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Simple model for dynamical melting of moving vortex lattices interacting with periodic pinning
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Melting of moving vortex lattices in clean superconducting films with periodic pinning is studied by a
dynamical “cage” model, based on a mean-field treatment of Langevin equation for the whole vortex lattice,
assuming elastic flow and that the lattice is incommensurate with the periodic pinning. In the frame moving
with the velocity of the vortex lattice center of mass, the model describes forced vibrations of a single vortex
tied to a spring. The vortex displacements due to thermal fluctuations and to the periodic pinning force, and the
relationship between the driving force and the vortex velocityl (curves are obtained by a perturbation
method, valid for high velocities and for both weak and strong periodic pinning. The dynamical melting
temperature is calculated as a function of the vortex velocity using Lindemann criterion. Application to a
square defect lattice gives, for strong pinning, dynamical melting lines and anisotfdpaurves that agree
qualitatively with numerical results.
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I. INTRODUCTION such aq41,0], [0,1], [1,1], and[-1,1] for square symmetry, if
the vortex density is not too high**° For motion along
The study of dynamical phases of lattice structures movether directions, the moving vortex lattices are incommensu-
ing in a periodic medium has received a great deal of attenrate. Recent numerical simulations find that both moving
tion lately due to its relevance to physical systems such asommensurate and incommensurate lattices may undergo dy-
adsorbed atomic layers in boundary lubricattorprtices in  namical melting into a moving liquiti-"1° However, dy-
Josephson junction array3JAs) (Ref. 2 and in films with  namical melting of commensurate lattices is much more
artificial defect lattices. complicated than that of the incommensurate ones. The rea-
Numerical studies of driven vortices in clean supercon-son is that the moving commensurate lattices are pinned in
ducting films interacting with a periodic lattice of columnar channels running along the direction of moti@mansverse
defects(CD’s) (Refs. 4,5 and in JJAs(Refs. 6,7 find dy-  pinning), and melting into a liquid occurs simultaneously
namical melting of a moving vortex lattiq®L ) into a mov-  with depinning from the channefs:*°In this paper we con-
ing vortex liquid. In these systems the moving vortices ordersider only dynamical melting of incommensurate lattices.
in a VL at low temperatures when the driving force magni- Dynamical melting of vortex lattices is still poorly under-
tude is sufficiently large. Melting of the VL is found to take stood. It is unclear from the simulation results reported so far
place at a temperature that, for a given vortex density, deif the change from lattice to liquid spatial symmetries is a
creases with the driving force magnitude, approaching thérue phase transition, with accompanying singularities in cor-
equilibrium VL melting temperature when this magnitude relation functions, or merely a crossover. In this paper we do
approaches infinity. These studies also show that the vorticasot offer any insight into this fundamental question. Our aim
center of mass$c.m,) velocity is in general not parallel to the is to estimate the dynamic melting temperature based on a
driving force. This leads to anisotropi¢| curves, with volt-  well know method for the equilibrium melting temperature,
ages both longitudinal and transverse to the direction of th@amely Lindemann criterion. This method was proposed in a
applied current. classical paper by Houghton, Pelcovitz, and Sutlobhey
In this paper we show that dynamical melting lines andestimate the equilibrium VL melting temperature for clean
anisotropicV-l curves similar to those found in the above bulk superconductors by applying Lindemann criterion to the
mentioned numerical studies can be obtained using a simplmean-square vortex-line displacement caused by thermal
model for the vortex dynamics. In driven vortex systemsfluctuations. A simple model to estimate the same tempera-
interacting with random or periodic pinning, moving vortex ture was proposed later by Frey, Nelson and Fishkrcon-
lattices are expected to occur at low temperatures and in theiders a single vortex line trapped in a harmonic potential
limit of very large c.m. velocities, because the pinning po-representing its interaction with the other vortex lines in the
tential is averaged in the direction of motion, as first pointedattice, assumed straight and fixed at their equilibrium lattice
out by Schmid and Haug&rFor periodic pinning, Ref. 4 positions. We refer to this model here as the equilibrium cage
shows that in this limit the moving vortex lattice can be model. The equilibrium melting temperature is estimated by
commensurate or incommensurate with the periodic pinningpplying Lindemann criterion to the mean-square thermal
potential, depending on the direction of motion and on thefluctuations of the caged vortex line. The result agrees with
vortex density. Commensurate lattices occur only for motiorthat of Ref. 11, if the harmonic potential is properly
along directions of high symmetry of the pinning potential, chosent? This simple idea can also be applied to two-
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dimensional VL melting in thin films. In this case the equi- Il. DYNAMICAL CAGE MODEL

librium cage r_nOQeI consists O.f a point vortex fued to a spring, We considemN, two-dimensional vortices at temperature
representing its interaction with the other point vortices, as-

T interacting between themselves and with a periodic poten-

sumed fixed at their lattice positions. The melting temperas;| produced by an array of pinning centers, and driven by a

ture is obtained by applying Lindemann criterion to theforcefd. The equation of motion 1
caged vortex mean square displacement due to thermal

fluctuationst? The resulting melting temperature agrees with dr;

the one obtained from dislocation unbinding thebtif, the ngp ~fat FTHRPrp L 1)
spring constant is properly chosen. Our model, which we call

the dynamical cage model, generalizes the two-dimensionavherej=1, ... N,, 7 is the friction coefficient,
equilibrium one for a moving vortex lattice. The dynamical N

melting temperature is estimated by applying Lindemann cri Fov_ _ 2 VUM - 1) @)

terion to the mean-square vortex displacements caused by ] A =1
thermal fluctuations and by motion in the periodic pinning
potential. Application of Lindemann criterion to estimate the!S the force of interaction with other vorticed(r) being
dynamical melting line of vortices in bulk superconductorsthe vortex-vortex interaction potential in two dimensions,
interacting with random pinning was first proposed by Ko-
shelev and Vinokut* FP(r) =2 (—iQULPeQTi 3)
We start from Langevin equations describing two- Q

drimensilonal vc()jrtic_er? at te.mg_eraFuTg interactiqgl bet\(/jvzep is the force of interaction with the periodic pinning arrgy,
themselves and with a periodic pinning potential, and drive - : : -
by an external force. WFE) considepr vortgxpmotion at large C.mrbenotes the; pinning array reciprocal Iatt_|ce vec.tor.s, lagﬂ -

» ) o is the Fourier transform of the vortex-single pin interaction
velocities and make the following assumptioti.The mov- potential, and’"; is the random force, satisfying
ing vortices order in a lattice, incommensurate with the pe- ’ ) '
riodic pinning potential(ii) The vortex lattice flows elasti- (T (O 5(t"))=2KgT 78,18, gt —1"), (4)
cally. This means that there are no dislocations and that o
vortex-vortex interactions can be approximated by harmonidvhere(- - -) denotes average over the random force distribu-
forces. We then propose a mean-field-like treatment of th&on- _
resulting equations of motion. This approximation reduces V& @ssume that the vortices center of mass) moves
the problem to that of a single vortex tied to a spring, bothVith constant velocity, defined, as usual, by

moving with the ¢c.m. velocity, and interacting with the peri- 1 M ogrot

odic pinning potential. We find that the dynamical cage V= — ri(t) _ (5)
model is governed by two equations of motion. One for the N, =1 dt

vortex displacement in the frame moving with the vortex, . '

lattice c.m. velocity(c.m. frame, and another relating the Using Eq.(1), we find that

driving force and the c.m. velocity. The vortex displacement 1 N

equation is found to be nonlinear, unlike that for the equilib- pv="Ffy+ — 2 F”‘p[rj(t)]. (6)
rium cage model, due to the vortex-pinning interaction. N, =1

These equations are solved by a perturbation method, similaflr0 derive Eq.(6) we use the fact that for larghl, , the

to that introduced by Schmid and Hau@jésr weak random random force term is negligible, sinc%iN:”lefv\/N_v. Ac-

pinning forces. It consists in expanding the time-dependent . . .
periodic pinning force(in the c.m. framgin powers of the cording to Eq/(6), in order thaw is constanfy must depend

. . . .on time as well as on the random force. To obtain physical
vortex displacement. We find that the perturbation expansioll, . ite we average E@6) over time and over the random
is valid at large c.m. velocities for both weak and strong

- ) . : force distribution, that is,
pinning. From these solutions we obtain expressions for the

vortex mean square displacement and for the relationship 1 N -

between the c.m. velocity and the driving force. The dynami- pv=Fy4+ — 2 = (FPry(H)]), )

cal melting temperature is obtained by applying Lindemann N, =1 7Jo

criterion to the caged vortex mean-square displacemen\t,vherelzd, a constant vector, denotes the averagé,afver

These results are applied to a square pinning array, and cofime and over the random force distribution ands a time

pared to numerical simulation ones. large compared with the characteristic times in Eg. We
This paper is organized as follows. In Sec. Il we derivejnterpretF, as the force due to the applied current, so that

the dynamical cage model equations of motion and their pergq. (7) give theV-I curves.

turbation theory solution. In Sec. Ill. we apply these results Now we consider a vortex-lattice flowing elastically and

to strong pinning by a square array of pinning centers. Theransform to the c.m. frame. We write the vortex positions as

conclusions of the paper are presented in Sec. IV. Details of

the perturbation calculation are given in the Appendix. ri(t)=Rj+vt+u;(t), (8
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whereR; andu;(t) (j=1,... N,) are, respectively, the vor- 2kaT 2|y |2

j andu;tt) (= : . , 2kg Q°|Uq|
tex equilibrium positions and displacements from equilib- ue=—-—- - 5
rium in the c.m. frame. In elastic flow the displacements K Q 7(Q-v)*+k

u;(t) are small and the vortex-vortex interactions can be ap- kT 4 5
proximated by harmonic forces. Our dynamical cage model L. Q |UQ| '
considers a particular vortex, and substitute its elastic inter- K Q@ 72(Q-v)?+4k?
action with the other vortices in the lattice by a spring of

constant. The equation of motion for this vortex in the c.m. ~ To the same order of approximation thess Fy relation-

(13

frame is found to be ship is
du(t) Fq QQ%Uql?
=—ku(t) +F"P[R +u(t) +vt]+fg— pv+T. V=—=2, ———— —
T KUy (t) [Ri+u(t) 1+fa— 7 I 7 5 772(Q'V)2+K2
(9) 4 2
. . . kgT u
The relationship between the spring constant and the vortex- _8 E MQ.V_ (14)
vortex interaction potential will be presented shortly. Our K Q 7*(Qv)*+4k

dynamical cage model approach is similar to the mean-field ) ) o
theory introduced by Fish¥ for sliding charge-density 2Accordmg to Lindemann criterion the VL melts when

waves interacting with random pinning. u =cfaf, wherea, is the VL lattice parameter. Thus, our
Our objective here is to use E), together with Eq(7), dynamical cage model only makes sense as longi@as
to calculate the vortex mean-square displacement required ccaZ . This requires that in Eq13) both kgT/«, and the
for Lindemann criterion, and to obtain thevs F4 relation- velocny dependent terms are sufficiently small compared to
ship (V-1 curves. First we note that Eq9) depends on the a . The latter are so for large enough To state more pre-
particular vortex, through the=*® term. SinceF’P is peri- C|sely the conditions under which the perturbation expansion
odic in the pinning-array lattice, its argument in E§) can  in Eq.(13) is valid, we restrict our considerations to periodic
be reduced, at any instantto a position within the pinning- pinning forces that can be represented by @ywith only a
array primitive unit cell. As mentioned in Sec. |, we considerfew nonzeroUg’s. Typically those forQ corresponding to
only moving incommensurate vortex lattices. In this case thaearest and next-nearest neighbor reciprocal lattice points. In
reduced vortex positions are uniformly distributed over thethese caseQ~2w/a,, a, being the pinning array lattice
unit cell area. Accordingly, we define the vortex mean squar@arameter. We also assume that the number of vortices is
displacement as comparable to the number of pins, so tlgt-a,. Under
these assumptions, the condition for the smallness of both
velocity dependent terms in E¢L3) depends on the relative
1 Tf <|U )1?). (10 strengths of the pinning and elastic forces. For weak pinning,
No i= defined a51UQ|<Ka2/27T these terms are always small, in-
pependent o¥, so that the effects of vortex motion oR are
negligible. For strong pinning, that j&q |~Ka2/27-r the ve-
locity dependent terms in Eq13) are small for allQ, if
du(t) nv oS> kay/2m , where g is the angle between the
ek — kU () +FUP[R,+u(t) +vt] particularQ andv. Similar considerations apply to the per-
turbation expansion fov, Eq. (14).
1 N For strong pinning, the perturbation expansion breaks
- — 2 FUPIR;+uj(t)+vt]+I,  (11)  down if, for someQ entering the sums in Eq13), Q-v
N, /= =0 (cosdy=0). In this case the velocity dependent terms in
Eqg. (13) are not small. This breakdown can also be seen from
Eq. (9). If Q-v=0 the pining force=*P[R,+u,(t) +Vvt] has
a static component, periodic in the direction perpendicular to
= Fd+ il 2 f (FP(R+uyt)). 12 Vv which gives rise to a _static vortex _displacemen_t compa-
N, =17 rable toa, for strong pinning. Such a displacement indicates
that our assumption that the moving VL is incommensurate
To obtainu,(t) we solve Eq.(11) by the perturbation with the pinning array lattice breaks down for motion along
theory method introduced in Ref. 8, which consists in ex-the directions for whiclQ-v=0. There are only a few direc-
panding F*® in powers ofu;(t) and solving the resulting tions of motion for whichQ-v=0 since, as mentioned
equations by iteration. We keep only terms to first order. Theabove, only a fewQ’s enter the sums in Eq13). We note
relationship betweew andF4 are obtained from Eq12) by  that the terms in sum in Eq14) with Q-v=0 do not con-
a similar expansion. The details of these calculation ardribute tov, so that there is no breakdown in the perturbation

According to the above considerations, our dynamical
cage model is described by the set of equations

and

given in the Appendix. expansion for this quantity.
For the mean square displacement we obtain to leading In the limit of very largev (v—o°) our dynamical cage
order model reduces to the static one, since vortex motion averages
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out the pinning potentialwe assumé-v+0). In this limit (a)
u? reduces to the equilibrium mean square displacement of ¢
vortex tied to a springu®=2kgT/«. Application of Linde-

mann criterion gives for the melting temperatukgT,, y oo 0.
= ka’c?/2. To compare this estimate ®f, with the disloca- 9 oo i ﬁ o Yty
tion wunbinding theory one,«x is identified with « ¢ O O P
=[0°U"V(r)/9r?);—a,, WhereU® " (r) = (g5/8mA)In(r/9) ¢ 00000

is the two-dimensional(2D) vortex-vortex interaction o Qo 0 O
potential? (¢, is the flux quantum and the film effective Q ofio o
penetration depjh The result isk= ¢3/8mAaZ and kgT, % oo

=c2 /167 A . This melting temperature agrees with the dis-
location unbinding theory of2if ¢, =0.12. From here on
we adopt fork andc, the above mentioned values.

Application of Lindemann criterion to Eq13) gives the
velocity dependent melting temperaturg,(v) as

FIG. 1. (a) Pinning lattice, coordinate system and angles defin-
ing the directions of the center of mass velooityand the driving
force Fy. (b) Square pinning potentidEq. (17)] with U,=U,/2.

2.2 ) 5
vvL T A T~
—KgTpp(V) U; for Q=+=—x,=—,
—, (15) % %
Q¥ Uql uGP=
Q 74(Q-v)?+4k?

KgTam(V) =

17

27 .~ .
Uz for Q==—(xxy),
ap

0 otherwise.

where
The x andy axis are along the pinning lattidel,0], [0,1]
K QU Q|2 directions, respectively, as shown in Figal We choose
KeTpp(V)=7 25— (16)  U,=U,/2. This gives the pinning potential shown in Fig.
Q 7(Q V)™« 1(b). We setUl/Kaf,=1/27r=O.16. As discussed in Sec. I,

o " ) i . this value corresponds to strong pinning.

is identified with an effective temperature, resulting from  \ye choose to present the numerical results for the expres-
vortex vibrations due to the periodic pinning force, that addssions derived in Sec. Il as functions of the driving fofeg

to the thermodynamic one in the expressionuférThe tem- jnstead ofv. To do so we invert Eq(14) by an iterative
peratureT,, is similar to the ‘shaking temperature’ intro- method. We start at a high value of the driving force magni-
duced by Koshelev and Vinoktfr for random pinning. It tude,F 4=50ka,, and a given orientation d¥, with respect
arises from a‘l_'—lndependgnt contribution ta?, thg second  tg the x axis a [Fig. 1(a)] and approximate the solution by
term in the right-hand side of Eq13). There is also a the result for infinite drivev=Fg4/7. ThenF is decreased
T-dependent contribution ta? in Eq. (13) that cannot be by small steps, keeping fixed. At each stepy in the right-
identified with an effective temperature. However, this termu3nd side of Eq(14) is replaced by thes obtained in the
leads to a small correction ifiyy(v), since the denominator - yreyious step. From the vs Fy relationship thus obtained,

in Eq. (15) is close to 1. Thus, the dynamicalzmzelting condi- the y and T, vs F4 curves follow using Eqs(13) and (15).

tion is essentially thaitg[ Tym(V) + Tpp(V) 1= ka;ci/2. Thev  The results are shown in Figs. 2—5. In the figures shown here
dependence offqy(v), Eq. (15), is such thatTyn(v) de-  the following units are usedi) Force: F,=8mU,/a,=

creases with decreasing magnitude of the maximum force exerted by the square pin-
The V-I curves follow from the relationship between ning potential defined in Eq17). (i) Velocities: Fa/7.

andFy, Eqg. (14). In thev—-ee limit v=F4/». For finitev, (i) TemperaturesT,= VL equilibrium melting temperature

vortex motion is no longer along the drive direction, leading(see Sec. )l

to aniSOtrOpiCV-I curves. Thev vs Fd r6|ati0nShip also al- In F|g 2 we show andu as functions OFd for several

lows us to obtain the melting temperature as a function of thg, at T=0. The horizontal lines in the bottom panel of Figs.
dnvmg_ force,_ which is more usual. In the next section Wep(g) and 2b) indicate theu=c, a, lines for a vortex density
study in detail the dynam|ca}l cgge_quel predlc_t|ons by apzorresponding to two vortices per piB€ 2B,), with ¢
plying them to a typical periodic pinning potential and car- = 12, at which the VL melts, according to Lindemann cri-

rying out numerical calculations. terion. The region of validity of our dynamical cage model is
below this line. The vs F4 curves in the top panels of Figs.
lll. SQUARE PINNING-LATTICE 2(a) and 2Zb) show that the c.m. velocity is not parallel to the

driving force, which leads to anisotropk-l curves. This
We consider a square pinning array with lattice parameteanisotropy is more clearly seen by plotting the direction of
a,, and assume that the vortex-pinning interaction force isnotion ¢ as a function of the driving force magnitude, as
given by Eq.(3) with the UP chosen as shown in Fig. 3, for fixed directions of drive. These plots
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FIG. 3. Direction of motiong, as a function of the driving force
magnitude for drive directions in the rangess&=<40° in regular
increments of 5°. The arrow indicates increasing

The finite-T behavior of the results is shown in Fig. 4. We
find that thev vs F4 curves change little witf as illustrated
in Fig. 4@). We also find that iru? the T dependent term in
Eq. (13) gives a small contribution. This is so because The
dependence i and v results from the third terms in the
right-hand side of Eqg13) and(14), which are, essentially,
the product of two quantities which are small in the region of

validity of our dynamical cage model.

1.4
1.2

FIG. 2. Center of mass velocity componentg and v, and y 1'0__
root-mean-square caged vortex fluctuatians driving force mag- £ 0.8
nitude F4 for several driving force directiona at T=0. (a) 32.5° E
< a<40°: vortex motion is trapped in thgl,1] direction (@, g 06
=v,) at theF4 values indicated by the vertical dot-dashed lines in & ¢, ] —1,=03 |]
the top panel(b) 0<«<32.5: vortex motion is trapped in tt&,0] 1 --=TT =06
direction @, =0). The horizontal lines in the bottom panels(af 024 ol e T, =09 |7
and(b) areu=c_ a, for B=2B, andc =0.12(see text, where the 0.0 ]
VL melts. 15 20 25 30 35 40
show that, depending oa, the moving VL is attracted to- 0.20 , . ,
wards thg1,0] or [1,1] directions. This behavior is similar to
that seen in recent numerical simulaticndbove the c, — TIT =03
=0.12 lines in the bottom panel of Figs(a2 and Zb) we ____T/T"’=O6
find a discontinuous jump in, accompanied by the trapping 0154 Wk | T =09
of moving caged vortex alonff,0] for 0<a<32.5° [Fig. a m
2(b)], or along[1,1] for 32.5°<a<45° [Fig. 2(@]. This ~
trapping is similar to transverse pinning observed in numeri- = 0104 i
cal simulations and JJA experimefts. This is interesting '
because it indicates that, even though our dynamical cagt SSmasaaao.
model is not strictly valid in the region where trapping oc- T
curs, it contains physical ingredients capable of describing  0.05 - =
the phenomenon. We also note that the jumpuiccurs é ‘I|- é ;3 110

because for vortex motion alord,0] and [1,1] there are
terms in the sums in Eq13) for which Q-v=0. According
to the discussion in Sec. Il, the perturbation expansiorufor
breaks down and a large contribution aaresults from the
terms in the sum in Eq13) with Q-v=0.

F |F

d’" max

FIG. 4. Temperature dependenceg@fcenter of mass velocity

component andb) root-mean-square displacement curues F .
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1.0 — T T T attracted towards thEgL,Q] or [1,1] direction, depending on
the direction of drive. Transverse pinning, with the vortex
084 lattice motion restricted to thgl,0] or [1,1] directions, is
found outside the region where the model is strictly valid.
For other periodic pinning potentials, and for strong pin-
067 ning, we expect similar dynamical melting lines and aniso-
i tropic V-1 curves. It is significant that the model predicts
&~ 0.4 anisotropicV-l curves so closely resembling the numerical
simulation ones.These curves follow from the relationship
0.2 between the c¢.m. velocity and the driving force, El).
The only approximation used in our solution of this equation
is the mean-field treatment of Langevin equations for the
0.0 whole vortex lattice. Our results for thél curves show that
40 this approximation is justifiable.
a5 The model can be also applied along the lines described
] here to study the effects of weak random potentials, either
30 4 from material defects or from imperfections in the pinning
25 ] Moving vortex array, on the melting lines and-lI curves. It can also be
°% ] lattice generalized to study transverse pinning more rigorously.
20 1 Work along these lines is under way and will be reported
15 ] elsewhere.
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APPENDIX

FIG. 5. Top: dynamical melting lines foe in the range 10°

< =40°. Bottom: dynamical phase diagrd®g vs a for T=0. To obtain the perturbation expansion of Etyjl) we write

it, using Eq.(3), as

The dynamical melting linesy,, vs F4 are shown in the duy(t) _
top panel of Fig. 5 for severat. In the bottom panel, the U, Z—KU|(I)+2 Flé-Pelet
dynamical phase diagraRy vs a for T=0 is shown. Théd-4 Q
vs « dynamical melting line in the bottom panel corresponds N,
to the intersections of thé,,, vs F4 curves shown in Fig. 5 E N, 8 —1)e'QRi+u®ly
top with theT=0 line. We find that for other temperatures Nv =1 b
T<T, the F4 vs a phase diagrams are similar. (A1)

where F&P=—iQU%P and wg=Q-v. Expandinge'®" to

first order, and carrying out the Fourier transformation in
In conclusion then, we introduce a simple dynamicaltime, assuming periodic boundary conditions in the time in-

model for vortex lattices flowing elastically in the presenceterval (0r), justifiable for larger (7>a,/v), we find

of periodic pinning. The model is solved by a perturbation

IV. CONCLUSION

method that allows the calculation of the dynamical melting F“ P 1 M

curves, using Lindemann criterion, and of tiel curves. uj(@)=uf( wHE WN_ Z (N, &, —

This approach is valid for periodic pinning potentials in gen- -

eral, and predicts that the moving vortex-lattice melting tem- xeiQ‘Ri[éw'_wQJr iQ-Uj(w+wg)], (A2)

perature varies significantly with the c.m. velocity only for

strong pinning. The perturbation solution is applied to awhereulT(w) is the thermal displacement

square pinning lattice. The results show qualitative agree-

ment with numerical simulation onés® Namely, (i) the pre- . I'(o)

dicted dynamical melting temperature approaches the ther- U (w)= m (A3)
mal equilibrium one in the limit of very large center of mass

velocities, and decreases with the velocity. The model prel (o) is the Fourier transform of the random force, afid
dicts that this decrease is, essentiallypas. (i) The center denotes the Kronecker delta. The first order solution for
of mass velocity is not parallel to the driving force in gen- u;(w) is obtained by neglecting the linear term in E42).
eral, leading to anisotropi¢-lI curves. The vortex lattice is We find
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5P e QR particular vortexl, u?=(1/7) f5(|u;(t)|?), which up to the
u(w)=ul(0)+ X —5w,w : (A4)  second order in the pinning potential is expressed by
Q Inwgtk Q
v- V-PLiK-R

To derive Eq.(A4) we useE;\':Ule'Q'RJ: dq,0, Since the vor- u2:2kBT n FQp' Fore™ ™ S
tex and pinning lattices are incommensurate. ok Q. nrejtk? Y

The second order solution is obtained by substitutino _ )
the linear term in the left hand side of E@2) by the first 2kgT 1 QRSP FUQ/p
order solution. The result is + N.

k N, ‘G 772w(23+4/<2

v-p e
U(w)=uD(w) +2 _Fo X[(N,—2)e'" R+ 84 _o/]. (A6)
—inwt« Taking the average over thd, vortices and assuminiy,
1 N, >1, Eq.(13) is derived.
— 2 (N,3,,—1)e?RiQ. ujT(w+wQ) A similar procedure is used to calculate the driving force
N = ' dependence of. Expanding Eq(7) in the form
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wherewg =Q’-v, wx=K-v, andK=Q+Q’. With this so-  and using the second order solution fof(t) we obtain
lution, one can calculate the mean square displacement forEg. (14).
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