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Ring exchange, the exciton Bose liquid, and bosonization in two dimensions
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Motivated by the highF, cuprates, we consider a model of bosonic Cooper pairs moving on a square lattice
via ring exchange. We show that this model offers a natural middle ground between a conventional antiferro-
magnetic Mott insulator and the fully deconfined fractionalized phase that underlies the spin-charge separation
scenario for highF. superconductivity. We show that such ring models sustain a stable critical phase in two
dimensions, thexciton Bose liquidEBL). The EBL is a compressible state, with gapless but uncondensed
boson and “vortex” excitations, power-law superconducting and charge-ordering correlations, and broad spec-
tral functions. We characterize the EBL with the aid of an exact plaquette duality transformation, which
motivates a universal low-energy description of the EBL. This description is in terms of a pair of dual bosonic
phase fields, and is a direct analog of the well known one-dimensional bosonization approach. We verify the
validity of the low-energy description by numerical simulations of the ring model in its exact dual form. The
relevance to the highi; superconductors and a variety of extensions to other systems are discussed, including
the bosonization of a two-dimensional fermionic ring model.
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[. INTRODUCTION work points to the importance of such ring exchange pro-
cesses driving fractionalization and  spin-charge
Despite intense experimental effort exploring the phas@eparatiorf:*>**Motivated by these considerations, we focus
diagram of the cuprates, the nature of the pseudogap reginfd 2 class of model Hamiltonians describing a square lattice
remains mysterious. In the very underdoped normal stat@f 2D bosonsCooper pairswith appreciable ring exchange.
there are strong experimental hints of local pairing and sult IS hoped that such microscopic models will be appropriate

perconducting correlatiors® despite the absence of phaseIn describing the charge sector in the underdoped cuprates.
' When the ring exchange processes are sufficiently strong, we

;ggerrg;tmseugg:sgr?;?\é% X\grg':vim'sngggffn?;iﬂgg bupnd thgt the EBL phase is th.e stable quantum gr_ound state.
: ; . . Lattice models of interacting bosons in two dimensions,
W|th_s_trong phase .fluctua'uons which dlsrupt the SUPErCoNg,ch as the Bose Hubbard model, have been studied quite

ductivity. A theoretical approach then requires disorderinggypaystively during the past several decaddéé primarily
the superconductivity by unbinding and proliferating vorti- 55 models for Josephson junction arrays and superconducting
ces. Unfortunately, such an approach will likely face a mostjjms put also in the context of quantum magnets with an
worrisome dilemma. Proliferation and condensation of singlesasy-plane (1) symmetry and most recently in the context
hc/2e vortices necessarily leads to a confined insulator, of trapped Bose condensates moving in an optical latfice.
which should show sharp features in the electron spectralypically, the ground-state phase diagram consists of a su-
function in apparent conflict with ARPES experimefi®n  perconducting phase and one or more insulating staws.
the other hand, ifpairs of hc/2e vortices condense® the  fractional boson densities commensurate with the lattice, say
pseudo-gap phase must necessarily support gapped unpairgdhalf filling, the insulating behavior is driven by a sponta-
vortex excitation§™® (“visons”),1% which have yet to be neous breaking of translational symmetry. When accessed
observed?!3|s there an alternative possibility? In this paper from the superconductor, such insulating states can be fruit-
we find and explore a truly remarkable quantum fluid phasdully viewed as a condensation of elementary vortitegery
of two-dimensional(2D) bosons, which we refer to as an recent work on a Kagome lattice boson model with ring
“exciton Bose liquid” (EBL), which answers this question in exchangé6 (which arises in the context of frustrated quan-
the affirmative. The EBL phase supports gapless charge exum magnets has revealed the existence of a more exotic,
citations, but isnot superconducting—the Cooper pairs arefully gapped insulating state with no broken symmetries
not condensed. Thiec/2e vortices are likewise gapless and whatsoever. In this state the charged excitations are “frac-
uncondensed. Being a stable quantum fluid with no broketionalized,” carrying one half of the bosons chafdeand
spatial or internal symmetries, the EBL phase has manyhere are also gapped vortex excitations called visons. Here,
properties reminiscent of a 2D Fermi liquid—a 1D locus of we study the simpler system of bosons with ring exchange
gapless excitation@ “Bose surface}, a finite compressibil- moving on a 2D square lattice. Our central finding is the
ity, an almostT-linear specific heat with logarithmic correc- existence of aritical gapless quantum phas# 2D bosons
tions. which is stable over a particular but generic parameter range.
Neutron scattering measurements in the undoped cupratddis phase is in some respects very similar to the familiar
have revealed a zone boundary magnon dispersion that caiapless Luttinger liquid phase of interacting bosons and Fer-
best be accounted for by presuming the presence of appresions moving in one spatial dimensiéfi.>* Indeed, to de-
ciable four-spin exchange proces$ésRecent theoretical scribe this phase we introduce a 2D generalization of
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bosonization. Specifically, we introduce a new duality map- We will also consider adding a near-neighbor Boson hop-

ping that transforms a square lattice model of 2D bogons ping term,

a rotor representatigrwith ring exchange, into a 2D theory

of “vortices” hopping on the sites of the 2D dual lattice.

Then, based on the symmetries we construct a low-energy Hy=—t E cod ¢, — 1), (4

effective description, in terms of the twdual) phases of the (rr'y

boson and vortex creation operators. The EBL phase has a

Gaussian fixed point description in terms of these fields. Inyvhere the summation is taken over near-neighbor sites on the

addition, there are various nonquadratic interactions, whicliquare lattice. This term breaks the B)(1) symmetries cor-

scale to zero in the EBL. Instabilities towards SuperCOHdUCtresponding to conserved boson numbers on each row and

ing and insulating states are triggered when one or more &folumn, leaving only the globally conserved total boson

these interactions become relevant, closely analogoukgo 2 number.

instabilities in a 1D Luttinger liquid. The remarkable result of this paper is that, over a particu-
Since this paper is quite long, the remainder of Introduc{ar but generic parameter range, ring models of this type

tion is devoted to a brief summary of the ring model Hamil- sustain the EBL phase. The effective description of the EBL

tonian and the bosonized description of the EBL. The Hamilis in terms of low-energy “coarse grained” variables- ¢

tonian we focus on describes 2D bosons in a rotorand an additional field} (see Sec. I)l, which is related via

representation: n—n~m A, to the long-wavelength density, and further
U can be used to construct a “vortex creation operator”
I,,? . . .
_- _WM2—K A , 1 ~e'’. To fix notat_|o_n, we define thar ,¢r_ Py operat(_)rs on
Ho=75 Z (n;=") 2 COS Axyr) @) the sites of the original square lattice, witk,Y) coordinates
_ taking half-integer values, andl, (with N,, 6, operators to
with be defined latgron the dual square lattice with integec,y)
A _ 2 coordinates. Thep,d fields are governed by an approxi-
xyPr= b= brix= rigt brigiy. (2) mately Gaussian(Euclidean effective actionS= f§d7L,
Herer-label sites of the 2D square lattice ad andn, are ~ With £=Lo+L;, and 7 is imaginary time,8=1/kgT. The
canonically conjugate variables, Gaussian part of the Lagrangian is
[r N ]=i6; 0. () 2 i
. . Lo=Hol @, 9]+ 2, = AyyD,, 5
Representing the phase of the boson wave functifnis 0="ol ¢, 3] = P SxyUr ®)

taken to be Zr periodic, ¢, = ¢, + 2, so that the eigenval-

ues of the conjugate boson number operatoare integers. \ynere the sum is over sites r'=r+%/2+§/2 on the dual

The mean boson density is set b_lanld we will primarily  anq original lattices, respectively, and the effective Hamil-
focus on the case with half fillinga=3. The argument of (5nian is

the cosine in the second term is a lattice second derivative,

involving the four sites around each elementary square

plaquette. This term hops two bosons on opposite corners of

a plaquette, clockwisgor counterclockwise around the o:f

plaquette, and is aX-Y analog of the more familiar SQ)

invariant four-site ring exchange term for spin one half op-

erators[which arises in the context of solid 3-HRefs. 25  Here the momentumk( integral is taken over the Brillouin

and 26]. Alternatively, we may view the bosons as “par- zone |k, |ky| <, and @A,y¢), denotes the Fourier trans-

ticles” and the vacancies as “holes” over a uniform back- form of A,ye, (and similarly for A,,9). The functions

ground density. In this case, the ring-exchange process fde(k),U(k) are nonvanishing finite periodic, and analytic.

bosons on a plaquette is just the propagation of a “particleTheir values along th&, andk, axes parametrize the Bose

hole” pair (exciton from one edge of the plaquette to the liquid, much as the effective mass and Fermi liquid param-

opposite edge. This motivates us to call the critical liquideters do in a Fermi liquid. Experts will note a strong simi-

phase of this model as the exciton Bose liquid. larity to the bosonized effective action for a one-dimensional
In addition to the conventional spatial, particle-hole, andLuttinger liquid?***which is explored in Sec. IIl. Like in a

total number conservation symmetrisge Sec. I)), this ring Luttinger liquid, there are additional nonquadratic terms

Hamiltonian has an infinite set of other symmetries. Specifiin the action. It is sufficient to keep only those of the form

cally, the dynamics of the Hamiltonian conserves the numbe£1= L1,+ L1, With

of bosons on each row and on each column of the 2D square

lattice—a total of 2. associated symmetries for &nby L

system. This is fewer than a gauge theory, which has an L1p=2 2 t"cofa(e,— ¢ra9)], 7

extensive number of local symmetries, but these symmetries ras

will nevertheless play a crucial role in constraining the dy-

namics of the model and stabilizing a new phase. with r on the original lattice, and

K(k)

Uk)
Tl(Axy¢)k|2+2_ﬂ_2|(Axyﬂ)k|2 . (6)
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* are independently conserved. At commensurate fillings we
Lq,= -> [ > v,4€05 209, +qQXy) explore in some detail the instabilities of the EBL towards
rola=l various insulating states.
In Sec. VI we consider a “hard-core” version of the boson
+E wg"d”cos{Zq(ﬁ‘r— T is) Hamiltonian which allows us to obtain an exact zero-energy
as wave function when the couplings are carefully tuned. We
then perturb away from the soluble point, and compute prop-
—qQ(nx+my+ mn)]] , (8) erties of the adjacent quantum phase that we thereby identify
as the EBL. Finally, in Sec. VIl we conclude with a discus-
sion of how various ring exchange processes emerge from a
with r on the dual lattice. In both Eq$7)-(8), Q=2wn, r Z, gauge theory formulation of interacting electrons and then
=(x,y), s=(m,n). Here,wy;"=w5" gives the amplitude to make some speculative remarks about the possible relevance
hop 2q vortices by the translation vectom(n) [or (n,m)],  of the EBL phase in the context of the underdoped cuprates.
and tg""=tg™ gives the hopping amplitude for @ boson
along the same vector. In the EBL phase, all these terms are Il. SPIN WAVES AND PLAQUETTE DUALITY
“irrelevant,” i.e., give only perturbative corrections to physi-
cal properties, though these corrections can be significant.
Also, like in a Luttinger liquid, there is a nontrivial relation Here we consider a spin wave approximation to the mi-
between microscopic quantities such as the energy and parroscopic ring Hamiltonian which leads to a harmonic and
ticle densities and the coarse-grained variables of the lowsoluble theory. The resulting energy spectrum vanishes along
energy theory. In particular, for the energy and particle dentwo lines in momentum space. This remarkable feature is
sities, one finds then shown to follow directly from the existence of the infi-
nite set of conservation laws of the ring Hamiltonian. As we
o detail in later sections, such a harmonic description underlies
SNy 112y + 172~ ChA xy Dy + > CBaxySIN(20 9, +qQXY), an eff(_ectiye theory of the EBL p_hage, in close analogy to
q=1 bosonization of the 1D Luttinger liquid.
C) To this end, it is useful to employ a combination of path
integral and Hamiltonian methods. A standard path integral
% representation is constructed in the usual way ugirggen-
8xy~081.9>2<y+ > C5,C0% 2005y +qQXY), (100  states.In Fhe time .cont_inuum limit, the partition function for
q=1 the pure ring Hamiltonian takes the form,

A. Spin waves, massless modes, and symmetry

wheresn=n-—T, & is the energy density, antf’ are non- Z=Tre*3HD=J' [dq&”]ex;{ _ fﬁer¢>, (11)
universal constants. 0
The paper is organized as follows. In Sec. Il we treat the .
fing exchange term within a “spin-wave” approximation. With the Lagrangian
This reduces the Hamiltonian to a quadratic form that can be 1
readily diagonalized. Within the two-dimensional Brillouin ¢— — 24 im0 4
zone there are gapless excitations along the ligesO and - Er 2U (9:60)°+Ind =K COS(Axyqﬁr)}' .

k,=0, which are associated with an infinite set of conserva- . .
Y The resemblance of the above Lagrangian with that for the

tion laws possessed by the ring exchange model. Dual “vor- 7 . :
tex” variables are then introduced via a new plaquette dualityStandard Bose-Hubbard motfe(which has a single, rather

transformation. This dual representation is well suited to nu:[han double, lattice derivative inside the cogiaeggests that

merical simulations since it is free of any “sign problems.” one might try expanding the cosine potential to quadratic

We implement a quantum Monte Carlo simulation, and shom?rder' Doing 0 gives a soluble Harmonic theory for the ac-

that the EBL phase is present over appreciable regions of tHEen, which can be readily diagonalized as,

phase diagram of the ring-exchange rotor model. 1 d2k f

©

In Sec. Il we construct the low-energy effective model in
terms of the dual vortex fields, and extract the universal
properties of the EBL phase in Sec. IV. These properties are 13
confirmed by the quantum Monte Carlo results. Section V i%/vith k=(k
devoted to an analysis of the stability of the EBL phase
Remarkably, we find that for generiimcommensurafebo-
son densities, there are regions of parameters where the EBL _ ; ;
phase is stable towards all perturbations, even those that o 4\/W|S|n(k)(/2)sm(ky/2)|, 14
break the row/column symmetries. The situation is reminisvanishes on both thk, andk, axes. The presence of these
cent of the Fermi liquid phase, whose “fixed point” descrip- gapless excitations can be traced directly to the existence of
tion possesses an enormous set of “emergent symmetries”-the infinite set of symmetries of the ring Hamiltonian, which
the number of fermions on each patch of the Fermi surfaceonserves the number of bosons on each row and on each

do o 2
Sspinwavezﬁ (2m)2 Z[w +Eill ok, 0)]?,

—o0

x,Ky) living in the first Brillouin zone,k, ke
{—,7]. Remarkably, the energy dispersion,
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column of the 2D square lattice. Specifically, these symme- _ a+ib\ "\
tries imply an invariance of the energsnd action under g Praizy+bi2= N , (19
¢ Gt D00+ Dy (y), (19 wherea,b=*1, andN, denotes the number of vortices

for arbitrary functions®,(x) and ®,(y). This invariance (vorticity) on this plaquette. Comparing to E(L8), one

dictates that in the Harmonic spin-wave form the energyfinds N=N, (mod 2, soN can be interpreted as a vortex
must vanish whenevég=0 or k,=0. number operator, modulo two. SinéeandN are canonically

Since the plaquette term involves a lattice second derivaconjugate, the operators™ perform canonical “transla-

tive rather than an ordinary lattice gradient, however, it istions” of N, and hence can be regarded as vortex creation

clear that phased) fluctuations will be large in the ring and anr12|_r;||at|on operators, respectively. Note that sifice

model, and the spin-wave expansion is suspect. Indeed, evenmZ, €"=1, consistent with the ambiguity IN=N, un-

in the classical limitU—0, one can readily see that “vor- der even integer shifts. Clearly, periodicity #fin the origi-

tex” Configurations in Which(br winds by 2 around some nal variables is encoded in the discretenes# of the dual

plaquette[e.g., for a vortex with center at=y=0, ¢,, description. o _

=720(—x)O(y) + mO(—x)O(—y)+37/20(x)O(—Y), The plaquette Hamiltonian, when reexpressed in the dual

where®(z) is the Heavyside step functiparefinite in en-  Variables, reads

ergy rather than logarithmic as in an ordinaXyY model. U

Further, “double vortex” configurations in which this wind- Ho=—-K> cogmN,)+ =2, [Ayy6,— 7012 (20)

ing is 47 can be smoothly deformed into zero-energy con- r 27

formations[e.g., ¢,,= 7O (—x) + 7O (—y)]. This suggests

;chat Ifo_r nor:zter(U there will be substantial “vorticity” in the which will be returned to later. Note the strong similarity

Ovﬁ:oylggd?eas:sthe legitimacy of the Spin-wave expansion. | etween the dual and original forms. To bring this out more
9 y P P ' clearly, and for the numerical simulations to be considered

s n'ecessa_lry'to account f(.)r the periodicity of the cqsine poéhortly it is useful to go to a path integral formulation. In
tential. This is most readily accessed by transforming to articu'lar consider the partition function

dual form, just as one transforms to a dual bosonized repre-

We will for the time being neglect the tunneling teir,

sentation for a system of 1D particl&sHere we introduce a Zo=Tre AHo, (21)
new 2D quantum duality transformatidrthat is specifically _ . _ . _ _
tailored for the ring model. ExpandingZg in the usual Trotter fashion with a time slice

A7=e—0", using the discrete basis of eigenstatesgof

B. Plaquette duality one finds(Appendix A

We consider dual fields living on the sites of the dual _ E 2
lattice, denotedd, andN,, which are canonically conjugate Z_{(, ™) exp —| € ~ Lo, (22)
variables: '

with the “Lagrangian”
[Nr,er/]:iﬁr‘r/. (16)

€ 2 U
Here we takerN, to be 2 periodic so tha¥, /7 has integer Lo[6]=2, [—Zln(—K) (9,6,)%+ ﬁ[Axyer— sz] ,
eigenvalues. The reason for this unusual choice of normal- T € m
ization should become apparent below. For notational ease (23
we are denoting the sites of both the original and dual squar@hered.6,=[ 6,(7+ €) — 6,(7)]/ €. The e dependence of the
lattices ag. In analogy to Eq(2), it is convenient to intro-  time derivative term in Eq(23) is familiar from the “time-
duce an operator defined on the plaquettes of the dual lattiagontinuum limit” relating, e.g., thed+ 1)-dimensional clas-

(i.e., sites of the original lattigeas sical andd-dimensional quantum transverse-field Ising mod-
els. Note the strong similarity of E¢23) to Eq.(12), which
Ayy0r=0,—0; 3= O gt Orizsy- (170 emphasizes their nearly self-dual nature.

The formulation in Egs(22)-(23) is quite convenient for
merical simulations. For the simulations, we define an

integer-valued “height” fieldé,(r) through

These two new dual fields are related to the original fields b¥1u
the relations

7N, = A f A 0,=mn,, ’ 18 _
A il 18 Ay0,(7) = mn®+ A 0, (7), (24)
wherer’ =r+X/2+§/2. One can check that witN, and 6, ® - )
as conjugate fields, the original variables satisfy the requirethere ni=’=[1+(—1)""]/2 is the background staggered
commutation relations. density, chosen such théf(7) obeys periodic boundary con-
To interpret the new variables, consider now a vortex cendlitions. In this language, we obtain a generalizaxisotrop-
tered on some sitex(y) of the dual lattice(the “core”). ic) solid-on-solid model in 21 dimensions. The correlation
Classically, for the four sites on plaquette of the originalfunctions for thef fields are easily reexpresséthd numeri-
lattice surrounding this site, cally evaluatedl in terms of these height variables, using
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[ I whereZ, is a constantdivergent for6—0),
r o 10
- < So=2 eLo[d], (27
10 - 5 T
L < 5
- - I—}H—-I———[———— <
v ol 1 Si=—2 2 v2qC0S 6;(7) (28)
= i 0 0.5 1 rr g=1
5 €K and thev,, are O(1) coefficients whose precise values are
"Exciton (mr,m) CDW not important. It is convenient to drop the constant and in-
-E.ose. 4 (im’mmpressible) troduce infinitesimal source field®, h®, for the density and
_(:c?nlj;ressible) energy density, respectively,
0 | | | |
0 1 2 3 4 5 6 7 Z[hp,hs]zf [d6,()]e S0~ S1™5h, (29)

g,=2 In(2/¢€K)
with

FIG. 1. The phase diagram of the time-discretized dual model as
a function of the two coupling constants, showing a compressible
EBL phase and an incompressible phase that we identify(asma Sh=—2 [h?(7)(Ayyb,— ) +hé(7)(d,6,)%], (30)
charge-density wave. The compressibiliiyvas obtained from the T
k—0 extrapolation of the density susceptibiligy,,(k—0,0=0) on wherer’ =r+%/2+ /2.
8Xx8x%32 lattices, with some checks made on larger system sizes.
As seen from the inset, the critichl/K stays finite in the time
continuum limiteK— 0 indicating a phase transition Bt/K~2.4 IIl. EFFECTIVE MODEL

+0.4 in the quantum model. We now make an educated but perhaps bold guess as to

the naturegland existenceof a low-energy effective descrip-
tion. In the spirit of the renormalization group and effective-
Feld theory, we imagine definingtamporallycoarse-grained
variable ¥ in which the high-frequency modes éfare av-
eraged over

Monte Carlo methods. An indication of the sort of results
obtained is shown in Fig. 1 which presents the phase diagra
of this model as a function obJ/K and €, based on an
evaluation of the density correlations. For the simulations
we worked on alL, XL, XL, lattice, with various system
sizes indicated in the paper. We lised a Metropolls algorithm 9.(7)=[6,(7)];— 7AxY, (31)
with a single-site updated,(7)— 6,(7) =1, which corre-
sponds to a ring-exchange move for the boson density. wwhere the square brackets indicate an average over “fast”
checked for equilibration of various quantities, and averagedigh-frequency modes, and we have for convenience re-
the data over 10-1° sweeps of the lattice depending on the moved the mean “curvature” iny by a nonfluctuating spa-
correlation function and location in the phase diagram. Nofially dependent shift. Provided that we average only over
tice that in the time continuum limite—0), the simulations high-frequency modes, we expect that the resulting effective
reveal two phases as the dimensionless rfio is varied, ~description of will remain local both in space an@nagi-
separating an ordered charge-density wave state at large Nary time. Inspection of Eq(26) shows that the dual micro-
from the EBL phase when the ring exchange term is large. Scopic action foi can be written as a sum of a quadratic part
Before obtaining an effective low-energy description, it is (2 -r€£0) and nonquadratic corrections. We postulate that
convenient to rewrite the dual partition function, Eg2) in  the low-energy effective action fa¥ is a sum of a renormal-

terms ofcontinuouss variables using the Poisson summationized quadratic term similar t€; and small nonquadratic
formula corrections. Although we have not implemented a detailed

renormalization group treatment, the latter statement is tan-

_ . tamount to declaring that the system is controlled by a stable
= [dgr(T)];(;) exp( rE; [2is((7) 6:(7) Gaussian fixed point. Obviously, such a fixed point can have
' at best a large finite basin of attraction, and we will return to

the problem of determining the region of stability of the
- 5|Sf(7)|)]]e)(p( - 62 LD[Q])' (25 Gaussian theory in Sec. V.

In Eqg. (25), we have included a parame#@&1, which “soft-
ens” the discrete? constraint(exactly imposed for5=0).
Carrying out the sum over the integer-valug(lr) variables, Formally, the above postulate of the effective-field theory
one finds description can be formulated as the statement that the gen-
erating functional can be approximated for low-frequency
source fields byZ[ h?,h®]~ Z,Z[ h?,h®], whereZ; is an ir-
relevant constant, and

A. Symmetries

zzzof [do,(7)]e o5, (26)
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et e and similarly fork,«k,. The latter condition implies the
ZZJ [d9(7)]e oL~ &l = 5l o], (32 existence ofaplessexcitations along thé, andk, axes in
momentum space. These are the only such gapless states
whereSy[ 9] is a renormalized quadratic forns; contains ~Mandated by symmetry, and we expect the low-energy phys-
small renormalized nonquadratic perturbations, & lin-  ics to be dominated therefore by momenta near these axes
ear inh”, h® (we drop higher-order terms in the infinitesimal @nd by low frequencies. Quite generally, the kerélcan
sources In general, we expect all three parts of the action toe expanded near the zero modek,at »=0, and at lowest
take the most general form possible consistent with localityorder takes the form
analyticity (since only high-frequency modes are averaged
ovelj)f ané/ the symm)étriegs of tﬂe proyblem, which shouldgbe Mk, w)=A(ky) 0+ B(ky K, (39
found from the microscopic partition function, E@R9).  where the expansion functioagk,) andB(k,) are even and
These are 2 periodic ink, . A similar expansion is of course possible
(1) Row/column symmetryf, \(7)— by,,(7) + 7[my(X)  aroundk,=w=0, with theidentical expansion coefficients
+my(y)], wherem,(x) and my(y) are arbitrary integer-  due to rotational symmetry. Analyticity &=0 further im-

valued functions. This corresponds to conservation of thq;)nes B(0)=0. A convenient representation d¥, which
number of vortice¥modulo 2 on each row and column, a gatisfies these requirements, is

dual version of the conserved boson number on each row/

column of the original lattice. w?+EZ
(2) Space and time translations,(7)— 6, r(7+ 7o), M(K,0)= 2K’

whereR is an arbitrary lattice vector ang, is an arbitrary

real number. Under this translation, the sources must also bgith mode energy,

translatedh?’®(7)—h?e (7+ 7). _ _
(3) Reflections across a row or column containing a site Ex=4VE(K)UK)[sin(k,/2)sin(k,/2)]. 37

of the dual lattice (or bonds of the original latticel,,  Here,1/(k) andk(k) are positive 2r periodic functions that

—88'0sysy, Wheres,s’=+1. The sources transform as characterize the EBL phase, but it is only their behavior for

hiy—ss'hg, gy, N3y =N ey ke<l or k,<1 that determine the universal low-energy
(4) Reflections across a row or column containing properties of the theory.

bonds of the dual lattice (or sites of the original lattice)

This is not independent, and can be obtained from a C. Interaction terms

composition of a translation and a site reflection. But

for ~ completeness, 6y, —SS 01124 s(x-1/2), 172+ s (y-1/2)

(36)

Consider next the interaction tern®,= fd7L,. Locality
requires that they couple combinationsihffields only with

p g
hzyy_)sf‘ h1/2+s(xf1/2),1/2Fs’(y71/2)’ nearby points. Hence we consider a successive sequence of
hyy— h;/z+ S(x—1/2),1/2+s' (y—1/2) " | } terms,L,;=3.L;.n, couplingd fields at a total ofn distinct

(5) Time reversal 6,(7)— 6,(— 1), h?’®(7)—hf"®(— 7). points. We expect that th&, .., becomegexponentially in-

(6) Four fold rotations 6,y—6y , hi, 5,1,  creasingly small with increasing. First consider the single-
——=h{ 1o _x—12, h3y—hy . site terms, which are highly constrained, particularly by
(7) Particle-hole symmetryThis is an invariancenly for ~ translational invariance, under whigh,, + wnxy transforms
integer or half-integer densities f 2). For such values, as a scalar. Generally,

the symmetry operation i,,—27nxy— 6,,, h{— —h?,

hr_>hl’ . El;lz _Xzy |:q§=:1 UquOS(ZQﬂ-FQQXY)

B. Gaussian action

-1 2
The form of S is dictated by these symmetries and the +q§2 Kq(d:9) q}' (38)
relation between the microscopic and coarse-grained fields, _ . ]
Eq. (31). Note that the shift byrnxy implies thatd is nota ~ WhereQ=2mn, and has the physical meaning of the small-
scalar. Consider firsS,. By space and time translational est reciprocal lattice vector of a one-dimensional lattice with

symmetry, it is diagonal in momentum and frequency spacedensityn (like 2kg for a charge-density wayeThe second
set of terms involve more time-derivatives than the analo-

1 gous quadratic interactions &y, and hence are negligible at
So=§f J M(K, )| 9(k,w)|?, (33) low frequency, so we will takéﬁ;lzo in the following. The
kJw v, terms will play an important role in Sec. V. Note that,
except when the density takes special commensurate values

where [,=[d*k/(2m)?, [,=[7.dw/(27), and the mo- (such as the interesting cage= 1/2), they are strongly os-
mentum integral is taken over the Brillouin zohe/,|ky|  cillatory in space.

<. By row/column translational symmetry, Next consider two-site terms. Similar to thg * terms in
Eqg. (38), a variety of spatial(lattice) and time derivative
M(ky=0k,,w=0)=0 forallky, (34 invariants are possible, but are negligible relativeSgp so
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we do not include them here. More interesting are sinusoidainust be accompanied by rules specifying tperator con-
terms, which must take the form tent of various physical fields. In analogy to the notations
used there, one may rewrite E@1l) as a scaling equality

- ) between the microscopic and coarse-grained fields, as in Eq.
£1;2:_ E 2 (quvzqr’mncos{zqﬁxy_zq ﬁx+m,y+n (9) P 9 q
Xy,m,n qqr .
+Q{axy—q’(x+m)(y+n)}] +W;q‘2q”mncoi2qﬁxy D. Self-dual form—Bosonization analogy
+29" Oy my+nt Q{axy+a’ (x+m)(y+n)}]), (39 Having established the form of the effective action for the

N ¥ variables, we are also interested in computing quantities
where rotational and reflection invariance requirg; ,,, . involving the boson phase. Since the effective theory is
=w2iq‘2q,’mn, and without loss of generality we may also _perturbatiye i!’kS'l, it i:_s straightforward to reintroduq@ us-
impose W, , . =Wj ., .. Like the v,y terms in Eq. ing Gaussianintegration. In particular, the quadratic action
(38), most of the operators in E¢39) are highly oscillatory o in E. (33) with the kernel in Eq(36) can be transformed
for genericn. An important exception arises iy 5, mn for into the form shown in Eq(5) in Introduction using a
rational densitiesn=z'/z, wherezz' are integers. Then Hubbard-Stratonovich transformation,

these terms are nonoscillatoryzfmq andz’'nq arez times 1 1
integers. We consider in particular the case 1, for which exol — _f 9,9k, 7)|2
m,q andn,q can be chosen as all possible factorz binto 2 kem?iC(k) T
two integers, with arbitrary integer Keeping only these 1
ferms, one has - J [d<p]exp( -5 Jk K(k)l(AxycmklZ)
Lig==2 2 Wic0§20(B Dximysn)], s ,
(40) Xexp ) & 700 A, 42

where,w5"=w5," by rotational invariance. Since? acts  wherer’=r+%/2+9/2 as usual, andAy,¢) denotes the
as a vortex creation operator, the terms in Ef)) can be  Fourier transform of,, ¢, . After an integration by parts in
thought of as hopping @ vortices a distance=(m,n) on  the last term on the right-hand side above, the full Gaussian

the 2D dual lattice. part of the action takes a particularly transparent fo8y,
Finally, considerS,= [d7L},. As for £,, we expect that = [_L,, with Lagrangian’, defined in Eqs(5), (6).
the largest contributions will occur in terms involving, The partition function is now represented as a path inte-

fields at a small number of distinct points For simplicity,  gral over both sets of “low-energy” fieldsp, and ¥, , in an
we keep only the most local of these. Employing the sym-appealing self-dual form. The Gaussian theory above gives a
metries above, one finds fixed-point description of the EBL phase. When augmented
by the operator content of the fields, as in E9), together
) with the irrelevant nonlinear interaction terms in E¢39),
ﬁhZXE h%+ 1r2y+ 179 CoAxyTxyT 21 CoqBxySIN(2q Ty (39), it gives a complete description of the universal proper-
g K ties of the EBL phase, as detailed in the following section.
) * It will sometimes be convenient to integrate out the dual
Cgﬂf)ﬂr > C54C0S 20 Dy field 9, leaving a Gaussian action just in terms of the phase
a=1 of the boson wave function,

[}

+qQxy)

+ hf(y

+aQxy)

1
], @ s=3 |, [ Mkwlokwl, @3

Wherg cgif are constants determined .by the high-energy, ity kernel,

physics. Here we have kept only the single-plaquette terms

in the charge density, and the single-site terms in the energy w2+ Eﬁ

density. Note that the operators multiplyihg involve sines MK, 0)= R (44)
rather than cosines, which is a consequence of particle-hole

and reflection symmetries. THerm in Eq. (41) can be de- and with E, as given in Eq.37). Notice that this form is
rived perturbatively irv,, using an explicit one-step coarse- identical to the Gaussian fixed-point theory in termsdain
graining proceduré? The quantitative reliability of this con- Eq. (33), except that/(k) has replacedr?/C(k) in the de-
structive procedure is, however, limited to small bagg, so  nominator of Eq(44).

for the problem of interest the constamgﬁf should be The above self-dual representation makes particularly ap-
viewed as phenomenological parameters. Equatiéh)  parent the close analogy between this theory and bosoniza-
should be interpreted analogously to the nontrivial bosonization theory in one-dimensioff.In particular, underlying both
tion rules for, e.g., the charge density and other operators itheories is a pair of dual scalar fields, one the phase of the
one dimension. Very generally, a low-energy effective actionwave function and the other related to the density. The Lut-
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tinger liquid fixed point is a Gaussian theory in the two
fields, and has a form that is nearly identical to the EBL P(E)=f o(E—Ey), (48)
action above, K

where the boson energy is

i
L14=Hyg+ ;f 9,¢0x0, (45 ke . Ky
x sin > sin at (49
with Gaussian Hamiltonian,
and Q (k)= yU(k)K(k). Like an ordinary (Fermi liquid)
metal, the density of states gets a large finite contribution
Hld:f : (46)  from the low-energy modes near the “Bose surface” along
X the coordinate axes in momentum space. Unlike a Fermi lig-

Notice that the long-wavelength particle density in bosonizallid, however, there is a weak logarithmic divergence associ-
tion theory,n~ d,6/, has simply been replaced by(lat-  ated with the crossing point & =k,=0. In particular,

tice) second derivative in our (21)-dimensional theoryn

~A, /7. The commutation relations between the two dual p(E)~
fields has also been modified, as is apparent by inspecting the

Berry's phase term involving both fields in the above

Lagrangians. The expressions in H@) relating the bare WhereQo=(0,0), e=E/Q, and
boson density and energy density to the low-energy fields are

E.=Q(k)4

K 2 U 2
E((yx¢) + ﬁ(ﬁxa)

71_ZQO[In(lle)-l—CowLO(e)], (50

o o o = dk Qg
a generalization of the more familiar bosonization expres- Co=41In 2+f : -1, (51)
sions, where, for example, the boson density nelas o Sink/2\ Q(k,0)
proportional to cot2f). Note that the constant term in the density of states depends

A key strength of bosonization in 1D is that it allows one upon the full form of the dispersiof(k,0)=(0K) all

to study the instabilities of the Luttinger liquid towards.vari— along the Bose surface, while the logarithmic term depends
ous types of ordered phases, such as a charge-density waygy "\ ;hon the behavior &=0. The specific heat is then
state. Similarly, the above Gaussian representation of the

EBL fixed point is particularly suitable for studying instabili- T (> x2p(Tx)
ties both towards insulating states with broken translational C,=— f X— , (52
symmetry and towards a superfluid. But before undertaking 4Jo " siniPx/2
this analysis, we explore the EBL phase in some detail.  \\hich to the same accuracy gives
IV. THE EXCITON BOSE LIQUID PHASE Qg
CUN— Ioln_+60|0+ll y (53)
We now turn to the physical properties of the EBL phase, 47 T

using the effective low-energy theory developed in the pre- _ o Ny a2
vious section. For the present, we will assume stability of thezind In—fodx;@[ln(lbf)] /fM?(x/Z), or lg=4m"/3, I,
EBL, so that all physical quantities are accessible via pertur—_2(3_275.)77 [3+8¢ (2)~4'6.43’ whe’reg“(z) is the Rie-
bation theory(in S;) around the Gaussian theory fgrd. mann function, andg~0.5772 is Euler’s constant.
The validity of this assumption is discussed in Sec. V. ) _
B. Boson correlation functions

A. Thermodynamic properties It is interesting to contrast the large density of states for
collective excitations with the tunneling density of states for
the original bosons, which we will see is strongly sup-
pressed. In particular, consider

Consider first the thermodynamic properties of the EBL.
The simplest is the compressibility=dn/dw. This is trivi-
ally given from the Gaussian theory, and one finds
=1U(k=0). Numerically, the compressibility may be ob- G¢(r’T):<ei¢r(7)e_i¢0(0)>. (54)

tained from an extrapolation of the density-density correla- i )
tion function, By symmetry, since the boson number is conserved on each

row and columnG ,(r,7) can be nonzero only far=0. To
1 _ ‘ further determine the behavior &, in the EBL, we must
Xon(K, @)= >, fdr—2<AXy0r(T)Axy00(0)>e""n7"k'x, relate the microscopic Bose creation/annihilation operators
' ™ 47 to the low-energy modes. By symmetry,

1 Or — gl r n> .
from which k= y,,(k—0,0=0). The compressibilitik de- e'¥r~e* 1+ Acog2d, +2mhxy) +- -], (55)
termined in this way from the simulations were used to de\We expect the low-energy properties to be dominated by the
fine the phase diagram in Fi¢l) first term, i.e., simply replacing— ¢. Sincegp is a Gaussian
Also interesting is the specific heat. Since the EBL isvariable,
essentially a free boson theory, this is determined completely .
from the density of states for thallectivefree boson modes G(ﬁ(r,r)~e*F (1 Oro; (56)
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Wlth Gg‘)(xyy) — <e| ¢00(T)e—i¢xo(7)e—i¢oy(T)ei ‘f’xy(T)> (63)
Uuk) e Upon replacinge with the low-energy fieldy, this can be
FO(m)= 3 ([¢o(7) — ¢0(0)]%) = « 2E, (1-e 5. readily evaluated using the Gaussian EBL action. For any

(57) fixed y one finds power-law behavior ix[and vice versa
. . . sinceGY(y, x) =G (x.y)],
Since Ey vanishes linearlyboth as k,—0 and as k,—0,
inspection of Eq(57) shows that#(r) has adoubleloga-

1
rithmic divergence as—o. Indeed, a careful calculation GW(x,y)~——— for [x|>1, (64)
shows that ’ |x| ")
& with
¢ F2 2, ¢
F (T)"’?“nﬂoﬂ +F1In(QoT)+"' (58) .
1 de [U(0 k) sirf(ky/2) 65
for Qyr>1, with ()= w2Jo K(0k) sin(k/2) ° (65
1 Up Note that Eq(64) requires only|x|>1 and places no restric-
F‘Z/’:F o (590  tion ony. Hence it is also obtained whdroth arguments are
a 0

large, and thus

1 (~ Uk 1 [Uy 1 1 U
Ff:?fodk{ K(k,0)2 sirk/i2 IC_(;E} Gg‘)(x,y)~ex;{—; K—Z(Inx)(lny)—C(lanny)),

(66)
1 Uy
"o IC_O[Z In 7+ vel, (600 asx,y—oo, with
where Uy=1(0,0), Ko=£k(0,0). The I8Q,7 behavior of C:i /@( i)
F%(7) at larger implies thatG4(7) decays faster than any m2 ¥ Ko e m
power law. This translates into a similar singular behavior for
the tunneling density of states. Writing the boson Green’s 1 (= ok 1 Uy 1
function in a spectral representation, + ;jo V K(0K) 2 sirki2 VIC_OE . (67)

_ * —E| 7]
Gy(0,7)= J; dEpui(E)e =7, (61) C. Vortex correlation functions

one finds using a simple saddle-point analysis that the above The exact plaquette duality makes it possible to define a
; 9 P! P y number of characteristic “vortex” correlators in terms of the
behavior at larger requires

field €'?. As for the boson correlator above, the behavior in

a O QO QO the EBL depends upon the expression for the vortex operator
2%%0 0 0 : .
Ptun(E)~eXF{ - Eln E_lnf('gln InEH\H' in the low-energy variables. By symmetry, we expect the
62 leading termginvolving the smallest exponentials &) to
be

wherea=pB=F$, \=F{—1—-F$+InFJ. 00 Rt A Y0 68
Thus, although the EBL possesses a large set of gapless € qAe e,

modes, the density of states for adding a boson into the sygynere in general is complex. Note that, sincé/ is an

tem vanishes at low energy. Again, this is analogous to Shteger, the microscopic vortex field satisfies éxgxp ',

Luttinger liquid in 1D?* the conservation of particles per but this is not true ford. In the special case afi=1/2

row or column means that the added particle affects all th‘f)article-hole symmetrf9——9) further impliesA is real
particles in a particular row or column, leading to a sup-ynence '

pressed amplitude for such tunneling events. Remarkably,
the tunneling density of states actually vanisfasterthan in , -
a Luttinger liquid, indeed faster than any power law in en- e~ 12A cos( O+ Exy). (69
ergy. This behavior can be roughly understood as arising
from two orthogonality catast_rophe_s occurring _S|multa- With this relation in hand, let us consider first the vortex
neously in the row and column in which the boson is addeqwo-point function
or removed. ’

It is also instructive to consider the boson four-point cor- Go(r,r)=<e‘ Hr(r)e—i00(0)>‘ (70)
relation function, for simplicity at equal times. Due to the
row/column symmetries this is nonvanishing only when theAs for the boson correlatdg,, the vortex two-point func-
four points sit at the corners of a rectangle: tions vanishes unless=0 due to the dual row and column
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0
U/K=1.0 & U/K=1
eK=1.0 Yy -2 0.06 F€K=1.05 [
‘LT=L ‘ll | — L_’,=L Q
c T i =
e I = 4L
o & 3
o B 0.04 <3 i
— 1 —
I £ _g PN IR M
s
Fe 0.02
o
1 1 1 1 I 1 1 1 1 | 1 1 1 1 | 1 1 1 1 O
0 1 2 3 4
In 7

FIG. 3. The four-point vortex correlation functio{®(x

FIG. 2. Vortex correlation functio 4(0,7) = (€' (e~ 1%(0) jn v o—0) defined in the text. ovaluated in the EBL phase. Th
the EBL phase. The correlation function decays faster than a powecTorr’Z,I;ti_on) ;‘unectlirc]:ra'l \/I;nisﬁese);c;regg du?/aiuégwtfue © ga?tisc?é €
law ~exp(—3y In Q [ i [ — X
aw ~exp(—j ICOI_L{0| n .Oﬂz). at long fimes (see te)il nset hole symmetry ain=1/2. The expected power-law decay of the
shows this decay in a finite-size scaling plat<4 to L=32) of . . . N .

envelope is shown in the inset as a finite-size scaling plot, from

INGH0,7) versus In for 7=L /2, from which we extractfo/Ko \ \ich (e extract the exponent,(1)~1.9+0.1, close to its bare

~1, nearly its bare value for these parameters. value forU/K = 1.
symmetries. Evaluating it using E¢68) and the Gaussian .
action, one finds similar results to the boson tunneling den- (4) cog wnxy)
sity of states, Gy (X,y)~ —|X|7]v(y) for [x|>1, (75
FJ , with
Gy(0,7)~ex —?||nQOT|2—F1||nQOT| . (7D
m KC(0K) siré(ky/2)
where 7,(Y)= fo dk LK) sinki2) (76)
s 1 Ko Interestingly, one can see from EJ5) that for the case
F2=3 V1 (72 =1/2, the four boson correlataranishesexactly whenever
X,y is odd as a consequence of particle-hole symmetry. This
behavior, and the associated power-law correlations, are
Fo— dek /IC(k,O) 1 _ /@E _ 1 /@ shown in Fig. 3. In the limit when botk,y— o, the vortex
o U(k,0) 2 sink/2 U k| 2 VU four-point correlator vanishes faster than any power law,
X[2 Inr+ yg]. (73 K
G{M(x,y)~cog wﬁxy)ex% -/ u—o(ln x)(Iny)
0

In fact, these coefficients are obtained directly from &§)

using the duality transformatioki(k) < 2/(k)/ 2. In Fig. 2

we show numerical results for the two-point vortex correla- —C,(Inx+In y)), (77
tion function obtained from the quantum Monte Carlo simu-

lation in the parameter regime corresponding to the EBL ,

phase. The downward curvature of the data is consistent witASX:Y % With

a decay more rapid than a power law, and as shown in the

inset can be fit to the form in Eq471) with Uy/KCo~1. Ko
Next consider the vortex four-point function, which due to C,= ﬁo( vetInm)
the dual row/column symmetry is nonvanishing only when
the four points sit at the corners of a rectangle, N Jﬂ( K(0k) 1 1Ko 1) (78
0 U0Kk) 2 sirk/2 Uy k)" )
G594)(X,Y):<ei 000(7')ei on(T)ei 00y(7')ei ny(7)>_ (74)

With the exception of the costixy) prefactor in Eq(77), all
This can be reexpressed in terms of the low-energy field the results in this section can be obtained from those in the
using Eq.(68), and then evaluated with the Gaussian EBLprevious one by the duality transformatiop— and
action. For anyfixed y one finds power-law behavior i UK) = 72K(K).
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D. Collective correlation functions x22 becomes nontrivial at second order iB. Provided

Next, let us consider the correlations of “two-particle” [X|.ly|>1, the appropriate second-order perturbative expres-
operators such as the boson and energy densities. As abowQn 1S
we require the operator correspondences between the micro- 2
scopic and effective variables. These were already worked Y22(r 1) =— v2 > (—1)xte-aytd-b)ratbictd
out in Sec. Ill, and summarized in Eq®) and (10) in In- nme 8 aba0.1
troduction. For simplicity, we focus on the most interesting 4
case ofn=1/2, for whichQ= 7, and furthermore keep only X C¥e ay+d—b(7), (85
the lowest nontrivial harmonics witlp=1. In this limit, Egs.

(9) and(10) reduce to where
sy By CE)r) = [ dridr( Xt i Doo(0)+ D7)~ Dol 7
+ch > (—1)xrayrb)rath —doy(72)1})o, (86)
b=0,1
: where the expectation value indicates an average calculated
XSiN(2Uy4ay+b) (79 in the Gaussian theory. At large distanced,|y|>1, one
expects C&‘Qc,a’y+d,b(r)~c§“‘3(r), independent  of
Exy™ 085§y+ c5(—1)Ycog29,y). (80  &b,c,d. Inthis limit, only the prefactor in Eq85) depends
upona,b,c,d, and the sums can be carried out explicitly. To
First consider the density-density correlation function, do so, it is convenient to employ the identity
Xon(F,7) =Nyt 112y + 172 T) N 11214 0)). (81) (=YY= 3[1+(-D*+(=1)Y=(=1)*], (87
Substituting forén using Eq.(79), one obtains three contri- valid for integerx,y. Applying this identity to Eq(85), only
butions toxn,: the last term survives the sum, and gives
X1, 7)~ (€8)2Xan(F, 7) + (5) 2xAn(r, 7) + CBeoxaa(r, 7). Xan(T, )= v3( = 1) YC(7), (88)

82 for |x|,|]y|>1. This indicates the presence of @) correla-

The cross termy2? is negligible. The first contribution, tions in the boson density. More generally, if o> 1 but
x%(r,7) is just the correlator between “coarse-grained” [Y|>1 but still of O(1), onefinds

densitiesx A, 9, . This term is nonzero in the Gaussian 2

theory, and gives a smooth function of with a power-law X22(r )~ 2(_ 1)x+Y

behavior at large arguments. For instance, at equal times and "™’ 4

large |x|,|y|>1,

d-b 4
Ko dego,l[l_(_l)er ]C>(<:>2+d—b(7)'

X0~ \ 2 (83)
Uy x2y? (89

so atany fixed y the density-density correlator oscillates at

wave vectorsr as a function ofx (and vice-versa by rota-

5 5 tional symmetry. To establish the range of these correla-

m  Eg tions, we must consideE{!)(7) in some detail. Using prop-

More generally,)(g?1 has a smooth Fourier transform,

00 _
Xnn( G @n) UK) w2+EZ (84) erties of Gaussian fields, we have

Perturbative corrections from; to x2° do not modify this 4) :f 3

qualitative behavior. Cy(7) d7yd 78X~ Cyy(7,71,72)], (90)

The remaining contribution to the density-density cor-

relator comes from the sinterms in Eq(79). Naively, this where

contribution is ultralocaland hence uninterestipg.e., van- _

. ’ c ,T1,T2) =2([ ¥ + Opo(0) — &

ishes unles§|,|y|<1, as a consequence of the fact that the (7071 72) = L[ (1) F Dol 0) = Brol(7a)
discrete row/column symmetries are promoted to continuous - ﬁoy(rz)]z)o. 91

ones at the Gaussian level. One may interpret this as mean-

ing that the “vorticity” on each row or column is conserved  The calculation and analysis of, is somewhat involved,
exactly in the Gaussian model. This conclusion, however, ignd is described in detail in Appendix B. There we derive a
incorrect once the nonquadratic correctionsSinare taken useful approximation foc,, which captures the behavior in
into account, since expanding factorsig{ —1)*Ycos 29 can  all the relevant limits (X[>1,Q0|7— 71],Q| 72|, and |y|
“supply” vorticity in units of 2 to a particular site. Hence, <|x|),
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Cry~ 27, (Y)IN(X?+ Q7 72)
o| T 7'1| 0| 72|

/COHQ f[n
— +
Uy lyl lyl

where(),~Q, [but in general depends weakly upon the full
form of I(0ky),U(0k,), andy] and the crossover function
F(X) satisfies

-

0 <1
f(m%[lnzﬂc X1, ©3
Using EQqs.(90), (92), (93), we find
2
cly T)|x|>1<go) 62K 0 Y(x2 4 0272) ~2m ),
(99

and of course the same behavior with-y.
This power-law behavior oC{}), and hencey(r,7)
translates into singularities in the static structure factor,

Sun(k)=2 e ikt (v 7=0), (95)
Xy

for wave vectors neatr=(,m). In particular, letk=4+q,
and consider the limig, <1 with g, fixed. In this limit the
singular behaviorof the structure factor is dominated by
large |x| buty of O(1). Hence we may apply Eq89) to
write

Sn( 7+ )|y <103 E cosq,y(1

+ cosqy)g e Cci0). (99

From the power-law behavior in E(R4), one can readily see
that the Fourier transform ixleads to singularities for small
Oy - Indeed, if anyn,(y)<1/4 for any oddy, x,, divergesas

qx—0 at fixedqy,, while for 1/4<7,<3/4, the structure

PHYSICAL REVIEW B66, 054526 (2002

- (U/K)=2.3
€K=0.5

k.=k,

(umts of 1T)

FIG. 4. The density susceptibility,,(k,w=0) in the EBL
phase, close to the phase boundary, al@@—(2m,2m). The cusp
at () is due to subdominant power-law correlations in the EBL
phase, which may be viewed as arising from corrections to the
density operator in the Gaussian theory as discussed in the paper.
Inset shows the gray-scale plot of the susceptibility over the entire
Brillouin zone, centered ofwr,7) (dark regions indicate large sus-
ceptibility, and thek,=0 andk,=0 lines are omitted from the
gray-scale plot for clarity The singular cusp is visible along the
indicated(0,0)—(2r,27) direction.

where yp,(q) is another smooth functiord?(ay)=Al(q,),
and ay=2-47,(y)=1+a, signals the stronger diver-
gence. The difference in exponents implies thaSif,(#
+q) has a divergent slope g4=0, x,n(7+Qq) itself diver-
gences there. Conversely, ¥,,(7+q) has a slope diver-
gence atg,=0 (occurs for 1/ 5,<3/4), the static struc-
ture factor does not. Numerical results for the density
susceptibility in the EBL phase are shown in Fig. 4, and
reveal a singular cusplike behavior at wave vectorThis
form is consistent with that predicted by E(8) with a
maximum value— 1<ay'®*<0.

Now consider the energy-energy correlation function,

factor remains finite but has a divergent second derivative at

ax=0,

&n<n+q>~sﬂn(q>+0§y AL(dy)sgri ay)| gy,
(97)

where S?m(q) is a smooth functionay=1-47%,(y), and
Ap(qy)ocvzcosqyy(l+cosqy) is a positive amplitude peaked
atqg,=0. Hence the behavior for smail, is dominated by
theminimum(over oddy) value of,(y) (maximum ofe,).
The zero-frequency susceptibilityy,n(K)=xnn(k, @,

Xss(rvT):<8xy(T)8xy(O)>cv (99

where thec subscript indicates the cumulant expectation
value. As for the density-density correlator, we can employ
Eq. (80) to expandy,, as

+CECEX2(T, 7).
(100

As for the density case( % has a smooth Fourier transform,
and x?% is negligible. We focus ory??, which (for |x|,|y|
>0) to second order im, is

Xeo(T, )~ (82X (1, 7)+(c§)*xZ2(r,7)

=0) has a similar but stronger divergence due to the extra 2

time integration,

Xenl T+~ xeo(@)+ > Al(gy)sgn(@y)|a, ~®,
oddy
(98)

v2
=5 (= 1CH(n). (101)
Using Eq.(87), (94) one straightforwardly sees that there are
singularities i mX (k) asky(ky)—0 andk,(k,)— . In par-
ticular,
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ment with a large 4,0),(0;7) energy susceptibility seen in
direct quantum Monte Carlo simulations of & 1/2 easy-
axis ring-exchange modé&i.

E. Electrical conductivity

We finally consider the electrical conductivity in the EBL.
To obtain an expression for the current operator requires cou-
pling in a vector potential. The usual minimal coupling pre-
scription for a lattice model of bosons would have one re-
place a discrete lattice derivative as

¢r+;u_ ¢r_>¢r+p_ ¢r+A':Lv (106

with u=X,¥, and define the current operator by differentiat-

k, ing with respect to the vector potential. For the boson ring

model this prescription is ambiguous due to the second de-
rivative form, and a family of gauge inequivalent forms are

possible,

(units of )

FIG. 5. The energy susceptibility,.(k,o=0) in the EBL
phase, close to the phase boundary, alh@—(0,27). The cusp
at (0,77) is due to subdominant power-law correlations in the EBL (107)
phase which may be viewed as arising from corrections to the

energy-density operator in the Gaussian theory as di_sc_:l_Jssed in thehere A f,=f, . «—f, denotes a discrete derivative. Gauge
paper. Inset shows the gray-scale plot of the susceptibility over thgyyariance requires+B=1, whence this can be reexpressed

Ayybr— Dyypr + al A+ ,BAyAX )

entire Brillouin zone, centered ofwr,7) (dark regions indicating
large susceptibility The singular features are most clearly visible
as peakddark spots at the (0,7) and (77,0) points and as a dip

(white spo} near(,m).

Sgs(k)|kx|<1SSE(k)+e%y AS(ky) sgriay)|ke =,

(102

Xeo (KK <LXC(K)+ X Al(ky) sgn(dy) |k,
eveny y

and

(103

See( 7+ rky)|qx| < 1825(7T+ dx iky)

+ > Alky) sgriay)|a, o,
oddy

(104

—

Xeo(T+ 0y Ky |0 <X, (7+ Gy ky)

+ > Al(ky) sgn(@)|a,l %,
oddy

(105

where A;(ky)ocﬂi(ky)occoskyy. Similar formulas for k,
~0,m are obtained by rotation. Note that becausgk,)
«cosky is negative fokk,~ 7 andy odd, the energy-energy
correlator has a singulatip neark=ar and singularpeaks
neark=(0,0),(s,0), and (Ox). Numerical results for the

energy susceptibility in the EBL phase are shown in Fig. 5.

Notice the singular cusplike peaks at wave vectorg{@&nd
(7,0), as predicted in Eq105). This is in qualitative agree- with

Ayybr—Agyb + AA +(a— 1) D, (108
where®=A,AY— A A is the gauge invariant flux through
the plaguette. If one derives the boson ring model by starting
with a model of electrons reformulated in terms ofZa
gauge field coupled to spinons and chargeons as detailed in
Appendix D, one arrives at an appealing symmetric form for
the ring term witha=B=1/2.

Henceforth we focus on the zero wave-vector conductiv-
ity o(w). In this case, the above ambiguity is irrelevant, since
a spatially uniform vector potential does not enter for any
value of@. But the vector potential will still of course enter
into the boson hopping term in E@}), and upon differentia-
tion generates the usual current operator,

HE=SIN(Gr s = br)- (109
When we coarse grain the theory, we should write down the
current operator in terms of the slow fiedg

=it sin(@ry =)+, (110
with ¢, being a dimensionless constant. The other contribu-
tions will include terms that hop a single boson several lat-
tice spacings and terms that hop several bosons—generally
all local terms allowed by the symmetries. Such terms will
generically be subdominant at low frequencies, and so we
retain only the leading contribution.

With the current operator in hand it is straightforward to
obtain the conductivity from the usual Kubo expression:

o(w)=Reo(io,—w), (111
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V. INSTABILITIES OF THE EXCITON BOSE LIQUID

-1 A
iop)=—| d e '“n(1Y(7)1%(0)). (112
o(iwn) wp f TZ {IF(D1e(0). (112 There are two classes of perturbations that one can add to

the EBL fixed point(described by the quadratic actidi)
that can potentially destabilize the phase. The first are terms
involving the hopping of bosons. When relevant, such boson
?\opping terms “stiffen” the phase fluctuations of the bosons,
leading to off-diagonal long-range order and a superconduct-
Vi \Y 42 2, . 2y-A ing state. As we shall see, the perturbative relevance of the
(IF(D13(0))o~ 18y o( X"+ 7% 7%, (113 boson hopping terms is determined by the Bose liquid pa-
with scaling dimensio\ = 7(1)/2 where 5(y) is given ex-  rameters that enter into the fixed-point action that character-

We have dropped the diamagnetic contribution since it will
not contribute to the real part of the conductivity. Evaluating
the correlator using the Gaussian EBL action gives at zer
temperature,

plicitly in terms of the Bose liquid parameters in E5). izes the EBL phase. There are regions of parameters where
Performing the time integration and spatial summation givesll such boson hopping terms are irrelevant and the EBL
a power-law singular contribution, phase is stable to such superconducting perturbations, as we
, detail in Sec. V A below.
wao(iwy)=—A(— 1)+ 3 (0, The second class of perturbations involve hopping or mo-

(114 tion of vortices, conveniently expressed in the dual represen-
where A is a positive constant andl,. is analytic in its tation. When relevant, these perturbations signal a condensa-
reg

argument and thus does not contribute to the real part of thon Of vortices which typically leads to a breaking of
conductivity. Analytic continuation to real frequencies gives fanslational symmetry and drives the system into an incom-

a singular contribution to the complex conductivity of the pressible ins_ulating state. The presence of these instabili_ties
form and the precise form of the translational symmetry breaking

depend sensitively on the boson density, generally requiring
o(w)=At3(—1)MA)(—ju)223+ig,(w), (115  boson densities commensurate with the underlying lattice. In
Sec. V B below we focus on half fillingn= 1/2), and study
with real o5(w). We note that causality places strong con-the nature of the resulting commensurate insulating states.

straints on the phase angjlérom the singular contribution, |f the boson density is incommensurate with the lattice, on
consistent with the above form. Finally, taking the real partthe other hand, small vortex-hopping terms are unimportant.
gives the optical conductivity, Provided the Bose liquid parameters are in the regime where

T IA—3 boson hopping is likewise irrelevant, the EBL exists as a
o1(w)=At]sin(rA)||o] : (118 completely stable critical phase. The gapless EBL is then a

Notice that the amplitude of this contribution vanishes for2D analog of the stable 1D Luttinger liquid.
integerA. For these special cases, the higher-order contribu-

tions to the current operator should be kept, and will contrib- A. Boson hopping and superconductivity
ute a similar form but generally with larger scaling dimen-
sions.

As we discuss in the next section, stability of the EBL
phase to boson hopping requires that 2, implying an op-
tical conductivity vanishing rapidly at low frequencies,
o1(w)~w® with a>1. ForA<2, the EBL will be unstable
to superconductivity, but for small boson hopping amplitude L= _Z ;S tacodd(¢r—¢r+9)]- (118
the transition temperature would be low. In that case, the '

optical conductivity abovel. might still be well described To assess the perturbative relevance of such processes, we

by the above powgr-law form. . compute the two-point function of the tunneling operators,
One may also directly calculate the nonlinear dc conduc-

tivity, o(E,,T)=4(ly)/JE, as a function ofE, andT. This

is mathematically complicated, but formally quite similar to Ty(r)=cogd(e;— eres)], (119

the perturbative calculations of tunneling conductance be-

tween parallel Luttinger liquids, as carried out, e.g., in Ref.using the Gaussian action for the EBL. The row/column
30. We forgo this calculation here for the sake of brevity, Symmetries in the EBL phase greatly constrain the spatial

Consider then the stability of the EBL phase in the pres-
ence of boson hopping operators. To be general, we consider
processes whermgbosons hop along a displacement vestor

quoting only the resulting scaling form dependence of these correlators. We consider first the special
class of tunneling operators that hop bosons along they
o(E,, T)=At?T?A3G(E, IT), (1170 axes withs=(m,0) ors=(0,m). For this class of operators
one finds a power-law decay both in time and in one spatial

whereG(§) —1 asé—0, andF(E)~E2 73 for £>1. This
implies in particular that the ddinear responseconductiv-
ity at nonzero temperature behaves @€T)~At?T?A~3, X )
These results are for the pure ring model, but will doubtless (T(r, 0 TFY(0,0)o= 8 x>+ v?7?] " 4am, (120
be altered somewhat in the presence of impurity scattering.

This we leave for future study. with scaling dimension,

dimension:
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q? (= dk, [U(Ok,) sinz(mk]/Z) g2 theory. In Appendix C, we do just this by formally comput-
=—| = Y = — n(m). ing corrections to the two-point functiog'¢r(De~1¢:(0))
= 27) .27 VK(Ok) [sink/2)| 2

12 perturbatively in powers of the boson hoppiRg; n-1. Sta-
(123 bility of the EBL phase requires that the long-time behavior
Notice that these scaling dimensions vary ag, be unmodified from that calculated within the Gaussian
and will generally increaséslowly —Aq,~[q?/(272)]  theory. Carrying out this expansion to second ordet; iy

correlator is further constrained by the row/column symmel0 the case of the sine-Gordon model if-1 dimensions,
try, being spatiallylocal, where such an approach reproduces the exact RG result for

the location of the critical point where vorticity becomes a
(ﬁ(r,r)ﬁ(O,O»O:G(r) 80 forss,#0, (122 relevant perturbat!on. _ _ _ _
When the scaling dimension of a single boson-hopping
with G(r)~|r|*2A§. term is sufficiently small,A;,,<2, one expects the EBL
General renormalization group reasoning implies that opPhase to be unstable to a superfluid state in which the bosons
erators are irrelevant about a given fixed point when the ascondense, witf{e'¢)+0.%* If the original lattice bosons are
sociated scaling dimension exceeds the space-time dimeftpposed to represent the Cooper peigy in a model of the
sion,A>D=d+ 1, with dynamical exponert=1. But due  cuprates then this will of course be the superconducting
to the constrained form of the above correlators, which onlyphase.
exhibits a power-law decay in a reduced set of space-time
dimensionsD,¢q, One expects that the condition for irrel- B. Vortex hopping and insulating states
evance should be modified to bh&>D,.4. Thus, when
Aqm>2 and Ag>1, one expects that all of the boson- _ . . _
hopping operators should be unimportant as one scales down We next consider the effects of the various nonlinear in-
in energy, and the EBL phase will be stable. This can alway$€ractions involving the vortex operators in E@8) and
be achievedin principle) by increasing the ratio ofi/K. (39, Whlch can potent|a-1lly_d.esyab|lllze the EBL phase._At a
It is tempting to strengthen this expectation by constructgeneric density, for whicm is irrational, all these cosine
ing an explicit renormalization groufRG) transformation, ~terms areoscillatory, and, if weak, cannot lead to any long-
but this is somewhat problematic due to the peculiar exiswavelength divergences. Hence we expect that away from
tence of zero-energy states at bagh=0 andk,=0 in the =~ commensurate densities, and provideg,>2 for all g,m so
EBL phase. One could try to integrate out gapped modethat boson tunneling is irrelevant, the EBL is a stable zero-
away from the zero-energy “cross” in the Brillouin zone, temperature phase of matter. _
and then successively integrate out “shells” of modes pinch-  For rational densities, some of the vortex operators will be
ing down onto the cross. A difficulty arises, however, in thenonoscillatory, and must be considered more carefully. In
rescaling transformation of the momenta, because the range@ticular, for very commensurate boson densifies., n
of both k, and k,—the interval[—m,m]—is not invariant. ~€qual to a small-denominator rational fractipit is not a
Similar but less severe difficulties are encountered when onBriori obvious whether the EBL can even in principle be
tries to implement a momentum shell RG procedure for a 2r$table to both boson hopping and vortex operators. To dem-
Fermi surface, due to the possible modifications of the shap@nstrate the issues, we present a stability analysis for the
size of the Fermi surface. It might be possible to circumvengPecial set of rational fillingsp=1/z, wherez is a positive
this difficulty along the lines of Shankat,or by an RG  Integer.
procedure in frequency spateSome insight can be gleaned At n=1/z, the onsite terms take the form,
by ignoring the zero modes along tke=0 axis, and con- - 2
sidering a 1D RG transformation where the integration is _ <74
over a shell of momenta ik, for all kye[—,7] and fre- £y= Z qzl v2q005< 2q0+ z xy). (129

guency, and then rescaling bdthandw (i.e with z=1) but ) o )
notk, . The resulting perturbativéiinearized RG equation Note that although fog#jz, with integerj=1, these terms

for the Boson hopping amplitude in the direction, tq are spatially varying, they are not whoIIy_ oscillatory, in the
—t" is then simpl ‘ sense that they all have a nonzero spatial average for con-
T tq ply

stant 9, e.g., for primez, and q+#jz, [cos{27q/zxy)l,
Itgm=(1+2—Agmtqm. (123 =1/z. Hence even fog#jz, they cannot be argued away

’ B simply on the grounds that they are oscillatory. Instead, to
with z=1 and A, the scaling dimension given explicitly assess the importance of these perturbations, we again con-
above. This argument indeed supports the expectation thatder the two-point function of these operators evaluated
weak boson hopping will be irrelevant providefl,,  Wwith the Gaussian EBL action,
>D,.q=2. In the absence of a fully controlled 2D RG pro- 5 1208, (1) e 12490(0)
cedure, we verify this conclusion by resorting to perturbation Gy'(r,m)=(e'?7(Ne 12a%0) = 5, F(7), (129

1. Stability
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with F(7)~exp(—g*VKo/Uyln*(7) at large times. Due to ™ K(0k,) sir’(mk,/2)
the dual row/column symmetry this correlator is spatially qu,m=2qu dky\/ 7 L — =20°n,(m).
: ) e - 0 (0k,) sin(k,/2)
local, and is also “short ranged” in time, vanishing faster ¥ Y (130
than any power law. The associated scaling dimension is thus
infinite, and these operators are strongly irrelevant and wilAs for the boson-hopping operators, the vortex-hopping scal-
not destabilize the EBL. However, as we shall see, they wiling dimensions vary ag?, and also increase slowly with
play an important role in determining which of the variousincreasing hopping distanea In general, we expect that for
insulating phases is selected when the EBL is driven unstablarge z the most relevant of these will b&,,, with scaling
by the two-site terms. dimension A} ,=27,(2)~2VKo/Ugln|Z, so for a suffi-
When the two-site terms in Eq39) are weak, we can ciently large z this can be rendered arbitrarily large, and
drop those that are spatially oscillating and focus on the regtenceall the vortex-hopping terms can be made irrelevant
which take the form of vortex hopping and creation terms, for any 24/(k),/C(k). Thus for sufficiently largez, such that
Aqm>Deq=2 for all gm=jz, there is certainly a domain
L= — E Wy 2O, (1), (126) of stability for the EBL phasdi.e., where the Bose liquid
na+x 0T parameters are further tuned to make all hopping terms irrel-
evanj.
For small z, however, this is not clear. Indeed, it is
straightforward to show that for=2 (i.e., half filling, n’

with operators,O, . (r)=cos(19,*+2q’ ¥,,¢, Where “a”
labels the various values of integeysq’ and the hopping
vector s. Again, to establish the perturbative relevance of_ 1/2), a choice ofuniform functionsZ(k) =y, K(K) = K

such terms in the EBL phase, we evaluate the two-point COf0es not lead to a stable regime. In particular, in this case,

relators with the Gaussian fixed-point actlo_n. For the operag, leading vortex-hopping operator has scaling dimension
tors O, , the dual row/column symmetry is especially re-

strictive and we find that the associated correlator is oncé 22~ 27:(2)=4VKo/lo, while the Iead2|ng boson-hopping
again spatiallylocal operator has scalmg dllmerlsum_f(llw ) VU K. Hence
AYA 1, =4/m2, which implies minQ,,,A%)<2/7<2, so
(Oa,4+(r,7)04 +(0,00)o=F(7) 0, (127  that at least one or the other operator is relevant. We have not
determined whether a stable EBL phase might be possible at

and “short ranged” in time withF(7)~exgd—Cagn ()] i filling whenz4(k), K (k) are momentum-dependent.

(with constantc, o), so that like the onsite terms, these op-
erators cannot destabilize the EBL. A similar behavior is 2. Instabilities
found for O_, except for the special class of operators with
g=q’, which correspond physically tocRvortices hopping
along a vectors. Of these, except for the special case with
s=(m,0) ands=(0,n), the two-point function is again spa-
tially local, although it is now a power law in timé;(7)

~| 7|22, While such operators could potentially destabilize
the EBL if the powerA<1, they will generally be less sin-
gular than the remaining class of operators with vortices hop
ping along thex or y axis,

As indicated above, for smat| either a vortex- or boson-
hopping instability may be inevitable. In any case, it is inter-
esting to study the nature of the state resulting from relevant
vortex-hopping terms. Here, we briefly study the nature of
the resulting phase for half filling, taking into account the
presence of the two most potentially relevant operators, with
g=1m=2 andg=2m=1. In general, at half filling, there
are Bose liquid parameters for which bath, and t; ; are
relevant, and more complex behavior may well occur in this
regime. We will, however, neglect boson hopping com-

Ly=—Waqm> 2 {cod2q(Fxy— Iy imy)] pletely, as appropriate for large/ C.
woamz To this end, let us assume that , is the mostrelevant
+¢08 2q(Fyy— Oy yrm) 1} (128  operator, withAj; ,<<2. We also assume that, , is the next

. . . ) . most relevantit could be irrelevant, but still théeastirrel-
The operators wittgm~ jz (with integer]) are truly oscil- o\ ant remaining operatprThen, provided all bare couplings
latory (i.e., have zero spatial average for constantat n are small, we imagine integrating down in energy uml,

=1/z and have been dropped. We expect the coefficientge omes comparable to the Gaussian termsinThis re-
W4 m to be positive since these operators will be generated

at second order from the irrelevant onsite terms, quireswy oA “22~1(,0)A%, which always occurs for suffi-
2 o ciently smallA with A% ,<2. At this point it seems appro-
~u y 2,2 p pp
2q . L ! . _
For this last class of operators the two-point function igPriate ;g m|2r11|9m|ze the_ pc:tentlaFvYZ,ich(Z?F(ﬁ_ 2'3?”.2'3’.)
S-correlated in one-spatial direction but a power law in the ™ C_OS( xy~20xy-2)], simu taneously witibo. This minimi-
other and in time zation somewhat underestimates fluctuation effects, which
' will be commented upon later. The most general form for
(O3 m(T, D O% m(0.0))0~ 5y’O(X2+U27_2)7quIm, Ty which minimizes thewzz term and keeps the Gaussian
(129 action small can be written as

where Oﬁq’m(x,y)=cos{2q(ﬂxy—ﬁx,y+m)]. The associated _ X 1y max wby
scaling dimension is given in terms of the Bose liquid pa- ¥ =00(N) +(=1)70,(N) +(=1)7O(r) + =+ —=,
rameters, (1371
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where @ ,,5(r) are slowly varying functions of space. In-
serting this expression fa# into the action includings, and CDW phase i
the w, , term only gives 0.02 - (U/K)=10.0
. @ eK=0.5
Sgﬁ:J ——(9,00)*+ [(0,91)%+(3,0,)?] ~ i i
rr| 2K, K, & -
3 2T
A A A, — 0.0 | 45%"
+ 5 (VO 2+ - (0:01)*+ —-(8,0,) o - m2~0.008
+ﬁ(a 0,)%+ A;(a 0,)2 (132
2 A yEE 0 A R
) 0 0.01 0.02 0.03
where K,=K(m,0), A,=8U(m0)/7? A_~WyA~22 1/12
~w2CTR221 (7,001 722727852, where A is the reduced

2,2 FIG. 6. Finite-size scaling of the density structure factor peak at
low-energy momentum cutoff. Note that we are not rescaling -, ), deep within the incompressible phase. The staggered mag-
any fields or coordinates in this schematic RG treatment, jusietizationm clearly tends to a finite value asL#—0, indicating a
taking into account the fluctuation correctionswg,. Thus  nonzero ¢r,) charge-density-wave order parameter.
the low-energy continuous fluctuations around the minima
are described by three massless fighjs(j=0,1,2), which e?1Y0=(— 1) (3,/8[7,)) =i V1— (0./80,4)%], (136)
unlike ¥ in the absence ofv, , have an ordinary “relativis- 5 _
tic” dispersion. In addition to these continuous variables, thefor v4< —7,/8. . o _
discrete degeneracy of distinct minima allowed by periodic- The spatial orderings that are implied by these mean-field
|ty of the cosine is indexed by the |ntega$ SO|UtI0nS_f0||OW I’eadlly from the e-XpreSS|0nS n qu),

Having taken into account, , already in Eq.(132), we (10 _relatlng the bare boson _den5|ty and plaquette energy
next include the effects of a weak, renormaliagg; cou- ~ density to the “low-energy” fieldd. In the former case
pling, that after renormalization becomes of ordgf, aPove, the boson density is uniform since siritg,)=0,
~W4Y1AAZ,I’VW4'][W2’2/L{(1T,0)]AZ.1/(27AZ,Z). if all the bare whereas there is a plaquette energy density wave with,

nonlinear couplings are small, then after renormalization, ~c&(—1)x+ay(y+b)

. . . L. €x,y C2( 1) . (137
this will be thelargestremaining term, which is why we treat
it next. Inserting the decomposition of E(L31) into the The four states witha,b=0,1 correspond to the four
four-vortex-hopping term, one obtains plaguette density wave states of the original lattice boson
model in which one out of every four plaquettes is resonating
more strongly.

Whenv,< —7,/8, on the other hand, since sir{2#0 the
plaguette energy density wave stafesth reduced ordec;

assuming small gradients @f,,, as mandated by EqL32. — (V,/8[74])Cc5) are coexisting with a charge-density-wave
Equations(132), (133 describe a 3D “height” model for (CDW) state ordered atrf, )

0,,0,. As is well known in such models, the fluctuations of

the free scalar field® ,,0, arebounded so that the cosine sn ~ + CB\1— (0,180, 2(— 1)*"Y. (138
terms in Eq(133) are always relevant and pin these fields to vz VL= (/800 (1) (139
integer multiples ofr/4, which we can take, without loss of In the limit in which 7,——%, the amplitude of the
generality, to be zero. Thus the net effectvof, is to leave  plaquette density wave vanishes, leaving only CDW order.

S‘fﬁ=—W§,1f [cos89;+cos 89,], (133
rm

only ®, as a low-energy mode. We believe that an absence of a pure CDW state more gen-
Setting therefore®,;=0,=0 in the pinned (“flat” )  erally is an artifact of the mean-field treatment being em-
phase, we have ployed, which ignores all fluctuations in th#field. In par-
ticular, one can imagine domain walls forming between
e? Oxy=g? Po( — 1)axTby, (1349  domains of different plaquette-density-wave order, which

. . . . cost an energyE,,q;~ W A0, v,)? for smallw, , and large
Here, since the fluctuations @f, are likewise bounded, we 74, When this energy is small, fluctuations will undoubt-

have replaced it by its averageero mode value 0 y— 9. : ) L :

This average can be determined by minimizing the onsit%ﬂlﬁ‘/3 %Eovr\;jer the plaquette-density-wave order, leaving the
Lagrangian in Eq(124). In principle, the parameters in Eq. §
(124 should also be renormalized, €.@pq— V2q~ v24€XP
[—qPcgin?{w, o/U(,0)}]. This gives,

Our quantum Monte Carlo simulations on the boson ring
model in the dual representation reveal that in the lddge
limit with U/K>(U/K).~2.5, the EBL phase is unstable to

e2ido= (—1)ab (135 the formation of a CDW state. This is apparent in Fig. 6
’ which shows that the density structure factor peakmtn()
for v,> —1,/8 (with 7,>0 assumedand grows asL?, indicating the presence of long-ranged CDW
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! U/K=10.0 . b=o", (140
€K=05 =5 - .
N1 = 0.6 |-
R e n=b'b=>(1+0%), (142)
=) L = 2
m < i where ¢ is the standard vector of Pauli matrices, amd
y 0.5 Ll Lo =3(¢o*=i0Y). The Hamiltonian consists of two terms,
e i 0 01 02
L
U 1/L _ _
i Hajp= % {_J4(O-)J(r,y0'x+ 1,y0';r+1,y+1oxyy+l+ H.c)
05 L=24 +UgPhip(X,Y)} (142
T R B where
0 10 20
T 1

Piip(X.¥)= 75 _Z I a+ ABYTY 1124 pray+ 12+ yi2)-
FIG. 7. Vortex correlation functios 4(0,7) in the incompress-

a==*1 B,y==*1
. . . (143
ible CDW phase. The correlation function saturates as seen from the

finite-size scaling plot in the inset indicating that the vortices con-The first term with],>0 in Eq.(142) is the hard-core analog
dense, Iead|ng to a conventional |nSU|at|ng state. of the rlng_hopplng term propor“onal t& in the rotor

) _ ) model, Eq.(1). The operatotsﬂip(x,y) is a projection opera-
order. This order is, however, weak, with a staggered magrr onto the two flippable configurations of the square
netizationm~0.09 (see Fig. 6 much smaller than the clas- pjaquette whose lower-left corner is at the sitey). For
Fig. 7. Notice that the vortex correlation fungctlon is long  Remarkably, the ground state lf,, can be found exactly
ranged indicating a “vortex condensation{g")#0), as  for the special Rokhsar-KivelsaiRK) point u,=J,, follow-
expected in such a conventional insulating state. _ing a general construction in the spirit of the Rokhsar-
_ Both the plaquette- and charge-density-wave states will bgjye|son point of the square lattice quantum dimer mdel,
insulators, with a charge gap. This follows since in bothgnq employed more recently in Ref. 16 for a similar spin

cases the field) is “pinned” by the cosine potentials and is odel on the Kagome lattice. The solution can be seen by
not fluctuating. Since the bare boson densitnisAy, 0/, rewriting H,, as

adding a particle at the origin can be achieved by shifting

Oyy— Oxy+ m for all x,y>0. This will cost a finite amount of N

energy (coming from the plaquette at the origiwhen the Hip=> Pflip(Xay){\h(l_ 11 0§+u,y+0) —vy,
field 9 is pinned. i uo=0.1 (144

wherev =J,— u, measures the deviation from RK point. For

v=0, an obvious(zero-energy ground state oH,, is the
In this section we consider a variant of the boson ringfully polarized state

Hamiltonian which allows us to obtain an exact zero-energy

mi\ﬁe function when the couplings are parefu[ly tuned. We |0>=H 0%, =1). (145

perturb away from the soluble point, using the exact Xy y

wave function to compute properties of the adjacent quantum

phase. Specifically, we find a translationally invariant fluidA useful alternate representation follows by rewritihg*

phase with a finite compressibility, behavior consistent with=1)= (1/y2)(|o?*=1)+|o?= —1)), and expanding out the

both a superfluid and the EBL. But a calculation of the bosordirect product,

tunneling gap in a finite system shows & Hcaling as ex-

VI. EXACT WAVE FUNCTION

pected for the EBL, and inconsistent with the-4/depen- 1 ,

dence of a 2D superfluid. Thus, we confidently conclude that |0)= Nz Zﬂ} 1;[ |o%y=Txy), (149
the EBL phase exists over a finite portion of the phase dia- Ty =N

gram adjacent to the soluble point. which demonstrates th#d) is a uniform real superposition

The model we consider is a “hard-core” version of the qf i configurations in thé? (boson numbeérbasis.
boson-ring model, in which only zero or one boson is al-  Tnjs state, however, has uncertaifi(boson number and
lowed per siteb’b=0,1. In the usual way we represent the s can be decomposed into many distinct ground states by
hard-core bosons as Pauli matrices, projection. In particular, at a given averagey,)=2(n,y)

—1=m, we may project onto spatially uniform states ac-
bf=o", (139  cording to
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- R R where the latter equality follows from the fact trfatmp is

= 11 Pyx(m)P,(m)|0), (147  diagonal in theo? basis and hence commutes with the pro-

AN jection operators. Using E@145), one readily sees that the
energy shift can be rewritten in a form reminiscentctds-

whereZ is a normalization constant, since the row/columnsical statistical mechanics,

projection operators,

=

|0;m)=

&l

b ()= | Zﬂ%exﬁ{m S (o —mﬁ B ==02 (Pup0eyd oy (150
X 0 AT v , where
(148 L
~ 2md 1
Py(m):Jo %exr{_igéyz (Uiy_m)}, <O>{axy}=z{ Zﬂ} o ]yll P,(m;{o})Py(m;{a}).
X Oxy== X,
(151

commute .W'thH1/2 and amongst themselves, reflecting theHere P:in» Px, andP,, are the classical functions obtained
conservation of boson number on each row and column b¥ RN LY . )
the ring dynamics. romzPﬂip, Py, andPy,_ respectively, by replacing the opera-
Of course, othemonuniformground states may be ob- OF 0y by oy, andZ is chosen such thdtl);, ,=1.
tained by choosingn differently on different rows and col- We see that Eq.151) simply defines an expectation value
umns. This vast degeneracy signals a pathology of the RKor an “infinite-temperature” Ising model with a constrained
point, which is in fact at the boundary of a first-order transi-magnetization on each row and column. By proceeding along
tion to a phase-separated “frozen” regime, forx0. We  similar lines, one can calculate the energy shift for a state
therefore focus instead on the behavior for infinitesimal With an extra boson on a single particular row and column,
>0, which splits this degeneracy. For boson densities nea&nd hence obtain\;. Amusingly, both problems can be
half filling, i.e., |m|<1/2, we expect that the uniform states solved exactly using a saddle-point technigsee Appendix
will be favored energetically as is increased to slightly E). The results demonstrate that the constraints are “nearly
positive values, since these states have in this density reginigelevant,” and the lattice gas behaves nearly as its uncon-
more flippable plaquettesee below. For larger|m|, this strained counterpart in the large system limit. In particular,
assumption is certainly violated, however, since, e.g., at verihe energy density, ds—, becomes
low boson density the ring moves clearly do not connect all
possible configurations. Ain=0, however, the set of uni-
form configurations does form a single ergodic component

under the ring moveas can be straightforwardly shown ) ) ) o
numerically’® and probably argued analyticallySo we ex- This can be easily understood by assuming that each site is

pect the set of uniform states to be an adequate descriptidgiPmPpletely independent, and that the only effect of the con-
for small |m]. strgmt is to determme the relative probabilities of the two-
To make contact with the EBL fixed-point description, we SPIn  states, which may be understood to pe=(1
calculate some energetic properties for infinitesimal positive™ M)/2,p; =(1—m)/2. On a given four-site plaquette, only
v using first-order perturbation theory. From the splitting of the two (of 16 tota) configurations in which the spin alter-
the different projected states &@(v), we calculate two hates around the plaquette azrezﬂlppable. Hence the average
quantiies: (1) the ground-state energy densitg(m) flippability per plaquette is gfp7=(1-m?)?/8, in agree-
=E(m)/L? as a function of boson density=(m+1)/2, ~ment with the result above. o
from which we obtain the compressibilitg{m), and(2) the The “single-particle” gap is somewhat less intuitive. To
“single-particle” gapA,(m,L) for a finite-sizeL X L system, b€ precise and avoid ambiguities due to an unspecified
essentially the addition energy for a bosmmto a particular ~ chemical potential, we define
row and columnin the grand canonical ensemble, defined
more precisely below. Ay(m)= 3 [Eq(m;+1)—2E;(m;0)+Eq(m,—1)],
Consider first the ground-state energy density. For the (153
projected state at magnetization, the first-order energy
shift is

e(m)=—%(1—m2)2. (152

whereE (m;\) is the ground-state energy of a state in which
the number of bosons on row and columry=1 is in-
creased by relative to the uniform state at magnetization

E(m)= _U% <O;m|ﬁ>flip(xay)|0;m>

1 . ~
) A L A |O;m,)\>=? Pyo1(M+2N/L)Py_y(m+2)\/L)
=52 <o Pﬂip(x,wxgl Px(m)Py(m) 0>, )
(149 Xxﬂz Py (m)Py(m)[0), (154
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andE;(m;\)= —vExy(O;mJ\l|5f|ip(X,y)|0:m,?\>- One finds 9giving the 1L behavior for the single-particle gap

u
- (163

2v
Al(m)=T(1—m2)+O(1/L2). (155 A=

These two quantities can be compared to the generah @ 2D SupefﬂlzJid, the single-particle gap is much smaller,
predictions expected from our theory of the EBL phasevanishing as 1< in the larget limit.

Consider first the compressibility. From E.52, one has The agreement of the finite compressibility and tal-
w=—de/dn=—2de/dm=vm(1—m?), and hence ing of A; between the soluble model and our fixed-point
theory of the EBL strongly argues that the ground state of

dn 1 1 H, is the Bose liquid for 8<v <1 and|m|<1/\/§. If this

(156 postulate is correct, certain combinations of the Bose liquid
function U(k) can be obtained explicitly for the soluble

Note that the compressibility diverges and becomes negativeodel. In particular, we find

for 1/\/3<|m|<1, indicative of an instability of the uniform

“Tdu 201 3m

state well away from half filling. Fom|<1/\/3, howeverx Uk=0)=2v(1-3m?), (164
is finite, consistent with the EBL phase. Indeed, from our _
general harmonic description of the EBL phase as in(B. U=2v(1-m?). (165
we havex '=U(k=0).
In order to rule out a superfluid phase, we now compute VIl. DISCUSSION
the single-particle gapA4(L), using the EBL Gaussian o )
fixed-point theory to show that it varies asL14s in Eq. A. Fractionalization, the Z, gauge theory, and the hight .
(155. This gap can be extracted from the spatially local cuprates
correlator, In this paper we have described a remarkable phase of
o) i quantum matter, the EBL, which we argue occurs in a class
Gy(7)=(el*r(De1erl0), 1579 o square-lattice boson-ring models witk-Y symmetry.
evaluated in dinite LX L system From the spectral repre- Having done so, it is reasonable to reflect upon the context in
sentation, one has, at zero temperature, which such models are physically appropriate and the conse-
quences perhaps observable. As discussed briefly in Intro-
) InG,(7) duction, the primary motivation for these models comes from
Ay(L)=Ilim ————. (1589 the high-temperature cuprate superconductors. Both the re-

T—®

markably high critical temperatures and the strange behav-
Performing the Gaussian integral using the effective action irors in the “normal” state of these materials motivated a
Eg. (43), one has number of theorists early on to the radical suggestion that
spin-charge separation might underly these peculiarifie®.
. In this picture, the electron charge, liberated both from its
(1—e'o7), spin and its Fermi statistics as a “chargaf@t “antiholon”),
(159 is relatively free to Bose condense to form a superconducting
state. At higher temperatures, or when the material is under-
where the wave-vector sum is over inequivalent values witldoped, the chargons and spin-carrying fermionic “spinons”
Kx,Kye (27/L) Z in the first Brillouin zone, and with the form an unconventional fluid, which would no doubt behave
mode energ¥, given explicitly in Eq.(37). As 7—«, thew  very differently from a normal metal.
integral in Eq.(159 is dominated by those terms for which ~ Subsequent theoretical and consequent experimental work
E,=0. This occurs along the Bose surface, i.e.,Kgr0 or  has both advanced the status of these ideas and posed a se-
ky=0. In the finite-size system there ar& 21~2L such  vere challenge to their applicability to the cuprates. A recent

NG.(7) fx’ do 1 Uuck)
— n — [ —
AN T IER - w?+E2

points (for L>1), hence formulatiorf'° of interacting electrons in terms of spinons
o and chargons minimally coupled to & gauge field has
2U (> dow 1 : helped authors to support the concept of electron fractional-
—InGy(0,7)~ Tf_wﬂ - e”'“"), (160 jzation with a very concrete formal framework. The essential

elements of th&Z, gauge theory are reviewed in Appendix
where D. As with earlier Ul) and SU2) gauge theory

i formulations*~*3 the “spinons” are taken as fermions car-
— 1 X ™ UKy rying the spin of the electron but are electrically neutral. The
) J_Wﬂu(kx’o)+j_vﬁ L{(O,ky)}, (16D posonic “chargons” carry the electrons’ charge. THg

. ] gauge theory provides a convenient phenomenology for de-
is the Bose surface averageidfk). Thus, we finally have  scribing a fractionalized phase in which the spinons and
_ chargons are deconfined, and live as well-defined particle

NG ,(0,7)~ Z/ﬂ (162 excitations. Because of its concrete formulation, and the vir-

A0 L’ tue that the Z, gauge theory has a well-understood
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confinement-deconfinement phase transition, it is possible to

calculate from it in a simple way the qualitativeniversa) HE=-J52 RE, (169
properties of the fractionalized state. One of the most funda- -

mental of these properties is the existence of gapped topo- . . 4 4 _ ) )
logical excitation&™® called “visons.” The visons act as With J5~O(K) [J5=Ktc/(h+U)", derived in Appendix
sources ofZ, flux, and may be thought of as remnants of D]. Here, Rf; is a ring operator in the charge sector ex-
unpaired superconducting vortices in the fractionalizeddressed simply in terms of Cooper pair operateré,= b? as
insulator® which in turn is viewed as a paired-vortex

condensaté.Understanding these excitations led to a rather 4
direct proposal for a “vison trapping” experimetft, de- RE = cog & — &)+ cog A _ 169
signed to trap and detect visons by cycling through the - i<jE=1 L1 )+ cot By ) (169

superconducting-normal transition. Current experiménts

apparently imply that the gap into such vison excitations inNgtice that the second term above is precisely of the form
the inSUlator, if it is nonzero at a”, is less than 190 K. Sincetaken in our Starting Hamiltonian. AK is increased from
the presence of a vison gap is a necessary condition for th&rO, such ring_exchange processes p|ay more and more im-
existence of a true spin-charge separated ground state, thigrtant roles. We thus view the ring Hamiltonian studied in
unnaturally low-energy scale presents a difficult obstacle tqnjs paper as a suitable model that offers an intermediate
theories of fractionalization as applled to at least these parground between the fu”y Spin_charge Separated scenario and
ticular cuprate materialgsamples of underdoped BSSCO conventional phases of matter.
and YBCO. Should this bosonic ring model for the charge sector have
The spin-charge separation scenario is nonetheless expme relevance for the cuprates, what might be the conse-
tremely appealing theoretically, and it is interesting to con-quences and interpretation? As we have seen in Sec. V, the
sider the possibility of retaining some degree of this physicging model sustains the EBL phase for sufficiently repulsive
locally. One may imagine, for simplicity, an undoped modelinteractionglargeU) andincommensurate densitigsdeed,
that interpolates between one extreme being a conventiongk we saw in Sec. V, a simplistic estimate indicates that there
“Hubbard-like” insulator with gapped charge degrees of s ng stable regime for the EBL at half filling. Hence, if we
freedom and Heisenberg-interacting spins, and the other eXssume the strong interaction condition is obtained, one
treme being a fully fractionalized insulator. Ti® gauge  would expect an evolution from a conventional insulator
theory is well suited for this purpose. The interpolation be-yith a charge gap at half filling to the EBL upon doping
tween the above two limits is accomplished in this model bysufﬁcienﬂy away. If one further presumm seems natur)a|
varying a coefficienK, which controls the strength of fluc- that the generalized “stiffnessX increases with doping,
tuations in the gauge field. The deconfined phase is obtaing@len one would expect further doping to lead to a supercon-
in the IargeK I|m|t, while we consider here the first devia- ducting (boson_hoppinginstabi"ty_ This scenario thus natu-

tions away fromK=0, which is deep within the confined, rally associates the EBL with the pseudogap regime of the
Hubbard-like phase. As we show in Appendix D, when thenigh-T, cuprates.

gauge theory is deep within its confined phasdth K
smal), the gauge fields can be formally integrated out and
one recovers a Hamiltonian expressible in terms of electron B. Extensions
operators and composites built from the electron such as the T4 determine if there is any truth to the above scenario
spin operator, together with a Cooper pair field. In the spinequires considerable extensions of the present work. Most
sector, we flnd that the _Ieadlng terms_ obtained in this |Im|tsigniﬁcant|y, spin and quasiparticle degrees of freedom are
are an antiferromagnetic nearest-_ne|ghbor Heisenberg ©¥mportant components of the high: materials, and should
change(for K=0) anda plaquette ring term be incorporated into the description. It will be interesting to
consider interactions of the fermionic quasiparticles with the
Hs =35> RS (166 strongly fluctuating collective modes of the EBL. It seems to
o Yo& ' us quite likely that the EBL can remain stable in the presence
of these interactions, while perhaps at the same time produc-
with J&~0(K) [JSD=K(tg+A4)/(h+U)4, in terms of the NG rather strong modifications of the fermionic degrees of

: : : : freedom. In any case, it should be possible to consider pho-
arameters in Appendix D Here, R, is a plaquette rin o ’ . .
P bp b R plag 9 toemission spectra and local electron tunneling density of

g&%ﬁg{eﬁgg'”ed in terms of the four spins on a 9V€Nstates in a model with the quasiparticles coupled to the EBL

modes.
4 We have also left a number of issues within the purely
bosonic description unanswered. To understand transport
RSD:KJZl S S+4(S1S) (S5 S) measurements generally will require an understanding of the
effects of disorder. Several experiments attempting to access
+4(S;-S$))(S,-S3) —4(S1-$3)(S,-Sy). (167) the “normal” state of the cuprates employ large local or
uniform magnetic fields to suppress superconductfity.
In the charge sector, t©(K) one finds the leading term Such magnetic fields indeed tend to suppress the supercon-
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ducting instabilities of the EBL, and one should explore theThus, in a rotor representation with=e'? (this requires a
ramifications of the EBL description for, e.g., transport meadarge Un(n—1) term to maintain the hard-core constraint
surements in high fields. one has

There are a number of other possible applications of the . .
present formalism to frustrated magnets with appreciable fur 12y + 172= € Pxrvay+1/2g! Pxy 1™ fxy), (73

ring exchangé® Magnetic ring exchange processes are be- , . . o
lieved important, for instance, in the Wigner crystal phase oiWhlch is directly analogous to the bosonization formula for

the two-dimensional electron g&4®atr =40. The effect of spinless fermions in one dimension. This approach may lead

such processes are generally difficult to analyze, but a per an understanding of non-Fermi liquid states in fermionic

haps illuminating approach may be to consider the eas;/:mg madels.

plane limit of such spin-ring models. A straightforward cal- baggaég't;gerfezgitav\;:rig?/vgfh?%'iﬁg?g;;% 2? tﬁ)ézfﬁg
culation shows that such a limit recovetsY ring models of b y P y

the sort studied herérepresenting the spins by hard-core ultimately enhance our understanding of experimentally ac-

boson$. The plaquette duality constructed here for theCeSSIbIe strongly correlated materials.

square lattice can be straightforwardly generalized to other

lattices, such as the triangular and Kagome cases. For the ACKNOWLEDGMENTS
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triangular lattice with four-site(parallelogram ring ex-
change, the plaquette duality shows that there is no stable
metallic state in this case, but a numerical approach will be The ysual Trotter decomposition &f; gives
necessary to determine the ultimate nature of the ground

APPENDIX A: TROTTER DECOMPOSITION

state. T=p
On the purely theoretical side, we have introduced the Z= 2 H <¢9”+E exp( eKE cos{ri))
mathematics necessary for a{2)-dimensional “bosoniza- {6rs} 7=0 r

tion” scheme, applied here to “bosonize bosons” in terms of €U
collective ¢, 9 modes. We expect it should be possible to xex;{ ~5-2 Z [Axyer—wmz)
bosonizefermionic ring models in a similar way. Consider ™o

. . T _ . .
spinlessfermions{f;, fj}= & (not at this point to be asso- \yhere we have used<1 to separate the imaginary-time

ciated with cuprate quasiparticleiving on the sites of the  eyolution operator into two factors. The second can be di-
original square lattice. One may formally define Jordan-rectly evaluated to give

Wigner hard-core bosons by introducing a “strin§"wind-
ing around the lattice,

0> (A1)

g eU
Z= 2 H ex;{ T on? z [Axybr,— sz)

f,=b, érv (170 (st 7=0
where T (0174 el g, ). (A2)
r
§x+1/2y+1/2= [T (—1)merzyere The latter matrix element can be written as
x' <x

(0’ |eK costrND)| gy = (9" |1+ eKcog 7N, )| 6)

X H H (—1)™ +v2y +1r2, (171

y'>y X' eK
N - , =8y ,0F 5 (09 0+t Sp 0-7)
With this definition, the boson operators obey proper canoni-
cal commutation relations at different sites, and have a hard-
core interaction on the same site. For an ordinary dynamics, =ex;{
this extremely nonlocal string presents unsolvable difficulties
for analytic treatment. However, using the exact plaquette _ .
duality appropriate for ring dynamics, one finds that one carforrect toO(eK). This leads directly to Eq22).
write

1 eKy )
—2In 7 (0 —6) , (A3)

m

APPENDIX B: ASYMPTOTICS

S :ei(ox,erl_ex,y)_ 172 . . .

Scr vy 12 (172 In this appendix we calculate the asymptotics of the cor-
Here we have ignored any possible boundary terms. Up teelator c,(7,7;,7,), introduced in Sec. IV. Using the gen-
this proviso, the string becomes local in tlfevariables. eral rules of Gaussian theories, one has
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Cx,y(Ti T1,72)
= 2<( 19xy( 7) + Do 0) = Iyl 1) — 19Oy( 7'2))2>O
2+ (e*Ek\T\.g_e*Ek\"1*72|)e*i(kx><+kyY)_ (e*Ek\Tﬂ+e*Ek|T*72\)e*ikxx_ (e*Ek|Tz\+e*Ek\T*7'1|)e*ikyy
Ex

=2m’Re| K(k)
k

(B1)

The above integral was considered earlier for the special casg= r,=0, for which it was shown to grow logarithmi-
cally with x at fixedy (and vice versa This growthwith x andy persists whe)o| 7|,Q| 71|, Q0| 72| <|x]| (or |y|). To see this,
we differentiate

ik, e X (k)

= [e Ednly e Bl 7l _ g~ iky (e B4 g Eln—72l)]
k

IxCxy= 2772Refk

dk
o 7 w(ky)

~2J” K(0k,)

X X X X
+ —cosk +
X2+ wl(k) 73 X2+ w?(ky)(T— 75)? 24N w?(k) 72 X2+ w(k,) (T — 72)2)

(B2)

where w(k,)=Q(0k,)|2sink/2)|, and in the second line 7;~7 and 7,~0. Hence, we can focus on this case, and
we assumedas valid for largdx|) the k, integral is domi-  consider the behavior in general as a functionxy®1 and
nated by smalk, and integrated it in that regime. Hence for 71, but with no particular relation between them. One

[X|> Q0| 7]1,Q0|7], One has finds
Cxy~ 47, (Y)INX|+f(7,71,72,Y), (B3) K(k : _
Xy | | 1,72 CXy(T,T,O)%4’7TZRe é_)(l_e—lkyy)(l_e—Ek‘T‘—lkXX).
wheref is an unknownbut x-independentfunction ofy and k Tk
the imaginary times. We expect t should cross over to (BS)

a In2|é)€n|tr:)ehav;c_)rl |:;.artwy of th.GQO|ITi (;Jeliomes Iar_%g coml— It is straightforward to see that this integral recovers the re-
pared to the spatial distances involved. However, itis uncleag, Eq. (B3), for |x|>|7|, and conversely,c,,(r,70)

without further calculation whether this crossover OCCUIS_ 4 (yIn = for |7|>|x|. Putting all the above analyses to-
when the imaginary time argument becomes large compare thér one arrives at the general approximate result of Eq
to thesmaller(e.g.,y above or thelarger (e.g.,x above of (92) in,Sec Y, '
the two spatial coordinates. To ascertain this information, we T

differentiate with respect to the largest tin{fevhich we

choose positive without loss of generalitye.g., for 7 APPENDIX C: RELEVANCE OF HOPPING
>[ 1,7,

In this appendix we compute the corrections to the EBL
imaginary-time equal-space correlator,

9.Cy :27T2f K(k)[e—Ek(T—Tl)—ikyy+e—Ek(T—’rz)—ikxX . '

y _

k G(T)=<e""r(7)e |<Pr(0)>’ (C1

_ a— Exm—i(kyx+kyy) i i . .
e H Y] to leading(quadrati¢ order in the boson-hopping term

~ 272 f K(k)e Br=mg=iky (B4)
k St=—tyf2 COg @r49— @r)- (C2

where in the last line we have kept the dominant term

for |x|>|y|,Q¢7. If we assumely|~O(1), then for Perturbing around the Gaussian EBL theory giv@ér)
Qo(7—711)>1, the integral is dominated by~0 (due =Go(r)+G2(r)+O(t‘x‘) with

to the logarithmic singularity in the collective density

of statey, and one may approximatee W~1, L s

leading 0 9,C,,~ 2K/ UoIn|Qo(7— m)|/(7— ), whence f Gy(7)= 5(e' 1 OST) o, (C3

~ Ko U oIn?Qo(7— 7)|. More generally, one can show that

this behavior obtains providedy(7— 71)>|y|. By identical ~ where the connected correlator is taken with respect to the
argumentsf also grows like VCo/tfoIn3Qqr| for Qgl 7| Gaussian action. Using Wick’s theorem this can be reex-
>|y|. Thus, the integral definin@{})(7) is dominated by pressed as,(7)=t2Go(7)I(7) with
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(r)= 2

X1,X2,Y1

Dy(X12,y1[e A=1], (C4

T1,72

where the functiolA=A(X4,X5,Y1,71,72,7) IS given by

Azf ekrn-lonpk o, r)(1—e KXztions) 4+ Hc,
K, w
(CH

eiky)

W+ EE

B(k,w,7)=1/{(k) (Co)

Here, X,p=X,— X, T1p= 71— 7, and Dy(X,7)~ (x2+ 724
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=0), on the other hand, the gauge fields can be formally
integrated out and one recovers a Hamiltonian expressible in
terms of electron operators and composites built from the
electron such as the spin operator, together with a Cooper
pair field. Here, we show that upon integrating out the gauge
field with small but nonzerdk, one generates ring-exchange
terms in the effective Hamiltonian. In the spin sector of the
theory, the leading-order ring term involves four-spin opera-
tors around an elementafgquare plaquette, and is the fa-
miliar quartic form shown explicitly below. But there are
also ring terms generated in the charge sector, and the domi-
nant one takes precisely the form in Ed)), where two Coo-

per pairs are destroyed on opposite corners of an elementary

is the two-point correlator for the tunneling operator evalu-square plaquette, hopping to the other two corners.

ated in the EBL. To isolate the dependence of(7), we
rescalex,,X,, 71,7 by 7, andk, and w by 1/7 (leavingy
andk, alone. For larger this gives,| (r)~72"Y1(1), or
equivalently,

Gy(7)
Go(7)

~t21(1) @A), (C7)

We thus conclude that providedl) is finite, the larger

behavior of the EBL correlatoGq(7), is unmodified if the
scaling dimensiom\>2. To show thati (1) is finite, it suf-
fices to expand the exponential to second ordeh,imvhich
gives

[1—-coqw)][1—cogky)]
( 2+E )2 ’
(C8)

|(1)=8f UK)D(Ky, )

with
D(ky, )= f Do(x,7)(1— ek en), (C9)

ProvidedA>1 the integrals ovek and = converge, giving
D(ky,w)~ (k2+ »?)* 1. Inserting this into Eq(C8), one

Consider then a Hamiltonian version of tf® gauge
theory:

H=H.+H,+Hsg, (DD

H.=—t 2

(ff/>

,(bfb, +H. c)+u2 (blb,—2n)?,
(D2)

(D3)

Ho=—KX [] o*,—h>, .,
s )

He=— 2 oo [t(flf+HC)+ A (fif —fo fry
(")

+H.c)], (D4)

wherer andr’ denote sights of a 2d square lattice. Hbfe
creates a chargon at sitewhile [ creates a spinon with
spina=1,| atsiter. The operatobrTbr measures the num-
ber of chargee bosons at site, and the Hubbard-likJ term
sets the mean Cooper pair densitys= bfbr/Z, to ben. With
this convention, the half-filled electron model with charme
per site corresponds to=1/2. The constanf\,,, contains

readily sees that thk and » integrals are likewise conver- the information about the pairing symmetry of the spinons.

gent, confirming that(1) is finite wheneven>1.

APPENDIX D: Z, GAUGE THEORY AND RING
EXCHANGE

Theo;,,, o), are Pauli spin matrices that are defined on the
links of the lattice. The full Hamiltonian is invariant under
theZ, gauge transformation,— —b, ,f,— — f, at any siter

of the lattice accompanied by lettingf,,— — o, , on all the

A recent formu|at|oﬁ of |nteract|ng electrons in two di- links connected to that site. Th|5 Hamiltonian must be
mensions has been developed which reexpresses the elect@#Pplemented with the constraint equation

operator in terms of “spinons” and “chargons” which are

minimally coupled to &, gauge field. As with earlier (1)

and SU?2) gauge theory formulations, the spinons are taken

im(flf+bby)

G=11I o e

r'er

(D5)

as fermions carrying the spin of the electron but are electri-

cally neutral. The bosonic chargons carry the electronsHere the product over,, is over all links that emanate
charge. TheZ, gauge theory provides a convenient phenom-from siter. The operatog,, which commutes with the full
enology for describing a fractionalized phase in which theHamiltonian, is the generator of the locd} gauge symme-

spinons and chargons are deconfined, and live as wellty. Thus the constrairg, =

1 simply expresses the condition

defined particle excitations. The deconfined phase is moghat the physical states in the Hilbert space are those that are
readily accessed by increasing the strength of a term in thgauge invariant.

gauge theory Hamiltoniatwith coefficientK, below) which

Generally, the gauge field dynamics is very complicated,

suppresses the fluctuations in the gauge field. When theut it simplifies considerably when eithbror K greatly ex-

gauge theory is deep within its confined phaséth K

ceeds the strength of the couplings to the matter fi¢lds,,
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andA ;.. For example, wheK — o, fluctuations ino",, are L

L
suppressed completely, and one can choose a gauge with th&l{0x. ¢y} 1= —XE_l Incog 6, — ¢y) + imLaZl (02— ¢a)
o;.,=1 on every link. This corresponds to a deconfined o B

phase in which the spinons and chargons exist as bona fide
particle excitations. On the other hand, wher: one has
afr,ml, and it is convenient to integrate out the gauge field
perturbatively. Focusing for simplicity on the Mott insulator
at half filling, and in the latter largh-limit, with n=1/2 with
U—oo, at lowest order irig andA one recovers the Heisen-
berg spin model,

M2

2
; (9&— ¢a) .

In Eq. (E4), we have added the find? term to fix a redun-

dancy in the description. In its absence, the acsopos-
sesses a continuous translational symmetry inherited from
the definition of the projection operators,— 6,+\, ¢,
—¢y+N\, for all x,y. This represents a redundancy in the
constraints due to the fact that the total particle number of
the system is given both by the sum of the row particle
numbers and by the sum of the column particle numbers. The
addition of theM? term has no effect on physical quantities,
and has the benefit of lifting the unnecessary zero mode of
We will in fact takeM2—o ultimately for simplicity at an
ffppropriate stage of the calculation.

Note theL prefactor in front of the second term in Eq.
(E4), which suggests a saddle-point approximation for large
L (in the first term, note also that there arécomponents in
the sum but only R variable$. The saddle-point conditions,
sl d0y=dsl d¢py=0, are

H2232<2> S-S, (D6)

with J,= (t2+A?)/h. Here,S,=1/2f] s,4f, 5, with sa vec-
tor of Pauli spin matrices. Note that in theU — oo limit the
gauge constraint becomes a single-occupancy constrai

efifr=1, Upon inclusion of a small nonzero couplitkg
one generates the spin-ring exchange term in(EE8p), upon
integrating out the gauge field, witd%,=K(tZ+A%)/(h
+U)% Notice that the strength of the four-spin ring ex-
change interactiod?, is proportional to the gauge theory
couplingK. This suggests that spin models with appreciable
ring exchange interactions are good candidate models to ex-
hibit fractionalized phases.

It is very instructive to examine the charge sector of the
theory one generates upon integrating out the gauge field by
similarly expanding perturbatively in small. Generally,
one will generate various Cooper pair hopping processes. To o i )
leading order irk the Cooper pair plaquette ring term of Eq. 1hese are solved by the uniformaginary solution 6,

L
2, a6 = ¢y)=—imL-M?3 (65+¢a), (EY
y= a

L
21 tan 6,— ¢y)=—imL—M2Y, (8,+¢,). (E)

(168) is generated, witl%, = Kt/(h+U)*. — ¢y=—in/2, with

APPENDIX E: RK MANIPULATIONS

We begin by inserting the integral representation®gj,
and the explicit representation &, , inherited from Egs.
(148 and Eq.(143), respectively. The sums ovéo,,} can
be explicitly performed, and we find

<Pflip(xay;{o})>{axy}:<ny[{01¢}]>{ﬁx,¢>y}a (ED
where
1 5 r2/do, d¢
= —_— _a_a 73[{ X }]
<O>{0x'¢y} Zg¢a];[1 fo (2’77 27T)Oe ’ ¢y '
(E2

In these expressions, the transformed “flippability” function
is

1
Ful{0.0=5 11 (E3)

v=Uy,

1 Se(( 9x+u_ ¢y+u)-

and the classical “action” is given by

tanhzn=m.

(E7)

Next, expanding around this saddle, we l&t=—i#»/2
+3(ixt ), Py=i 72+ 3(Yx— ). Expanding the
action to cubic order iny. , as justified by the following
analysis, one finds=sy+s,+ s3, with

SOZ (ES)

2 1-m

1 1+m
~ L% min +In(1—m?) |,

1
(1—m2>[L§ (Yoot i)

32: 4

+;) {(2M?=1) ¢ athsp+ ‘ﬂ—a‘p—b}}: (E9

i
53:—1—2m(1—m2)[L§ (22t 39500 -a)

+3; (P2 bt wiaw_b—zmamw_b)}.

(E10

The constant ternsy drops out of the observables in which
we are interested. The quadratic actiep, governs small
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fluctuations ofy. , treating cubic and higher-order terms as additional source term to the actios{6,¢}]—s[{6,d}]
perturbations. The resulting Gaussian averages obey Wick's 2i\ (6, — ¢4), but otherwise calculating the same expecta-
theorem, governed by the propagators that are obtained iion value as in Eq(E1). Transforming to they.. variables
the usual way by inverting the quadratic formsp as before, this additional linear term can be removed from
the action by shiftingy,_ — ¢, —2iNG,;, which “com-

o= (s atbon)em 2 [da 1 (E1D pletes the square” in the action usisg from Eq. (E9). De-
ab rarvabis T 2l L L2) pendence upoi thereby moves inté andss;:
i
_ 2 Oab 1 El(m;)\):_vz <ny 0.=—357
Gab:W—alﬂ—b)sz:—l_mz T~ E) (E12 Xy 2
. . . 1
where in Eq.(E11) we have taken for simplicity thé? t5(Wiatd-a=2iMGa1) ¢
— o0 limit. Equations(E11)—(E12) imply that the fluctuations
(variance of individual ¢,-- fields are smal[O(1/L)] and, i 1 /
moreover, the correlations between fields at differetb =3 n+ 5("[/“‘_ Y_at2iNG,;) > , (E19
are even smalldrO(1/L?)].

For this reason, the energy densiym) is determined by  where the prime indicates the expectation value is as defined
the saddle-point value alone, i.e., in Eq. (E2), except thatss[ ¢ ,,¢¥_,] is replaced by
) Sal Wia W—a]=S3[¥4a,¥_a—2iNG_;]. This can be evalu-
(Pip(%.Yi{o})) o,y =Fyl 0=~ = —i7/2], (E13 a?ed by expanding, above iny. azlindx (the latter since
leading directly to Eq(152). G,1<1), and further evaluating the expectation value per-
The “single-particle” gapA, is slightly more involved, turbatively ins;. A careful examination of these expansions
since we need the energy up to terms of ordér. o cal-  Shows that there are only two contributionsAg. The first
culate it, we requireE,(m:\), which is obtained from the comes aO(y2) from the pure saddle-point contribution to
expectation value of the flippability in a state withaddi-  Fxy, €xpanded to second orderAnThe second comes from
tional bosons on row and column 1. This is obtained, accordexpandingF,, to O(¢%) atA=0 and evaluating the expec-
ing to Eq.(154), by slightly modifying the projection opera- tation value in Eq(E14) to first order ins; [itself expanded
tors on this row and column. This amounts to adding arto O(A?y.)]. Adding the two gives the result in E¢L55).
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