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Infinite-range Ising spin glass with a transverse field under the static approximation

Do-Hyun Kim and Jong-Jean Kim*
Department of Physics, Korea Advanced Institute of Science and Technology, Taejon 305-701, Korea

~Received 21 March 2002; published 20 August 2002!

In this paper we investigate for the infinite-range Ising spin-glass model@i.e., the Sherrington-Kirkpatrick
~SK! model# with a transverse field under the static approximation by using the imaginary-time replica for-
malism. From the investigations we show three important results: First, we show that a replica-symmetric
quantum spin-glass phase is stable in most of the area of the spin-glass phase in the temperature-transverse
field phase diagram. This confirms the existence of a stable replica-symmetric spin glass phase under the static
approximation, which is contrary to some previous results derived without the static approximation where the
replica-symmetric solution is always unstable in the whole spin-glass phase. Second, we show our theoretical
result for the nonlinear susceptibilityxnl which conforms to the experimental result of nonlinear susceptibility
measurement by Wuet al. @Phys. Rev. Lett.71, 1919~1993!# in a quantum spin glass LiHoxY12xF4. Third, in
a classical~SK! spin-glass system, we confirm the anomaly in the second temperature derivative ofCH /T near
the glass transition temperatureTg , associated possibly with the field-dependent variation of entropy in the
spin glass transition, which agrees with the previous experimental observation in a classical spin glass system
CuMn by Fogleet al. @Phys. Rev. Lett.50, 1815~1983!#. We also show that this anomaly is suppressed by the
nonzero transverse field of the quantum spin glass system, by which we can check for the quantum tunneling
competing against spin freezing.

DOI: 10.1103/PhysRevB.66.054432 PACS number~s!: 75.10.Jm, 75.10.Nr, 75.40.Cx
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I. INTRODUCTION

A spin glass is a complex system characterized
quenched randomness and frustration leading to an irrev
ible freezing of spins to metastable states without long-ra
spatial order below the glass transition temperature (Tg).1 A
great many theoretical models for spin-glass systems h
been studied extensively using analytic solutions or co
puter simulation techniques.1 But the theory of spin glasse
has been concerned mostly with mean-field calculati
based on infinite-range models whose prototype is
Sherrington-Kirkpatrick ~SK! model.2 The de Almeida-
Thouless~AT! line3 of the SK model, in the presence of
mean interaction strength or an external field, separate
high-temperature paramagnetic or ferromagnetic ph
where the order parameter can be determined as unique
a low-temperature spin-glass phase which is defined in te
of an infinite number of order parameters, i.e., an order
rameter distribution function. Below the AT line the spi
glass phase is under the replica symmetry breaking~RSB!,
and in this phase there exists no stable-free energy minim
with single-valued magnetization and a spin-glass order
rameter, but there may be metastable free-energy val
with varying local magnetizations.4

The SK model of a spin glass predicts important qual
tive distinctions such as a cusp of linear susceptibilityx.
There have been variations of the SK model by the addi
of extra terms to the SK Hamiltonian applicable for syste
analogous to a spin glass. A well-known extension of the
model is the SK model with a transverse field, or the Is
spin glass model with tunneling5 for proton glass, a dielectric
analogous system of a spin glass formed from a mixed c
tal between ferroelectrics and antiferroelectrics such
Rb12x(NH4)xH2PO4 ~RADP-x).6 This SK model with a
0163-1829/2002/66~5!/054432~18!/$20.00 66 0544
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transverse field has been a useful model for the quantum
glass.7

A quantum spin glass, which has received great conc
since a seminal paper by Bray and Moore,8 has an interesting
feature that the glass transition in the system may be dri
by not only thermal but also quantum fluctuations. In t
case of the SK model with a transverse field, the transve
field ~G! introduces channels of quantum relaxation to byp
the activation barriers of classical spin glass suppressing
glass transition. As the quantum fluctuations tuned by
transverse field~G! carry spin-flips detrimental to the spin
glass phase, under a sufficiently large transverse field a p
boundary can be introduced in a spin glass even at z
temperature.7

The SK model with a transverse field may thus be appl
to a quantum spin-glass system of LiHoxY12xF4,9–11 a site-
diluted and isostructural derivative of the dipolar-coupl
Ising ferromagnet LiHoF4 (Tc51.53 K). In the absence of a
magnetic field LiHoxY12xF4 is a conventional spin glas
with a glass transition temperatureTg(x). But an externally
tunnable magnetic fieldHt transverse to the magnetic ea
axis, which is parallel to thec axis in this tetragonal system
induces quantum tunneling through the barrier separating
two degenerate ground states of the Ho31 ions, and thus
yields a splitting of the ground-state doublet. It is this sp
ting, proportional toHt

2 in the lowest order, which plays th
role of transverse field~G! in the present model Hamiltonian
As quantum tunneling competes against spin freezing,
spin-glass ground state is expected to be suppressed a
temperature if the tunneling splitting is sufficiently high.
was experimentally observed that LiHo0.167Y0.833F4 is para-
magnetic at all temperatures aboveHtc(0).12 kOe, and be-
low this critical field a line of temperature dependent critic
field Htc(T) separates between paramagnetic and spin g
phases.9,10 The SK model with a transverse field has th
©2002 The American Physical Society32-1
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been a useful model for the quantum spin gla
LiHoxY12xF4, especially for the phase diagram7 and the dy-
namic linear susceptibility,12 which were in qualitative agree
ment with experimental measurements. Although the
model with a transverse field has been the most real
model for quantum-spin glass LiHoxY12xF4, there are three
unsolved problems in this model.

~a! Whether the replica-symmetric solution in the qua
tum spin glass phase of the present model is stable, or no
in the classical case. One of the interesting questions
quantum spin-glass systems concerns the possibility of
neling through the barriers of the free-energy landscape
the classical spin glass of the SK model due to quan
fluctuations by the transverse field in the transverse field
model. In the classical case, the barriers separating the
leys increase in height with the macroscopic size of the s
tem. In the thermodynamic limit it thus becomes unable
cross the barrier by thermal fluctuations, thereby caus
nonergodicity with multidegenerate thermodynamic sta
Quantum spin, however, should not necessarily yield to
barrier height, and since the barrier width in configurati
space decreases with increasing system size, it may tu
through such barriers by quantum fluctuations. If the qu
tum fluctuations are strong enough to cause tunneling
tween energy barriers separating degenerate local minim
thermodynamic states, then an ergodic replica-symmetric
lution in the spin glass state may be stable. There has b
controversy about the nature of the spin glass phase of
SK model with a transverse field : Thirumalaiet al.,13 using
the static approximation proposed by Bray and Moor8

showed that there was a small intermediate region in
spin-glass phase where a replica-symmetric solution
stable, unlike the classical SK model without transve
field. Ray et al. performed Monte Carlo simulations whic
supported the stability of the replica-symmetric solution
the whole spin-glass phase.14 On the other hand, Bu¨ttner and
Usadel15 predicted, without assuming the spin se
interaction term to be static, that the replica-symmetric so
tion was always unstable in the whole spin glass pha
Goldschmidt and Lai16 and, independently, Bu¨ttner and
Usadel17 obtained the one-step replica-symmetry-break
solution also without assuming the spin self-interaction te
to be static, and found no evidence to support an interm
ate spin glass phase with replica symmetry.

~b! Can the present model show existence of the fi
order spin glass transition? This feature was suggested
nonlinear susceptibility measurements by Wuet al.:10

Above 25 mK, the phase transition was of the second or
as indicated by a divergence of the nonlinear susceptib
xnl . Below 25 mK, however, the divergence of the nonline
susceptibility was changed to a flat maximum, when
imaginary part of the low-frequency linear susceptibil
showed a sharp peak. Wuet al. concluded these features
suggest that at low temperatures the transverse-field-ind
spin glass transition turned to the first-order. But there
been no evidence for this first-order transition in the quant
spin-glass models including the SK model with a transve
field. Very recently, Cugliandoloet al.18 showed, from a
quantump-spin spherical spin glass model, a tricritical poi
05443
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that divides the critical transverse field lineGc(T) by a
second-order glass transition and a first-order transition.

~c! Can the present model show the anomaly in the te
perature derivatives of the specific heatCH? In spin-glass
systems the magnetic contribution to specific heatCH shows
a broad maximum and no anomaly at the glass transi
temperatureTg ,1,19 in contrast to the cusp anomalies inx
andxnl . The absence of a drastic change inCH at the glass
transition temperature implicates that the change of inte
energy may be too small to be observable and magn
anomalies such as the cusp in susceptibility may be produ
by a comparatively few degrees of freedom. But the sec
temperature derivative of the specific heat divided by te
peratureCH /T has been found to depict a weak anoma
near the glass transition temperature and was attributed to
entropy variation in the spin glass transition, which was o
served in the classical spin glass CuMn by Fogleet al.20 A
question arises: Is there also such a thermodynamic anom
in a quantum spin glass~GÞ0 in the present model!? If so, is
there any change in the anomaly with an increase of thG
value? It may be impossible to check for this anomaly fro
experiment because a very low temperature~below 1K as in
LiHoxY12xF4) is required for a quantum spin-glass tran
tion. At TÞ0 the quantum-mechanical effects may not
dominant in comparison with thermal effects; then there m
exist such a thermodynamic anomaly even in a quan
spin-glass transition because thermal fluctuations at non
temperature may have a larger thermodynamic effect i
spin glass than the quantum fluctuation induced by nonz
G. As quantum tunneling competes against thermodyna
spin freezing, we can also expect that the anomaly will
gradually suppressed by an increase of theG value.

Our goals are thus rewritten as follows:
~1! We are to investigate whether the replica-symme

solution of the SK model with a transverse field is unsta
in the whole spin-glass phase or not. For this, we will use
static approximation for all order parameters and calcu
the AT line analytically, which will be compared with phas
boundary line. If our conclusion is same as the one of Thi
malaiet al.,13 then we can accept that the quantum spin-gl
phase may be replica symmetric under the condition of
static approximation. But if not, then we must accept th
spin glass phase always shows replica-symmetry-break
irrespective of static or not, classical or quantum.

~2! Though no evidence has been found that
transverse-field-induced spin-glass transition becomes of
order, we calculate the nonlinear susceptibility, which
found to conform with the nonlinear susceptibility measu
ment by Wuet al.10 This suggests that the SK model with
transverse field may be a good realistic model for the qu
tum spin glass LiHoxY12xF4.

~3! We examine whether there exists anomaly in the s
ond temperature derivative of the specific heat divided
temperatureCH /T near the spin-glass transition temperatu
of the SK model with a transverse field or not. We will sho
that the classical SK model~G50! depicts the anomaly nea
the glass transition temperature, and check whether the q
tum spin glass transition~GÞ0! has any ~G dependent!
anomaly or not.
2-2
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In our paper we use the imaginary-time replica formali
which was introduced to quantum Heisenberg spin-gl
model by Bray and Moore,8 and applied to the SK mode
with a transverse field21 and the quantump-spin spherical
spin-glass model.18 This formalism is widely known for a
quantum spin glass together with the Trotter-Suz
formalism,22 which has also been used in many works
quantum spin glass.13,16,17We take the static approximatio
in the imaginary-time replica formalism to see whether
replica-symmetric solution of the present model is alwa
unstable in the whole spin-glass phase under the static
proximation or not, and also because the static approxi
tion is the only practical choice to obtain analytic solutio
instead of solutions of numerical simulations for the fr
energy, order parameters, resulting phase diagrams, and
physical quantities such as nonlinear susceptibilityxnl and
specific heatCH .

We investigate for the analytic solution of our concerni
model to obtain the free energy, order parameters and ph
cal quantities under the static approximation. First we w
present the procedure of imaginary-time replica formalism
obtain a general solution in Sec. II. We obtain the repli
symmetric solution under static approximation in Sec.
We derive the AT stability condition of the present model
Sec. IV. We obtain the replica-symmetry-breaking solut
under the static approximation in Sec. V. From the solutio
we will determine various phase diagrams for the system
Sec. VI. We present an analytic solution for nonlinear s
ceptibility xnl to be compared with experimental data10 of a
quantum spin glass LiHoxY12xF4 in Sec. VII. We will also
show some results associated with the specific heatCH to be
compared with experimental data of classical spin glass
Sec. VIII. In Sec. IX we will give our conclusion of the
present studies.

II. MODEL

The Hamiltonian of the infinite-range Ising model sp
glass with a transverse field is given by7

H52(
( i , j )

Ji j s i
zs j

z2G(
i

s i
x2H(

i
s i

z , ~1!

wheresz andsx denote the Pauli matrices, i.e.,

sz5S 1 0

0 21D and sx5S 0 1

1 0D , ~2!

( i , j ) are distinct pairs of spins with the total numberN, Ji j
are the quenched random exchange interaction variables,G is
the transverse field, andH is the external longitudinal field
The distribution ofJi j is taken to be Gaussian2 with a mean
of J0 /N and a variance ofJ2/N, i.e.,

P~Ji j !5AN/2pJ2 exp$2N~Ji j 2J0 /N!2/2J2%, ~3!

where the factor 1/N makes the thermodynamic quantitie
finite for N→`.

By the imaginary-time formalism8,21, the partition func-
tion of the system can be written as
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Z5Tr expF b̄G(
i

s i
xGT

3expF E
0

b̄
dtH(

i j
Ji j s i

z~t!s j
z~t!1H(

i
s i

z~t!J G ,
~4!

where t is the imaginary time,T is the time ordering
operator,sz(t) are the operators in the interaction represe
tation, @i.e., sz(t)5exp(H0t)sz exp(2H0t), where H0

52G( is i
x# and b̄51/T ~wherekB[1 for simplicity!. For

this model the free energy can be evaluated using the rep
method23 : 2b̄F5@ ln Z#J5limn→0(1/n)(@Zn#J21), where
@ #J indicates an average over the quenched disorder ofJi j .

The n-replicated partition function of the system can
written as

Zn5Tr expF b̄G(
i

(
a51

n

s ia
x GT

3expF E
0

b̄
dtH(

i j
(
a51

n

Ji j s ia
z ~t!s j a

z ~t!

1H(
i

(
a51

n

s ia
z ~t!J G , ~5!

wherea denotes the replica index. Performing the averag
Zn by P(Ji j ) and rearranging terms, one obtains

@Zn#J5Tr expF b̄G(
ia

s ia
x GT

3expF J2

2NE0

b̄
dtE

0

b̄
dt8H (

(ab)
S (

i
s ia

z ~t!s ib
z ~t8! D 2

1(
a

S (
i

s ia
z ~t!s ia

z ~t8! D 2J
1

J0

NE
0

b̄
dt(

a
S (

i
s ia

z ~t! D 2

1HE
0

b̄
dt(

a
S (

i
s ia

z ~t! D G , ~6!

where ~ab! denotes a summation overa and b~Þa!. The
squares@( is ia

z (t)s ib(a)
z (t8)#2 and@( is ia

z (t)#2 can be sim-
plified using the Hubbard-Stratonovitch transformation2

expH 1

2
la2J 5A l

2p E
2`

`

dx expH 2
1

2
lx21laxJ . ~7!

The resulting free energy can thus be obtained as2,8,13
2-3
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b̄F52 lim
n→0

1

n F E )
(ab)

ANJ2

2p
dyab~t,t8!

3)
a
ANJ2

2p
dwaa~t,t8!

3)
a
ANJ0

2p
dxa~t!exp$2NG~yab,waa,xa!%21G ,

where

G~yab,waa,xa!

[
1

4
J2E

0

b̄
dtE

0

b̄
dt8F (

(ab)
„yab~t,t8!…2

1(
a

„waa~t,t8!…2G
1

1

2
J0E

0

b̄
dt(

a
„xa~t!…22 ln Tr exp~H̃!,

with

exp~H̃![expF b̄G(
a

sa
x GT

3expH 1

2
J2E

0

b̄
dtE

0

b̄
dt8

3F (
(ab)

yab~t,t8!sa
z ~t!sb

z ~t8!

1(
a

waa~t,t8!sa
z ~t!sa

z ~t8!G
1E

0

b̄
dt(

a
~J0xa~t!1H !sa

z ~t!J .

Here the trace Tr is overn replicas at a single spin site.
In the thermodynamic limit (N→`) the integrals can be

performed by the method of steepest descent,2,8,13

E dy exp$2NG~y!%

'E dy expH 2NG~y0!2
1

2
NG9~y0!~y2y0!21•••J ,

~8!

whereG8(y0)50 defines a saddle pointy0. The Gaussian
term can be ignored forN→` with G9(y0)>0. Otherwise,
the resulting integral diverges and the saddle-point proced
fails. If we assumeG9(yab,waa,xa)>0, then this assump
tion enables us to replaceyab(t,t8), waa(t,t8), andxa(t)
by their stationary valuesQab(t,t8), Raa(t,t8), and
Ma(t), respectively:

Qab~t,t8![^Tsa
z ~t!sb

z ~t8!&,
05443
re

Raa~t,t8![^Tsa
z ~t!sa

z ~t8!&, Ma~t![^sa
z ~t!&, ~9!

where Qab(t,t8), Raa(t,t8), and Ma(t) represent the
spin-glass order parameter, the spin self-interaction,
the magnetization, respectively, and the^ & averages are
taken with respect to the effective HamiltonianH̃
5H̃@Qab(t,t8),Raa(t,t8),Ma(t)#.

Now we make the static approximation8,13,24 by
Qab(t,t8)5Qab, Raa(t,t8)5Raa andMa(t)5Ma. Then
the intensive free energyf [ limN→`F/N can be given as

b̄ f 5 lim
n→0

1

n F1

4
~ b̄J!2H (

(ab)
~Qab!21(

a
~Raa!2J

1
1

2
b̄J0(

a
~Ma!22 ln Tr exp~H̃8!G , ~10!

with the effective Hamiltonian

H̃8[
1

2
~ b̄J!2F (

(ab)
Qabsa

z sb
z 1(

a
Raa~sa

z !2G
1b̄ (

a
~J0Masa

z 1Hsa
z 1Gsa

x !.

III. REPLICA-SYMMETRIC SOLUTION

Here we take the replica-symmetric assumption2,13 to set
Qab5Q for all aÞb, andRaa5R andMa5M for all a. By
applying the Hubbard-Stratonovitch transform@Eq. ~7!# to
((asa

z )2, the free energy can be written as follows:

b̄ f 5
1

4
~ b̄J!2~R22Q2!1

1

2
b̄J0M22 lim

n→0

1

n

3 lnF E Dz TrexpH b̄(
a

n S 1

2
b̄J2~R2Q!~sa

z !2

1Hzsa
z 1Gsa

x D J G , ~11!

where *Dz•••[(1/A2p)*2`
` dzexp$21

2z
2%•••, and Hz

[JAQz1J0M1H. By using Xn5exp$n ln X%'11n ln X

for n→0 with X[Tra exp$b̄„1
2 b̄J2(R2Q)(sa

z )21Hzsa
z

1Gsa
x
…%, where the trace Tra is taken over a specific replic

at a single spin site, and ln(11nA)'nA for n→0, we finally
obtain

b̄ f 52
1

4
~ b̄J!2~R2Q!~22R2Q!1

1

2
b̄J0M2

2E Dz ln@2 cosh~ b̄AHz
21G2!#. ~12!

We can determineM, Q and R by the condition thatf
resumes the stable extrema when they are the rep
symmetric solutions.2,13 From this extremal condition we ca
obtain the self-consistent equations ofM, Q, andR:
2-4
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M5E Dz
Hz

AHz
21G2

tanh~ b̄AHz
21G2!, ~13!

Q5E Dz
Hz

2

Hz
21G2

tanh2~ b̄AHz
21G2!, ~14!

R5E Dz
Hz

2

Hz
21G2

~15!

We haveR51.0 atG50.0, when the free energyf, magneti-
zation M, and spin-glass order parameterQ are reduced to
those of the SK model.2 This criterion was not satisfied in th
earlier work of Thirumalaiet al.13,25 From the above solu
tions we can derive the replica-symmetric linear suscepti
ity x0 for J05H50.0 as

x05b̄~R2Q!, ~16!

and atG50.0 x0 can be seen to satisfy the so-called Fisc
relation.26

In Fig. 1~a! we show the spin-glass order parameterQ vs
temperatureT/J at various transverse fieldsG/J with a zero
external longitudinal fieldH/J50.0 and zero average inte

FIG. 1. ~a! Spin-glass order parameterQ vs temperatureT/J at
various transverse fieldsG/J with H/J50.0 andJ0 /J50.0. ~b!
Spin-glass order parameterQ vs transverse fieldG/J at various
temperaturesT/J with H/J50.0 andJ0 /J50.0.
05443
l-

r

action strengthJ0 /J50.0. As G/J increases,Q values are
seen to decrease in the whole temperature range and the
glass transition temperature is lowered. AtG/J50.0, Q in-
creases to 1 with decreasing temperature to zero. AtG/J
Þ0.0, however,Q increases with decreasing temperature
low the transition temperature but to a saturation value l
than 1, which decreases with increasingG/J. In Fig. 1~b! we
show the spin-glass order parameterQ vs transverse field
G/J at various temperaturesT/J with H/J50.0 andJ0 /J
50.0. AsT/J increases,Q values are seen to decrease in t
whole transverse field range and the critical transverse fi
Gc of the spin-glass transition is lowered. AtT/J50.0, Q
increases to 1 with decreasing transverse field to zero
T/JÞ0.0, however,Q increases with decreasing transver
field below a critical field but to a maximum value less th
1, which depends onT/J.

In Fig. 2 we show the free energyf vs temperatureT/J at
three selected transverse fieldsG/J with H/J50.0 and
J0 /J50.0. The free energyf of the G/J50.0 ~SK! case
shows a maximum at some specific temperatureT0, and de-
creases as the temperature is lowered belowT0. The entropy
S ([2] f /]T) then has negative values in the low
temperature region belowT0. This fact violates the third law
of thermodynamics, by which such concepts as AT stabi
condition and replica symmetry breaking have been int
duced in spin-glass theories.1 But free energyf for G/J
50.2 and 0.5 shows no maximum at finite temperature
increases as the temperature is lowered to zero. The ent
S thus approaches zero as temperature goes to zero, whi
different from the G/J50 ~SK! case. Thus we may as
whether a replica-symmetry-breaking spin glass~RSB-SG!
phase exists in the case of a nonzero transverse fieldG/J
50.2 or 0.5!. This question will be examined in Sec. VI.

IV. DE ALMEIDA –THOULESS STABILITY CONDITION

We want to show that the assumptionG9(yab,waa,xa)
>0 in Eq. ~8! gives the stability condition for our replica

FIG. 2. Free energyf vs temperatureT/J at three selected
transverse fields (G/J50.0, 0.2, and 0.5! with H/J50.0 and
J0 /J50.0.
2-5
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symmetric solutions. We start with small variable expansio
of yab, waa, andxa as

yab~t,t8!5Qab~t,t8!1hab~t,t8!,

waa~t,t8!5Raa~t,t8!1jaa~t,t8!, ~17!

xa~t!5Ma~t!1ea~t!,

and expand the free energyb̄F/N to second order in fluctua
tions hab(t,t8), jaa(t,t8), andea(t). The second deriva
tive of G generates three- and four-spin couplings as follo
s

de
ify
th
s

e
i

d
a
s
n

iza

a

A
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:

Oabm~t,t8,t9![^Tsa
z ~t!sb

z ~t8!sm
z ~t9!&,

Pabmn~t,t8,t9,t-![^Tsa
z ~t!sb

z ~t8!sm
z ~t9!sn

z~t-!&. ~18!

Here the^ & averages are taken with respect to the effect
HamiltonianH̃5H̃@Qab(t,t8),Raa(t,t8),Ma(t)#. The de-
viation of the free energyb̄F/N from its stationary value is
then given by

b̄@F~yab,waa,xa!2F~Qab,Raa,Ma!#/N52D/2, ~19!

where
D5 (
(ab)(mn)

$~ b̄J!2d (ab)(mn)2~ b̄J!4@Pabmn~t,t8,t9,t-!2Qab~t,t8!Qmn~t9,t-!#%hab~t,t8!hmn~t9,t-!

1(
ab

$~b̄J!2dab2~ b̄J!4@Paabb~t,t8,t9,t-!2Raa~t,t8!Rbb~t,t8!#%jaa~t,t8!jbb~t9,t-!

1(
ab

$b̄J0dab2~ b̄J0!2@Qab~t,t8!2Ma~t!Mb~t8!#%ea~t!eb~t8!2 (
(ab)m

~b̄J!4@Pabmm~t,t8,t9,t-!

2Qab~t,t8!Rmm~t9,t-!#hab~t,t8!jmm~t9,t-!2 (
(ab)m

b̄3J2J0@Oabm~t,t8,t9!

2Qab~t,t8!Mm~t9!#hab~t,t8!em~t9!2(
ab

b̄3J2J0@Oaab~t,t8,t9!2Raa~t,t8!Mb~t9!#jaa~t,t8!eb~t9!.

~20!
ure
ms

s

Here D should be positive definite for the solution
Qab(t,t8), Raa(t,t8), andMa(t) to be stable.

We analyze de Almeida-Thouless~AT! stability condition
of the replica-symmetric solution in the concerned mo
under static approximation. This condition should ver
whether there exists any replica-symmetric region in
spin-glass state under the static approximation, as sugge
by Thirumalaiet al.,13 or not.

As shown in the Appendix, the stability condition of th
replica-symmetric solution under the static approximation
given by

~ b̄J!22>E Dz
Hz

4

~Hz
21G2!2

sech4~ b̄AHz
21G2!, ~21!

which is reduced to the result of de Almeida and Thouless3 at
G50.0. The above result represents the AT stability con
tion extended to the case of a nonzero transverse field,
when this condition is not satisfied, the phase correspond
the replica-symmetry-breaking one. In this phase we have
stable free-energy minimum with a single-valued magnet
tion M and spin-glass order parameterQ but there may be
metastable free-energy valleys with varying loc
magnetizations.4

In Fig. 3 we show the temperature dependence of the
l

e
ted

s

i-
nd
to
o
-

l

T

stability region at selected transverse fieldsG/J with H/J
50.0 andJ0 /J50.0. WhenG/J50.0 ~SK model!, the AT
line of Eq. ~21! locates the stability limit atT/J51.0. But
the AT line extends the stable region to zero temperat
whenG/J increases to a very small value 0.06. It thus see

FIG. 3. @AT# vs temperatureT/J at selected transverse field
G/J with H/J50.0 and J0 /J50.0. Here @AT# in the vertical
axis represents the integral (T/J)22*Dz(Hz

4/(Hz
21G2)2)

3sech4(b̄AHz
21G2) of the AT stability condition.
2-6
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that the replica-symmetry-breaking phase will be in a v
narrow region in the temperature (T/J) –transverse field
(G/J) plane, which will be shown in Sec. VI.

V. REPLICA-SYMMETRY-BREAKING SOLUTION

We can obtain the one-step replica-symmetry-break
~1RSB! solution of the present model under the static a
proximation. We use Parisi’s parametrization scheme of r
lica symmetry breaking as in the case of the SK model4 : for
an n3n matrix $Qab% in the replica spin space, then repli-
cas of $Qab% are divided inton/m groups ofm replicas,
assuming thatn must be a multiple ofm, so that $Qab%
consists ofm3m diagonal matrices~in which all the diago-
nal elements are zero and off-diagonal elements areQ1) and
m3m off-diagonal matrices~in which all the elements are
K
a

05443
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Q0). For this 1RSB scheme in then→0 limit, the free en-
ergy f

1RSB
is given by

b̄ f
1RSB

52
1

4
~ b̄J!2$~R2Q1!~22R2Q1!2m~Q1

22Q0
2!%

1
1

2
b̄J0M22

1

mE Dz

3 lnF E Dy coshm~ b̄AH
z

82
1G2!G , ~22!

whereHz8[J(AQ0z1AQ12Q0y)1J0M1H. From the ex-
tremal condition off

1RSB
we can obtain the self-consisten

equations form, M, Q0 , Q1, andR:
1

4
~ b̄J!2m2~Q1

22Q0
2!52E DzlnF E Dy coshm~ b̄AHz8

21G2!G

1mE Dz

E Dy coshm~ b̄AHz8
21G2!ln@cosh~ b̄AHz8

21G2!#

E Dy coshm~ b̄AHz8
21G2!

, ~23!

M5E Dz

E Dy coshm~ b̄AHz8
21G2!~Hz8/AHz8

21G2!tanh~ b̄AHz8
21G2!

E Dy coshm~ b̄AHz8
21G2!

, ~24!

Q05E DzF E Dy coshm~ b̄AHz8
21G2!~Hz8/AHz8

21G2!tanh~ b̄AHz8
21G2!

E Dy coshm~ b̄AHz8
21G2!

G 2

, ~25!

Q15E Dz

E Dy coshm~ b̄AHz8
21G2!~Hz8

2/~Hz8
21G2!!tanh2~ b̄AHz8

21G2!

E Dy coshm~ b̄AHz8
21G2!

, ~26!
ra-
-

R5E Dz

E Dy coshm~ b̄AHz8
21G2!~Hz8

2/~Hz8
21G2!!

E Dy coshm~ b̄AHz8
21G2!

.

~27!

We haveR51.0 at G50.0, when the free energyf
1RSB

,

the magnetizationM, and the spin-glass order parametersQ0
andQ1 are reduced exactly to the Parisi solution of the S
model.4,27 From the above solutions we can obtain the line
susceptibilityx

1RSB
for J05H50.0 as
r

x
1RSB

5b̄@R2Q11m~Q12Q0!# ~28!

The replica-symmetric results of Eqs.~12!–~16! are recov-
ered when we setQ15Q0.

VI. PHASE DIAGRAMS

Now we obtain phase diagrams not only in the tempe
ture (T) –transverse field~G! plane but also in the tempera
ture (T) –average interaction strength (J0), the transverse
field ~G!–average interaction strength (J0), the temperature
(T) –external longitudinal field (H), and the transverse field
2-7
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~G!–external longitudinal field~H! planes from the replica
symmetric solutions of Sec. III. For the case ofH50 the
paramagnetic phase can be defined fromM50 andQ50,
the spin-glass phase fromM50 but QÞ0, and the ferro-
magnetic phase fromMÞ0 andQÞ0. ~The casesHÞ0 are
trivial since both magnetizationM and the spin-glass orde
parameterQ become nonzero.! The vanishing ofM to zero
thus gives a phase boundary between the ferromagn
phase and others,

J0
215E DzF G2

~Hz
21G2!3/2

tanh~ b̄AHz
21G2!

1b̄
Hz

2

Hz
21G2

sech2~ b̄AHz
21G2!G , ~29!

where we haveHz[JAQz with M5H50. In addition, the
condition of Q vanishing to zero gives the phase bounda
between the paramagnetic phase and others,

J225E Dzz2F G2

~Hz
21G2!2

tanh2~ b̄AHz
21G2!

1b̄
Hz

2

~Hz
21G2!3/2

tanh~ b̄AHz
21G2!

3sech2~ b̄AHz
21G2!G , ~30!

where we haveHz[J0M with Q5H50. A further restric-
tion of M50, leading toHz50, simplifies this phase bound
ary to

G/J5tanh~ b̄G!, ~31!

which is the same result as for the SK model with a tra
verse field.28

The de Almeida-Thouless instability line~the AT line!
separates the spin-glass phase from the paramagnetic~or fer-
romagnetic! phase,

~ b̄J!225E Dz
Hz

4

~Hz
21G2!2

sech4~ b̄AHz
21G2!, ~32!

whereHz[JAQz1J0M1H. From the above equations a
together we can complete the phase diagrams of the infin
range Ising model spin glass with a transverse field.

Figure 4 is a phase diagram in the temperat
(T/J) –transverse field (G/J) plane presenting the
paramagnetic–spin-glass phase boundary of Eq.~31! and the
AT line of Eq. ~32! for H/J50.0 and 0.0<J0 /J<1.0. The
AT line reaches zero temperature asG/J increases to 0.06
The critical G/J value of the zero-temperature glass tran
tion, Gc(0)/J is 1.0 but the zero temperature crossing of t
AT line is at 0.06. The range ofG/J for the RSB-SG phase
thus becomes very narrow.

Thirumalai et al.13 studied only the region close to th
paramagnetic–spin-glass phase boundary to check for the
05443
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e
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istence of the replica symmetric spin-glass~RS-SG! phase by
using perturbation expansion ofR andQ. But we have con-
sidered the whole region of temperature (T/J) –transverse
field (G/J) plane by analyzing the AT stability condition t
confirm that RS-SG phase is stable over a wider region of
spin-glass phase. All the cases ofG/J.0.06 thus do not have
an effect of RSB, and the RS solution of Sec. III should
valid in the whole temperature region.

In Figs. 5 and 6, we show the phase diagrams under a
external longitudinal field (H/J50.0). The phase boundarie
among paramagnetic, spin glass, ferromagnetic, and m
~spin glass1 ferromagnetic! phases are determined by Eq
~29!, ~30!, and ~32!. The paramagnetic-ferromagnetic pha
boundary is given by the overlap between Eqs.~29! and~30!,
the paramagnetic and RS-SG phase boundary by Eq.~30!,
and the boundary between RS-SG and RSB-SG phase,
the ferromagnetic-mixed phase boundary by the AT line
Eq. ~32!. The spin-glass–mixed phase boundary forT/J
,1.0 is given by a vertical straight line.29

In Figs. 5~a! and 5~b! we show the phase diagrams in th
temperature (T/J) –average interaction bias (J0 /J) plane at
transverse fields ofG/J50.04 and 0.50. From the AT line a
G/J50.04 we can confirm the existence of both the RSB-
phase and a mixed phase characterized by nonzeroM and the
AT instability. The area of RSB-SG and mixed phase regio
diminishes with a rapid fall off of the AT line asG/J in-
creases as can be seen from Fig. 5~b!.

In Fig. 6 we show the phase diagram in the transve
field (G/J) –average interaction bias (J0 /J) plane at tem-
peratureT/J50.50. We can see that the RSB-SG phase ha
very small area near the zero transverse field.

In Figs. 7 and 8, we show the phase diagrams under a
average interaction bias (J0 /J50.0). The phase boundar
between paramagnetic and RS-SG phases is determined

FIG. 4. Phase diagram in the temperature (T/J) –transverse field
(G/J) plane depicting the paramagnetic–spin glass phase boun
for H/J50.0 and 0.0<J0 /J<1.0. The solid line denotes th
paramagnetic—RS-SG phase boundary, and the shaded regio
der the dotted line indicates the RSB-SG phase under the AT
Equations~31!–~34! are used.
2-8
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INFINITE-RANGE ISING SPIN GLASS WITH A . . . PHYSICAL REVIEW B66, 054432 ~2002!
the peaks of the linear susceptibilityx ~or the nonlinear sus
ceptibility xnl), and the boundary between RS-SG a
RSB-SG phases is shown by AT line.

In Figs. 7~a! and 7~b! we show the phase diagrams in th
temperature (T/J) –external longitudinal field (H/J) plane at
transverse fields ofG/J50.04 and 0.50. TheT2H AT line at
G/J50.04 separates the RS-SG phase from the RSB
phase, where the AT line at a high value ofH/J shows a
rapid drop in contrast to the case of the SK model. The a
of the RSB-SG phase region can be seen to diminish wi
rapid falloff of the AT line asG/J increases.

In Fig. 8 we show the phase diagram in the transve
field (G/J)—external longitudinal field (H/J) plane at a
temperature ofT/J50.50. The RSB-SG phase is restricted
a very small region near the zero transverse field.

Our result is different from the results of Bu¨ttner and
Usadel15,17 and Goldschmidt and Lai,16 where there is no
stable RS-SG phase in the whole spin glass phase. The
difference between our case considering the static appr
mation and the other cases lies in the spin self-interac
Raa(t,t8)5^Tsa

z (t)sa
z (t8)&, whether it is static24 ~i.e., in-

dependent oft2t8) or not.

FIG. 5. Phase diagrams in the temperature (T/J) –average inter-
action bias (J0 /J) plane at transverse fields~a! G/J50.04 and~b!
G/J50.50. The solid line denotes the paramagnetic–RS-
ferromagnetic phase boundary, and the shaded region under the
ted line in ~a! indicates the RSB phase@RSB-SG or mixed~M!
phase# under the AT line. Equations~30! and ~32! are used.
05443
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The result of Goldschmidt and Lai16 following the Trotter-
Suzuki formalism can be translated to the imaginary-ti
formalism. The relation betweenRaa(t,t8) andut2t8u then
shows that when the static approximation is not us
Raa(t,t8) increases monotonically asut2t8u is reduced to
zero~see Fig. 4 of Ref. 16!. The relation betweenRaa(t,t8)
and ut2t8u has a direct effect on the equation of AT line an
thus on the integral term of the AT line equation. This int
gral, proportional to the square ofRaa(t,t8), increases as
ut2t8u decreases. When the static approximation is not
forced the RS-SG phase may thus diminish, as predic
from the other results.

VII. NONLINEAR SUSCEPTIBILITY

Nonlinear susceptibilityxnl has drawn a great concer
due to a possibility of divergence at the glass transition te
perature Tg in canonical1,30 and quantum spin-glas
systems.10 As the linear susceptibilityx shows a cusp instea
of a divergence atTg in spin-glass systems, many resear
workers searched for a quantity of a divergence anomal
Tg ,1,31 and defined the spin-glass susceptibilityx

SG

[(b̄2/N)( i , j
N @(^SiSj&2^Si&^Sj&)

2#J . This spin-glass sus
ceptibility x

SG
can be determined by a measurement of

third-order nonlinear susceptibility32 xnl[2(1/3!)
3(]3M /]H3) from a simple relation1,33 at T.Tg and H
50:

xnl5b̄~x
SG

22b̄2/3!. ~33!

Measurements ofxnl can therefore give important informa
tion about the spin-glass transition, and the nonlinear sus
tibility xnl of spin glasses has been studied by many exp
mental measurements.10,30

/
ot-

FIG. 6. Phase diagram in the transverse field (G/J)—average
interaction bias (J0 /J) plane at temperatureT/J50.50. The solid
line denotes the paramagnetic—RS-SG/ferromagnetic phase bo
ary, and the shaded region under the dotted line indicates
RSB-SG phase under the AT line. Equations~30! and~32! are used.
2-9
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Before a consensus was drawn from experimental m
surements ofxnl in a spin glass, theoretical opinions pr
vailed thatxnl should diverge in a power law of

xnl~T!}u~T2Tg!/Tgu2g8, ~34!

with g8 corresponding to some critical exponent of the sp
glass transition as the temperature approachesTg .33–36 In
particularg851.0 was obtained from the SK theory34 and by
Landau-type phenomenological theory35,36 for T.Tg . Most
experimental results then tended to support the glass tra
tion divergence by fitting with a sample-dependentg8 value.

On the other hand, there have been many theoretica
tempts to calculate the nonlinear susceptibilityxnl(G) in the
zero-temperature quantum transition of an Ising model s
glass with a transverse field.37–40 Analytic works37,38 and
two-dimensional~2D! and 3D Monte Carlo simulations39,40

all made the conclusion thatxnl(G) should diverge as trans
verse fieldG approaches a critical valueGc at zero tempera-
ture. Similarly to the power law of Eq.~34!, Readet al.37

showed thatxnl(G) should diverge as

FIG. 7. Phase diagrams in the temperature (T/J)—longitudinal
field (H/J) plane at transverse fields~a! G/J50.04 and~b! G/J
50.50. The solid line denotes the paramagnetic–RS-SG p
boundary as determined by peaks of the linear susceptibilityx, and
the shaded region under the dotted line in~a! indicates the RSB-SG
phase under the AT line.
05443
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xnl~G!}u~G2Gc!/Gcu2d8, ~35!

with a power-law exponentd851.0 as the transverse fiel
approachesGc for G.Gc . The experimental observation i
the dipolar-coupled Ising spin glass LiHoxY12xF4 showed
that its nonlinear susceptibilityxnl(G), measured atT
598 mK, had a divergence as the transverse fieldG ap-
proached a critical valueGc , but was best fitted by
d8.0.20.10

The replica-symmetric nonlinear susceptibilityxnl in the
third order is defined by the coefficient of the third-ord
term in the expansion ofM @Eq. ~13!#,

xnl[2
1

3!

]3M

]H3

52
1

6 F 1

~12J0x0!2

]2x0

]H2
1

2J0

~12J0x0!3 S ]x0

]H D 2G ,

~36!

where x0 is the replica-symmetric linear susceptibility fo
J050.0, and is given by

x05B01b̄C01A~B11b̄C1!,

with

A[
D01b̄E0

AQ2~D11b̄E1!
,

Bn[E Dzzn
G2

~Hz
21G2!3/2

tanh~ b̄AHz
21G2!,

se

FIG. 8. Phase diagram in the transverse fie
(G/J) –longitudinal field (H/J) plane at temperatureT/J50.50.
The solid line denotes the paramagnetic–RS-SG phase bounda
determined by peaks of the linear susceptibilityx, and the shaded
region under the dotted line indicates the RSB-SG phase unde
AT line.
2-10
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Cn[E Dzzn
Hz

2

Hz
21G2

sech2~ b̄AHz
21G2!,

Dn[E Dzzn
HzG

2

~Hz
21G2!2

tanh2~ b̄AHz
21G2!,

En[E Dzzn
Hz

3

~Hz
21G2!3/2

tanh~ b̄AHz
21G2!

3sech2~ b̄AHz
21G2!.

For H50.0 we can seeB0 , B1, andC1 vanishing to obtain
x05b̄C05b̄(R2Q) @Eq. ~16!#.

In Fig. 9~a! we present the nonlinear susceptibilityxnl vs
temperatureT/J at four selected transverse fields (G/J
50.10, 0.75, 0.90, and 0.95! with H/J50.0 and J0 /J
50.0. From this figure we can see thatxnl diverges to infin-
ity at T5Tg . As G/J is increased,Tg is shifted to lower
temperatures. In Fig. 9~b! we redraw our results for a log-lo

FIG. 9. ~a! Nonlinear susceptibilityxnl vs temperatureT/J at
four selected transverse fields (G/J50.10, 0.75, 0.90, and 0.95!
with H/J50.0 andJ0 /J50.0. ~b! A log-log plot of the nonlinear
susceptibilityxnl vs reduced temperature (T2Tg)/Tg @in the tem-
perature region (T2Tg)/Tg,1 of general experimental concern
~Ref. 30!# at two selected transverse fields (G/J50.10 and 0.95!
with H/J50.0 andJ0 /J50.0.
05443
plot of the nonlinear susceptibilityxnl vs reduced tempera
ture (T2Tg)/Tg in the temperature region 0.001,(T
2Tg)/Tg,1 of experimental concerns30 at two selected
transverse fieldsG/J50.10 and 0.95 withH/J50.0 and
J0 /J50.0 to check for a power-law divergence atT.Tg .
When we attempt to fit this curve by Eq.~34!, we can see
that xnl shows a divergence to infinity with a power-la
exponentg851.0 as the temperature approaches the g
transition temperatureTg closely, which agrees with the
mean-field theories.34–36 But, if we fit in the region 0.1
,(T2Tg)/Tg,1, we obtain g8 larger than 1.0, which
agrees with the previous experimental works.30 We can thus
see that the prediction thatxnl diverges withg851.0 may be
valid only in the temperature region close toTg , i.e., (T
2Tg)/Tg,0.1.

In Fig. 10~a! we present the nonlinear susceptibilityxnl vs
temperatureT/J at two selected transverse fieldsG/J50.10
and 0.50 with various longitudinal fields (H/J) and J0 /J
50.0. At zero longitudinal field we can see thatxnl diverges
to infinity at T5Tg . But the nonzero external field smeare
out the divergence ofxnl . We can thus conclude that th
longitudinal field may smear out the transition anomalies

FIG. 10. ~a! Nonlinear susceptibilityxnl vs temperatureT/J at
selected transverse fields (G/J50.10 and 0.50! and longitudinal
fields (H/J) with J0 /J50.0. ~b! A log-log plot of the nonlinear
susceptibilityxnl vs reduced temperature (T2Tg)/Tg ~in the tem-
perature region (T2Tg)/Tg,1) at a fixed transverse fieldG/J
50.50, and selected longitudinal fields (H/J) for J0 /J50.0.
2-11
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DO-HYUN KIM AND JONG-JEAN KIM PHYSICAL REVIEW B 66, 054432 ~2002!
only in the linear susceptibilityx ~see Ref. 2! but also in the
nonlinear susceptibilityxnl . In particular, a small field such
asH/J50.005, which has a negligible effect on the cusp
linear susceptibilityx, can make the divergence ofxnl at Tg

smear out. In Fig. 10~b! we redraw our results in a log-lo
plot of the nonlinear susceptibilityxnl vs reduced tempera
ture (T2Tg)/Tg at a fixed transverse fieldG/J50.50 with
various external longitudinal fields (H/J) and J0 /J50.0 to
check for a power-law divergence atT.Tg . This figure
shows a strong dependence of the nonlinear susceptib
xnl on the external field in the temperature region ofT
2Tg)/Tg,0.01, where most experimental data a
reported.30 At H/J50.0 we can see thatxnl shows a diver-
gence to infinity with a power-law exponentg851.0 as the
temperature approaches the glass transition temperatureTg ,
which agrees with the mean-field theories.34–36 But the non-
zero longitudinal field can be seen to preventxnl from diver-
gence, and make it flatten out as temperature approachesTg .
Most experimental results30 indeed show this flattening o
xnl nearTg , which may well result from the applied fiel
effect in thexnl measurements. In the temperature region
0.1,(T2Tg)/Tg,1, we can see thatxnl becomes indepen
dent of the applied field with a fixed slope larger th
g851.0.

In Fig. 11~a! we present the nonlinear susceptibilityxnl vs
transverse fieldG/J at four selected temperatures (T/J
50.01, 0.75, 0.90, and 0.95! with H/J50.0 and J0 /J
50.0. From the figure we can see thatxnl diverges to infin-
ity as the transverse field approaches a critical valueGc . As
T/J is increased,Gc is shifted to lower values. In Fig. 11~b!
we redraw our results in a log-log plot of the nonlinear s
ceptibility xnl vs reduced transverse field (G2Gc)/Gc in the
field region 0.001,(G2Gc)/Gc,10 corresponding to the
experimental concerns of Wuet al.10 at two selected tem
peraturesT/J50.01 and 0.95 withH/J50.0 andJ0 /J50.0
to check for a power-law divergence atT.Tg . When we fit
this result by Eq.~35!, we can see thatxnl diverges to infinity
with a power-law exponentd851.0 as the transverse fiel
approaches a critical valueGc not only at zero temperatur
but also finite temperatures. But, if we try to fit in the regi
0.1,(G2Gc)/Gc,10, we obtaind8 larger than 1.0. Wu
et al.10 measuredxnl(G) at T598 mK, observing a power
law divergence with an exponentd8.0.20. We can thus con
firm that the prediction of divergence inxnl(G) with d851.0
may be valid only in the region (G2Gc)/Gc,0.1.

In Fig. 12~a! we present the nonlinear susceptibilityxnl vs
transverse fieldG/J at two selected temperaturesT/J50.01
and 0.50 with various external longitudinal fields (H/J) and
J0 /J50.0. We can see that zero fieldxnl diverges to infinity
at G5Gc but at finite longitudinal field the divergence ofxnl
smears out. In Fig. 12~b! we redraw our results in a log-lo
plot of the nonlinear susceptibilityxnl vs reduced transvers
field (G2Gc)/Gc at a selected temperatureT/J50.50 for
various longitudinal fields (H/J) andJ0 /J50.0 to check for
a power-law divergence atT.Tg . Varying characteristics o
the power-law divergence and a flattening out were obser
in xnl(G,H) of the dipolar-coupled Ising spin glas
LiHoxY12xF4 under externalG andH fields.10
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In the laboratory experiment, it is very difficult to apply
magnetic fieldHt}AG exactly transverse to the magnet
easy axis of the LiHoxY12xF4 sample, parallel to thec axis
in this tetragonal system. A tilt of only 1°, bringing about
very small longitudinal field ofHi[Ht sin(1°), can influence
the nonlinear susceptibilityxnl , which is very sensitive to
longitudinal field, as can be seen from Figs. 10 and 12. T
longitudinal fieldHi[Ht sin(u) induced by a tiltu will in-
crease in proportion toHt . In an experiment where the trans
verse magnetic fieldHt is externally tunable, this tilt-induced
effect cannot be neglected. Figure 13 shows this tilt effe
which resembles the observations of Wuet al.10

Figure 13~a! shows the nonlinear susceptibilityxnl as a
function of transverse magnetic fieldHt[AG/J at four se-
lected temperaturesT/J50.01, 0.75, 0.90, and 0.95 for a
induced longitudinal field ofHi /J[Ht sin(u) with u51° and
J0 /J50.0. At a very small tilt angleu51°, the divergence of
the nonlinear susceptibility can be seen to be suppressed
only the external transverse fieldHt applied and the tempera
ture T lowered, which shows a resemblance to the results
Wu et al.10 Figure 13~b! shows the linear susceptibilityx
obtained under the same conditions as Fig. 13~a!. Though

FIG. 11. ~a! Nonlinear susceptibilityxnl vs transverse fieldG/J
at four selected temperatures (T/J50.01, 0.75, 0.90, and 0.95! with
H/J50.0 andJ0 /J50.0. ~b! A log-log plot of the nonlinear sus-
ceptibility xnl vs reduced transverse field (G2Gc)/Gc @in the region
of experimental concerns of Wuet al. ~Ref. 10!# at two selected
temperatures (T/J50.01 and 0.95! with H/J50.0 andJ0 /J50.0.
2-12
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our static linear susceptibility cannot be compared direc
with the frequency-dependent linear susceptibility of W
et al., 10 our linear susceptibility also shows a stronger cu
at higherHt with lowering T in conformity with the results
of Wu et al.10 and Rozenberg and Grempel.41 Our results,
however, do not show any evidence of a first-order transit
Our result for the SK model with a transverse field can th
explain the experimental observations in the quantum s
glass LiHoxY12xF4, in which the divergence of the nonlinea
susceptibility becomes suppressed whereas the linear su
tibility continues to show a sharp peak, although it does
confirm the first-order transition.

VIII. SPECIFIC HEAT

In our theoretical calculations the constant-field magne
specific heatCH can be obtained from the second-order te
perature derivative of the free energy@Eq. ~12!#,

CH[2T
]2f

]T2U
H

[T
]S

]TU
H

~37!

whereS[] f /]T is entropy.

FIG. 12. ~a! Nonlinear susceptibilityxnl vs transverse fieldG/J
at two fixed temperatures (T/J50.01 and 0.50! and selected longi-
tudinal fields (H/J) with J0 /J50.0. ~b! A log-log plot of the non-
linear susceptibilityxnl vs reduced transverse field (G2Gc)/Gc ~in
the region (G2Gc)/Gc,1) at a fixed temperatureT/J50.50 and
selected longitudinal fields (H/J) with J0 /J50.0.
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In Fig. 14~a! and 14~b! we present the specific heatCH vs
temperatureT/J at various external longitudinal fields (H/J)
and transverse fieldsG/J50.00 and 0.50 withJ0 /J50.0. As
Fig. 14~a! shows, atG/J50.00 ~SK system! andH/J50.0,
CH is proportional toT22 in the paramagnetic phase (T
.Tg and 0<J0 /J<1), but linear on the low-temperatur
side.2 As Figs. 14~a! and 14~b! show, a cusp appears at th
glass transition temperature for all values ofG/J whenH/J
is zero as in the SK model.2 When H/J is given a nonzero
finite value, however, the cusp becomes smeared, to gi
broad maximum shifting to high-temperature side asH/J
increases, which agrees with experimental observations
Brodaleet al.42

In Figs. 15~a! and 15~b! we present the specific heat d
vided by temperature (CH /T5]S/]TuH) and its second de
rivative by temperature (]2(CH /T)/]T25]3S/]T3uH) vs
temperature (T/J) at G/J50.00 ~SK system! and various
external longitudinal fields (H/J) for J0 /J50.0. Figure
15~a! shows the well-known broad maximum without an
distinction at the glass transition temperatureTg under a fi-
nite external longitudinal fieldH/J. With increasingH/J
the maximum peaks shift to lower temperatures and decre

FIG. 13. ~a! Nonlinear susceptibilityxnl as a function of the
transverse magnetic fieldHt[AG/J at four selected temperature
(T/J50.01, 0.75, 0.90, and 0.95! with u51° andJ0 /J50.0. The
misfit angleu can induce a longitudinal field ofHi /J[Ht sin(u).
~b! Linear susceptibilityx as a function ofHt , obtained under the
same condition as~a!.
2-13
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DO-HYUN KIM AND JONG-JEAN KIM PHYSICAL REVIEW B 66, 054432 ~2002!
in magnitude, in agreement with the experimen
observations.20,43 Figure 15~b! shows an anomaly in
]2(CH /T)/]T2 near the glass transition temperatureTg ,
which disappears with peak shifting to lower temperatures
the external fieldH/J is increased. This may be evidence
the field-dependent entropy variation in the spin glass tr
sition, which was observed by Fogleet al.20

In Figs. 16~a! and 16~b! we present]2(CH /T)/]T2 vs T/J
at G/J50.50 and 0.90, respectively, in the same condit
with Fig. 15. Figure 16~a! shows a weaker anomaly as com
pared with theG/J50.00 case near the glass transition te
peratureTg . We can thus see that there exists a thermo
namic anomaly even in the quantum spin-glass transi
with nonzeroG value, because thermal fluctuations at no
zero temperature may have a larger thermodynamic effec
a spin glass than the quantum fluctuation induced by non
G. Figure 16~b! shows an even weaker anomaly at a largeG
value. We can thus see that the anomaly is gradually s
pressed with an increase of theG value, which checks for the
quantum tunneling competing against spin freezing. T
anomaly disappears with peak shifting to lower temperatu
as the external fieldH/J is increased, which gives, as show
in Fig. 15~b!, evidence of the field-dependent entropy var
tion in the spin glass transition.

FIG. 14. Specific heatCH vs temperatureT/J at various longi-
tudinal fields (H/J) with J0 /J50.0 and the transverse field fixed
~a! G/J50.00 ~SK system! and ~b! G/J50.50. The difference is
distinctive at very low temperatures near zero.
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IX. CONCLUSION

We have obtained replica-symmetric and replic
symmetry-breaking solutions of the SK model with a tran
verse field under a static approximation by using t
imaginary-time replica formalism. The de Almeida
Thouless stability line in the model has been determin
From these we could obtain various phase diagrams and
oretical results of measurable quantities such as the nonli
susceptibilityxnl and specific heatCH . From the above in-
vestigations we have shown three important results as
lows:

First we have shown that a replica-symmetric quant
spin-glass phase is stable in most parts of the spin-g
phase in the temperature-transverse field phase diagram.
confirms the existence of a stable replica-symmetric s
glass phase under the static approximation, which ag
with Thirumalai et al.13 But our result is in contrast with
other results15–17 avoiding the static approximation, wher
the replica-symmetric solution is always unstable in t
whole spin-glass phase. The difference originates from
static approximation applied to the spin self-interacti
Raa(t,t8). When the static approximation is not employe
the RS-SG phase may diminish.

FIG. 15. ~a! Specific heat divided by temperature (CH /T) and
~b! its second temperature derivative@]2(CH /T)/]T2# vs tempera-
ture T/J at G/J50.00 ~SK system! and fixed longitudinal fields
(H/J) for J0 /J50.0.
2-14
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Second we have shown a theoretical result of the non
ear susceptibilityxnl conforming with the experimental re
sult of Wu et al.10 This suggests that the SK model with
transverse field may be a realistic model for the quant
spin glass LiHoxY12xF4, though it does not confirm the first
order transition.

Third, in a classical~SK! spin-glass system with a zer
transverse field, we have confirmed the anomaly in the s
ond temperature derivative ofCH /T near the glass transitio
temperatureTg , possibly associated with the field-depende
variation of the entropy in the spin glass transition, in agr
ment with the earlier experimental observation by Fogleet
al.20 We have also shown that this anomaly is suppressed
the nonzero transverse field in a quantum spin-glass sys
confirming that quantum tunneling competes against s
freezing. It would be most welcome if a theory is discover
that goes beyond the static approximation used in this pa
to obtain analytic solutions as for nonlinear susceptibi
and specific heat, and to understand more results of num
cal simulations and experimental measurements of quan
spin glasses.
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FIG. 16. ]2(CH /T)/]T2 vs temperatureT/J at ~a! G/J50.50
and~b! G/J50.90, with the other conditions the same as in Fig.
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APPENDIX: DE ALMEIDA –THOULESS STABILITY
CONDITION UNDER THE STATIC APPROXIMATION

We give detalis of derivation for the de Almeida
Thouless stability condition of the replica-symmetric so
tion under the static approximation. Under the static appro
mation, the matrixD of Eq. ~20! can be seen to take 1
different types of elements.

~1! The coefficients ofhabhmn terms have three types o
elements:

~ b̄J!2d (ab)(mn)2~ b̄J!4~Pabmn2QabQmn!

5H ~ b̄J!22~ b̄J!4~P222Q2![ P̄ ~a5m,b5n!

2~ b̄J!4~P2112Q2![Q̄ ~a5m,bÞn!

2~ b̄J!4~P11112Q2![R̄ ~aÞm,bÞn!.

~A1!

~2! The coefficients ofjaajbb terms have two types o
elements:

~ b̄J!2dab2~ b̄J!4~Paabb2RaaRbb!

5H ~ b̄J!22~ b̄J!4~P222R2![Ē ~a5b!

2~ b̄J!4~P222R2![F̄ ~aÞb!.
~A2!

~3! The coefficients ofeaeb terms have two types of ele
ments:

b̄J0dab2~ b̄J0!2~Qab2MaMb!

5H b̄J02~ b̄J0!2~R2M2![Ā ~a5b!

2~ b̄J0!2~Q2M2![B̄ ~aÞb!.
~A3!

~4! For the coefficients of thehabjmm terms we have

2~ b̄J!4~Pabmm2QabRmm!52~ b̄J!4~P2112QR![Ḡ.
~A4!

~5! The coefficients ofhabem terms have two types o
elements:

2b̄3J2J0~Oabm2QabMm!

5H 2b̄3J2J0~O212QM![C̄ ~m5a!

2b̄3J2J0~O1112QM![D̄ ~mÞa!.
~A5!

~6! For the coefficients ofjaaeb terms we have

2b̄3J2J0~Oaab2RaaMb!52b̄3J2J0~O212RM![H̄.
~A6!

Variables introduced in the Eqs.~A1!–~A6! are defined as
follows:

M5E Dz
Hz

AHz
21G2

tanh~ b̄AHz
21G2!,

.

2-15



-
nd

-
a

lic

n

il
o
n

ea
o
th

in
lu

lues

s
n-

DO-HYUN KIM AND JONG-JEAN KIM PHYSICAL REVIEW B 66, 054432 ~2002!
Q5E Dz
Hz

2

Hz
21G2

tanh2~ b̄AHz
21G2! ~←aÞb!,

R5E Dz
Hz

2

Hz
21G2

~←a5b!,

O1115E Dz
Hz

3

~Hz
21G2!3/2

tanh3~ b̄AHz
21G2! ~←aÞm!,

O215E Dz
Hz

3

~Hz
21G2!3/2

tanh~ b̄AHz
21G2! ~←a5m!,

P11115E Dz
Hz

4

~Hz
21G2!2

3tanh4~ b̄AHz
21G2! ~←aÞm,bÞn!,

P2115E Dz
Hz

4

~Hz
21G2!2

3tanh2~ b̄AHz
21G2! ~←a5m,bÞn!,

P225E Dz
Hz

4

~Hz
21G2!2

~←a5m,b5n!.

We obtain the stability condition for the replica
symmetric solution in accordance with de Almeida a
Thouless.3 In the paramagnetic phase we haveM5Q5•••

50, and the matrix@D# becomes diagonal. The stability con
dition against ferromagnetic ordering and spin-glass form
tion is given by b̄J0>0 and (b̄J)2>0, respectively. The
paramagnetic phase is thus stable under the rep
symmetric assumption.

Similarly, for generalizing to other phases, we need to fi
all the eigenvalues of the matrix@D#. The condition that all
these eigenvalues should be positive then gives the stab
of the replica-symmetric solutions. To find the eigenvalues
the matrix @D#, it is necessary to exploit the permutatio
symmetry of the matrix elements. Since the matrix is r
and symmetric, the matrix order is equal to the number
linearly independent eigenvectors to be found. Hence
matrix @D# will have the order ofn1 1

2 n(n21)1n5 1
2 n(n

13), with the eigenvectors$m% given in the form

m5S $ea%

$hab%

$jaa%
D ~b,a51,2, . . . ,n! ~A7!

where $ea% and $jaa% are column vectors withn elements
and$hab% a column vector with1

2 n(n21) elements. It turns
out that we can divide the complete set of eigenvectors
three symmetry species by considering distinct eigenva
in the limit n→0.
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~1! Consider an eigenvectorm1 of the form with elements
ea5a for all a, hab5b for all ~ab! and jaa5c for all a.
Then the eigenvalue equations become

$Ā1~n21!B̄2l%a

1H ~n21!C̄1
1

2
~n21!~n22!D̄J b1nH̄c50,

$2C̄1~n22!D̄%a1H P̄12~n22!Q̄

1
1

2
~n22!~n23!R̄2lJ b1nḠc50,

nH̄a1
1

2
n~n21!Ḡb1$Ē1~n21!F̄2l%c50, ~A8!

which can be solved for three nondegenerate eigenva
$l1% in the limit n→0, as given by

l22~Ā2B̄1 P̄24Q̄13R̄!l1~Ā2B̄!~ P̄24Q̄13R̄!

12~C̄2D̄ !250,

l5Ē2F̄. ~A9!

~2! Consider another eigenvectorm2 of the form with el-
ements given byea5a for a5u, ea5b for aÞu, hab5c for
a or b5u, hab5d for a, bÞu, jaa5e for a5u, and jaa

5 f for aÞu so that each eigenvalue has (n21)-fold degen-
eracy. By orthogonality to the eigenvectorm1, we obtaina
52(n21)b, c52 1

2 (n22)d ande52(n21) f . Then the
eigenvalue equations become

~Ā2B̄2l!a1~n21!~C̄2D̄ !c50,

$~n22!/~n21!%~C̄2D̄ !a1$P̄1~n24!Q̄

2~n23!R̄2l%c50,

~Ē1F̄2l!e50, ~A10!

from which we can obtain three (n21)-fold degenerate ei-
genvalues$l2% in the limit n→0 as given by

l22~Ā2B̄1 P̄24Q̄13R̄!l1~Ā2B̄!~ P̄24Q̄13R̄!

12~C̄2D̄ !250,

l5Ē2F̄, ~A11!

which are the same as for the case of the eigenvectorm1.
~3! Consider an eigenvectorm3 of the form with elements

given byea5a for a5~u,w!, ea5b for aÞ~u,w!, hab5c for
a5u, b5w, hab5d for a5~u,w! andbÞ~u,w!, hab5e for
~a,b!Þ~u,w!, jaa5 f for a5~u,w!, andjaa5g for aÞ~u,w!.
By orthogonality to the eigenvectorsm1 andm2, we obtain
the conditiona5b5 f 5g50, so that each eigenvalue ha
1
2 n(n23)-fold degeneracy. The orthogonality to the eige
2-16
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vectorsm1 and m2 also imposes conditionsc52(n22)d
and e52 1

2 (n23)d. Eigenvalue equations are then all r
duced to give

l5 P̄22Q̄1R̄, ~A12!

leading to1
2 n(n23)-fold degeneracy.

Thus we have a trivial solutionl1,25Ē2F̄5(b̄J)2>0
and three nontrivial solutions in the limitn→0, given by

l1,2
2 2~Ā2B̄1 P̄24Q̄13R̄!l1,21~Ā2B̄!~ P̄24Q̄13R̄!

12~C̄2D̄ !250,

l35 P̄22Q̄1R̄. ~A13!

Numerical calculations show thatĀ2B̄1 P̄24Q̄13R̄ and
(Ā2B̄)( P̄24Q̄13R̄)12(C̄2D̄)2 are always positive, and
.

v

c

s
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we thus have only the eigenvaluel3 to be checked for the
stability condition of replica-symmetric solutions:

l35 P̄22Q̄1R̄5~ b̄J!22~ b̄J!4~P2222P2111P1111!

5~ b̄J!22~ b̄J!4E Dz
Hz

4

~Hz
21G2!2

sech4~ b̄AHz
21G2!.

~A14!

The stability condition of the replica-symmetric solution u
der static approximation is thus given by

~ b̄J!22>E Dz
Hz

4

~Hz
21G2!2

sech4~ b̄AHz
21G2!.

~A15!
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