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A bivariate version of the multicanonical Monte Carlo method and its application to the simulation of the
three-dimensionat- J Ising spin glass are described. We found that the autocorrelation time associated with
this particular multicanonical method was approximately proportional to the system volume, which is a great
improvement over previous methods applied to spin-glass simulations. The principal advantage of this version
of the multicanonical method, however, was its ability to access information predictive of low-temperature
behavior. At low temperatures we found results on the three-dimensiofidsing spin glass consistent with
a double degeneracy of the ground state: the order-parameter distribution fuR¢tjprconverged to two
delta-function peaks and the Binder parameter approached unity as the system size was increased. With the
same density of states used to compute these properties at low temperature, we found their behavior changing
as the temperature is increased toward the spin-glass transition temperature. Just below this temperature, the
behavior is consistent with the standard mean-field picture that has an infinitely degenerate ground state. Using
the concept of zero-energy droplets, we also discuss the structure of the ground-state degeneracy. The size
distribution of the zero-energy droplets was found to produce the two delta-function peBKg)of
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I. INTRODUCTION spins, however, may freeze into some configuration, and this
freezing is the essence of the spin-glass “order.” Because of
Although a quarter century has passed since the pioneethe nature of this order, equilibration of spin glasses in simu-
ing work on spin glasses by Edwards and Andersamny  lations and experiments is often very hard.
fundamental problems remain unsolved even for the simplest
models of these materiafsin the present paper, we report
the results of Monte Carlo simulations of the three- ] o )
dimensional+J Ising spin glass, focusing on the nature of |t iS becoming increasingly accepted that thd model
the low-temperature phaéé.We believe we have found im- hgs a f!nlte-temp_erature spin-glass phase transition in three
portant evidence of a doubly degenerate ground state. Witﬁ'm‘?ns'%‘s' particularly after several recent Monte Carlo
the same density of states used to compute this evidence, V%Ud'e_é? The nature of the low-temperature phase, how-
found this character changing as the temperature is increas€§e': iS still controversial. Historically, the controversy has
toward the spin-glass transition temperature. Just below thig®€n mainly between advocates of the mean-field picture and
temperature, the behavior is consistent with the standart'® droplet picture. The mean-field advocates maintain the
mean-field picture that has an infinitely degenerate groung*isténce of an infinite number of global minima of the free
state. energy in the low-temperature phase. The condition is called
The spin-glass state is characterized by randoml;_feplic_a symmetry breakingThe breaking_ of this symmetry
quenched exchange interactions with frustration. Often sysS rigorously tru% nfor the mean-field(Sherrington-
tems exhibiting this state are modeled by thel Ising Kirkpatrickl modet®!! of spin glasses. The question is

model. In three dimensions this model is defined by thé/vhether it is also found in finite-dimensional non-mean-field
Hamiltoniark models. The droplet advocat¥s1#on the other hand, assert

that the free-energy landscape has only two global minima

that are connected through spin inversion symmetry. In the

E—Z Jijoioj, (1) droplet picture, the nature of the three-dimensional ground

{i.J) state is seemingly less exotic than in the mean-field picture.

where the Ising spins; fluctuate thermodynamically, while The d|_fference n the groun(_j-st_ate degeneracy between
the two pictures becomes quantitative when we use the over-

each exchange interactidly is quenched tatJ randomly. . . .
The summation runs over the nearest-neighbor pair of sitelé‘p order parameter of the spin-glass phaJe. define this

. . rder parameter, we repli he random exchange interac-
on a cubic lattice. order parameter, we replicate the random exchange interac

The frustration of local spin configurations by the ex- tions in Eq.(1) and change the Hamiltonian to
change interactions generates many local minima in the free-
energy landscape, each minimum representing a seemingly =3 > 0@ ®)
random configuration of the spins. At low temperatures, the Slaf TV

A. Nature of the spin-glass phase
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where the superscript on the spin variables labels a replica P(g) P(g) P(g)
The overlap order parameter is then defined as the Hammini
distance between spin configurations of the two replicas:
1 5
= (1)) 3
a Ld izl oy oy ( ) . 0 -l 0 >~q 0 q
HereL is the linear size of the system adds the dimen- (a) (b) (©

sionality, which is three throughout the paper. . o

The spins of one replica and those of the other are ther- FIC_;. 1. The functional form of the order-pr_;\rameter distribution
modynamically independent. Still they can be correlated beP(d) in the low-temperature phaséa) According to the droplet
cause of the common random exchange interactions. In th@cture.(b) According to the mean-field picturéc) For finite-sized
high-temperature limit, the spin configurations are uncorreSYStems:
lated, and hence the overlap order parameter tends to zero as dn2r /2 5
L9, In the low-temperature limit, on the other hand, the Xsg=LB(a%) = (@) Tav. ®)
spin configurations are frozen into energy minima, and henc
the overlap order parameter can have a finite value.

In the droplet picture, the overlap order parameter at low 3 4
temperatures and in the thermodynamic limit can take only Oe(T,L)== 1_% ) (9)
two values equal and opposite to each other, as the frozen 9 2 3[(g?) 13,
spin configuration of one replica is either macroscopically
identical to the configuration of the other replica or to its The droplet picture and the mean-field pictures have the
inverted configuration(We note, however, that the identity functional forms ofP(q) as shown in Fig. 1. In the droplet
needs only to be macroscopic; the configurations can diffepicture, the order-parameter distribution in the thermody-
locally.) Hence the overlap order parametetakes one of namic limit has two delta-function peaks, indicating two pos-
the two values with an equal probability. In the mean-fieldsible thermodynamic stat¢Big. 1(a)]. In the mean-field pic-
picture, on the other hand, the overlap order parameter camire the order-parameter distribution is continuous between
take various values. Because of the many free-energthese peakfFig. 1(b)].

minima, the frozen spin configurations of the two replicas In practice, we can only simulate finite systems, for which

&nd the Binder parameter

can be macroscopically different. the order-parameter distribution looks like Figcil We need
More explicitly, we define the order-parameter distribu-to see whether the distribution in Fig(cl converges to Fig.
tion as 1(a) or Fig. Ab) asL—ce. If lim_,,,P(0)—0, then signifi-
1 cant doubt is cast upon the mean-field picture.
_| = —BE While some simulations appear to support infinite
P(a@) {ZJ' D(E.q)e dE} ’ @ degeneracy?~!’ others do not®=2?? and a recent analytic

" treatment argues againstit>*We note that the droplet pic-

where the partition function is given by ture is a theory concerning theerotemperature fixed point,
while most studies suggesting the validity of the mean-field
ZEE e—EE({a}):J' dqf dED(E,q)e ™ PE. (5) picture are based on numerical estimateB @) atT only as
{o} low as 0.7, where the glass-transition temperatdrgis

In these two equationB (E,q) is the normalized density of approximately 1.0. If the doubly deg_enerate ground state pre-
states for the energ§ and' the overlap order parametgr dicted by droplet picture is correct, it should at least be seen
The energy in Eqs(4) and (5) and other energies hereafter at temperatures lower than 0, the .closer tO.TZO the
(including those in the Monte Carlo simulatiorare the en- b_etter. Unfortunately, _the SIQW dynamics of Spin glass_e_s_has
ergies of replica Hamiltonian@). The square brackets in Eq. hindered numerical simulations from exploring the vicinity

(4) denote the random average over various samfled of the zero-temperature fixed point. We comment that a re-
The distributionP(q) is normalized so that 5 cent numerical study demonstrated that results of the

Migdal-Kadanoff approximation appear to support the mean-

o -1 field picture near and below the glass transition temperature,
f P(q)dg= — P(g)=1. (6) but eventually support the droplet picture Bs-0. Uncer-
L3 q="1 tainty, however, remains because the Migdal-Kadanoff ap-
Physical quantities that are functionsgbnly are calculated ﬁ;?;lmﬁgggsfgvors the droplet picture, even for the mean-

as During the course of our work and just after, the possibil-

ity that the behavior of the spin glass does not unequivocally
[(f(q)>]a\,_=f f(q)P(qg)daq, (7)  fitinto one of these two pictures over the entire temperature
range began to be appreciated. For example, Krzakala and
where the angular brackets denote the thermodynamic avekartin®® proposed the perspective that the entropy fluctua-
age, e.g., the spin-glass susceptibility tions lead to a triviaP(0) at zero temperatures, even if there
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are zero-energy large-scale excitatiofmmplex energy We present our Monte Carlo results in Sec. Il. The order-
landscape They further proposed that such a situationparameter distribution functioR(q) at the low temperature
should arise in the the three-dimensional Ising spin glass, of T=0.3 exhibits features indicative of a doubly degenerate
and argued that if the energy landscape is complex with ground stateP(0) decreases as the system size is increased.
finite number of ground-state families, then replica symme-The low-temperature behavior of the Binder parameter also
try breaking reappears at finite temperatures. This perspesuggests double degeneracy. In Sec. Il we discuss further
tive contested the standard picture. Palassini and Youfy  implications of our results for the ground-state degeneracy.
studied this scenario and concluded that the size dependenitethe Appendix, we describe our simulation method, namely
of P(g) aroundq=0 is trivial and does not support the a bivariate multicanonical Monte Carlo method. Monovariate
ultrametric picture. multicanonical method8*! have been applied to spin
Katzgraber and co-workeéis®® addressed the issue of glasses befor&~**we found, however, that by using a bi-
Gaussian versus bimodal distribution by simulating at finitevariate version we could reduce the correlation time of the
temperatures the Gaussian exchange model, and concludsignulation significantly. We show that the autocorrelation
that as in the bimodal exchange mo@l0) is trivial in the  time is approximately proportional to the system size.
thermodynamic limit and suggested the existence of low
finite-energy excitationg that_cost finite energy an_d W_hose Il. NUMERICAL RESULTS
surface has a fractal dimension less than the spatial dimen-
sion of the system. However, the sizes they studied were We have carried out a bivariate multicanonical Monte
quite small, and so they concluded there might be a cros$arlo simulation of cubic systems with edges-4 (1904
over at larger sizes to a different behavior, such as a dropletampley L =6 (2843 samples L=8 (1015 samples and
or replica symmetry breaking picture. L=10 (1111 samples The simulation method directly re-
Two related papers by Hed and co-worker€ suggest turns the density of statedD(E,q), a temperature-
that the spin-glass phase possesses some characteristicsirafependent quantity. We describe the details of the method
the mean-field description as a nontrivia{0) and a hierar- and its use in the Appendix; however, because the method is
chical (but not ultrametrit structure of the pure states; nev- subtle, relatively new, and quite different from standard
ertheless, they also claim that this phase is consistent witmethods, we now summarize some of what is discussed in
the Fisher-Huse scenario of the droplet picture. Correlatethe Appendix.
spin domains serve as the cores of zero enegy excitations.  With the multicanonical method, sometimes called the en-
The recent work of Marinaret al*® adopted the cluster tropic sampling method, we do not equilibrate the simulation
analysis of Hecet al** and found strong continuity among at any value ofT; that is, we never sample the steady-state
physical features fof >0 and those found a&t=0, leading distribution, generated by a Markov chain, that is supposed
to a scenario with emerging mean-field-like characteristicgo represent the Boltzmann distribution. Instead, we sample
that are enhanced in the large volume limit Tor 0. These from a steady-state distribution, generated by a Markov
mean-field-like features arise with entropic fluctuations.chain, that is adaptively constructed to be flat on the average.
More recently Lamarceet al®® have studied the fractal di- The flatness means we sample all accessiBlg) values
mension of the clusters that are the low-lying excitations ofwith an equal probability. In other words, we sampletiadr-
the model. modynamicstates equally. In fact, the sampling emphasizes
There are still other papers, for example Refs. 36—39, altegions whereD(E,q) is small and as a consequence are
illustrating a shift from simply the droplet versus the mean-generally difficult to access with many other methods.
field picture to something more subtle, with a consensus still  Sampling from this flat distribution also allows one to
very much evolving. One focus is on the nature and geoestimateD(E,q). We obtainD(E,q) for different system
metrical structure of ground-state excitations. sizes. Once we obtain it for a given size, we can in principle

B. Present study 5 ——————————r

In the present study, we significantly reduced the diffi-
culty of the slow dynamics in Monte Carlo simulations by
using a bivariate version of Berg and Neuhaus’s multicanoni-
cal Monte Carlo method. Multicanonical simulations are per-
formed independent of temperature or of a range of nearby
temperatures and estimate the density of states. From it we
can in principle calculate expectation values at any tempera-
tures. Our resulting estimates Bf(0) at low temperatures
and as a function of lattice size suggest that at very low
temperatures thermodynamic behavior could be consistent
with a doubly degenerate ground state, while at higher tem- F|G. 2. The temperature dependence of the order-parameter dis-
peratures it is consistent with an infinitely degenerate groungibution P(q) for L=8. The curves with the peak positions ordered
state. Hence, we found that an intrinsic temperaturefrom right to left correspond td=0.3,0.4,0.5. . . ,2.0. The statis-
independent quantity seemingly exhibited different-lookingtical errors are indicated only at each peak position. We plotted only
equilibrium behaviors at different temperatures. for 0<q=1, evoking the symmetr?(—q)=P(q).

P(q)
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FIG. 3. The size dependence of the order-parameter distribBtigp. (a) A linear plot forT=0.5 and forL=4,6,8, and 10. The peak
position moves left as the system size is increased. Because the data points are very dend® foine error bar is shown only at the peak,
where the statistical error is the larged) A semilogarithmic plot forT=0.5. The error bars are shown only for a part of the data points.
(c) Alinear plot forT=0.4 and forL=4,6, and 8. The peak position moves left as the system size is incréds@dsemilogarithmic plot
for T=0.4. The error bars are shown only for a part of the data pdigt#\ linear plot forT=0.3 and forL=4,6, and 8. The peak position
moves left as the system size is increag&dA semilogarithmic plot fofT=0.3. The error bars are shown only for a part of the data points.

obtain the properties of the system for any temperature; thatounting algorithnf> This agreement is one reason why we
is, properties of the system at different temperatures, no matre confident our simulations are covering low-energy states
ter how different they may seem, all follow from the sameproperly. At high temperatures, we will also see that the same
D(E,q). D(E,q) estimates the Binder parameter to within two sigmas
The validity of our lowT predictions depends on the with the previous results.
“flatness” extending to the ground-state energy. As we dis-
cuss more fully in the Appendix, flathess over the entire
range of energy is not essential if not assumed in the evalu-
ation of expectation values. The multicanonical method gen- From the density of statd3(E,q), we straightforwardly
erally is a good ground-state sampler. This conclusion is supsalculated the order-parameter distributiBgq), following
ported in part by our to-be-reported rapid convergence of th&q. (4). Figure 2 shows the temperature dependendeg(q)
entropy of the ground state for lolv. As we will show, our  for L=8. The function is close to a Gaussian distribution at
estimates of the ground state residual entropy are consistehigh temperatures and has a double-peak structure at low
with the ones which Hartmann obtained by a ground-statéeemperatures. The results for=0.3,0.4, and 0.5 are shown

A. Order-parameter distribution
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approximatiorf® In particular we point out the similarity of
our Fig. 6 to their Fig. 5. We thus suggest that most previous
Monte Carlo studies, claiming to see behavior supporting the
mean-field picturdinfinite degenerady based on results for

T only as low as 0.7, missed behavior consistent with the
droplet picture(double degeneragywhich only appears at
much lower temperatures.

Palassini and Yourfg have studied the scaling of the
smoothed quantit)((llz)zfl_’zl,zP(q)dq, and found a cross-
over scaling betweef =0 behavior, where(1/2) becomes
trivial for L—o and finite-temperature behavior, where the

q nontrivial part ofP(q) has a much weaker dependencelon

FIG. 4. The fitting curves foP(q) and the estimates ¢?(0). ~ @nd is possibly size independent. The crossover is consistent
Error bars are shown at only select points to illustrate the typicalVith the qualitative features of our results. In fact, Palassini
error in different ranges o and Young's Fig. 4, showing this crossover, is strikingly

similar to our Fig. 6. The remark by Palassini and Young that
in Fig. 3 for several values df. We clearly see the decreas- our P(0) drops dramatically at lowl as L increase was
ing tendency oP(0) asL—o. The raw data, however, pre- based on the preliminary analysis of our data whie(@)
sumably underestimate the true valuesR{0): the P(q) was determined in the absence of the smoothing. Palassini
data forL =38 noticeably oscillate fog<0.7, with the data and Young also point to possible different behavior between
point atg=0 happening to be in a valley of the oscillation. models with Gaussian distributed exchange interactions,
We presume that this oscillation is due to correlations bewhereP(0) might be non-trivial ak — and bimodal ones,
tween data at different values of for example, the data whereP(0) becomes trivial.
point P(0) being correlated witH?(0.01); similar oscilla- We also note the recent zero temperature work by Hed,
tions are seen in the data of ottér& *’that was obtained by Domany, and Hartmanif. These investigators also found the
quite different methods. The present numerical method, sutmeed to smooth the values Bf(q), and for better statistics
marized in the Appendix, generates a random walk in thehey chose to study* =[J/P(q)dg. In the ground state
macroscopicphase space. The frequency of access by thénhey claim thatx* scales to a small non-trivial value. To be

random walker may be statistically less in some area of thenore precise, they first separate¢l) into a part that comes

phase space. The density of states will be underestimated ffom the large peaks close tg==1 that have an

such an area. Thus correlations between data at different Val_-_dependent tail auzo which scales to zero and into a part

ues ofq can occur. more proper to ground-state excitations whose scaling lwith
To obtain proper estimates &(0), we have to smooth s the central issue. For this latter part they claifnis non-

out the oscillations. We did this by choosing seven datarivial in the thermodynamic limit.

points at the intervals ofAq=0.1 over the range €q

<0.7 and then least-squares fitting them to the function

In P(g)=cy+c,q% The fitting parametec, yields the esti- ) ) )

mate P(0)=exp(,). The smoothed curves and the thus-  The Binder parameter for spin glassgpg, defined by Eq.

estimated values d?(0) are shown in Fig. 4 fof =0.3. We (9),_ is essentially the kurtosis pf the_order-paramgter_dlstn—

still see the decreasing tendency with increading bution P(q). Because of the dlmens_lonless combination of
On the other hand, fof=0.7, P(0) does not show this the second and fourth moments, this parametecept for

tendency, even though its value is calculated with the use d¥ffects due to correction to scaling expected to be inde-

the sameD (E,q) (Fig. 5). In fact, P(0) appears to converge Pendent of the system size at fixed points, iB50, T

to a finite value, a behavior which we now argue is spuri-=Tc» @dT—. For conventional phase transitions such as

ously consistent with the low-temperature behavior predictederromagnetic transitions, its temperature dependence for

by the mean-field picture. various system sizes has a crossing point at the _crmcal tem-
Independent of the degeneracy, we know from the scalingerature. At the high-temperatur& {-o) fixed point, the

ansatz that at the critical poift=T,~1, P(0) should in- order-parameter distributiorP(q) should be Gaussian.

crease ag —o. On the other hand, at very low tempera- Hence we should have

tures, double degeneracy requires tRéd) should decrease, 2

and infinite degeneracy requires that it should ter_ld to a con- f q4p(q)dq:3( f qZP(q)dq) (10)

stant. What follows from our computdal(E,q) for different

system sizes is shown in Fig. 6. Nélar, P(0) does increase

with an increasingL. At lower temperatures, however, it

tends to a constant, a behavior supporting infinite degen- [{(q*]av. = 3[(a%) 13, (11)

eracy. At still lower temperatures, it tends to zero, a behavior

consistent with double degeneracy. We note that a crossovéhus the high-temperature fixed-point value of the Binder

scenario from critical and mean-field behaviors to dropletparameter is zero, i.eggg(0,L)=0. In the high-temperature

behavior was predicted from the Migdal-Kadanoff phase, the Binder parametgy,(T,L) is renormalized to be

B. Binder parameter
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FIG. 5. The size dependence of the order-parameter distrib&{op). (a) A linear plot for T=0.8 andL=4,6,8, and 10. The peak
position moves left as the system size is increased. Because the data points are very dend® foine error bar is shown only at the peak,
where the statistical error is the larged) A semilogarithmic plot forT=0.8. The error bars are shown only for a part of the data points.
(c) Alinear plot forT=0.7 and forL=4,6,8, and 10. The peak position moves left as the system size is increaségd= Fay the error bar
is shown only at the peakd) A semilogarithmic plot folT=0.7. The error bars are shown only for a part of the data pdigt# linear plot
for T=0.6 and forL=4,6,8, and 10. The peak position moves left as the system size is increaséd= EOr the error bar is shown only
at the peak(f) A semi-logarithmic plot forT=0.6. The error bars are shown only for a part of the data points.

zero from above a& —o. At the low-temperature = 0) Our Monte Carlo simulation found the crossing point of
fixed point, on the other hand, if the order parameter takethe Binder parameter as shown in Fig®7The critical point
only two values* gy, as in the thermodynamic limit of usual T, should be in the region 0z8T.=1.1. For the moment,

ferromagnets, we have because of strong corrections to scaling, it is difficult for us
to carry out sophisticated scaling analysis and obtain a more
4 — 2\12 _ 4
(9% ]av =[{a%)]a.=do (120 accurate estimate df. . Previous studigs® on much larger

and hence the fixed-point value of the Binder parameter i§ystems claimf,=1.1. _

unity: gsg(0,L) =1. In the low-temperature phase, the Binder ~We now offer further evidence for a doubly degenerate
parametelys,(T,L) is renormalized to be unity from below ground state, as opposed to an infinitely degenerate one, by
asL—o. At T=T,, the Binder parametegs, (T, L) is reporting our results for the low-temperature behavior of the
expected to have a nontrivial universal value between zer8inder parameter in Fig. 8. These results strongly suggest
and unity. Thus the crossing point g,(T,L) should give that the Binder parameter tends to unity Bs>0 and L

the critical temperaturd, . —oo, This behavior is consistent with Fig(a) and not with
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g(T,L) for L=4,6, and 8.
FIG. 6. The size dependence ofP(0) T

=1.1,1.0,0.9...,0.3. The data foiT =0.8 appearto be indepen-
dent ofL, but the data at lower temperatures reveal features of th
droplet picture. The data in this figure were obtained after datd®

processing illustrated in Fig. 4.

gence to a finite entropy from a ground-state search on sys-
ms up toL=8. He obtained a similar estimate of the

residual entropys(T=0)=0.051(3Xg .

Although Hartmann used the existence of the residual en-

Fig. 1(b), as the Binder parameter is less than unity even alfOPy as evidence for the mean-field picture, its existence is
T=0 andL—. Our Monte Carlo results thus clearly sup- ON the contrary entirely consistent with the droplet picture.
port double degeneradgee Fig. 9. The degeneracy of the ground states predicted by these pic-
tures is the degeneracy of thermodynanimacroscopic
states, while the residual entropy comes from the degeneracy
of microscopic states. The distinction is important to note.
We calculated the entropy density from the difference be- Because the energy of a finite-sized model is discrete,
tween the energy and the free energy, i.e., there is an inevitable degeneracy of the ground states. The
issue is whether the degeneracy arises from these micro-
s— [(E)]av.—F scopically degenerate states or from many macroscopically
NT ' different states. To make the distinction clearer, we will now
consider a toy model in which we quench the exchange in-
teractions into a periodic configuration with a unit cell of
linear sizel. This model has a ground state with a periodic
spin configuration. We will assume, however, that every unit
1 1 . ;
— Zlogz=— _|0g(2 D(E,q)eﬁE). (14)  cell has one connected cluster of spins such that the spin
B B Eq inversion of the cluster does not change the ground-state en-
Figure 10 shows the energy and free-energy densities. The & (See Fig. 1% We refer to such spin clusters as "zero-

12,47 : _
difference between them is shown in Fig. 11. It is clear thainrﬁrgg]c dlriﬁgfrtséize Ehg nﬁmbfr(lc_)}‘l_;,gchw?]r:rp:edtsi? ?hzys
zed ™ '

at T=0.1 the estimates of the entropy are virtually the re- di : . .
. = ) . : imensionality. The degeneracy of the ground-state energy is
sidual entropy afT=0. The residual entropy is plotted in oNeed, Therefore, the residual entropy density of the toy

Flg._ 12. The convergence to the therm_ody_nfiml_c limit is qu'temodel takes a finite value
rapid and the entropy seems to remain finite in the thermo-

dynamic limit. Hartmanf? also observed a rapid conver-

C. Residual entropy

13

whereF is the free energy calculated from the Monte Carlo
outputD(E,q) via

F=
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FIG. 7. The temperature dependence of the Binder parameter
g(T,L) for L=4,6, and 8. The statistical errors are comparable to

the symbol size.
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FIG. 9. The size dependence of the Binder parametef at
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FIG. 10. The temperature dependence of the energy density and
the free-energy densityb) is an enhanced view df). The statis-
tical errors are smaller or comparable to the symbol size.

lg|l=1-2nv/LY

This model, on the other hand, produce®@) consis-

tent with the droplet picture: Consider two replicas of the toy” ™ "

model. Without loss of generality, we can fix the spin con-
figuration of one replica and calculate contributions from

0

L3

T0.005 001 0015 002
FIG. 12. The size dependence of the residual entropy. The sta-

tistical errors are smaller than or comparable to the symbol size.

different spin configurations of the other replica. The distri-
bution of the order parameter is given by

with the probability 2 Nzed,
with the probability 2 NzedX N, oy,

1
with the probability 2*Nzed><§N

zed

X(Nzed_l)a

N
with the probability 2Nzed< Zed),
n

(16)

wherev is the volume of each zero-energy droplet. In the

thermodynamic limitL—oo or equivalentlyN,eq—, the

0.4 — . . - 7 probability forn=N,.4/2 overwhelms and hende(q) con-
= A verges to a delta-function peak at
e 7
= 03} y ]
fry o N v
7 % zed d
z =1- 20L%=1-—. 1
B oaf ik ] q > T (17)
> o 1
a o :
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FIG. 13. Toy model with a finite residual entropy density and

FIG. 11. The temperature dependence of the entropy deftsity. delta-function peaks i(q). In the figureL is the linear size of the
is an enhanced view ofa). The statistical errors are smaller or whole systemi is the size of the unit cell, and is the volume of a

comparable to the symbol size.
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and to a second delta-function peak-af).

Ill. GROUND-STATE DEGENERACY OF THE *=J MODEL

The toy model just introduced is easily converted to a
more realistic one for the ground-state degeneracy ofttie ‘
model by allowing unequally sized droplet volumes|i
=1,2,3 ... Nyq(L)]. In defining the volume of these drop-
lets, we always take the minimal volume; for example, if a
zero-energy droplet contains another zero-energy droplet, we
decompose them into two droplets as shown in Fig. 14. In
addition, the possible maximum volume of the zero-energy
droplet isLY/2: if there is a zero-energy droplet larger than  FIG. 14. If a zero-energy droplet contains another zero-energy
the half of the system, we redefine the original ground-stat@roplet as shown on the left, we define the volumes of the two
spin configuration by flipping the largest zero-energy dropletdroplets as shown on the right.

The ground-state degeneracy 822, and hence the
residual entropy density is given by

d

S(T=0;L)=kg In2><jL P hea(0)do. (20
1

S(T=0;L)=L %%gIn(2NzedcM)) =L ~9IN,4(L)kg In 2.
(18)

We now define the distribution of the zero-energy droplets as

N,eq(v) SO that we have Next, we consider the ground-state value(fd|), and

again we fix the spin configuration of one replica to the

o [L%2 original ground-state spin configuration. Various contribu-
Nzeq(L)=L L Nzed(v)dv. (19 tions come from the spin configurations of the other replicas
with some of the zero-energy droplets flipped. We extend Eq.
and we rewrite Eq(18) as (16) and obtain
|
[q=1 with the probability 2 Nzed,
lg|=1—2v;/L¢ with the probability 2 Nzed for i=1,2, ... Nyeq,

lal=1-2(vi+v;)/LY  with the probability 2 Nzed for i,j=1,2, ... N,eqwith i<j,

n
lal=1—(2L% > v,  with the probability 2 Nzed
m=1 M

foriqg,is, ... Jin=1,2,... NygWith i;<i,<---<iy,
(21)
T
Summing all contributions, we find 1 2 2 2
2\ _ - . .
<q >_2Nzed EI { dvl} +; {1 Ld(U|+UJ)]
=1-— 4 AN+ |=1—
<|q|> 2Nzed|_d[2i Uj IZJ (v U]) } Qzed s . (24)
(22
where which reduces to
<q2> =(1- azed)2+ Bzed (25
N
1 zed Ld/2
eo(L)= 5 2 vi=f1 oNgeg(v)dv. (23 O

<q2>_<|q|>2=ﬂzedv (26)

We can now computég?) in the same way and obtain  where
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Both quantities are vanishing &s— .

Nzed

1
Bzed(L)=—

1 (Ldp
L2d =1 viz:ﬁfl Uznzed(U)dU. (27)

Similarly we have

(@) =3(a*)?+2(|a))*= ~2vseq, (28)

where

_ Nzed 4 1 L4972
?’zed(L)=F 2 v

i L3d 1 (29)

v*N,eq(v)dv.

If the order-parameter distributio”P(q) has only two
delta-function peaks at the—o limit, then the left-hand

sides of Eqs(26) and(28) vanish. This condition is satisfied

if the density distribution of the zero-energy dropleisy(v)
decays fast enough as—». If n,.4(v) decays exponen-
tially, the integrals in Eqs(27) and (29) give finite values;
henceﬂzed(l—):o(l—_d) and')’zed(l—):o(l-_sd)- If Nyeq(v)
decays as v * with x>2, we have Byeq(l)
:O(L—dmin(lx—Z)) and ,yzed(L)zo(L—dmin(3)(—2))_

PHYSICAL REVIEW B66, 054437 (2002

IV. SUMMARY

The results of our multicanonical Monte Carlo calculation
suggest a doubly degenerate ground state. Our main findings
supporting double degeneracy afe: P(q) nearq=0 de-
creasing at low temperatures as the system size is increased;
(ii) the Binder parameter approaching unity at low tempera-
tures; (iii) the effect of the ground-state degeneracy on mo-
ments of the overlap order parameter. In different tempera-
ture ranges, however, we further demonstrated, within finite-
size limitations, that the same density of states gave different
scaling behaviors as a function of the system size. Only at
very low temperatures is the scaling consistent with a doubly
degenerate ground state.

We believe our numerical results are consistent with re-
cent analytic and numerical work and spin-glass themes
pointing to a decoupling of the degeneracy of the ground
state from the standard droplet and mean-field pictures, and
placing emphasis on the nature of the low-energy excitations
and entropic fluctuations with them. Our numerical work
provides information on these excitations only through the
density of states. Th®(0) predicted from this density of
states is trivial at low temperatures. For finite systems, our
density of states predicts crossover thermodynamic behavior
as the temperature is lowered.
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APPENDIX: MULTICANONICAL MONTE CARLO
METHOD

We will describe the multicanonical Monte Carlo method

On the other hand, if the order-parameter distributionfrom a viewpoint slightly different from other author®-**

P(q) has a nontrivial part as—©, a,.q(L), Bq(L), and

v,ed(L) all give finite values as — . These conditions are

satisfied if the distribution function decays ag.q(v)
-2
~U .
In our numerical results, botB,.4(L) and y,.q(L) ap-
pear to be decreasing asis increasedFig. 15. The de-

We first compare it with random-sampling and canonical
methods.

Suppose that we perform a Monte Carlo simulation aimed
at sampling from the weightV(E). After the simulation has
equilibrated, that is, after the Markov chain reaches a steady-
state, each microscopic statepin configuratiohis gener-

crease is roughD(L 1), although the statistical errors are ated at a rate proportional t/(E). Also suppose that in
too large to make a more definite statement. This behavior i%equilibrium” we construct a histogranm(E) of the energy
additional evidence for a doubly degenerate ground stateéE values associated with each configuratisiate generated.
From our numerical results we suggest that the size distributfhe rate at which a state with the eneifgyappears is pro-

tion of the zero-energy droplets decaysag;(v) ~v * with
X>2.

portional toD (E)W(E), whereD (E) is the density of states.
In a random-sampling simulation, one generates all mi-

054437-10
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A caseg is proportional to the volumé&he number of the sites
= S“\“\9\‘“‘% In the simulation of thetJ model, the energy change after
< (\ W each spin flip is of the order of. On the other hand, the
‘50 upper and lower bounds of the energy are of the ordé hf
S multicanonical whereN=L1 is the number of the spins. Hence the number
RZ of spin flips necessary for the random walk to cover the
T 03”01110&1 entire energy phase space is on the average of the order of

> F N2. Thus if random walk is in energy space, a one-

) . dimensional space, the measured energy should decorrelate

FIG. 16. Schematic of the histograms of energy values genersfiar N2 Monte Carlo steps oN Monte Carlo sweepsiA
atgd in the random-sampling, canonical, and multicanonical Simu'sweep is the attempt to flip each Ising spin once on average.
lations. This ideal situation was not achieved in the previous ap-

) plications of the multicanonical simulations to spin

croscopic states at the same rate. In other WoWIEE)  glassed?-44 Berg et al. reportedr=N28 for the importance
=const, and hence the resulting histogram is proportional tQueight Eq. (A1) (Ref. 42 and =N (Refs. 2,42 for the
the density of statesh(E)=D(E) (see Fig. 16 In many  jmportance weightA2).% (Here r is measured in the unit of
cases, the densny_ of sta_tes becomes very small in Iow-ene.rgMonte Carlosweep This suggests that the slow dynamics in
regions. Hence simulations based on the random samplinge |ow-energy region was not removed completely in these
generally have difficulty investigating low-temperature prop-monovariate multicanonical simulationgéNote, however,
erties because the low-energy states, which dominate th@at Berget al. did not use the conventional definition of the
thermodynamic average at low temperatures, are generatgghiocorrelation time in measurement of This might be a
only infrequently, if at all. contribution to the above power law-behavjor.

Importance sampling algorithms, like the Metropolis al- | the present study, we carried out the simulation using
gorithm for canonical ensemble, were developed to overihe pivariate importance weight:

come this difficulty. Here states are generated with the im-

portance weight W(E)xe #E, and hence the energy W 1/D(E,q). (A3)
histogram ish(E)xe PED(E). Thus, in ideal cases, low- - . . .
energy states appear at a greater frequency at low temperas S"OWn in Fig. 17), we almost achieved the ideal situa-

tures. In spin-glass simulations, however, the simulatiorFIon 7=N. The random walk in the two-dimensional phase

tends to get stuck in local minima of the free-energy land->Pace 1S illustrated in Fig. 16). The aL.Jtocor_reIatlon plotted
scape in Fig. 17a) was computed as follows: We first measured the

In the multicanonical simulations, the importance Weightautocorrelanon as the simple Monte Carlo average without

is set toW(E)=1/D(E), and hence the energy histogram any weighting:
should be flat. Of course, one cannot B{tE) = 1/D(E) be- 1
cause the density of statesagriori unknown. However, the Ce(t)= No— E E(j)E(j+1), (A4)
multicanonical method is a procedure that makes the impor- MCs
tance gveight converge to the reciprocal of the density of 1
state! The aim is to ensure better statistics of low-energy Co(h=—— 2 q(i)a(j+1), (A5)
states than in the random-sampling method and, at the same Nmcs
time, generate more high-energy states than in the canonic%}
method so that the system can escape local free-ener
minima.

Berg and others have invenf84* and appliet?~** this

here Ny cs is the number of Monte Carlo steps for mea-
Yirement. Then the autocorrelation time was computed as the
integrated time:

method to spin glasses, taking the weight of each spin con- 1 Te
figuration{c} either as Te= G 0 > Celt), (AB)
E t=0
W({o})>1/D[E({o})] (A1) 5
13
or 4= m tzo Cq(t), (A7)
W({o})=1/D[q({o})], (A2)

wherete (1) is defined as the time wheBg(t) [ Cq(t)] first
whereD(E) is the density of states with respect to the en-becomes negative.
ergy andD(q) is the one with respect to the overlap order There is a drawback with the bivariate simulation: large
parameter. electronic memory is needed to store the data from which the
In the ideal situation, the multicanonical simulation effec- bivariate histogram is constructed. For the Ising model we
tively generates a random walk in the macroscopic phasased the number of all possible discrete states to equal the
space. Because all the thermodynamic states should appearmber of bins in the energy phase space. This number was
with the same probability, one can expect that the autocorresf the order ofLY and was similarly sized in thg phase
lation time of a thermodynamic variabléE (in the above space. Hence an array of the slz& was necessary to store
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10° e ; I Otherwise, keep the current spin configuration and make the
- substitutionE; , ;=E; andq;,,=q;.

(iv) Increment the histogram bi;(E;,1,q;:+1) by
one. This step should be skipped during the burn-in stage
(specifically given below that is, until the simulation
reaches “equilibrium” for the importance weighv,; .

(v) Increment the number of stepdy one and go to
the step(i) until j exceeds a pre-determined number.

(c) Measure physical quantiti€3(E,q) via

1
(Qi=7 2 AEQe Fn(EQD(EQ. (A9)

where the partition-function estimate is given by
zi=; e #£hi(E,q)Di(E,q). (A10)

In practice, this step was skipped until the histogtanbe-
came reasonably fldsee below for more specifics
(d) Update the guess of the density of states as follbws:

Di(E,q)(hi(E,q)+1)
Normalizaion

Di+1(E,q)= (A11)

FIG. 17. (a) System-size dependence of the autocorrelation time
7 with respect t&E andq. The dotted line represents the power law The normalization constant is chosen so that the integration
7N, >*? which was reported in Ref. 44b) An example of the  of the density of states becomes unithn extra count is
random walk in the phase spacg,@). The system size simulated zdded to the histogram ifA11) in order to avoid zero divi-
herg_isL'=4._The time series of 2500 Monte Carlo sweeps aftergjgn in setting the next importance weight, ;=1/D;, 1.%%)
equilibration is plotted. (e) Increment the number of multicanonical iteratiorsy

, ) one and go to the stef@), until the histogram meets certain
each density of stateB(E,q), the histogramh(E,q), and  gnditions of being flat.

related work space. The combined storage requirements The method is an iterative procedure requiring an initial
amounted to nearly 30 MB per sample for=10 and 400 4yessD(E,q) of D(E,q). We found our average results to
MB per sample foi. = 16. Based on direct comparisons with e quite independent of this guess, but used the following

the original mono-variate multicanonical method, we haveticularly convenient and efficient choice: Our choice was
however, concluded that for spin-glass simulations the use of fiat one forL=4. a case where the convergence was very

both E andq is essential for improving the slow dynamits. rapid. The results for this system size were then scaled and
We comment that bivariate multicanonical Monte methodsused for the starting points for larger systems.

have been previously used in different contexts, e.g., protein gq, 4 given iteration, stefiv) should be skipped until the

folding simulations:>>* , _ simulation reaches “equilibrium” for the importance weight
The actual algorithm of the multicanonical method has theWi _ForL=4, 6, 8, and 10, we used 10 000, 40 000, 50 000,

following structure: _ and 100 000 Monte Carlo sweeps for this burn-in stage. The
(A) Make a guess at the density of sta®g(E,q). Start  ymper of the burn-in sweeps were approximately a hundred

the following loop withi=0. times longer than the autocorrelation time given in Fig.
(B) The outer loopmulticanonical-iteration loop 17(a). The autocorrelation times were determined before we

(&) Set the importance weight #;=1/D; . Calculate the  pegan our production running. After the burn-in we used 1
energy and the order parameter of the initial spin configuraggg 000, 4 000 000, 5 000 000, and 10 000 000 sweeps for
tion, Eq andqo. Start the following loop withj =0. the different systems sizes during each iteration step; that is,

(b) The inner loop(spin-update loop the number of sweeps in each iteration was 10 000 times the

(i) Choose a spin to be updated. Calculate the energyeasured autocorrelation time and one hundred times the
and the order parametﬁj’ andqj’ , assuming that the spinis pyrn-in time.

actually flipped. Step(c) was skipped until the histograim became rea-
(i) Calculate the spin-flip probability as sonably flat. The number of iterations required for this varied
. as function ofL and from one random bond configuration to
P.. =min(1 Wi(E; 'qi)> (A8) another for a giverL. For L=4, the range was 2-15; for
fiip " Wi(Ej,q)) ) L=6 and 2—23; forL=8 and 2-276; and fot. =10 and

4-227. True flatness is never achieved nor is it necessary.
(iii) Draw a random numbeéRe[0,1]. If R<Py, , flip  What is important is that the histogram be reasonably flat,
the spin and make the substituti&rj1+1=Ej’ andqj+1=qj’. extends to the band edges, and lacks spikes at the band
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edges. In defining a “reasonable” flatness criteria, which is 1
the criterion for the iteration to have converged, we were (Q)izz > Q(E,q)e #ED(E,q), (A12)
motivated by the following observations: While converging, i Eq
the histogram typically is first concentrated in the midpart of . )
the density of states and expands outward toward the upp¥fith the partition function
and lower bounds of the energpand edgesand the order
parameter until it becomes flat. At the leading edges, spiky
structures sometimes appear as the histogram is crossing z=2 e PED(E,Q). (A13)
over from occupied to unoccupied states. When the edges are £4
reached, the spikes disappear. We defined the histogram to be
flat, whenever the total count at the minimum energy and We comment again that we could have calculated all
that atE=0 were within one sigma of the average histogramphysical quantities after the simulations were completed,
count. In contrast to the usual Ising model, the band widthprovided we had stored the density of states for each random
for a bond configuration is not knowanpriori, but it is easy  bond configuration on disk. This procedure would requires a
to estimate from short runs and then set it slightly larger tharnuge amount of disk space because of the need to simulate a
expected to handle extremal states. In general, we found tHarge number of random samples.
multicanonical method to be an efficient estimator of the We also note that Marinagt al>? have recently tried to
lowest energy of a given bond configuration. implement our bivariate version of Berg and Neuhaus’s mul-
After convergence, we repeated the outer loop five timegicanonical method and reported experiences very different
so that we could detect erroneous estimates of the density éfom ours. They reported difficulties in ergodicly sampling
states; that is, using the just determirig¢E,q) as the start- the importance function, finding it only remained “flat” only
ing point, we repeated multicanonical procedure until fiveby using an order of magnitude larger number of Monte
consecutive iterations maintained convergence. Testing déarlo sweeps than we used. This would correspond to need-
termined that five was an adequate number to avoid falseng burn-in times and block sizes 1000 times our estimated
convergence. We also divided the inner loop into ten blocksautocorrelation time. More importantly the very small values
from which we calculated the statistical errors. Because thef h; erratically riddling their histograms would translate into
length of each block is about 1000 times longer than thevery small values oh;(E,q)D;(E,q), which should have
autocorrelation time, the absence of correlations betweeoaused our measured values for a given bond configuration
block averages is expected and standard estimates for statte-vary widely. We did not observe this, and our estimates of
tical error were used. the autocorrelation time were consistent for different system
Because it is an importance estimator, E49) could in  sizes. As mentioned above, most of our data analysis was
principle be applicable before the histogram becomes flatlone “on the fly” to avoid storage problems so we cannot
that is,achieving flatness is not an essential requirement fore-examine the actual data for our reported results. However,
the accuracy of the method if importance weighted estimaafter Marinariet al’s difficulties were pointed out to us, we
tors are usedEven with convergence, we used such estimaimmediately executed a number of simulations for the
tors for the sake of cautioW/e only collected data for con- =8 system size causing Marinaét al’s problems and
verged results.With sufficient statistics, the histogram looked at the same quantity that they reported in their Fig. 3.
h; would be proportional to W,(E,q)D(E,q) We never saw the behavior that they claimed occurs. The
=D(E,q)/D;(E,q), where D(E,q) is the true density of origin of the discrepancy between their results and ours is
states. Thus estimat¢A9) would give unknown to us.
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