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Evidence for the double degeneracy of the ground state in the three-dimensionalÁJ spin glass
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A bivariate version of the multicanonical Monte Carlo method and its application to the simulation of the
three-dimensional6J Ising spin glass are described. We found that the autocorrelation time associated with
this particular multicanonical method was approximately proportional to the system volume, which is a great
improvement over previous methods applied to spin-glass simulations. The principal advantage of this version
of the multicanonical method, however, was its ability to access information predictive of low-temperature
behavior. At low temperatures we found results on the three-dimensional6J Ising spin glass consistent with
a double degeneracy of the ground state: the order-parameter distribution functionP(q) converged to two
delta-function peaks and the Binder parameter approached unity as the system size was increased. With the
same density of states used to compute these properties at low temperature, we found their behavior changing
as the temperature is increased toward the spin-glass transition temperature. Just below this temperature, the
behavior is consistent with the standard mean-field picture that has an infinitely degenerate ground state. Using
the concept of zero-energy droplets, we also discuss the structure of the ground-state degeneracy. The size
distribution of the zero-energy droplets was found to produce the two delta-function peaks ofP(q).

DOI: 10.1103/PhysRevB.66.054437 PACS number~s!: 75.10.Nr, 75.50.Lk, 05.10.Ln
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I. INTRODUCTION

Although a quarter century has passed since the pion
ing work on spin glasses by Edwards and Anderson,1 many
fundamental problems remain unsolved even for the simp
models of these materials.2 In the present paper, we repo
the results of Monte Carlo simulations of the thre
dimensional6J Ising spin glass, focusing on the nature
the low-temperature phase.3,4 We believe we have found im
portant evidence of a doubly degenerate ground state. W
the same density of states used to compute this evidence
found this character changing as the temperature is incre
toward the spin-glass transition temperature. Just below
temperature, the behavior is consistent with the stand
mean-field picture that has an infinitely degenerate gro
state.

The spin-glass state is characterized by rando
quenched exchange interactions with frustration. Often s
tems exhibiting this state are modeled by the6J Ising
model. In three dimensions this model is defined by
Hamiltonian1

H[2(
^ i , j &

Ji j s is j , ~1!

where the Ising spinss i fluctuate thermodynamically, while
each exchange interactionJi j is quenched to6J randomly.
The summation runs over the nearest-neighbor pair of s
on a cubic lattice.

The frustration of local spin configurations by the e
change interactions generates many local minima in the f
energy landscape, each minimum representing a seem
random configuration of the spins. At low temperatures,
0163-1829/2002/66~5!/054437~14!/$20.00 66 0544
er-

st

-

ith
we
ed
is
rd
d

ly
s-

e

es

e-
gly
e

spins, however, may freeze into some configuration, and
freezing is the essence of the spin-glass ‘‘order.’’ Because
the nature of this order, equilibration of spin glasses in sim
lations and experiments is often very hard.

A. Nature of the spin-glass phase

It is becoming increasingly accepted that the6J model
has a finite-temperature spin-glass phase transition in t
dimensions, particularly after several recent Monte Ca
studies.5–8 The nature of the low-temperature phase, ho
ever, is still controversial. Historically, the controversy h
been mainly between advocates of the mean-field picture
the droplet picture. The mean-field advocates maintain
existence of an infinite number of global minima of the fr
energy in the low-temperature phase. The condition is ca
replica symmetry breaking.9 The breaking of this symmetry
is rigorously true for the mean-field~Sherrington-
Kirkpatrick! model10,11 of spin glasses. The question
whether it is also found in finite-dimensional non-mean-fie
models. The droplet advocates,12–14on the other hand, asse
that the free-energy landscape has only two global min
that are connected through spin inversion symmetry. In
droplet picture, the nature of the three-dimensional grou
state is seemingly less exotic than in the mean-field pictu

The difference in the ground-state degeneracy betw
the two pictures becomes quantitative when we use the o
lap order parameter of the spin-glass phase.1 To define this
order parameter, we replicate the random exchange inte
tions in Eq.~1! and change the Hamiltonian to

H[2 (
a51,2

(
^ i , j &

Ji j s i
(a)s j

(a) , ~2!
©2002 The American Physical Society37-1
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where the superscript on the spin variables labels a rep
The overlap order parameter is then defined as the Hamm
distance between spin configurations of the two replicas1

q5
1

Ld (
i 51

Ld

s i
(1)s i

(2) . ~3!

Here L is the linear size of the system andd is the dimen-
sionality, which is three throughout the paper.

The spins of one replica and those of the other are th
modynamically independent. Still they can be correlated
cause of the common random exchange interactions. In
high-temperature limit, the spin configurations are uncor
lated, and hence the overlap order parameter tends to ze
L2d/2. In the low-temperature limit, on the other hand, t
spin configurations are frozen into energy minima, and he
the overlap order parameter can have a finite value.

In the droplet picture, the overlap order parameter at l
temperatures and in the thermodynamic limit can take o
two values equal and opposite to each other, as the fro
spin configuration of one replica is either macroscopica
identical to the configuration of the other replica or to
inverted configuration.~We note, however, that the identit
needs only to be macroscopic; the configurations can d
locally.! Hence the overlap order parameterq takes one of
the two values with an equal probability. In the mean-fie
picture, on the other hand, the overlap order parameter
take various values. Because of the many free-ene
minima, the frozen spin configurations of the two replic
can be macroscopically different.

More explicitly, we define the order-parameter distrib
tion as

P~q![F 1

ZE D~E,q!e2bEdEG
av.

, ~4!

where the partition function is given by

Z[(
$s%

e2bE($s%)5E dqE dED~E,q!e2bE. ~5!

In these two equationsD(E,q) is the normalized density o
states for the energyE and the overlap order parameterq.
The energy in Eqs.~4! and ~5! and other energies hereaft
~including those in the Monte Carlo simulations! are the en-
ergies of replica Hamiltonians~2!. The square brackets in Eq
~4! denote the random average over various samples$Ji j %.
The distributionP(q) is normalized so that

E P~q!dq5
2

L3 (
q521

q51

P~q!51. ~6!

Physical quantities that are functions ofq only are calculated
as

@^ f ~q!&#av.5E f ~q!P~q!dq, ~7!

where the angular brackets denote the thermodynamic a
age, e.g., the spin-glass susceptibility
05443
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xsg5Ldb2@^q2&2^q&2#av. ~8!

and the Binder parameter

gsg~T,L ![
3

2 S 12
@^q4&#av.

3@^q2&#av.
2 D . ~9!

The droplet picture and the mean-field pictures have
functional forms ofP(q) as shown in Fig. 1. In the drople
picture, the order-parameter distribution in the thermod
namic limit has two delta-function peaks, indicating two po
sible thermodynamic states@Fig. 1~a!#. In the mean-field pic-
ture the order-parameter distribution is continuous betw
these peaks@Fig. 1~b!#.

In practice, we can only simulate finite systems, for whi
the order-parameter distribution looks like Fig. 1~c!. We need
to see whether the distribution in Fig. 1~c! converges to Fig.
1~a! or Fig. 1~b! asL→`. If lim L→`P(0)→0, then signifi-
cant doubt is cast upon the mean-field picture.

While some simulations appear to support infin
degeneracy,15–17 others do not,18–22 and a recent analytic
treatment argues against it.23,24 We note that the droplet pic
ture is a theory concerning thezero-temperature fixed point
while most studies suggesting the validity of the mean-fi
picture are based on numerical estimates ofP(0) atT only as
low as 0.7Tc , where the glass-transition temperatureTc is
approximately 1.0. If the doubly degenerate ground state
dicted by droplet picture is correct, it should at least be s
at temperatures lower than 0.7Tc , the closer toT50 the
better. Unfortunately, the slow dynamics of spin glasses
hindered numerical simulations from exploring the vicini
of the zero-temperature fixed point. We comment that a
cent numerical study25 demonstrated that results of th
Migdal-Kadanoff approximation appear to support the me
field picture near and below the glass transition temperat
but eventually support the droplet picture asT→0. Uncer-
tainty, however, remains because the Migdal-Kadanoff
proximation favors the droplet picture, even for the mea
field model.26,27

During the course of our work and just after, the possib
ity that the behavior of the spin glass does not unequivoc
fit into one of these two pictures over the entire temperat
range began to be appreciated. For example, Krzakala
Martin28 proposed the perspective that the entropy fluct
tions lead to a trivialP(0) at zero temperatures, even if the

FIG. 1. The functional form of the order-parameter distributi
P(q) in the low-temperature phase:~a! According to the droplet
picture.~b! According to the mean-field picture.~c! For finite-sized
systems.
7-2
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EVIDENCE FOR THE DOUBLE DEGENERACY OF THE . . . PHYSICAL REVIEW B 66, 054437 ~2002!
are zero-energy large-scale excitations~complex energy
landscape!. They further proposed that such a situati
should arise in the the three-dimensional6J Ising spin glass,
and argued that if the energy landscape is complex wit
finite number of ground-state families, then replica symm
try breaking reappears at finite temperatures. This pers
tive contested the standard picture. Palassini and Young19–21

studied this scenario and concluded that the size depend
of P(q) around q50 is trivial and does not support th
ultrametric picture.

Katzgraber and co-workers29,30 addressed the issue o
Gaussian versus bimodal distribution by simulating at fin
temperatures the Gaussian exchange model, and concl
that as in the bimodal exchange modelP(0) is trivial in the
thermodynamic limit and suggested the existence of
finite-energy excitations that cost finite energy and wh
surface has a fractal dimension less than the spatial dim
sion of the system. However, the sizes they studied w
quite small, and so they concluded there might be a cro
over at larger sizes to a different behavior, such as a dro
or replica symmetry breaking picture.

Two related papers by Hed and co-workers31,32 suggest
that the spin-glass phase possesses some characterist
the mean-field description as a nontrivialP(0) and a hierar-
chical ~but not ultrametric! structure of the pure states; ne
ertheless, they also claim that this phase is consistent
the Fisher-Huse scenario of the droplet picture. Correla
spin domains serve as the cores of zero enegy excitatio

The recent work of Marinariet al.33 adopted the cluste
analysis of Hedet al.34 and found strong continuity amon
physical features forT.0 and those found atT50, leading
to a scenario with emerging mean-field-like characteris
that are enhanced in the large volume limit forT.0. These
mean-field-like features arise with entropic fluctuation
More recently Lamarcqet al.35 have studied the fractal di
mension of the clusters that are the low-lying excitations
the model.

There are still other papers, for example Refs. 36–39
illustrating a shift from simply the droplet versus the mea
field picture to something more subtle, with a consensus
very much evolving. One focus is on the nature and g
metrical structure of ground-state excitations.

B. Present study

In the present study, we significantly reduced the di
culty of the slow dynamics in Monte Carlo simulations b
using a bivariate version of Berg and Neuhaus’s multicano
cal Monte Carlo method. Multicanonical simulations are p
formed independent of temperature or of a range of nea
temperatures and estimate the density of states. From i
can in principle calculate expectation values at any temp
tures. Our resulting estimates ofP(0) at low temperatures
and as a function of lattice size suggest that at very
temperatures thermodynamic behavior could be consis
with a doubly degenerate ground state, while at higher te
peratures it is consistent with an infinitely degenerate gro
state. Hence, we found that an intrinsic temperatu
independent quantity seemingly exhibited different-looki
equilibrium behaviors at different temperatures.
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We present our Monte Carlo results in Sec. II. The ord
parameter distribution functionP(q) at the low temperature
of T50.3 exhibits features indicative of a doubly degener
ground state:P(0) decreases as the system size is increa
The low-temperature behavior of the Binder parameter a
suggests double degeneracy. In Sec. III we discuss fur
implications of our results for the ground-state degenera
In the Appendix, we describe our simulation method, nam
a bivariate multicanonical Monte Carlo method. Monovaria
multicanonical methods40,41 have been applied to spi
glasses before;42–44 we found, however, that by using a b
variate version we could reduce the correlation time of
simulation significantly. We show that the autocorrelati
time is approximately proportional to the system size.

II. NUMERICAL RESULTS

We have carried out a bivariate multicanonical Mon
Carlo simulation of cubic systems with edgesL54 ~1904
samples!, L56 ~2843 samples!, L58 ~1015 samples!, and
L510 ~1111 samples!. The simulation method directly re
turns the density of statesD(E,q), a temperature-
independent quantity. We describe the details of the met
and its use in the Appendix; however, because the metho
subtle, relatively new, and quite different from standa
methods, we now summarize some of what is discusse
the Appendix.

With the multicanonical method, sometimes called the
tropic sampling method, we do not equilibrate the simulat
at any value ofT; that is, we never sample the steady-sta
distribution, generated by a Markov chain, that is suppo
to represent the Boltzmann distribution. Instead, we sam
from a steady-state distribution, generated by a Mark
chain, that is adaptively constructed to be flat on the avera
The flatness means we sample all accessible (E,q) values
with an equal probability. In other words, we sample allther-
modynamicsstates equally. In fact, the sampling emphasiz
regions whereD(E,q) is small and as a consequence a
generally difficult to access with many other methods.

Sampling from this flat distribution also allows one
estimateD(E,q). We obtainD(E,q) for different system
sizes. Once we obtain it for a given size, we can in princi

FIG. 2. The temperature dependence of the order-parameter
tribution P(q) for L58. The curves with the peak positions order
from right to left correspond toT50.3,0.4,0.5, . . . ,2.0. The statis-
tical errors are indicated only at each peak position. We plotted o
for 0<q<1, evoking the symmetryP(2q)5P(q).
7-3
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FIG. 3. The size dependence of the order-parameter distributionP(q). ~a! A linear plot for T50.5 and forL54,6,8, and 10. The peak
position moves left as the system size is increased. Because the data points are very dense forL510, the error bar is shown only at the pea
where the statistical error is the largest.~b! A semilogarithmic plot forT50.5. The error bars are shown only for a part of the data poi
~c! A linear plot forT50.4 and forL54,6, and 8. The peak position moves left as the system size is increased.~d! A semilogarithmic plot
for T50.4. The error bars are shown only for a part of the data points.~e! A linear plot forT50.3 and forL54,6, and 8. The peak position
moves left as the system size is increased.~f! A semilogarithmic plot forT50.3. The error bars are shown only for a part of the data poi
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obtain the properties of the system for any temperature;
is, properties of the system at different temperatures, no m
ter how different they may seem, all follow from the sam
D(E,q).

The validity of our low-T predictions depends on th
‘‘flatness’’ extending to the ground-state energy. As we d
cuss more fully in the Appendix, flatness over the ent
range of energy is not essential if not assumed in the ev
ation of expectation values. The multicanonical method g
erally is a good ground-state sampler. This conclusion is s
ported in part by our to-be-reported rapid convergence of
entropy of the ground state for lowT. As we will show, our
estimates of the ground state residual entropy are consi
with the ones which Hartmann obtained by a ground-s
05443
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counting algorithm.45 This agreement is one reason why w
are confident our simulations are covering low-energy sta
properly. At high temperatures, we will also see that the sa
D(E,q) estimates the Binder parameter to within two sigm
with the previous results.5

A. Order-parameter distribution

From the density of statesD(E,q), we straightforwardly
calculated the order-parameter distributionP(q), following
Eq. ~4!. Figure 2 shows the temperature dependence ofP(q)
for L58. The function is close to a Gaussian distribution
high temperatures and has a double-peak structure at
temperatures. The results forT50.3,0.4, and 0.5 are show
7-4
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EVIDENCE FOR THE DOUBLE DEGENERACY OF THE . . . PHYSICAL REVIEW B 66, 054437 ~2002!
in Fig. 3 for several values ofL. We clearly see the decrea
ing tendency ofP(0) asL→`. The raw data, however, pre
sumably underestimate the true values ofP(0): the P(q)
data forL58 noticeably oscillate forq<0.7, with the data
point atq50 happening to be in a valley of the oscillatio
We presume that this oscillation is due to correlations
tween data at different values ofq, for example, the data
point P(0) being correlated withP(0.01); similar oscilla-
tions are seen in the data of others21,34,42that was obtained by
quite different methods. The present numerical method, s
marized in the Appendix, generates a random walk in
macroscopicphase space. The frequency of access by
random walker may be statistically less in some area of
phase space. The density of states will be underestimate
such an area. Thus correlations between data at different
ues ofq can occur.

To obtain proper estimates ofP(0), we have to smooth
out the oscillations. We did this by choosing seven d
points at the intervals ofDq.0.1 over the range 0<q
,0.7 and then least-squares fitting them to the funct
ln P(q).c01c1q

2. The fitting parameterc0 yields the esti-
mate P(0)5exp(c0). The smoothed curves and the thu
estimated values ofP(0) are shown in Fig. 4 forT50.3. We
still see the decreasing tendency with increasingL.

On the other hand, forT>0.7, P(0) does not show this
tendency, even though its value is calculated with the us
the sameD(E,q) ~Fig. 5!. In fact, P(0) appears to converg
to a finite value, a behavior which we now argue is spu
ously consistent with the low-temperature behavior predic
by the mean-field picture.

Independent of the degeneracy, we know from the sca
ansatz that at the critical pointT5Tc ;1, P(0) should in-
crease asL→`. On the other hand, at very low temper
tures, double degeneracy requires thatP(0) should decrease
and infinite degeneracy requires that it should tend to a c
stant. What follows from our computedD(E,q) for different
system sizes is shown in Fig. 6. NearTc , P(0) does increase
with an increasingL. At lower temperatures, however,
tends to a constant, a behavior supporting infinite deg
eracy. At still lower temperatures, it tends to zero, a behav
consistent with double degeneracy. We note that a cross
scenario from critical and mean-field behaviors to drop
behavior was predicted from the Migdal-Kadano

FIG. 4. The fitting curves forP(q) and the estimates ofP(0).
Error bars are shown at only select points to illustrate the typ
error in different ranges ofq.
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approximation.25 In particular we point out the similarity o
our Fig. 6 to their Fig. 5. We thus suggest that most previo
Monte Carlo studies, claiming to see behavior supporting
mean-field picture~infinite degeneracy!, based on results fo
T only as low as 0.7, missed behavior consistent with
droplet picture~double degeneracy! which only appears a
much lower temperatures.

Palassini and Young21 have studied the scaling of th
smoothed quantityx(1/2)5*21/2

1/2 P(q)dq, and found a cross-
over scaling betweenT50 behavior, wherex(1/2) becomes
trivial for L→` and finite-temperature behavior, where t
nontrivial part ofP(q) has a much weaker dependence onL
and is possibly size independent. The crossover is consis
with the qualitative features of our results. In fact, Palass
and Young’s Fig. 4, showing this crossover, is striking
similar to our Fig. 6. The remark by Palassini and Young t
our P(0) drops dramatically at lowT as L increase was
based on the preliminary analysis of our data whereP(0)
was determined in the absence of the smoothing. Palas
and Young also point to possible different behavior betwe
models with Gaussian distributed exchange interactio
whereP(0) might be non-trivial asL→` and bimodal ones,
whereP(0) becomes trivial.

We also note the recent zero temperature work by H
Domany, and Hartmann.34 These investigators also found th
need to smooth the values ofP(q), and for better statistics
they chose to studyx* 5*0.4

0.7P(q)dq. In the ground state
they claim thatx* scales to a small non-trivial value. To b
more precise, they first separatedP(q) into a part that comes
from the large peaks close toq561 that have an
L-dependent tail atq50 which scales to zero and into a pa
more proper to ground-state excitations whose scaling witL
is the central issue. For this latter part they claimx* is non-
trivial in the thermodynamic limit.

B. Binder parameter

The Binder parameter for spin glassesgsg , defined by Eq.
~9!, is essentially the kurtosis of the order-parameter dis
bution P(q). Because of the dimensionless combination
the second and fourth moments, this parameter~except for
effects due to correction to scaling! is expected to be inde
pendent of the system size at fixed points, i.e.,T50, T
5Tc , andT→`. For conventional phase transitions such
ferromagnetic transitions, its temperature dependence
various system sizes has a crossing point at the critical t
perature. At the high-temperature (T→`) fixed point, the
order-parameter distributionP(q) should be Gaussian
Hence we should have

E q4P~q!dq53S E q2P~q!dqD 2

~10!

or

@^q4&#av.53@^q2&#av.
2 . ~11!

Thus the high-temperature fixed-point value of the Bind
parameter is zero, i.e.,gsg(`,L)50. In the high-temperature
phase, the Binder parametergsg(T,L) is renormalized to be

l

7-5
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FIG. 5. The size dependence of the order-parameter distributionP(q). ~a! A linear plot for T50.8 andL54,6,8, and 10. The peak
position moves left as the system size is increased. Because the data points are very dense forL510, the error bar is shown only at the pea
where the statistical error is the largest.~b! A semilogarithmic plot forT50.8. The error bars are shown only for a part of the data poi
~c! A linear plot forT50.7 and forL54,6,8, and 10. The peak position moves left as the system size is increased. ForL510, the error bar
is shown only at the peak.~d! A semilogarithmic plot forT50.7. The error bars are shown only for a part of the data points.~e! A linear plot
for T50.6 and forL54,6,8, and 10. The peak position moves left as the system size is increased. ForL510, the error bar is shown only
at the peak.~f! A semi-logarithmic plot forT50.6. The error bars are shown only for a part of the data points.
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zero from above asL→`. At the low-temperature (T50)
fixed point, on the other hand, if the order parameter ta
only two values6q0, as in the thermodynamic limit of usua
ferromagnets, we have

@^q4&#av.5@^q2&#av.
2 5q0

4 ~12!

and hence the fixed-point value of the Binder paramete
unity: gsg(0,L)51. In the low-temperature phase, the Bind
parametergsg(T,L) is renormalized to be unity from below
as L→`. At T5Tc , the Binder parametergsg(Tc ,L) is
expected to have a nontrivial universal value between z
and unity. Thus the crossing point ofgsg(T,L) should give
the critical temperatureTc .
05443
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Our Monte Carlo simulation found the crossing point
the Binder parameter as shown in Fig. 7.46 The critical point
Tc should be in the region 0.8>Tc >1.1. For the moment,
because of strong corrections to scaling, it is difficult for
to carry out sophisticated scaling analysis and obtain a m
accurate estimate ofTc . Previous studies5–8 on much larger
systems claimTc .1.1.

We now offer further evidence for a doubly degenera
ground state, as opposed to an infinitely degenerate one
reporting our results for the low-temperature behavior of
Binder parameter in Fig. 8. These results strongly sugg
that the Binder parameter tends to unity asT→0 and L
→`. This behavior is consistent with Fig. 1~a! and not with
7-6
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EVIDENCE FOR THE DOUBLE DEGENERACY OF THE . . . PHYSICAL REVIEW B 66, 054437 ~2002!
Fig. 1~b!, as the Binder parameter is less than unity even
T50 andL→`. Our Monte Carlo results thus clearly su
port double degeneracy~see Fig. 9!.

C. Residual entropy

We calculated the entropy density from the difference
tween the energy and the free energy, i.e.,

s5
@^E&#av.2F

NT
, ~13!

whereF is the free energy calculated from the Monte Ca
outputD(E,q) via

F52
1

b
logZ52

1

b
logS (

E,q
D~E,q!e2bED . ~14!

Figure 10 shows the energy and free-energy densities.
difference between them is shown in Fig. 11. It is clear t
at T50.1 the estimates of the entropy are virtually the
sidual entropy atT50. The residual entropy is plotted i
Fig. 12. The convergence to the thermodynamic limit is qu
rapid and the entropy seems to remain finite in the therm
dynamic limit. Hartmann45 also observed a rapid conve

FIG. 6. The size dependence ofP(0) for T
51.1,1.0,0.9, . . . ,0.3. The data forT50.8 appear to be indepen-
dent ofL, but the data at lower temperatures reveal features of
droplet picture. The data in this figure were obtained after d
processing illustrated in Fig. 4.

FIG. 7. The temperature dependence of the Binder param
g(T,L) for L54,6, and 8. The statistical errors are comparable
the symbol size.
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gence to a finite entropy from a ground-state search on
tems up toL58. He obtained a similar estimate of th
residual entropys(T50)50.051(3)kB .

Although Hartmann used the existence of the residual
tropy as evidence for the mean-field picture, its existenc
on the contrary entirely consistent with the droplet pictu
The degeneracy of the ground states predicted by these
tures is the degeneracy of thermodynamic~macroscopic!
states, while the residual entropy comes from the degene
of microscopic states. The distinction is important to note

Because the energy of a finite-sized6J model is discrete,
there is an inevitable degeneracy of the ground states.
issue is whether the degeneracy arises from these m
scopically degenerate states or from many macroscopic
different states. To make the distinction clearer, we will no
consider a toy model in which we quench the exchange
teractions into a periodic configuration with a unit cell
linear sizel. This model has a ground state with a period
spin configuration. We will assume, however, that every u
cell has one connected cluster of spins such that the
inversion of the cluster does not change the ground-state
ergy ~See Fig. 13!. We refer to such spin clusters as ‘‘zero
energy droplets.’’12,47 The number of such droplets in a sy
tem of linear sizeL is Nzed5(L/ l )d, where d is the
dimensionality. The degeneracy of the ground-state energ
2Nzed. Therefore, the residual entropy density of the t
model takes a finite value

stoy ~T50!5L2d3kB ln~2Nzed!5kB l 2d ln 2. ~15!

e
a

ter
o

FIG. 8. The temperature dependence of the Binder param
g(T,L) for L54,6, and 8.

FIG. 9. The size dependence of the Binder parameter aT
50.3. The Binder parameter is approaching unity rapidly.
7-7
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NAOMICHI HATANO AND J. E. GUBERNATIS PHYSICAL REVIEW B66, 054437 ~2002!
This model, on the other hand, produces aP(q) consis-
tent with the droplet picture: Consider two replicas of the t
model. Without loss of generality, we can fix the spin co
figuration of one replica and calculate contributions fro

FIG. 10. The temperature dependence of the energy density
the free-energy density.~b! is an enhanced view of~a!. The statis-
tical errors are smaller or comparable to the symbol size.

FIG. 11. The temperature dependence of the entropy density~b!
is an enhanced view of~a!. The statistical errors are smaller o
comparable to the symbol size.
05443
-

different spin configurations of the other replica. The dist
bution of the order parameter is given by

uqu51 with the probability 22Nzed,

uqu5122v/Ld with the probability 22Nzed3Nzed ,

uqu5124v/Ld with the probability 22Nzed3
1

2
Nzed

3~Nzed21!,

•••

uqu5122nv/Ld with the probability 22NzedS Nzed

n D ,

•••, ~16!

wherev is the volume of each zero-energy droplet. In t
thermodynamic limitL→` or equivalentlyNzed→`, the
probability for n5Nzed/2 overwhelms and henceP(q) con-
verges to a delta-function peak at

q512
Nzed

2
2vLd512

v

l d
. ~17!

nd

FIG. 12. The size dependence of the residual entropy. The
tistical errors are smaller than or comparable to the symbol siz

FIG. 13. Toy model with a finite residual entropy density a
delta-function peaks inP(q). In the figure,L is the linear size of the
whole system,l is the size of the unit cell, andv is the volume of a
zero-energy droplet.
7-8
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EVIDENCE FOR THE DOUBLE DEGENERACY OF THE . . . PHYSICAL REVIEW B 66, 054437 ~2002!
and to a second delta-function peak at2q.

III. GROUND-STATE DEGENERACY OF THE ÁJ MODEL

The toy model just introduced is easily converted to
more realistic one for the ground-state degeneracy of the6J
model by allowing unequally sized droplet volumesv i @ i
51,2,3, . . . ,Nzed(L)#. In defining the volume of these drop
lets, we always take the minimal volume; for example, i
zero-energy droplet contains another zero-energy droplet
decompose them into two droplets as shown in Fig. 14
addition, the possible maximum volume of the zero-ene
droplet isLd/2: if there is a zero-energy droplet larger th
the half of the system, we redefine the original ground-s
spin configuration by flipping the largest zero-energy drop

The ground-state degeneracy is 2Nzed(L), and hence the
residual entropy density is given by

s~T50;L !5L2dkB ln~2Nzed(L)!5L2dNzed~L !kB ln 2.
~18!

We now define the distribution of the zero-energy droplets
nzed(v) so that we have

Nzed~L !5LdE
1

Ld/2
nzed~v !dv. ~19!

and we rewrite Eq.~18! as
05443
e
n
y

te
t.

s

s~T50;L !5kB ln 23E
1

Ld/2
nzed~v !dv. ~20!

Next, we consider the ground-state value of^uqu&, and
again we fix the spin configuration of one replica to t
original ground-state spin configuration. Various contrib
tions come from the spin configurations of the other replic
with some of the zero-energy droplets flipped. We extend
~16! and obtain

FIG. 14. If a zero-energy droplet contains another zero-ene
droplet as shown on the left, we define the volumes of the t
droplets as shown on the right.
uqu51 with the probability 22Nzed,

uqu5122v i /Ld with the probability 22Nzed for i 51,2, . . . ,Nzed,

uqu5122~v i1v j !/L
d with the probability 22Nzed for i , j 51,2, . . . ,Nzedwith i , j ,

•••

uqu512~2/Ld! (
m51

n

v i m
with the probability 22Nzed

for i 1 ,i 2 , . . . ,i n51,2, . . . ,Nzed with i 1, i 2,•••, i n,

••• . ~21!
Summing all contributions, we find

^uqu&512
2

2NzedLd F(
i

v i1(
i , j

~v i1v j !1•••G512azed ,

~22!

where

azed~L ![
1

Ld (
i 51

Nzed

v i5E
1

Ld/2
vnzed~v !dv. ~23!

We can now computêq2& in the same way and obtain
^q2&5
1

2Nzed
F(

i
H 12

2

Ld
v iJ 2

1(
i , j

H 12
2

Ld
~v i1v j !J 2

1•••G , ~24!

which reduces to

^q2&5~12azed!21bzed ~25!

or

^q2&2^uqu&25bzed , ~26!

where
7-9
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bzed~L ![
1

L2d (
i 51

Nzed

v i
25

1

LdE1

Ld/2
v2nzed~v !dv. ~27!

Similarly we have

^q4&23^q2&212^uqu&4522gzed , ~28!

where

gzed~L ![
1

L4d (
i 51

Nzed

v i
45

1

L3dE1

Ld/2
v4nzed~v !dv. ~29!

If the order-parameter distributionP(q) has only two
delta-function peaks at theL→` limit, then the left-hand
sides of Eqs.~26! and~28! vanish. This condition is satisfie
if the density distribution of the zero-energy dropletsnzed(v)
decays fast enough asv→`. If nzed(v) decays exponen
tially, the integrals in Eqs.~27! and ~29! give finite values;
hencebzed(L)5O(L2d) andgzed(L)5O(L23d). If nzed(v)
decays as v2x with x.2, we have bzed(L)
5O(L2dmin(1,x22)) andgzed(L)5O(L2dmin(3,x22)).

On the other hand, if the order-parameter distribut
P(q) has a nontrivial part asL→`, azed(L), bzed(L), and
gzed(L) all give finite values asL→`. These conditions are
satisfied if the distribution function decays asnzed(v)
;v22.

In our numerical results, bothbzed(L) and gzed(L) ap-
pear to be decreasing asL is increased~Fig. 15!. The de-
crease is roughlyO(L21), although the statistical errors ar
too large to make a more definite statement. This behavio
additional evidence for a doubly degenerate ground st
From our numerical results we suggest that the size distr
tion of the zero-energy droplets decays asnzed(v);v2x with
x.2.

FIG. 15. The size dependence of~a! bzed(L) and ~b! gzed(L).
Both quantities are vanishing asL→`.
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IV. SUMMARY

The results of our multicanonical Monte Carlo calculati
suggest a doubly degenerate ground state. Our main find
supporting double degeneracy are:~i! P(q) near q.0 de-
creasing at low temperatures as the system size is increa
~ii ! the Binder parameter approaching unity at low tempe
tures;~iii ! the effect of the ground-state degeneracy on m
ments of the overlap order parameter. In different tempe
ture ranges, however, we further demonstrated, within fin
size limitations, that the same density of states gave diffe
scaling behaviors as a function of the system size. Only
very low temperatures is the scaling consistent with a dou
degenerate ground state.

We believe our numerical results are consistent with
cent analytic and numerical work and spin-glass them
pointing to a decoupling of the degeneracy of the grou
state from the standard droplet and mean-field pictures,
placing emphasis on the nature of the low-energy excitati
and entropic fluctuations with them. Our numerical wo
provides information on these excitations only through
density of states. TheP(0) predicted from this density o
states is trivial at low temperatures. For finite systems,
density of states predicts crossover thermodynamic beha
as the temperature is lowered.
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APPENDIX: MULTICANONICAL MONTE CARLO
METHOD

We will describe the multicanonical Monte Carlo metho
from a viewpoint4 slightly different from other authors.40–44

We first compare it with random-sampling and canoni
methods.

Suppose that we perform a Monte Carlo simulation aim
at sampling from the weightW(E). After the simulation has
equilibrated, that is, after the Markov chain reaches a stea
state, each microscopic state~spin configuration! is gener-
ated at a rate proportional toW(E). Also suppose that in
‘‘equilibrium’’ we construct a histogramh(E) of the energy
E values associated with each configuration~state! generated.
The rate at which a state with the energyE appears is pro-
portional toD(E)W(E), whereD(E) is the density of states

In a random-sampling simulation, one generates all
7-10
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croscopic states at the same rate. In other words,W(E)
5const, and hence the resulting histogram is proportiona
the density of states:h(E)}D(E) ~see Fig. 16!. In many
cases, the density of states becomes very small in low-en
regions. Hence simulations based on the random samp
generally have difficulty investigating low-temperature pro
erties because the low-energy states, which dominate
thermodynamic average at low temperatures, are gener
only infrequently, if at all.

Importance sampling algorithms, like the Metropolis a
gorithm for canonical ensemble, were developed to ov
come this difficulty. Here states are generated with the
portance weight W(E)}e2bE, and hence the energ
histogram ish(E)}e2bED(E). Thus, in ideal cases, low
energy states appear at a greater frequency at low temp
tures. In spin-glass simulations, however, the simulat
tends to get stuck in local minima of the free-energy lan
scape.

In the multicanonical simulations, the importance weig
is set to W(E)}1/D(E), and hence the energy histogra
should be flat. Of course, one cannot setW(E)}1/D(E) be-
cause the density of states isa priori unknown. However, the
multicanonical method is a procedure that makes the imp
tance weight converge to the reciprocal of the density
states.49 The aim is to ensure better statistics of low-ener
states than in the random-sampling method and, at the s
time, generate more high-energy states than in the cano
method so that the system can escape local free-en
minima.

Berg and others have invented40,41 and applied42–44 this
method to spin glasses, taking the weight of each spin c
figuration$s% either as

W~$s%!}1/D@E~$s%!# ~A1!

or

W~$s%!}1/D@q~$s%!#, ~A2!

whereD(E) is the density of states with respect to the e
ergy andD(q) is the one with respect to the overlap ord
parameter.

In the ideal situation, the multicanonical simulation effe
tively generates a random walk in the macroscopic ph
space. Because all the thermodynamic states should ap
with the same probability, one can expect that the autoco
lation time of a thermodynamic variable (E in the above

FIG. 16. Schematic of the histograms of energy values ge
ated in the random-sampling, canonical, and multicanonical si
lations.
05443
to

gy
ng
-
he
ted

r-
-

ra-
n
-

t

r-
f

y
me
cal
gy

n-

-

-
e

ear
e-

case! is proportional to the volume~the number of the sites!.
In the simulation of the6J model, the energy change afte
each spin flip is of the order ofJ. On the other hand, the
upper and lower bounds of the energy are of the order ofNJ,
whereN5Ld is the number of the spins. Hence the numb
of spin flips necessary for the random walk to cover t
entire energy phase space is on the average of the ord
N2. Thus if random walk is in energy space, a on
dimensional space, the measured energy should decorr
after N2 Monte Carlo steps orN Monte Carlo sweeps.~A
sweep is the attempt to flip each Ising spin once on avera!

This ideal situation was not achieved in the previous
plications of the multicanonical simulations to sp
glasses.42–44 Berg et al. reportedt}N2.8 for the importance
weight Eq. ~A1! ~Ref. 42! and t}N ~Refs. 2,42! for the
importance weight~A2!.44 ~Heret is measured in the unit o
Monte Carlosweep.! This suggests that the slow dynamics
the low-energy region was not removed completely in th
monovariate multicanonical simulations.~Note, however,
that Berget al. did not use the conventional definition of th
autocorrelation time in measurement oft. This might be a
contribution to the above power law-behavior.!

In the present study, we carried out the simulation us
the bivariate importance weight:

W}1/D~E,q!. ~A3!

As shown in Fig. 17~a!, we almost achieved the ideal situa
tion t}N. The random walk in the two-dimensional pha
space is illustrated in Fig. 17~b!. The autocorrelation plotted
in Fig. 17~a! was computed as follows: We first measured t
autocorrelation as the simple Monte Carlo average with
any weighting:

CE~ t ![
1

NMCS
(

j
E~ j !E~ j 1t !, ~A4!

Cq~ t ![
1

NMCS
(

j
q~ j !q~ j 1t !, ~A5!

whereNMCS is the number of Monte Carlo steps for me
surement. Then the autocorrelation time was computed as
integrated time:

tE[
1

CE~0! (
t50

t̃ E

CE~ t !, ~A6!

tq[
1

Cq~0! (
t50

t̃ q

Cq~ t !, ~A7!

wheret̃ E ( t̃ q) is defined as the time whenCE(t) @Cq(t)# first
becomes negative.

There is a drawback with the bivariate simulation: lar
electronic memory is needed to store the data from which
bivariate histogram is constructed. For the Ising model
used the number of all possible discrete states to equa
number of bins in the energy phase space. This number
of the order ofLd and was similarly sized in theq phase
space. Hence an array of the sizeL2d was necessary to stor

r-
u-
7-11
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NAOMICHI HATANO AND J. E. GUBERNATIS PHYSICAL REVIEW B66, 054437 ~2002!
each density of statesD(E,q), the histogramh(E,q), and
related work space. The combined storage requirem
amounted to nearly 30 MB per sample forL510 and 400
MB per sample forL516. Based on direct comparisons wi
the original mono-variate multicanonical method, we ha
however, concluded that for spin-glass simulations the us
both E andq is essential for improving the slow dynamics3

We comment that bivariate multicanonical Monte metho
have been previously used in different contexts, e.g., pro
folding simulations.50,51

The actual algorithm of the multicanonical method has
following structure:

~A! Make a guess at the density of states,D0(E,q). Start
the following loop withi 50.

~B! The outer loop~multicanonical-iteration loop!:
~a! Set the importance weight toWi51/Di . Calculate the

energy and the order parameter of the initial spin configu
tion, E0 andq0. Start the following loop withj 50.

~b! The inner loop~spin-update loop!:
~i! Choose a spin to be updated. Calculate the ene

and the order parameter,Ej8 andqj8 , assuming that the spin i
actually flipped.

~ii ! Calculate the spin-flip probability as

Pflip 5minS 1,
Wi~Ej8 ,qj8!

Wi~Ej ,qj !
D . ~A8!

~iii ! Draw a random numberRP@0,1#. If R,Pflip , flip
the spin and make the substitutionEj 115Ej8 andqj 115qj8 .

FIG. 17. ~a! System-size dependence of the autocorrelation t
t with respect toE andq. The dotted line represents the power la
t}N,2,42 which was reported in Ref. 44.~b! An example of the
random walk in the phase space (E,q). The system size simulate
here isL54. The time series of 2500 Monte Carlo sweeps af
equilibration is plotted.
05443
ts

,
of

s
in

e

-

y

Otherwise, keep the current spin configuration and make
substitutionEj 115Ej andqj 115qj .

~iv! Increment the histogram binhi(Ej 11 ,qj 11) by
one. This step should be skipped during the burn-in st
~specifically given below!, that is, until the simulation
reaches ‘‘equilibrium’’ for the importance weightWi .

~v! Increment the number of stepsj by one and go to
the step~i! until j exceeds a pre-determined number.

~c! Measure physical quantitiesQ(E,q) via

^Q& i5
1

Zi
(
E,q

Q~E,q!e2bEhi~E,q!Di~E,q!, ~A9!

where the partition-function estimate is given by

Zi5(
E,q

e2bEhi~E,q!Di~E,q!. ~A10!

In practice, this step was skipped until the histogramhi be-
came reasonably flat~see below for more specifics!.

~d! Update the guess of the density of states as follow49

Di 11~E,q!5
Di~E,q!~hi~E,q!11!

Normalizaion
. ~A11!

The normalization constant is chosen so that the integra
of the density of states becomes unity.~An extra count is
added to the histogram in~A11! in order to avoid zero divi-
sion in setting the next importance weightWi 1151/Di 11.49!

~e! Increment the number of multicanonical iterationsi by
one and go to the step~a!, until the histogram meets certai
conditions of being flat.

The method is an iterative procedure requiring an init
guessD0(E,q) of D(E,q). We found our average results t
be quite independent of this guess, but used the follow
particularly convenient and efficient choice: Our choice w
a flat one forL54, a case where the convergence was v
rapid. The results for this system size were then scaled
used for the starting points for larger systems.

For a given iteration, step~iv! should be skipped until the
simulation reaches ‘‘equilibrium’’ for the importance weigh
Wi . ForL54, 6, 8, and 10, we used 10 000, 40 000, 50 0
and 100 000 Monte Carlo sweeps for this burn-in stage. T
number of the burn-in sweeps were approximately a hund
times longer than the autocorrelation time given in F
17~a!. The autocorrelation times were determined before
began our production running. After the burn-in we used
000 000, 4 000 000, 5 000 000, and 10 000 000 sweeps
the different systems sizes during each iteration step; tha
the number of sweeps in each iteration was 10 000 times
measured autocorrelation time and one hundred times
burn-in time.

Step~c! was skipped until the histogramhi became rea-
sonably flat. The number of iterations required for this var
as function ofL and from one random bond configuration
another for a givenL. For L54, the range was 2–15; fo
L56 and 2–23; forL58 and 2–276; and forL510 and
4–227. True flatness is never achieved nor is it necess
What is important is that the histogram be reasonably fl
extends to the band edges, and lacks spikes at the b

e

r
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edges. In defining a ‘‘reasonable’’ flatness criteria, which
the criterion for the iteration to have converged, we we
motivated by the following observations: While convergin
the histogram typically is first concentrated in the midpart
the density of states and expands outward toward the u
and lower bounds of the energy~band edges! and the order
parameter until it becomes flat. At the leading edges, sp
structures sometimes appear as the histogram is cros
over from occupied to unoccupied states. When the edges
reached, the spikes disappear. We defined the histogram
flat, whenever the total count at the minimum energy a
that atE50 were within one sigma of the average histogra
count. In contrast to the usual Ising model, the band wi
for a bond configuration is not knowna priori, but it is easy
to estimate from short runs and then set it slightly larger th
expected to handle extremal states. In general, we found
multicanonical method to be an efficient estimator of t
lowest energy of a given bond configuration.

After convergence, we repeated the outer loop five tim
so that we could detect erroneous estimates of the densi
states; that is, using the just determinedD(E,q) as the start-
ing point, we repeated multicanonical procedure until fi
consecutive iterations maintained convergence. Testing
termined that five was an adequate number to avoid fa
convergence. We also divided the inner loop into ten bloc
from which we calculated the statistical errors. Because
length of each block is about 1000 times longer than
autocorrelation time, the absence of correlations betw
block averages is expected and standard estimates for s
tical error were used.

Because it is an importance estimator, Eq.~A9! could in
principle be applicable before the histogram becomes
that is,achieving flatness is not an essential requirement
the accuracy of the method if importance weighted estim
tors are used.Even with convergence, we used such estim
tors for the sake of caution.We only collected data for con
verged results.With sufficient statistics, the histogram
hi would be proportional to Wi(E,q)D(E,q)
5D(E,q)/Di(E,q), where D(E,q) is the true density of
states. Thus estimator~A9! would give
:

e
n

o
t
H
-

05443
s
e
,
f
er

y
ing
re
be
d

h

n
he
e

s
of

e-
se
s,
e
e
n

tis-

t;
r

a-
-

^Q& i.
1

Zi
(
E,q

Q~E,q!e2bED~E,q!, ~A12!

with the partition function

Z5(
E,q

e2bED~E,q!. ~A13!

We comment again that we could have calculated
physical quantities after the simulations were comple
provided we had stored the density of states for each ran
bond configuration on disk. This procedure would require
huge amount of disk space because of the need to simul
large number of random samples.

We also note that Marinariet al.52 have recently tried to
implement our bivariate version of Berg and Neuhaus’s m
ticanonical method and reported experiences very diffe
from ours. They reported difficulties in ergodicly sampli
the importance function, finding it only remained ‘‘flat’’ onl
by using an order of magnitude larger number of Mo
Carlo sweeps than we used. This would correspond to n
ing burn-in times and block sizes 1000 times our estima
autocorrelation time. More importantly the very small valu
of hi erratically riddling their histograms would translate in
very small values ofhi(E,q)Di(E,q), which should have
caused our measured values for a given bond configura
to vary widely. We did not observe this, and our estimate
the autocorrelation time were consistent for different sys
sizes. As mentioned above, most of our data analysis
done ‘‘on the fly’’ to avoid storage problems so we cann
re-examine the actual data for our reported results. Howe
after Marinariet al.’s difficulties were pointed out to us, w
immediately executed a number of simulations for theL
58 system size causing Marinariet al.’s problems and
looked at the same quantity that they reported in their Fig
We never saw the behavior that they claimed occurs.
origin of the discrepancy between their results and our
unknown to us.
/
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