is interesting to note that for the system corresponding
Fig. 4 the vortex enters through the thinnest part of the r
in the case of the first three maxima in the free energy w
for the highest magnetic field maxima~i.e., H/Hc2.4.6) the

FIG. 4. The Gibbs free energy and the magnetization~right
lower inset! of the asymmetric ring~upper inset! as function of the
applied magnetic field.
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vortex enters through the thickest part of the ring~see Fig.
6!. Because the width of thicker part of the ring (50.9j) is
considerably larger than the thinner part (50.1j) and is of
order j the ODV for H/Hc2.4.6 becomes the usual two
dimensional vortex. As a result the order parameter is eq
to zero only in one point along the radial coordinate and
circulation of the phase of the order parameter now is als
function of this coordinate~see Fig. 6!. When the vortex
enters/exits the ring at low magnetic fields there is als
slow dependence of the order parameter on the radial c
dinate along the thinnest part of the ring. Therefore we c
conclude that in a ring with finite width the one-dimension
vortex is transformed into the usual two-dimensional vort

FIG. 5. The Gibbs free energyF(H) near the first maximum. In
the inset the phase and the order parameter distribution at diffe
values of the applied magnetic field@indicated by the squares on th
F(H) curve# are shown. The phase was calculated along the o
perimeter of the ring. The open circle onF(H) indicates the posi-
tion at which the vorticity increases from 0 to 1.

FIG. 6. The same as Fig. 5 but now for the last maximum in F
4. In the inset a contour plot of the order parameter is shown
different values of the magnetic field which are given by the squa
in the main figure.Louter is the vorticity as calculated along th
outer perimeter of the ring andLinner is the vorticity calculated
along the perimeter of the hole.
1-4
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STATIONARY-PHASE SLIP STATE IN QUASI-ONE- . . . PHYSICAL REVIEW B 66, 054531 ~2002!
The process of the appearance of a stable vortex in a
with finite width is similar to the creation of a phase slip
wires of finite width in the presence of a transport current.
the latter case the distribution of the gauge-invariant mom
tum is not exactly uniform over the wire width. The max
mum value ofp is obtained at the edges and as a result
order parameter vanishes first in these points. When a p
slip is created the distribution of the order parameter is
uniform over the width. With decreasing wire width this no
uniformity decreases but it will be uniform, strictly speakin
only in the limit w→0. With increasing wire width the phas
slip transforms to the ordinary process of vortex/antivor
pair nucleating at the edges, penetrating deep into the su
conductor and annihilating. In nonuniform rings the distrib
tion of p over the width is nonuniform and in contrast
wires with transport current it is nonsymmetric with respe
to the ring width. Suppression of the order parameter fi
occurs only on the external side~when increasing the mag
netic field! or on the internal side~when decreasing the mag
netic field!. As in the case of an one-dimensional ring w
may call this state a stable~‘‘frozen’’ ! phase slip state if the
width of the ring, where the vortex penetrates, is less thaj.

The ODV state of a nonuniform ring is very similar to th
saddle-point state as found in Ref. 15 in case of a unifo
ring of finite width and in Ref. 16 for the case of a disk. No
that for a uniform ring with zero width the nonuniform so
lution Eq. ~5! corresponds to a saddle point ofF(c). In Fig.
7 the gradual decrease of the hysteresis with increasing
placementa of the hole from the center of the ring is show
It is seen that with increasinga the region where metastab
states exist decreases and ultimately vanishes for some
cal displacementac . The saddle-point state~only shown for
a50, by the thin full curve! approaches the stable phase s
state whena5ac . It corresponds to the boundary point
existence of ODV in the phase diagram of norm
superconducting phase~the pointP2 in the notations of Ref.
3!.

In Ref. 17 also nonuniform superconducting rings of fin
width were investigated~but with larger ring radius!. It was

FIG. 7. The Gibbs free energyF(H) at low magnetic fields for
different displacementsa of the hole from the center of the ring
The thin solid curve~for a50) corresponds to the saddle-poi
state.
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found that for low magnetic fieldsF(H) is irreversible but
for high magnetic fields the dependenceF(H) was revers-
ible. In high fields the transition from a state with vorticit
one to another state occurred through the same scenar
discussed above. A similar state was also considered in R
18 and 19 in the framework of the linearized Ginzbur
Landau equations for a nonuniform ring of finite width. The
found that in such a system the vortex may be stable in so
magnetic-field region. In Ref. 19 analytical results for t
magnetic field ranges where the vortex enter through
thinner part of the ring and through the thicker part we
obtained. Our calculations generalize this result to low
temperatures~i.e., where the nonlinear Ginzburg-Landa
equations must be used! and with inclusion of the nonzero
demagnetization factor of the ring. We found the depende
of the Gibbs free energy~and magnetization! of this sample
on the applied magnetic field. Our results also allowed us
compare the results of the one-dimensional model with
full two-dimensional one.

The ODV ~or stable phase slip! state may be observed b
magnetic experiments. Magnetic susceptibility
proportional6 to d j /dF and the ODV state exhibits som
characteristic peculiarities as was shown in the inset of F
3. MagnetizationM is proportional to the currentj and hence
M (H) is reversible for samples where the ODV state exi
~see Fig. 3 and the inset of Fig. 5!. Furthermore,M50 at
F.(n11/2)F0. Alternatively, because atF5(n11/2)F0

there is a point in the ring where the order parameter is eq
to zero, this state may be found by transport measureme
For example, in Ref. 20 the dependence of the resistance
hollow cylinder with radius of orderj was studied at tem-
peratureT,Tc far from Tc . At F5F0/2 the resistance~R!
exhibited a maximum but the value ofR was a factor 3 less
than the normal-state resistanceRn . If the cylinder has a
nonuniform thickness the ODV state can be realized~be-
cause there is a similarity between cylinders of small thi
ness and rings of small width! as a stable state whenF
5F0/2 and it will lead to a resistive~but superconducting!
state even for very small currents and naturally the resista
of such a state will be less thanRn as was found by Liu
et al.20

In conclusion, we studied the nonuniform state in a sup
conducting ring in which the order parameter vanishes at
point. It was shown that this state is characterized by a ju
in the phase of the order parameter byp near the pointc
50. It allows, in correspondence with the ordinary tw
dimensional Abrikosov vortex, us to call such a state a o
dimensional vortex. This state is unstable in a uniform rin
In the case of a nonuniform ring@with variations of the geo-
metrical (d, w) or physical parameters (j, l) along the ring#
or for a ring with an attached wire, this state may be realiz
in practice. For rings with nonzero width the ODV sta
transforms into the usual two-dimensional vortex. We a
showed that this state is the remnant of the saddle-point s
connecting two superconducting states with different vor
ity as found in a uniform ring. The latter state becomes sta
in a nonuniform ring.
1-5
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