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Simple model for dynamical melting of moving vortex lattices interacting with periodic pinning
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Melting of moving vortex lattices in clean superconducting films with periodic pinning is studied by a
dynamical ‘‘cage’’ model, based on a mean-field treatment of Langevin equation for the whole vortex lattice,
assuming elastic flow and that the lattice is incommensurate with the periodic pinning. In the frame moving
with the velocity of the vortex lattice center of mass, the model describes forced vibrations of a single vortex
tied to a spring. The vortex displacements due to thermal fluctuations and to the periodic pinning force, and the
relationship between the driving force and the vortex velocity (V-I curves! are obtained by a perturbation
method, valid for high velocities and for both weak and strong periodic pinning. The dynamical melting
temperature is calculated as a function of the vortex velocity using Lindemann criterion. Application to a
square defect lattice gives, for strong pinning, dynamical melting lines and anisotropicV-I curves that agree
qualitatively with numerical results.
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I. INTRODUCTION

The study of dynamical phases of lattice structures m
ing in a periodic medium has received a great deal of at
tion lately due to its relevance to physical systems such
adsorbed atomic layers in boundary lubrication,1 vortices in
Josephson junction arrays~JJA’s! ~Ref. 2! and in films with
artificial defect lattices.3

Numerical studies of driven vortices in clean superco
ducting films interacting with a periodic lattice of column
defects~CD’s! ~Refs. 4,5! and in JJA’s~Refs. 6,7! find dy-
namical melting of a moving vortex lattice~VL ! into a mov-
ing vortex liquid. In these systems the moving vortices or
in a VL at low temperatures when the driving force mag
tude is sufficiently large. Melting of the VL is found to tak
place at a temperature that, for a given vortex density,
creases with the driving force magnitude, approaching
equilibrium VL melting temperature when this magnitu
approaches infinity. These studies also show that the vort
center of mass~c.m.! velocity is in general not parallel to th
driving force. This leads to anisotropicV-I curves, with volt-
ages both longitudinal and transverse to the direction of
applied current.

In this paper we show that dynamical melting lines a
anisotropicV-I curves similar to those found in the abov
mentioned numerical studies can be obtained using a sim
model for the vortex dynamics. In driven vortex system
interacting with random or periodic pinning, moving vorte
lattices are expected to occur at low temperatures and in
limit of very large c.m. velocities, because the pinning p
tential is averaged in the direction of motion, as first poin
out by Schmid and Hauger.8 For periodic pinning, Ref. 4
shows that in this limit the moving vortex lattice can b
commensurate or incommensurate with the periodic pinn
potential, depending on the direction of motion and on
vortex density. Commensurate lattices occur only for mot
along directions of high symmetry of the pinning potenti
0163-1829/2002/66~5!/054514~7!/$20.00 66 0545
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such as@1,0#, @0,1#, @1,1#, and@-1,1# for square symmetry, if
the vortex density is not too high.4,9,10 For motion along
other directions, the moving vortex lattices are incommen
rate. Recent numerical simulations find that both mov
commensurate and incommensurate lattices may undergo
namical melting into a moving liquid.4–7,10 However, dy-
namical melting of commensurate lattices is much m
complicated than that of the incommensurate ones. The
son is that the moving commensurate lattices are pinne
channels running along the direction of motion~transverse
pinning!, and melting into a liquid occurs simultaneous
with depinning from the channels.4,5,10 In this paper we con-
sider only dynamical melting of incommensurate lattices.

Dynamical melting of vortex lattices is still poorly unde
stood. It is unclear from the simulation results reported so
if the change from lattice to liquid spatial symmetries is
true phase transition, with accompanying singularities in c
relation functions, or merely a crossover. In this paper we
not offer any insight into this fundamental question. Our a
is to estimate the dynamic melting temperature based o
well know method for the equilibrium melting temperatur
namely Lindemann criterion. This method was proposed i
classical paper by Houghton, Pelcovitz, and Sudbo”.11 They
estimate the equilibrium VL melting temperature for cle
bulk superconductors by applying Lindemann criterion to
mean-square vortex-line displacement caused by ther
fluctuations. A simple model to estimate the same tempe
ture was proposed later by Frey, Nelson and Fisher.12 It con-
siders a single vortex line trapped in a harmonic poten
representing its interaction with the other vortex lines in t
lattice, assumed straight and fixed at their equilibrium latt
positions. We refer to this model here as the equilibrium ca
model. The equilibrium melting temperature is estimated
applying Lindemann criterion to the mean-square therm
fluctuations of the caged vortex line. The result agrees w
that of Ref. 11, if the harmonic potential is proper
chosen.12 This simple idea can also be applied to tw
©2002 The American Physical Society14-1
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CLÉCIO C. de SOUZA SILVA AND GILSON CARNEIRO PHYSICAL REVIEW B66, 054514 ~2002!
dimensional VL melting in thin films. In this case the equ
librium cage model consists of a point vortex tied to a spri
representing its interaction with the other point vortices,
sumed fixed at their lattice positions. The melting tempe
ture is obtained by applying Lindemann criterion to t
caged vortex mean square displacement due to the
fluctuations.12 The resulting melting temperature agrees w
the one obtained from dislocation unbinding theory,13 if the
spring constant is properly chosen. Our model, which we
the dynamical cage model, generalizes the two-dimensio
equilibrium one for a moving vortex lattice. The dynamic
melting temperature is estimated by applying Lindemann
terion to the mean-square vortex displacements cause
thermal fluctuations and by motion in the periodic pinni
potential. Application of Lindemann criterion to estimate t
dynamical melting line of vortices in bulk superconducto
interacting with random pinning was first proposed by K
shelev and Vinokur.14

We start from Langevin equations describing tw
dimensional vortices at temperatureT, interacting between
themselves and with a periodic pinning potential, and driv
by an external force. We consider vortex motion at large c
velocities and make the following assumptions.~i! The mov-
ing vortices order in a lattice, incommensurate with the
riodic pinning potential.~ii ! The vortex lattice flows elasti
cally. This means that there are no dislocations and
vortex-vortex interactions can be approximated by harmo
forces. We then propose a mean-field-like treatment of
resulting equations of motion. This approximation reduc
the problem to that of a single vortex tied to a spring, bo
moving with the c.m. velocity, and interacting with the pe
odic pinning potential. We find that the dynamical ca
model is governed by two equations of motion. One for
vortex displacement in the frame moving with the vort
lattice c.m. velocity~c.m. frame!, and another relating the
driving force and the c.m. velocity. The vortex displaceme
equation is found to be nonlinear, unlike that for the equil
rium cage model, due to the vortex-pinning interactio
These equations are solved by a perturbation method, sim
to that introduced by Schmid and Hauger8 for weak random
pinning forces. It consists in expanding the time-depend
periodic pinning force~in the c.m. frame! in powers of the
vortex displacement. We find that the perturbation expans
is valid at large c.m. velocities for both weak and stro
pinning. From these solutions we obtain expressions for
vortex mean square displacement and for the relation
between the c.m. velocity and the driving force. The dyna
cal melting temperature is obtained by applying Lindema
criterion to the caged vortex mean-square displacem
These results are applied to a square pinning array, and c
pared to numerical simulation ones.

This paper is organized as follows. In Sec. II we der
the dynamical cage model equations of motion and their p
turbation theory solution. In Sec. III. we apply these resu
to strong pinning by a square array of pinning centers. T
conclusions of the paper are presented in Sec. IV. Detail
the perturbation calculation are given in the Appendix.
05451
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II. DYNAMICAL CAGE MODEL

We considerNv two-dimensional vortices at temperatu
T interacting between themselves and with a periodic pot
tial produced by an array of pinning centers, and driven b
force fd . The equation of motion is15

h
dr j

dt
5fd1Fj

v-v1Fv-p~r j !1Gj , ~1!

where j 51, . . . ,Nv , h is the friction coefficient,

Fj
v-v52 (

iÞ j 51

Nv

¹ jU
v-v~r j2r i ! ~2!

is the force of interaction with other vortices,Uv-v(r ) being
the vortex-vortex interaction potential in two dimensions,

Fv-p~r j !5(
Q

~2 iQ!UQ
v-peiQ•r j , ~3!

is the force of interaction with the periodic pinning array,Q
denotes the pinning array reciprocal lattice vectors, andUQ

v-p

is the Fourier transform of the vortex-single pin interacti
potential, andGj is the random force, satisfying

^G j a~ t !G lb~ t8!&52kBThd j ,lda,bd~ t2t8!, ~4!

where^•••& denotes average over the random force distri
tion.

We assume that the vortices center of mass~c.m.! moves
with constant velocityv, defined, as usual, by

v5
1

Nv
(
j 51

Nv dr j~ t !

dt
. ~5!

Using Eq.~1!, we find that

hv5fd1
1

Nv
(
j 51

Nv

Fv-p@r j~ t !#. ~6!

To derive Eq.~6! we use the fact that for largeNv , the
random force term is negligible, since( i 51

Nv Gj;ANv. Ac-
cording to Eq.~6!, in order thatv is constantfd must depend
on time as well as on the random force. To obtain physi
results we average Eq.~6! over time and over the random
force distribution, that is,

hv5Fd1
1

Nv
(
i 51

Nv 1

tE0

t

^Fv-p@r j~ t !#&, ~7!

whereFd , a constant vector, denotes the average offd over
time and over the random force distribution andt is a time
large compared with the characteristic times in Eq.~1!. We
interpretFd as the force due to the applied current, so th
Eq. ~7! give theV-I curves.

Now we consider a vortex-lattice flowing elastically an
transform to the c.m. frame. We write the vortex positions

r j~ t !5Rj1vt1uj~ t !, ~8!
4-2



-
ib
t

ap
d
te
o
.

te
u
e

ir

e
th
th
ar

ca

x

h

ar

in

n
r

to

ion
ic

s. In

s is

oth

ing,
-

e
r-

ks

in
om

r to
pa-
es
ate
ng
-

on

ges

SIMPLE MODEL FOR DYNAMICAL MELTING OF . . . PHYSICAL REVIEW B 66, 054514 ~2002!
whereRj anduj (t) ( j 51, . . . ,Nv) are, respectively, the vor
tex equilibrium positions and displacements from equil
rium in the c.m. frame. In elastic flow the displacemen
uj (t) are small and the vortex-vortex interactions can be
proximated by harmonic forces. Our dynamical cage mo
considers a particular vortex, and substitute its elastic in
action with the other vortices in the lattice by a spring
constantk. The equation of motion for this vortex in the c.m
frame is found to be

h
dul~ t !

dt
52kul~ t !1Fv-p@Rl1ul~ t !1vt#1fd2hv1Gl .

~9!

The relationship between the spring constant and the vor
vortex interaction potential will be presented shortly. O
dynamical cage model approach is similar to the mean-fi
theory introduced by Fisher16 for sliding charge-density
waves interacting with random pinning.

Our objective here is to use Eq.~9!, together with Eq.~7!,
to calculate the vortex mean-square displacement requ
for Lindemann criterion, and to obtain thev vs Fd relation-
ship (V-I curves!. First we note that Eq.~9! depends on the
particular vortexl, through theFv-p term. SinceFv-p is peri-
odic in the pinning-array lattice, its argument in Eq.~9! can
be reduced, at any instantt, to a position within the pinning-
array primitive unit cell. As mentioned in Sec. I, we consid
only moving incommensurate vortex lattices. In this case
reduced vortex positions are uniformly distributed over
unit cell area. Accordingly, we define the vortex mean squ
displacement as

u25
1

Nv
(
j 51

Nv 1

tE0

t

^uuj~ t !u2&. ~10!

According to the above considerations, our dynami
cage model is described by the set of equations

h
dul~ t !

dt
52kul~ t !1Fv-p@Rl1ul~ t !1vt#

2
1

Nv
(
j 51

Nv

Fv-p@Rj1uj~ t !1vt#1Gl ~11!

and

hv5Fd1
1

Nv
(
j 51

Nv 1

tE0

t

^Fv-p~Rj1uvt !&. ~12!

To obtain ul(t) we solve Eq.~11! by the perturbation
theory method introduced in Ref. 8, which consists in e
pandingFv-p in powers ofui(t) and solving the resulting
equations by iteration. We keep only terms to first order. T
relationship betweenv andFd are obtained from Eq.~12! by
a similar expansion. The details of these calculation
given in the Appendix.

For the mean square displacement we obtain to lead
order
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u25
2kBT

k
1(

Q

Q2uUQu2

h2~Q•v!21k2

1
2kBT

k (
Q

Q4uUQu2

h2~Q•v!214k2
. ~13!

To the same order of approximation thev vs Fd relation-
ship is

v5
Fd

h
2(

Q

Q Q2uUQu2

h2~Q•v!21k2
Q•v

2
kBT

k (
Q

Q Q4uUQu2

h2~Q"v!214k2
Q•v. ~14!

According to Lindemann criterion the VL melts whe
u25cL

2av
2 , whereav is the VL lattice parameter. Thus, ou

dynamical cage model only makes sense as long asu2

,cL
2av

2 . This requires that in Eq.~13! both kBT/k, and the
velocity dependent terms are sufficiently small compared
av

2 . The latter are so for large enoughv. To state more pre-
cisely the conditions under which the perturbation expans
in Eq. ~13! is valid, we restrict our considerations to period
pinning forces that can be represented by Eq.~3! with only a
few nonzeroUQ’s. Typically those forQ corresponding to
nearest and next-nearest neighbor reciprocal lattice point
these casesQ;2p/ap , ap being the pinning array lattice
parameter. We also assume that the number of vortice
comparable to the number of pins, so thatav;ap . Under
these assumptions, the condition for the smallness of b
velocity dependent terms in Eq.~13! depends on the relative
strengths of the pinning and elastic forces. For weak pinn
defined asuUQu!kap

2/2p, these terms are always small, in
dependent ofv, so that the effects of vortex motion onu2 are
negligible. For strong pinning, that isuUQu;kap

2/2p, the ve-
locity dependent terms in Eq.~13! are small for allQ, if
hv cosqQ@kap/2p , whereqQ is the angle between th
particularQ andv. Similar considerations apply to the pe
turbation expansion forv, Eq. ~14!.

For strong pinning, the perturbation expansion brea
down if, for someQ entering the sums in Eq.~13!, Q•v
50 (cosqQ50). In this case the velocity dependent terms
Eq. ~13! are not small. This breakdown can also be seen fr
Eq. ~9!. If Q•v50 the pining forceFv-p@Rl1ul(t)1vt# has
a static component, periodic in the direction perpendicula
v, which gives rise to a static vortex displacement com
rable toav for strong pinning. Such a displacement indicat
that our assumption that the moving VL is incommensur
with the pinning array lattice breaks down for motion alo
the directions for whichQ•v50. There are only a few direc
tions of motion for which Q•v50 since, as mentioned
above, only a fewQ’s enter the sums in Eq.~13!. We note
that the terms in sum in Eq.~14! with Q•v50 do not con-
tribute tov, so that there is no breakdown in the perturbati
expansion for this quantity.

In the limit of very largev (v→`) our dynamical cage
model reduces to the static one, since vortex motion avera
4-3
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CLÉCIO C. de SOUZA SILVA AND GILSON CARNEIRO PHYSICAL REVIEW B66, 054514 ~2002!
out the pinning potential~we assumeQ•vÞ0). In this limit
u2 reduces to the equilibrium mean square displacement
vortex tied to a spring,u252kBT/k. Application of Linde-
mann criterion gives for the melting temperaturekBTm

5kav
2cL

2/2. To compare this estimate ofTm with the disloca-
tion unbinding theory one,k is identified with k
5@]2Uv2v(r )/]r 2# r 5av

, whereUv2v(r )5(f0
2/8pL)ln(r/j)

is the two-dimensional ~2D! vortex-vortex interaction
potential12 (f0 is the flux quantum andL the film effective
penetration depth!. The result isk5f0

2/8pLav
2 and kBTm

5cL
2f0

2/16pL. This melting temperature agrees with the d
location unbinding theory one13 if cL.0.12. From here on
we adopt fork andcL the above mentioned values.

Application of Lindemann criterion to Eq.~13! gives the
velocity dependent melting temperatureTdm(v) as

kBTdm~v!5

kav
2cL

2

2
2kBTpp~v!

11(
Q

Q4uUQu2

h2~Q•v!214k2

, ~15!

where

kBTpp~v![
k

2 (
Q

Q2uUQu2

h2~Q•v!21k2
~16!

is identified with an effective temperature, resulting fro
vortex vibrations due to the periodic pinning force, that ad
to the thermodynamic one in the expression foru2. The tem-
peratureTpp is similar to the ‘shaking temperature’ intro
duced by Koshelev and Vinokur14 for random pinning. It
arises from aT-independent contribution tou2, the second
term in the right-hand side of Eq.~13!. There is also a
T-dependent contribution tou2 in Eq. ~13! that cannot be
identified with an effective temperature. However, this te
leads to a small correction inTdm(v), since the denominato
in Eq. ~15! is close to 1. Thus, the dynamical melting cond
tion is essentially thatkB@Tdm(v)1Tpp(v)#5kav

2cL
2/2. Thev

dependence ofTdm(v), Eq. ~15!, is such thatTdm(v) de-
creases with decreasingv.

The V-I curves follow from the relationship betweenv
andFd , Eq. ~14!. In the v→` limit v5Fd /h. For finite v,
vortex motion is no longer along the drive direction, leadi
to anisotropicV-I curves. Thev vs Fd relationship also al-
lows us to obtain the melting temperature as a function of
driving force, which is more usual. In the next section w
study in detail the dynamical cage model predictions by
plying them to a typical periodic pinning potential and ca
rying out numerical calculations.

III. SQUARE PINNING-LATTICE

We consider a square pinning array with lattice parame
ap , and assume that the vortex-pinning interaction force
given by Eq.~3! with the UQ

v-p chosen as
05451
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v-p55

U1 for Q56
2p

ap
x̂,6

2p

ap
ŷ,

U2 for Q56
2p

ap
~ x̂6 ŷ!,

0 otherwise.

~17!

The x and y axis are along the pinning lattice@1,0#, @0,1#
directions, respectively, as shown in Fig. 1~a!. We choose
U25U1/2. This gives the pinning potential shown in Fi
1~b!. We setU1 /kap

251/2p50.16. As discussed in Sec. I
this value corresponds to strong pinning.

We choose to present the numerical results for the exp
sions derived in Sec. II as functions of the driving forceFd ,
instead ofv. To do so we invert Eq.~14! by an iterative
method. We start at a high value of the driving force mag
tude,Fd550kap , and a given orientation ofFd with respect
to the x axis a @Fig. 1~a!# and approximate the solution b
the result for infinite drivev5Fd /h. ThenFd is decreased
by small steps, keepinga fixed. At each step,v in the right-
hand side of Eq.~14! is replaced by thev obtained in the
previous step. From thev vs Fd relationship thus obtained
theu andTdm vs Fd curves follow using Eqs.~13! and~15!.
The results are shown in Figs. 2–5. In the figures shown h
the following units are used.~i! Force: Fmax58pU1 /ap5
magnitude of the maximum force exerted by the square p
ning potential defined in Eq.~17!. ~ii ! Velocities: Fmax/h.
~iii ! Temperatures:Tm5VL equilibrium melting temperature
~see Sec. II!.

In Fig. 2 we showv andu as functions ofFd for several
a at T50. The horizontal lines in the bottom panel of Fig
2~a! and 2~b! indicate theu5cLav lines for a vortex density
corresponding to two vortices per pin (B52Bf), with cL
50.12, at which the VL melts, according to Lindemann c
terion. The region of validity of our dynamical cage model
below this line. Thev vs Fd curves in the top panels of Figs
2~a! and 2~b! show that the c.m. velocity is not parallel to th
driving force, which leads to anisotropicV-I curves. This
anisotropy is more clearly seen by plotting the direction
motion u as a function of the driving force magnitude, a
shown in Fig. 3, for fixed directions of drivea. These plots

FIG. 1. ~a! Pinning lattice, coordinate system and angles de
ing the directions of the center of mass velocityv and the driving
force Fd . ~b! Square pinning potential@Eq. ~17!# with U25U1/2.
4-4
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SIMPLE MODEL FOR DYNAMICAL MELTING OF . . . PHYSICAL REVIEW B 66, 054514 ~2002!
show that, depending ona, the moving VL is attracted to-
wards the@1,0# or @1,1# directions. This behavior is similar to
that seen in recent numerical simulations.5 Above the cL
50.12 lines in the bottom panel of Figs. 2~a! and 2~b! we
find a discontinuous jump inu, accompanied by the trappin
of moving caged vortex along@1,0# for 0,a,32.5° @Fig.
2~b!#, or along @1,1# for 32.5°,a,45° @Fig. 2~a!#. This
trapping is similar to transverse pinning observed in num
cal simulations and JJA experiments.4–7 This is interesting
because it indicates that, even though our dynamical c
model is not strictly valid in the region where trapping o
curs, it contains physical ingredients capable of describ
the phenomenon. We also note that the jump inu occurs
because for vortex motion along@1,0# and @1,1# there are
terms in the sums in Eq.~13! for which Q•v50. According
to the discussion in Sec. II, the perturbation expansion fou
breaks down and a large contribution tou results from the
terms in the sum in Eq.~13! with Q•v50.

FIG. 2. Center of mass velocity componentsvx and vy and
root-mean-square caged vortex fluctuationsu vs driving force mag-
nitudeFd for several driving force directionsa at T50. ~a! 32.5°
<a<40°: vortex motion is trapped in the@1,1# direction (vx

5vy) at theFd values indicated by the vertical dot-dashed lines
the top panel.~b! 0,a,32.5: vortex motion is trapped in the@1,0#
direction (vy50). The horizontal lines in the bottom panels of~a!
and~b! areu5cLav for B52Bf andcL50.12~see text!, where the
VL melts.
05451
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The finite-T behavior of the results is shown in Fig. 4. W
find that thev vs Fd curves change little withT as illustrated
in Fig. 4~a!. We also find that inu2 the T dependent term in
Eq. ~13! gives a small contribution. This is so because theT
dependence inu and v results from the third terms in the
right-hand side of Eqs.~13! and~14!, which are, essentially
the product of two quantities which are small in the region
validity of our dynamical cage model.

FIG. 3. Direction of motion,u, as a function of the driving force
magnitude for drive directions in the range 5°<a<40° in regular
increments of 5°. The arrow indicates increasinga.

FIG. 4. Temperature dependence of~a! center of mass velocityy
component and~b! root-mean-square displacement curvesu vs Fd .
4-5
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CLÉCIO C. de SOUZA SILVA AND GILSON CARNEIRO PHYSICAL REVIEW B66, 054514 ~2002!
The dynamical melting linesTdm vs Fd are shown in the
top panel of Fig. 5 for severala. In the bottom panel, the
dynamical phase diagramFd vsa for T50 is shown. TheFd
vs a dynamical melting line in the bottom panel correspon
to the intersections of theTdm vs Fd curves shown in Fig. 5
top with theT50 line. We find that for other temperature
T,Tm the Fd vs a phase diagrams are similar.

IV. CONCLUSION

In conclusion then, we introduce a simple dynamic
model for vortex lattices flowing elastically in the presen
of periodic pinning. The model is solved by a perturbati
method that allows the calculation of the dynamical melt
curves, using Lindemann criterion, and of theV-I curves.
This approach is valid for periodic pinning potentials in ge
eral, and predicts that the moving vortex-lattice melting te
perature varies significantly with the c.m. velocity only f
strong pinning. The perturbation solution is applied to
square pinning lattice. The results show qualitative agr
ment with numerical simulation ones.4–6 Namely,~i! the pre-
dicted dynamical melting temperature approaches the t
mal equilibrium one in the limit of very large center of ma
velocities, and decreases with the velocity. The model p
dicts that this decrease is, essentially, asv22. ~ii ! The center
of mass velocity is not parallel to the driving force in ge
eral, leading to anisotropicV-I curves. The vortex lattice is

FIG. 5. Top: dynamical melting lines fora in the range 10°
<a<40°. Bottom: dynamical phase diagramFd vs a for T50.
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attracted towards the@1,0# or @1,1# direction, depending on
the direction of drive. Transverse pinning, with the vort
lattice motion restricted to the@1,0# or @1,1# directions, is
found outside the region where the model is strictly valid

For other periodic pinning potentials, and for strong p
ning, we expect similar dynamical melting lines and anis
tropic V-I curves. It is significant that the model predic
anisotropicV-I curves so closely resembling the numeric
simulation ones.5 These curves follow from the relationshi
between the c.m. velocity and the driving force, Eq.~11!.
The only approximation used in our solution of this equati
is the mean-field treatment of Langevin equations for
whole vortex lattice. Our results for theV-I curves show that
this approximation is justifiable.

The model can be also applied along the lines descri
here to study the effects of weak random potentials, eit
from material defects or from imperfections in the pinnin
array, on the melting lines andV-I curves. It can also be
generalized to study transverse pinning more rigorou
Work along these lines is under way and will be report
elsewhere.
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APPENDIX

To obtain the perturbation expansion of Eq.~11! we write
it, using Eq.~3!, as

h
dul~ t !

dt
52kul~ t !1(

Q
FQ

v-peivQt

3
1

Nv
(
j 51

Nv

~Nvd j ,l21!eiQ•[Rj 1uj (t)]1Gl ,

~A1!

where FQ
v-p[2 iQUQ

v-p and vQ5Q•v. ExpandingeiQ•uj to
first order, and carrying out the Fourier transformation
time, assuming periodic boundary conditions in the time
terval (0,t), justifiable for larget (t@ap /v), we find

ul~v!5ul
T~v!1(

Q

FQ
v-p

2 ihv1k

1

Nv
(
j 51

Nv

~Nvd j ,l21!

3eiQ•Rj@dv,2vQ
1 iQ•uj~v1vQ!#, ~A2!

whereul
T(v) is the thermal displacement

ul
T~v!5

G l~v!

2 ihv1k
, ~A3!

G l(v) is the Fourier transform of the random force, anddK
denotes the Kronecker delta. The first order solution
ul(v) is obtained by neglecting the linear term in Eq.~A2!.
We find
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ul
(1)~v!5ul

T~v!1(
Q

FQ
v-peiQ•Rl

ihvQ1k
dv,2vQ

. ~A4!

To derive Eq.~A4! we use( j 51
Nv eiQ•Rj5dQ,0 , since the vor-

tex and pinning lattices are incommensurate.
The second order solution is obtained by substitutinguj in

the linear term in the left hand side of Eq.~A2! by the first
order solution. The result is

ul
(2)~v!5ul

(1)~v!1(
Q

FQ
v-p

2 ihv1k

3
1

Nv
(
j 51

Nv

~Nvd j ,l21!eiQ•Rj iQ•uj
T~v1vQ!

1 (
Q,Q8

FQ
v-piQ•FQ8

v-p
@eiK•Rl2dQ,2Q8#

~2 ihv1k!~ ihvQ81k!
dv,2vK

,

~A5!

wherevQ85Q8•v, vK5K•v, andK5Q1Q8. With this so-
lution, one can calculate the mean square displacement
o

nd
d
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particular vortexl, ul
25(1/t)*0

t^uul(t)u2&, which up to the
second order in the pinning potential is expressed by

ul
25

2kBT

k
1 (

Q,Q8

FQ
v-p

•FQ8
v-peiK•Rl

h2vQ
2 1k2

dvQ ,2vQ8

1
2kBT

k

1

Nv
(
Q

Q2FQ
v-p

•FQ8
v-p

h2vQ
2 14k2

3@~Nv22!eiK•Rl1dQ,2Q8#. ~A6!

Taking the average over theNv vortices and assumingNv
@1, Eq. ~13! is derived.

A similar procedure is used to calculate the driving for
dependence ofv. Expanding Eq.~7! in the form

hv5Fd1
1

Nv
(
j 51

Nv 1

t
3E

0

t

(
Q

^FQ
v-peiQ•RjeivQt@1

1Q•uj~ t !#&, ~A7!

and using the second order solution forul(t) we obtain
Eq. ~14!.
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