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Infinite-range Ising spin glass with a transverse field under the static approximation
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In this paper we investigate for the infinite-range Ising spin-glass me@el the Sherrington-Kirkpatrick
(SK) model with a transverse field under the static approximation by using the imaginary-time replica for-
malism. From the investigations we show three important results: First, we show that a replica-symmetric
guantum spin-glass phase is stable in most of the area of the spin-glass phase in the temperature-transverse
field phase diagram. This confirms the existence of a stable replica-symmetric spin glass phase under the static
approximation, which is contrary to some previous results derived without the static approximation where the
replica-symmetric solution is always unstable in the whole spin-glass phase. Second, we show our theoretical
result for the nonlinear susceptibiliy, which conforms to the experimental result of nonlinear susceptibility
measurement by Wat al.[Phys. Rev. Lett71, 1919(1993] in a quantum spin glass LiH¥;_.F,. Third, in
a classicalSK) spin-glass system, we confirm the anomaly in the second temperature derivaiiyéohear
the glass transition temperatufg, associated possibly with the field-dependent variation of entropy in the
spin glass transition, which agrees with the previous experimental observation in a classical spin glass system
CuMn by Fogleet al.[Phys. Rev. Lett50, 1815(1983]. We also show that this anomaly is suppressed by the
nonzero transverse field of the quantum spin glass system, by which we can check for the quantum tunneling
competing against spin freezing.
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I. INTRODUCTION transverse field has been a useful model for the quantum spin
7
glass.

A spin glass is a complex system characterized by A quantum spin glass, which has received great concern
quenched randomness and frustration leading to an irrevers§ince a seminal paper by Bray and Mobieas an interesting
ible freezing of spins to metastable states without long-rangéeature that the glass transition in the system may be driven
spatial order below the glass transition temperatdig.¢ A by not only thermal but also quantum fluctuations. In the

been studied extensively using analytic solutions or comfield (') introduces channels of quantum relaxation to bypass

puter simulation techniquésBut the theory of spin glasses th€ activation barriers of classical spin glass suppressing the
has been concerned mostly with mean-field calcula’[ioné%’IaSS transition. As the quantum qucFuatlons tuned bY the
based on infinite-range models whose prototype is théransverse fieldI’) carry §p|n-fl|ps detrimental to t_he spin-
Sherrington-Kirkpatrick (SK) model2 The de Almeida- glass phase, under_a sufﬂuently large transverse field a phase
Thouless(AT) line® of the SK model, in the presence of a boundary can be introduced in a spin glass even at zero

. ) . temperaturé.
mean interaction strength or an external field, separates a The SK model with a transverse field may thus be applied

high-temperature paramagnetic or ferromagnetic? phas&) a quantum spin-glass system of Li¥g ,F,,% L a site-
where the order parameter can be determined as unique froffy,teq and isostructural derivative of the dipolar-coupled
a low-temperature spin-glass phase which is defined in terml%ing ferromagnet LiHof (T.=1.53 K). In the absence of a
of an infin?te .number of qrder parameters, i.e:, an orderi Pamagnetic field LiHQY; .F, is a conventional spin glass
rameter dlstr!butlon function. 'Below the AT line the spin- wiih a glass transition temperatufg(x). But an externally
glass phase is under the replica symmetry breakR®B),  tunnable magnetic fieltH, transverse to the magnetic easy
and in this phase there exists no stable-free energy minimumgxis, which is parallel to the axis in this tetragonal system,
with single-valued magnetization and a spin-glass order panduces quantum tunneling through the barrier separating the
rameter, but there may be metastable free-energy valleywsvo degenerate ground states of the®Hdons, and thus
with varying local magnetizatiorfs. yields a splitting of the ground-state doublet. It is this split-
The SK model of a spin glass predicts important qualita-ting, proportional toH? in the lowest order, which plays the
tive distinctions such as a cusp of linear susceptibijity role of transverse fiell’) in the present model Hamiltonian.
There have been variations of the SK model by the additiorAs quantum tunneling competes against spin freezing, the
of extra terms to the SK Hamiltonian applicable for systemsspin-glass ground state is expected to be suppressed at any
analogous to a spin glass. A well-known extension of the Skemperature if the tunneling splitting is sufficiently high. It
model is the SK model with a transverse field, or the Isingwas experimentally observed that Likl@.Y ¢ s3d4 IS para-
spin glass model with tunnelifdor proton glass, a dielectric magnetic at all temperatures abd#g.(0)=12 kOe, and be-
analogous system of a spin glass formed from a mixed crydew this critical field a line of temperature dependent critical
tal between ferroelectrics and antiferroelectrics such asield H,(T) separates between paramagnetic and spin glass
Rb; _(NH,)H,PO, (RADPx).® This SK model with a phases:}° The SK model with a transverse field has thus
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been a useful model for the quantum spin glasshat divides the critical transverse field lidg,(T) by a
LiHo,Y,_,F,, especially for the phase diagramand the dy- second-order glass transition and a first-order transition.
namic linear susceptibility? which were in qualitative agree- (c) Can the present model show the anomaly in the tem-
ment with experimental measurements. Although the Skperature derivatives of the specific heag? In spin-glass
model with a transverse field has been the most realistisystems the magnetic contribution to specific Hegtshows
model for quantum-spin glass Lik¥,_,F,, there are three a broad maximum and no anomaly at the glass transition
unsolved problems in this model. temperatureTy,>'? in contrast to the cusp anomalies jn

(a) Whether the replica-symmetric solution in the quan-and .. The absence of a drastic changedp at the glass
tum spin glass phase of the present model is stable, or not, &ansition temperature implicates that the change of internal
in the classical case. One of the interesting questions ignergy may be too small to be observable and magnetic
guantum spin-glass systems concerns the possibility of turanomalies such as the cusp in susceptibility may be produced
neling through the barriers of the free-energy landscape iby a comparatively few degrees of freedom. But the second
the classical spin glass of the SK model due to quantuniemperature derivative of the specific heat divided by tem-
fluctuations by the transverse field in the transverse field SkeratureCy /T has been found to depict a weak anomaly
model. In the classical case, the barriers separating the vafear the glass transition temperature and was attributed to the
leys increase in height with the macroscopic size of the sysentropy variation in the spin glass transition, which was ob-
tem. In the thermodynamic limit it thus becomes unable toserved in the classical spin glass CuMn by Fogfal?° A
cross the barrier by thermal fluctuations, thereby causinguestion arises: Is there also such a thermodynamic anomaly
nonergodicity with multidegenerate thermodynamic statesin a quantum spin glags$'+0 in the present modgl If so, is
Quantum spin, however, should not necessarily yield to théhere any change in the anomaly with an increase oflthe
barrier height, and since the barrier width in configurationvalue? It may be impossible to check for this anomaly from
space decreases with increasing system size, it may tunnexperiment because a very low temperatirelow 1K as in
through such barriers by quantum fluctuations. If the quankiHo,Y;_,F4) is required for a quantum spin-glass transi-
tum fluctuations are strong enough to cause tunneling beion. At T#0 the quantum-mechanical effects may not be
tween energy barriers separating degenerate local minimulominant in comparison with thermal effects; then there may
thermodynamic states, then an ergodic replica-symmetric s@xist such a thermodynamic anomaly even in a quantum
lution in the spin glass state may be stable. There has beepin-glass transition because thermal fluctuations at nonzero
controversy about the nature of the spin glass phase of tHemperature may have a larger thermodynamic effect in a
SK model with a transverse field : Thirumaktial.*® using  spin glass than the quantum fluctuation induced by nonzero
the static approximation proposed by Bray and Mdbre, I'. As quantum tunneling competes against thermodynamic
showed that there was a small intermediate region in thepin freezing, we can also expect that the anomaly will be
spin-glass phase where a replica-symmetric solution wagradually suppressed by an increase oflihealue.
stable, unlike the classical SK model without transverse Our goals are thus rewritten as follows:
field. Rayet al. performed Monte Carlo simulations which (1) We are to investigate whether the replica-symmetric
supported the stability of the replica-symmetric solution insolution of the SK model with a transverse field is unstable
the whole spin-glass pha&®On the other hand, Btner and  in the whole spin-glass phase or not. For this, we will use the
Usadet® predicted, without assuming the spin self- static approximation for all order parameters and calculate
interaction term to be static, that the replica-symmetric soluthe AT line analytically, which will be compared with phase
tion was always unstable in the whole spin glass phaseéioundary line. If our conclusion is same as the one of Thiru-
Goldschmidt and L3f and, independently, Btner and malaiet al.}*then we can accept that the quantum spin-glass
Usadet’ obtained the one-step replica-symmetry-breakingohase may be replica symmetric under the condition of the
solution also without assuming the spin self-interaction ternstatic approximation. But if not, then we must accept that
to be static, and found no evidence to support an intermedispin glass phase always shows replica-symmetry-breaking,
ate spin glass phase with replica symmetry. irrespective of static or not, classical or quantum.

(b) Can the present model show existence of the first- (2) Though no evidence has been found that the
order spin glass transition? This feature was suggested frotnansverse-field-induced spin-glass transition becomes of first
nonlinear susceptibility measurements by Wetal:'°© order, we calculate the nonlinear susceptibility, which is
Above 25 mK, the phase transition was of the second ordefpund to conform with the nonlinear susceptibility measure-
as indicated by a divergence of the nonlinear susceptibilitynent by Wuet al*° This suggests that the SK model with a
Xni - Below 25 mK, however, the divergence of the nonlineartransverse field may be a good realistic model for the quan-
susceptibility was changed to a flat maximum, when thetum spin glass LiHQY ;_F,.
imaginary part of the low-frequency linear susceptibility (3) We examine whether there exists anomaly in the sec-
showed a sharp peak. Wit al. concluded these features to ond temperature derivative of the specific heat divided by
suggest that at low temperatures the transverse-field-inducéemperatureC,, /T near the spin-glass transition temperature
spin glass transition turned to the first-order. But there hasf the SK model with a transverse field or not. We will show
been no evidence for this first-order transition in the quantunthat the classical SK modél'=0) depicts the anomaly near
spin-glass models including the SK model with a transversé¢he glass transition temperature, and check whether the quan-
field. Very recently, Cugliandolet all® showed, from a tum spin glass transitiol'#0) has any (' dependent
guantump-spin spherical spin glass model, a tricritical point anomaly or not.
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In our paper we use the imaginary-time replica formalism _
which was introduced to quantum Heisenberg spin-glass Zﬂrexr{ﬁFE of
model by Bray and Moor&,and applied to the SK model '
with a transverse fiefd and the quantunp-spin spherical B
spin-glass modéf This formalism is widely known for a Xepr dT[Z Jjoi(nol(T)+HY O-iZ(T)}
guantum spin glass together with the Trotter-Suzuki 0 N '
formalism?? which has also been used in many works of (4)
quantum spin glass:'®’We take the static approximation
in the imaginary-time replica formalism to see whether thenere 7 is the imaginary time,7 is the time ordering
rephca-sy_mmetrlc solutlo_n of the present model is a'Waysoperator,gZ(T) are the operators in the interaction represen-
unstgble_m the whole spin-glass phase under_ the static aRtion, [i.e., o?(r)=exp(Hyr)o?exp(—Hyr), where H,
proximation or not, and also because the static approxima-. _I's,0°] and B=1/T (wherekg=1 for simplicity). For

tion is the only practical choice to obtain analytic squtionsth. del the f b luated using th i
instead of solutions of numerical simulations for the free" s MOCEINE Ire€ energy can be evaluated using the replica

energy, order parameters, resulting phase diagrams, and otfgethod® : — BF =[In Z],=lim,_o(1/n)([Z"],— 1), where
physical quantities such as nonlinear susceptibjfity and [ 1s indicates an average over the quenched disorddy; of
specific heaCy . _The n-replicated partition function of the system can be
We investigate for the analytic solution of our concerningWrittén as
model to obtain the free energy, order parameters and physi-
cal quantities under the static approximation. First we will n
present the procedure 'of imaginary—time replic.a formalism to ZN=Tr exr{_FE 2 o
obtain a general solution in Sec. Il. We obtain the replica- i
symmetric solution under static approximation in Sec. lll. B "
We derive the AT stability condition of the present model in Xex;{ fﬁ [ E 3
Sec. IV. We obtain the replica-symmetry-breaking solution g
under the static approximation in Sec. V. From the solutions
we will determine various phase diagrams for the system in !
Sec. VI. We present an analytic solution for nonlinear sus- +H§|: > o
ceptibility ., to be compared with experimental d2taf a
guantum spin glass LiHY,_,F, in Sec. VII. We will also
show some results associated with the specific 8gato be ~ Wherea denotes the replica index. Performing the averaging
compared with experimental data of classical spin glass i€" by P(Jj;) and rearranging terms, one obtains
Sec. VIII. In Sec. IX we will give our conclusion of the
present studies.

T

107 T) 0o (7)

} ; ®)

[Z“]J=Trexp[ﬁr2 o T
II. MODEL te
2 - 2
The Hamiltonian of the infinite-range Ising model spin « J_J'ﬁ fﬁ ' z z (.
glass with a transverse field is given’by B 2n o dr 0 dr (QEB) Z Tio( ) 0ip(7")

2
> afamafa(r’)) }

HZ—(Z) JijO'iZO'jZ—FE O'ix—Hz af, 1 +2
i i i o

whereo? and o* denote the Pauli matrices, i.e., Jo (8 2
7 7 +NO 'Bdrz (2 O'iZa(T))
N L 0 1 , o e\
7o -1/ 771 o) @

+Hf:d7'§ (EI O'iza(T)) , (6)

(i,j) are distinct pairs of spins with the total numider J;;
are the quenched random exchange interaction varidbliss,
the transverse field, anid is the external longitudinal field. where (o) denotes a summation over and 3(+*a). The
The distribution ofJ;; is taken to be Gaussiamith a mean — square§ =;o7,(7)o7,)(7')1% and[ =07, (7)]? can be sim-
of Jo/N and a variance o?/N, i.e., plified using the Hubbard-Stratonovitch transformation

P(Jij) = VN/2mJ? exp{—N(J;; —Jo/N)?/23%},  (3)

1 A o 1
where the factor M makes the thermodynamic quantities exp{i)\az] = VE f dxexp‘ - E)\x2+ Aax
finite for N—co. ”
By the imaginary-time formalisft?, the partition func-
tion of the system can be written as The resulting free energy can thus be obtaingf4$

. (M
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2 aa Iy — z Z/ 1 @ — z
BF:_"mE fH /N dyaﬂ(”) R*(1,7")=(To(T)o (")), MU1)=(05(7), (9
n—o N[ J (aB) where Q“A(r,7'), R**(r,7'), and M%(7) represent the
5 spin-glass order parameter, the spin self-interaction, and
XH A /N‘] dwee(r,7') the magnetization, respectively, and tké averages are

taken with respect to the effective Hamiltoniaf
NJ, =H[Q*(7,7"),R*(7,7"),M*¥(7)].
< [T \/ == dx*(r)exp{— NG(y*E,we* x*)} -1/, Now we make the static approximatfoti?* by
@ 2m Qf(7,7")=Q%, R*(7,7")=R* andM*(7)=M¢. Then
the intensive free energl=Ilimy_,..,F/N can be given as

where
G(y*P, W x%) Bf= I|m ! BJ) |2 (Q*P) +2 (R*®) ]
1,05, (B nol
EZJZJ de dr'| S (yef(r,))? 1_
0 0 (aB) +35 B0, (M2—In Trexp(ﬂ’)}, (10)
+§ (w(r, 7/))2 with the effective Hamiltonian
1 B - - 1
+§J0f dr>, (x“(7))>—InTrexp(H), H’EE(ﬂJ) 2 Q“ﬁffszfﬁz R*(0%)?
0 a (aB)
with

EE (JOI\/I“Ui—i- H(Ti-‘r I‘O'z).

exp(ﬂ)zexp{EFE o\ T
“ I1l. REPLICA-SYMMETRIC SOLUTION

% ex f dr f dr' Here we take the replica-symmetric assumptidrio set
Q*P=Q for all @+ B, andR**=R andM*=M for all . By
applying the Hubbard-Stratonovitch transfoffag. (7)] to
x| D yeB(r, )0k (r)o(T") (2,0%)?, the free energy can be written as follows:
ap)

Ef=%(EJ)2(R2—Q2)+ BIoM2—lim %

n—0

+ E we (7,7 ) ot (T) k(")

n

f Dz Trex;{@ (% BIZ(R—Q)(0%)?

o

+Fd72 (Joxa(7)+H)a;(r)]. XIn
0 @

Here the trace Tr is ovaer replicas at a single spin site. 2 X

In the thermodynamic limitl— ) the integrals can be tH o+ Tog |, (11
performed by the method of steepest deséért,
where [Dz---=(1/\27)[” .dzexp{—37}---, and H,
=JJQz+J,M+H. By using X"=exp{nin X} ~14nhnX

fdyexp{_NG(y)} for n—0 with X=Tr, exp(BGBI%(R—Q)(c?)2+H,0?

1 +T o)}, where the trace Tris taken over a specific replica
~f dyexp[ —NG(yg) — ENG”(yO)(y—yO)2+ cee at a single spin site, and InfIhA)~nA for n—0, we finally
obtain
(€S) L L
where G’ (y,) =0 defines a saddle poity. The Gaussian pf=— Z(,BJ)z(R—Q)(2—R—Q)+§ﬁJ0M2
term can be ignored fal—c with G"(yy)=0. Otherwise,
the resulting integral diverges and the saddle-point procedure _
fails. If we assumes”(y*#,w®®,x*)=0, then this assump- —f DzIn[2 cosliByVH;+T?)]. (12
tion enables us to replagg”(r, '), we*(r,7'), andx®(7)
by their stationary valuesQ*#(r,7'), R**(7,7'), and We can determineM, Q and R by the condition thaf
M*(7), respectively: resumes the stable extrema when they are the replica-
symmetric solutiond:® From this extremal condition we can
Q¥(7,7")=(Toi(n)op(1"), obtain the self-consistent equationshf Q, andR:
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(a) ' ' ' ' '
1.0 O T/=0.00
% ® /050
A /=075
o8l A T17J=090 |
O /=095

0.6
Q f1J
0.4
0 - 2 Y P Y VY Yy yyyy 0y
0.0 T T L O X
0.0 0.5 1.0 15
™ -1.6 - ! : ' : ' :
0.0 0.5 1.0 1.5 2.0
(b) . , T
10 2 Zigjgg T FIG. 2. Free energyf vs temperaturel/J at three selected
A T/)=0.75 transverse fields [{/J=0.0, 0.2, and 0) with H/J=0.0 and
08l A 7/-090 | J.13J=0.0
O T/=0.95 0 e

action strengthl;/J=0.0. AsT'/J increasesQ values are
seen to decrease in the whole temperature range and the spin-
glass transition temperature is lowered.IAtJ=0.0, Q in-
creases to 1 with decreasing temperature to zerol /At
#0.0, howeverQ increases with decreasing temperature be-
low the transition temperature but to a saturation value less
than 1, which decreases with increasIngl. In Fig. 1(b) we
r/J ' show the spin-glass order parame@rvs transverse field
I'/J at various temperatures/J with H/J=0.0 andJ,/J
FIG. 1. (a) Spin-glass order parametérvs temperaturd/J at  =0.0. AsT/J increasesQ values are seen to decrease in the
various transverse fields/J with H/J=0.0 andJ,/J=0.0. (b)  whole transverse field range and the critical transverse field
Spin-glass order paramet€ vs transverse field'/J at various  ['_ of the spin-glass transition is lowered. A{J=0.0, Q

temperature§/J with H/J=0.0 andJ,/J=0.0. increases to 1 with decreasing transverse field to zero. At
T/J+0.0, howeverQ increases with decreasing transverse
field below a critical field but to a maximum value less than
f Dz = tanf(BvH +I?), (13) 1, which depends offi/J.

In Fig. 2 we show the free enerdws temperaturd/J at

three selected transverse field3J with H/J=0.0 and

VY Jo/J=0.0. The free energy of the I'/J=0.0 (SK) case

Q= J'DZ tanh’- '8 HZ+T%), (14) shows a maximum at some specific temperaiyyeand de-
creases as the temperature is lowered bélgwThe entropy

H2 S (=-0f/dT) then has negative values in the low-
:f Dz z (15)  temperature region beloWly. This fact violates the third law
H§+F2 of thermodynamics, by which such concepts as AT stability

condition and replica symmetry breaking have been intro-
duced in spin-glass theoriésBut free energyf for I'/J

=0.2 and 0.5 shows no maximum at finite temperature and
increases as the temperature is lowered to zero. The entropy
Sthus approaches zero as temperature goes to zero, which is
different from theI'/J=0 (SK) case. Thus we may ask
whether a replica-symmetry-breaking spin glaRSB-SQ
phase exists in the case of a nonzero transverse fleld (

We haveR=1.0 atI'=0.0, when the free enerdy magneti-
zation M, and spin-glass order parametrare reduced to
those of the SK modélThis criterion was not satisfied in the
earlier work of Thirumalaiet al1*?° From the above solu-
tions we can derive the replica-symmetric linear susceptibil-
ity xo for Jpb=H=0.0 as

Xo=B(R=Q), 18 Z0.2or 0.5. This question will be examined in Sec. VI.
and atI’'=0.0 y, can be seen to satisfy the so-called Fischer
i~ 26
relation: . IV. DE ALMEIDA —THOULESS STABILITY CONDITION
In Fig. 1(a) we show the spin-glass order paramegevs
temperaturel/J at various transverse field¥J with a zero We want to show that the assumpti@®f (y*#,w® x%)

external longitudinal fieldd/J=0.0 and zero average inter- =0 in Eq. (8) gives the stability condition for our replica-
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symmetric solutions. We start with small variable expansions

(r,7,7)=(T0% T)O'B(T) Z(Tﬁ»,
of y*#, we®, andx® as

aBM

(7_ P T/” (TO’E( 7-)0-2( T’)o’i( 7'”)0'?,( 7'/")>- (18)

yB(r,7)=Q ¥ (r,7 )+ n*F(r,7"), Papur
Here the( ) averages are taken with respect to the effective
w* (T, ") =R (7, 7")+ £*(7,7"), (17 Hamiltonian7{=H[Q*(r,7'),R**(7,7'),M“(7)]. The de-
viation of the free energyF/N from its stationary value is
xH(1)=M*(7)+€%(7), then given by » g

and expand the free energ /N to second order in fluctua- — @ \aa g af paa \ga B
tions *A(r,7'), €**(r,7'), ande*(7). The second deriva- [Fy*wx%) = F(Q*,R*™,M*)]JIN=—A/2, (19
tive of G generates three- and four-spin couplings as followswhere

A= 2 ABY Sapun = (BY TPapunl 7177, 7") = Qupl(1,7)Quul 77" ™ (4", 7")
+a2ﬁ {(BI268,5= (B[P aapp(1, 7, 7", 7") = Roa( 7,7 )Rgp(7,7) I} EX(7, 7 ) EPP(7, 7")
+§ {BI08ap— (B Qup(7,7') =M o(T)M 4 r')]}e“(r)eff(r')—(a%# (BO P apuu(r,7 7', 7")

—Qaﬁ(T,T')RM(T",T”’)]n“B(T,T’)g““(f’,T”’)—(% B2I23[0 g, (7.7, 7")
aB)p

—Qup(7, 7 IM (7)1 7*(, r')e#(%’)—QEﬁ B2IZI[00ap(1, 7, 7") = Rual 7,7 M p(7)1€%%( 7, 7" ) €P( 7).

(20

Here A should be positive definite for the solutions stability region at selected transverse fields] with H/J
Q%A(r,7"), R*(r,7'"), andM?(7) to be stable. =0.0 andJy/J=0.0. WhenI'/J=0.0 (SK mode}, the AT

We analyze de Almeida-Thoule¢&T) stability condition  line of Eq. (21) locates the stability limit af/J=1.0. But
of the replica-symmetric solution in the concerned modelhe AT line extends the stable region to zero temperature
under static approximation. This condition should verify whenI'/J increases to a very small value 0.06. It thus seems
whether there exists any replica-symmetric region in the

spin-glass state under the static approximation, as suggeste 04 ' ' ' T " T I
by Thirumalaiet al.** or not. —[/J=0.00 i
As shown in the Appendix, the stability condition of the r _'_f_'.gjfg'gi S
replica-symmetric solution under the static approximation is - T/J=0.06 ,’// ]
given by 0.2} ===~ T/J=0.08 S :

[AT]

(BI)~ 2>f Dz secl’?(,B\/H +TI'?), (21

which is reduced to the result of de Almeida and Thofless
I'=0.0. The above result represents the AT stability condi-
tion extended to the case of a nonzero transverse field, an

when this condition is not satisfied, the phase corresponds tt %300 o055 080 075 100 125
the replica-symmetry-breaking one. In this phase we have nc T/J

stable free-energy minimum with a single-valued magnetiza-

tion M and spin-glass order paramet@rbut there may be FIG. 3. [AT] vs temperaturel/J at selected transverse fields
metastable free-energy valleys with varying locall'/J with H/J=0.0 and J,/J=0.0. Here[AT] in the vertical
magnetization$. axis represents the integral T/J)%— [Dz(H/(H2+T?)?)

In Fig. 3 we show the temperature dependence of the AT sec(8VHZ+T?) of the AT stability condition.
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that the replica-symmetry-breaking phase will be in a veryQg). For this 1RSB scheme in the—0 limit, the free en-
narrow region in the temperatureT/J)—transverse field ergyf _ is given by
(T'/J) plane, which will be shown in Sec. VI.

— 1

V. REPLICA-SYMMETRY-BREAKING SOLUTION Bf = Z(EJ)Z{(R— Q1)(2—-R—Q;)—m(Q?-Q3)}

We can obtain the one-step replica-symmetry-breaking
(1RSB solution of the present model under the static ap- + EEJ M2— if Dz
proximation. We use Parisi’s parametrization scheme of rep- 2770 m
lica symmetry breaking as in the case of the SK mbdédr >
annxn matrix{Q“B_}_in the replica spin space, threrepli- xIn j Dy cosH'(B IH +F2)}, (22)
cas of {Q“f} are divided inton/m groups ofm replicas, z
assuming than must be a multiple ofm, so that{Q%"} )
consists ofmx m diagonal matrice¢in which all the diago- Where"'zEJ_(_\/Q_oZ+ VQ1~ QoY) +JoM +H. From the ex-
nal elements are zero and off-diagonal elementsg)eand tremal condition off1RSB we can obtain the self-consistent
mxm off-diagonal matricegin which all the elements are equations fom, M, Qq, Q;, andR:

|

J Dy cosH”(E\/HQZJrFZ)}
J Dy cost(BVH .2+ T?)In[cosh BVH,2+T?)]

+m f Dz , 23
nycosH“(E H.2+T2)

1 2 2
Z(ﬁJ)ZmZ(Ql_Qo):_J DzIn

f Dy cost(BVH,2+T2)(Hy/VH 2+ T?)tant BVH,2+T?)
z

J Dy cosi'(BVH.2+T?)

, (29)

M:fD

2
| Dy cost(B VT2 Hy R+ T tan (VR T
Qozf Dz ’ 29
f Dy cosh(BVH.2+T?)

f Dy cosH(BVH2+T2)(H;2/(H 2+ T?))tank(BVH >+ T2)

Q1=J Dz (26)
f Dy cost(BVH.2+T?)
|
f Dy COSﬁn(E /H£2+F2)(H£2/(H£2+F2)) XlRSB:B[R_Q1+m(Q1_QO)] (28)
R= f Dz . The replica-symmetric results of Eq&l.2)—(16) are recov-
f Dy cosH“(E /H£2+F2) ered when we sé;=Q,.
(27) VI. PHASE DIAGRAMS

We haveR=1.0 atI'=0.0, when the free energf, __, Now we obtain phase diagrams not only in the tempera-

the magnetizatioM, and the spin-glass order paramet®gs  ture (T)—transverse fieldl") plane but also in the tempera-
andQ; are reduced exactly to the Parisi solution of the SKture (T)—average interaction strengtlgj, the transverse
model*?” From the above solutions we can obtain the linearfield (I')—average interaction strengthl,j, the temperature
susceptibilityXlRSBfor Jo=H=0.0 as (T)—external longitudinal fieldH), and the transverse field
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(I"—external longitudinal fieldH) planes from the replica- b— 77—
symmetric solutions of Sec. lll. For the case lé=0 the i
paramagnetic phase can be defined fibhe0 andQ=0, 121 T
the spin-glass phase frodd =0 but Q+#0, and the ferro- 10 [ ]
magnetic phase fromM #0 andQ# 0. (The case#i#0 are ' Para ]
trivial since both magnetizatioM and the spin-glass order 0.8 i
parameteiQ become nonzerp.The vanishing oM to zero T/ §
thus gives a phase boundary between the ferromagneti 06 i
phase and others, 9
0.4} -
. I2 g
Jo =JD (H2 AT tanh B\HZ+T?) o_g; i
o'Ooo ' 0I2 ' 0'4 . 0I6 08 10 1'2 14
+ B v secﬁ(ﬁm) (29) ' ' ' d ' ' '
where we have —J\/62 with M=H=0. In addition, the FIG. 4. Phase diagram in the temperaturéJ) —transverse field

condition of Q vanishing to zero gives the phase boundary(rl‘]) plane depicting the paramagnetic—spin glass phase boundary

for H/J=0.0 and 0.6<J,/J<1.0. The solid line denotes the
between the paramagnetic phase and others, paramagnetic—RS-SG phase boundary, and the shaded region un-

der the dotted line indicates the RSB-SG phase under the AT line.

3—2:f DzA| ——— T tanf?(,@ / 2+F ) Equations(31)—(34) are used.
H2 istence of the replica symmetric spin-gld&S-SQ phase by
+E2—223/2 tani‘(ﬁ /Hz?+[‘2) u§ing perturbation expz.;msion Bfand Q. But we have con-
(H;+1'%) sidered the whole region of temperatur&/J)—transverse

field (I'/J) plane by analyzing the AT stability condition to
(30) confirm that RS-SG phase is stable over a wider region of the
spin-glass phase. All the caseslofl>0.06 thus do not have
an effect of RSB, and the RS solution of Sec. Ill should be
valid in the whole temperature region.

In Figs. 5 and 6, we show the phase diagrams under a zero
external longitudinal fieldi/J=0.0). The phase boundaries

F/Jztanr(ﬁl“ (31) among paramagnetic, sp_in glass, ferromagne_tic, and mixed
(spin glass+ ferromagnetit phases are determined by Egs.
which is the same result as for the SK model with a trans{29), (30), and(32). The paramagnetic-ferromagnetic phase
verse field® boundary is given by the overlap between E@9) and(30),

The de Almeida-Thouless instability linghe AT line)  the paramagnetic and RS-SG phase boundary by(Zay,
separates the spin-glass phase from the paramadoefier-  5ng the boundary between RS-SG and RSB-SG phase, and
romagneti¢ phase, the ferromagnetic-mixed phase boundary by the AT line of

Eq. (32). The spin-glass—mixed phase boundary W0
(BI)~ z_f Dz secﬁ(ﬂm) (32  <1.0is given by a vertical straight lirfé.
In Figs. 5a) and b) we show the phase diagrams in the
temperature T/J)—average interaction bias{/J) plane at
ransverse fields df/J=0.04 and 0.50. From the AT line at

x secR(BHZ+T?)

where we haveH,=JoM with Q=H=0. A further restric-
tion of M =0, leading toH,=0, simplifies this phase bound-
ary to

WhereHZEJ\/_erJOM +H. From the above equations all

together we can complete the phase diagrams of the infinit - . .
range Ising model spin glass with a transverse field. /J=0.04 we can confirm the existence of both the RSB-SG

Figure 4 is a phase diagram in the temperatureOhase and a mixed phase characterized by norMexod the
(T/J)-transverse field I{/J) plane presenting the AT instability. The area of RSB-SG and mixed phase regions

paramagnetic—spin-glass phase boundary of &4.and the diminishes with a rapid fall off of the AT line ak/J in-

AT line of Eq. (32) for H/J=0.0 and 0.8=J,/J<1.0. The Creases as can be seen from Fig)5

AT line reaches zero temperature B&J) increases to 0.06.  In Fig. 6 we show the phase diagram in the transverse

The critical I'/J value of the zero-temperature glass transi-field (I'/J)—average interaction biasl{/J) plane at tem-

tion, I',(0)/J is 1.0 but the zero temperature crossing of theperaturel/J=0.50. We can see that the RSB-SG phase has a

AT line is at 0.06. The range df/J for the RSB-SG phase very small area near the zero transverse field.

thus becomes very narrow. In Figs. 7 and 8, we show the phase diagrams under a zero
Thirumalai et al*® studied only the region close to the average interaction biasl{/J=0.0). The phase boundary

paramagnetic—spin-glass phase boundary to check for the elketween paramagnetic and RS-SG phases is determined from
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(a) 2.0 T T T T T T T 2.0 T T T T T T
| T/J=0.04 | 7/J=0.50
151 T 15} ]
Para | Para
T/J 10 _
I/J 10k 7
I RS-SG Ferro
05 | [ Ferro 1
s ey - _
0.0 { 1 " RSB'SG 1
0.0 05 1.0 15 20 0.0 — . ) . .
JNJ 0.0 0.5 1.0 1.5 2.0
J/J
(b) 20 T T T
| T/J=0.50 FIG. 6. Phase diagram in the transverse fidldJ)—average
interaction bias J,/J) plane at temperatur€/J=0.50. The solid
151 . line denotes the paramagnetic—RS-SG/ferromagnetic phase bound-
Para ary, and the shaded region under the dotted line indicates the

RSB-SG phase under the AT line. Equati¢86) and(32) are used.
TA 10t i

The result of Goldschmidt and L'&ifollowing the Trotter-
Suzuki formalism can be translated to the imaginary-time
05 RS-SG i formalism. The relation betweeR**(7,7’) and|7— 7’| then

. shows that when the static approximation is not used,
‘ . ‘ . R**(7,7") increases monotonically ds— 7’| is reduced to

0.0 05 1.0 15 2.0 zero(see Fig. 4 of Ref. 16 The relation betweeR““(7,7")
J/J and|7—7'| has a direct effect on the equation of AT line and
thus on the integral term of the AT line equation. This inte-

FIG. 5. Phase diagrams in the temperatif&lj—average inter- gral, proportional to the square &*“(r,7'), increases as
action bias §,/J) plane at transverse fielda) ['/J=0.04 and(b)  |7—7'| decreases. When the static approximation is not en-
I'/J=0.50. The solid line denotes the paramagnetic—-RS-SGforced the RS-SG phase may thus diminish, as predicted
ferromagnetic phase boundary, and the shaded region under the détem the other results.
ted line in (a) indicates the RSB phag&kSB-SG or mixed(M)
phasé under the AT line. Equation&0) and(32) are used.

Ferro

. - . VII. NONLINEAR SUSCEPTIBILITY
the peaks of the linear susceptibiligy(or the nonlinear sus-

ceptibility ), and the boundary between RS-SG and Nonlinear susceptibilityy, has drawn a great concern
RSB-SG phases is shown by AT line. due to a possibility of divergence at the glass transition tem-

In Figs. 1@ and 7b) we show the phase diagrams in the perature Ty in canonicat®® and quantum spin-glass
temperature T/J)—external longitudinal fieldH/J) plane at systems? As the linear susceptibility shows a cusp instead
transverse fields df/J=0.04 and 0.50. Th& —H AT line at  of a divergence al in spin-glass systems, many research
I'/J=0.04 separates the RS-SG phase from the RSB-S@orkers searched for a quantity of a divergence anomaly at
phase, where the AT line at a high value ldfJ shows a Ty,“*" and defined the spin-glass susceptibility,
rapid drop in contrast to the case of the SK mo_de_I._The area (EZ/N)EiN'[((SiS'>_<Si><s'>)2]J- This spin-glass sus-
of the RSB-SG phase'reglon can be seen to diminish with @eptibility )(J can Jbe deternj"nined by a measurement of the
rapid falloff of the AT line asl'/J increases. . SG . S

In Fig. 8 we show the phase diagram in the transverséh'mlka,'order3 nonlmear_ Suscep.“b'é’? Xni =~ (1/31)
field (I'/J)—external longitudinal field 1/J) plane at a ><(¢°M/@H?) from a simple relatioh® at T>T, and H
temperature oT/J=0.50. The RSB-SG phase is restricted to —
a very small region near the zero transverse field.

Our result is different from the results of ‘Boer and _ 2
Usadet®!” and Goldschmidt and Laf, where there is no Xmi=Blxss™ 2B°13). 33
stable RS-SG phase in the whole spin glass phase. The only
difference between our case considering the static approxMeasurements of, can therefore give important informa-
mation and the other cases lies in the spin self-interactiotion about the spin-glass transition, and the nonlinear suscep-
R(r,7")=(To’(7)o’(7")), whether it is stati¢® (i.e., in- tibility x, of spin glasses has been studied by many experi-
dependent of-— ') or not. mental measurement$3°
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(a) 1.0 v T v T r T v . r v T d T d T T T T T T T
[/J=0.04 | 1.0F T/J=0.50
08| J
] 0.8 4
06} 1 Para
TJ Para ] 0.6 i
sl |
/ ] 0.4 4
02 | L RS-SG
4 - | 0.2} E
% RS-SG RSB-SG
00 1 1 1 1 B
0.0 0.5 1.0 15 2.0 25 00 ‘ly S LS
HuJ 00 01 02 03 04 05 06
HAJ
1.0 v T v T T T T T g
(b) /J=0.50 | FIG. 8. Phase diagram in the transverse field
) (I'/J)—longitudinal field H/J) plane at temperatur@/J=0.50.
7 The solid line denotes the paramagnetic—RS-SG phase boundary as
1 determined by peaks of the linear susceptibijtyand the shaded
X Para J region under the dotted line indicates the RSB-SG phase under the
T/J AT line.
Xnl(T)| (D =T )/ | =%, (35)
i with a power-law exponent’=1.0 as the transverse field
approached’. for '>T";. The experimental observation in
0.0 . ' : ' : ' : ' : the dipolar-coupled Ising spin glass Lik, ,F, showed
0.0 0.5 1.0 15 2.0 25 . . b X
H/J that its nonlinear susceptibilityy, (I'), measured atT

=98 mK, had a divergence as the transverse fieldp-
FIG. 7. Phase diagrams in the temperatur&Jj—longitudinal proached a critical valud'., but was best fitted by
field (H/J) plane at transverse fields) I'/J=0.04 and(b) I'/J 5 =0.2010
=0.50. The solid line denotes the paramagnetic—RS-SG phase The rep“ca_symmetric nonlinear Susceptibnml in the

boundary as determined by peaks of the linear susceptiltilignd  third order is defined by the coefficient of the third-order
the shaded region under the dotted linganindicates the RSB-SG  term in the expansion d¥ [Eq. (13)]

phase under the AT line.
: 1 M
Before a consensus was drawn from experimental mea- = ——
surements ofy, in a spin glass, theoretical opinions pre- 3! gH3
vailed thaty, should diverge in a power law of 5
1 1 J X0 2J0 0)(0 2
oH

= +
6| (1-Jox0)? dH?  (1—Joxo)®

Xnl(T) [ (T=To)/Tg| ™, (34
(36)
with 4/ corresponding to some critical exponent of the spin- , , o .
glass transition as the temperature approacT*be§3‘36 In  Where xq is the r_epllca—symmetrlc linear susceptibility for
particulary’ =1.0 was obtained from the SK thedhand by ~ Jo=0.0, and is given by
Landau-type phenomenological the$ts for T>T,. Most - o
experimental results then tended to support the glass transi- Xo=Bo+BCyt+A(B;+8C,),
tion divergence by fitting with a sample-dependghtvalue.
On the other hand, there have been many theoretical awith
tempts to calculate the nonlinear susceptibijity(I") in the
zero-temperature quantum transition of an Ising model spin D +EE
glass with a transverse fiefd:*° Analytic works’® and A=——0 70
two-dimensional2D) and 3D Monte Carlo simulatiofs*° VQ—(D;+BE;)
all made the conclusion that, (I") should diverge as trans-
verse fieldl" approaches a critical valdé. at zero tempera- 2 o
ture. Similarly to the power law of Eq34), Readet al®’ B, f zZ — % tanH ByHZ+T?),
showed thaty,,(I') should diverge as (H7+12)%
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FIG. 9. (8 Nonlinear susceptibilityy, vs temperaturel/J at

four selected transverse field§'/J=0.10, 0.75, 0.90, and 0.95
with H/J=0.0 andJ,/J=0.0. (b) A log-log plot of the nonlinear

susceptibility x,; vs reduced temperaturd ¢ T,)/Tq [in the tem-

perature region T—T,)/Tg<1 of general experimental concerns

(Ref. 30] at two selected transverse fields/§=0.10 and 0.95
with H/J=0.0 andJ,/J=0.0.

HZ _
Zrz seck(BVHZ+T?),

C EJ' DzZ"
) H2+

H,I'? —
— z 2
Dn=J Dz7" RZ 19 tantf(B\HZ+T2),

4

tanh( ByVHZ+T?)

3
. z
En=f Dz7" (HE+T2)%

x secl(B\H2+T?2).

For H=0.0 we can se8&,, B;, andC; vanishing to obtain

Xo=BCo=pB(R-Q) [Eq. (16)].

In Fig. Ya) we present the nonlinear susceptibiliy; vs
temperatureT/J at four selected transverse field$'/{
=0.10, 0.75, 0.90, and 0.95with H/J=0.0 and Jy/J
=0.0. From this figure we can see thg}, diverges to infin-

ity at T=T,. As I'/J is increasedT is shifted to lower
temperatures. In Fig.(B) we redraw our results for a log-log
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FIG. 10. (a) Nonlinear susceptibilityy,,, vs temperaturd/J at
selected transverse field§'/J=0.10 and 0.5p and longitudinal
fields (H/J) with J4/J=0.0. (b) A log-log plot of the nonlinear
susceptibility ,, vs reduced temperaturd ¢ T)/T, (in the tem-
perature region T—Tg)/Ty<1) at a fixed transverse fieldl/J
=0.50, and selected longitudinal fieldsl {J) for J,/J=0.0.

plot of the nonlinear susceptibility,, vs reduced tempera-
ture (T—Ty)/Ty in the temperature region 0.081T
—Ty)/Tg<1l of experimental concerffs at two selected
transverse fieldd’/J=0.10 and 0.95 withH/J=0.0 and
Jo/J=0.0 to check for a power-law divergence BTy .
When we attempt to fit this curve by E(B4), we can see
that y, shows a divergence to infinity with a power-law
exponenty’ =1.0 as the temperature approaches the glass
transition temperaturd, closely, which agrees with the
mean-field theorie¥'=3¢ But, if we fit in the region 0.1
<(T—Tg)/Tyg<1l, we obtainy’ larger than 1.0, which
agrees with the previous experimental wotkiVe can thus
see that the prediction thgt, diverges withy’ =1.0 may be
valid only in the temperature region close Tg, i.e., (T
—Tg4)/Ty<0.1.

In Fig. 10(a) we present the nonlinear susceptibility; vs
temperaturel/J at two selected transverse field$J=0.10
and 0.50 with various longitudinal fielddH{J) and J,/J
=0.0. At zero longitudinal field we can see tha}, diverges
to infinity at T=T,. But the nonzero external field smeared
out the divergence of,,. We can thus conclude that the
longitudinal field may smear out the transition anomalies not
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only in the linear susceptibility (see Ref. 2but also in the
nonlinear susceptibility,, . In particular, a small field such

asH/J=0.005, which has a negligible effect on the cusp in

linear susceptibilityy, can make the divergence gf,; at T
smear out. In Fig. 1®) we redraw our results in a log-log
plot of the nonlinear susceptibility,, vs reduced tempera-
ture (T—Ty)/T,4 at a fixed transverse fielll/J=0.50 with
various external longitudinal fieldH(J) andJ,/J=0.0 to
check for a power-law divergence at>Ty. This figure

shows a strong dependence of the nonlinear susceptibility

xn on the external field in the temperature region of (
—Tg)/Tg<<0.01, where most experimental
reportect® At H/J=0.0 we can see tha, shows a diver-
gence to infinity with a power-law exponent=1.0 as the
temperature approaches the glass transition temperagyre
which agrees with the mean-field theort8s3® But the non-
zero longitudinal field can be seen to prevgpt from diver-
gence, and make it flatten out as temperature approdches
Most experimental resuft indeed show this flattening of

Xni NearTy, which may well result from the applied field

effect in they, measurements. In the temperature region of

0.1<(T—-Tg)/Ty<1, we can see that, becomes indepen-
dent of the applied field with a fixed slope larger than
v'=1.0.

In Fig. 11(a) we present the nonlinear susceptibility; vs
transverse fieldI'/J at four selected temperatureg/{
=0.01, 0.75, 0.90, and 0.95with H/J=0.0 and J,/J
=0.0. From the figure we can see thg} diverges to infin-
ity as the transverse field approaches a critical valgyeAs
T/J is increasedl . is shifted to lower values. In Fig. 1)

data are
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FIG. 11. (a) Nonlinear susceptibility, vs transverse fieldl'/J

we redraw our results in a log-log plot of the nonlinear sus-4 four selected temperaturé&/0=0.01, 0.75, 0.90, and 0.9ith

ceptibility x, vs reduced transverse fieldl ¢ I'.)/T"; in the
field region 0.00x(I'-T'.)/T".<10 corresponding to the
experimental concerns of Wet all° at two selected tem-
peraturesr/J=0.01 and 0.95 wittH/J=0.0 andJ,/J=0.0
to check for a power-law divergence BT, . When we fit
this result by Eq(35), we can see thag, diverges to infinity
with a power-law exponent’=1.0 as the transverse field
approaches a critical valué, not only at zero temperature
but also finite temperatures. But, if we try to fit in the region
0.1<(I'-T')/T';<10, we obtains larger than 1.0. Wu
et al1° measuredy,,(I') at T=98 mK, observing a power-
law divergence with an exponeAt=0.20. We can thus con-
firm that the prediction of divergence jp, (T") with §'=1.0
may be valid only in the regionl{—T".)/T";<0.1.

In Fig. 12a) we present the nonlinear susceptibility; vs
transverse field'/J at two selected temperaturésJ=0.01
and 0.50 with various external longitudinal fieldd/J) and
Jo/J=0.0. We can see that zero fiejq, diverges to infinity
atI'=T". but at finite longitudinal field the divergence g
smears out. In Fig. XB) we redraw our results in a log-log
plot of the nonlinear susceptibility,, vs reduced transverse
field ('-T,)/T; at a selected temperatuidJ=0.50 for
various longitudinal fieldsH/J) andJ,/J=0.0 to check for
a power-law divergence dt>T,. Varying characteristics of

H/J=0.0 andJ,/J=0.0. (b) A log-log plot of the nonlinear sus-
ceptibility x,,; vs reduced transverse fielll ¢ I .)/T"; [in the region

of experimental concerns of Wet al. (Ref. 1Q] at two selected
temperaturesT/J=0.01 and 0.9bwith H/J=0.0 andJ,/J=0.0.

In the laboratory experiment, it is very difficult to apply a
magnetic fieIdHtoc\/f exactly transverse to the magnetic
easy axis of the LiHgv, ,F, sample, parallel to the axis
in this tetragonal system. A tilt of only 1°, bringing about a
very small longitudinal field oH;=H, sin(1°), can influence
the nonlinear susceptibility, , which is very sensitive to
longitudinal field, as can be seen from Figs. 10 and 12. The
longitudinal fieldH;=H, sin(¢) induced by a tiltd will in-
crease in proportion tbl; . In an experiment where the trans-
verse magnetic fieltl, is externally tunable, this tilt-induced
effect cannot be neglected. Figure 13 shows this tilt effect,
which resembles the observations of \&ual X°

Figure 13a) shows the nonlinear susceptibilify, as a
function of transverse magnetic field,=+T/J at four se-
lected temperature¥/J=0.01, 0.75, 0.90, and 0.95 for an
induced longitudinal field oH; /J=H, sin(#) with #=1° and
Jo/J=0.0. At a very small tilt angl&#=1°, the divergence of
the nonlinear susceptibility can be seen to be suppressed with
only the external transverse fiett} applied and the tempera-

the power-law divergence and a flattening out were observetlire T lowered, which shows a resemblance to the results of

in xn(I',H) of the dipolar-coupled Ising spin glass
LiHo,Y;_F, under external’ andH fields°

Wu et all® Figure 13b) shows the linear susceptibility
obtained under the same conditions as Figal3Though
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FIG. 12. (a) Nonlinear susceptibility,, vs transverse field'/J
at two fixed temperatures(J=0.01 and 0.5Dand selected longi-
tudinal fields {/J) with J4/J=0.0. (b) A log-log plot of the non-
linear susceptibilityy,, vs reduced transverse fiell ¢ I';)/T"; (in
the region [ —T';)/T';<1) at a fixed temperaturé/J=0.50 and
selected longitudinal fieldsH/J) with J;,/J3=0.0.

FIG. 13. (a) Nonlinear susceptibilityy, as a function of the
transverse magnetic field,=T/J at four selected temperatures
(T/3=0.01, 0.75, 0.90, and 0.9%vith #=1° andJ,/J=0.0. The
misfit angle § can induce a longitudinal field dfi;, /J=H, sin(6).
(b) Linear susceptibilityy as a function oH,, obtained under the
same condition a&).

our static linear susceptibility cannot be compared directly

with the frequency-dependent linear susceptibility of Wu In Fig. 14@) and 14b) we present the specific he@t, vs

et al, ° our linear susceptibility also shows a stronger cuspg€mperaturd’/J at various external longitudinal fieldsi(J)

at higherH, with lowering T in conformity with the results and transverse fields/J=0.00 and 0.50 witll;/J=0.0. As

of Wu et al’® and Rozenberg and GremgélOur results, Fig. 14@) shows, atl’/J=0.00 (SK system andH/J=0.0,
however, do not show any evidence of a first-order transitionCw iS proportional toT~2 in the paramagnetic phasd (
Our result for the SK model with a transverse field can thus>Tq and 0<Jy/J<1), but linear on the low-temperature
explain the experimental observations in the quantum spigide? As Figs. 14a) and 14b) show, a cusp appears at the
glass LiHQY;_,F,, in which the divergence of the nonlinear glass transition temperature for all valueslofl whenH/J
susceptibility becomes suppressed whereas the linear suscdp-zero as in the SK modéiWhenH/J is given a nonzero
tibility continues to show a sharp peak, although it does nofinite value, however, the cusp becomes smeared, to give a

confirm the first-order transition. broad maximum shifting to high-temperature side H&J
increases, which agrees with experimental observations by
42
VIIl. SPECIFIC HEAT Brodaleet al:

In Figs. 1%a) and 1%b) we present the specific heat di-

In our theoretical calculations the constant-field magnetiG/ided by temperatureQ /T=dS/JT|y) and its second de-
specific heaCy can be obtained from the second-order tem-rivative by temperature d(Cy/T)/dT?=3°S/aT%|,) vs
perature derivative of the free energyq. (12)], temperature T/J) at I'/J=0.00 (SK system and various
external longitudinal fields H/J) for Jy,/J=0.0. Figure

C.—_ ﬁ _ 95 37) 15(a) shows the well-known broad maximum without any
H™ gT2|  dT " distinction at the glass transition temperatiggunder a fi-
H nite external longitudinal fieldH/J. With increasingH/J
whereS=df/JT is entropy. the maximum peaks shift to lower temperatures and decrease
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FIG. 14. Specific heat,, vs temperaturd/J at various longi- FIG. 15. (@) Specific heat divided by temperatur€(/T) and

tudinal fields {H/J) with Jo/J=0.0 and the transverse field fixed at (b) its second temperature derivatiyé’(Cy /T)/9T?] vs tempera-
(@ I'/3=0.00 (SK system and (b) ['/J=0.50. The difference is ture T/J at I'/J=0.00 (SK system and fixed longitudinal fields

distinctive at very low temperatures near zero. (H/J) for J4/3=0.0.

in magnitude, in agreement with the experimental IX. CONCLUSION

observationg®*® Figure 15%b) shows an anomaly in

9*(Cy/T)/dT? near the glass transition temperaturg, We have obtained replica-symmetric and replica-

which disappears with peak shifting to lower temperatures asymmetry-breaking solutions of the SK model with a trans-
the external fieldH/J is increased. This may be evidence of verse field under a static approximation by using the
the field-dependent entropy variation in the spin glass tranimaginary-time replica formalism. The de Almeida—
sition, which was observed by Fogi al % Thouless stability line in the model has been determined.
In Figs. 16a) and 16b) we present?(Cy /T)/dT2 vsT/J From these we could obtain various phase diagrams and the-
at I'/J=0.50 and 0.90, respectively, in the same conditionoretical results of measurable quantities such as the nonlinear
with Fig. 15. Figure 16) shows a weaker anomaly as com- susceptibilityy,,, and specific heaCy . From the above in-
pared with thel’/J=0.00 case near the glass transition tem-vestigations we have shown three important results as fol-
peratureT,. We can thus see that there exists a thermodytows:
namic anomaly even in the quantum spin-glass transition First we have shown that a replica-symmetric quantum
with nonzerol’ value, because thermal fluctuations at non-spin-glass phase is stable in most parts of the spin-glass
zero temperature may have a larger thermodynamic effect iphase in the temperature-transverse field phase diagram. This
a spin glass than the quantum fluctuation induced by nonzerconfirms the existence of a stable replica-symmetric spin
I'. Figure 16b) shows an even weaker anomaly at a ladger glass phase under the static approximation, which agrees
value. We can thus see that the anomaly is gradually supwith Thirumalai et al!® But our result is in contrast with
pressed with an increase of thevalue, which checks for the other result®~'" avoiding the static approximation, where
guantum tunneling competing against spin freezing. Thighe replica-symmetric solution is always unstable in the
anomaly disappears with peak shifting to lower temperaturewhole spin-glass phase. The difference originates from the
as the external fieltl/J is increased, which gives, as shown static approximation applied to the spin self-interaction
in Fig. 15b), evidence of the field-dependent entropy varia-R**(7,7"). When the static approximation is not employed,
tion in the spin glass transition. the RS-SG phase may diminish.
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(a) 3 y T T T T T T APPENDIX: DE ALMEIDA —THOULESS STABILITY
N I/J=0.50 —Z/fo.w | CONDITION UNDER THE STATIC APPROXIMATION
B = ==H/=0.40 7
L w7 - - HA0.60 We give detalis of derivation for the de Almeida—
————————— . : Thouless stability condition of the replica-symmetric solu-
or T tion under the static approximation. Under the static approxi-

mation, the matrixA of Eqg. (20) can be seen to take 11
different types of elements.

. (1) The coefficients ofp*»** terms have three types of
3l ] elements:

(CT)T

(E‘])za(aﬁ)(;.w) - (E‘])4( Paﬂ,u,u_ QaﬁQ;,w)

-5 £1 . — —
0.0 05 ;_/OJ 15 20 (BI)?= (B Pp—Q*)=P (a=u,B=v)
={ ~(B)* (P11~ Q)=Q (a=p,B#v) (A1)
3 v T T T T T T _(np1\4 —_02\=R
(b) | 0 — 015 ] (BI)(P111:~ Q)=R (a#u,B#v).
el (2) The coefficients of¢**¢PP terms have two types of

elements:

(BI)?3up=(BI)*(Paaps—RaaRpp)
_ | (B2~ (B (P~ RH=E (a=p)
~(B)* (P~ R)=F (a#p).

S(C/T)oT

(A2)

(3) The coefficients ok“e” terms have two types of ele-

-5 + L ments:
0.0 0.5 i
T — —
BIo8as—(BI)*(Qup—M,Mp)
FIG. 16. 3*(Cy/T)/dT? vs temperaturdl/J at (a) I'/J=0.50 _ — b —
and(b) I'/3=0.90, with the other conditions the same as in Fig. 15. _ { BIo—(BIg)(R—M*)=A (a=p) (A3)
—(B)A(Q—-M?*)=B (a#p).

Second we have shown a theoretical result of the nonlin-
ear susceptibilityy,,, conforming with the experimental re-
sult of Wu et al’® This suggests that the SK model with a
transverse field may be a realistic model for the quantum — — =
spin glass LiHQY ; _F,, though it does not confirm the first- — (BN (Papun=QapRun) = = (B qu—QR)=GA4
order transition. (A4)

Third, in a classicalSK) spin-glass system with a zero
transverse field, we have confirmed the anomaly in the se
ond temperature derivative @f, /T near the glass transition
temperaturdl ¢, possibly associated with the field-dependent _33123(0 . — M
variation of the entropy in the spin glass transition, in agree- B 0(Oupu=QapM )

(4) For the coefficients of they*#¢“# terms we have

(5) The coefficients ofp*Pe* terms have two types of
Elements:

ment with the earlier experimental observation by Fogfle —33323.(0>—OM)=C _
al.?® We have also shown that this anomaly is suppressed by = E o(021~ QM) _(’u @) (A5)
the nonzero transverse field in a quantum spin-glass system, —B3%3215(011;—QM)=D (u#a).

confirming that quantum tunneling competes against spin

freezing. It would be most welcome if a theory is discovered (6) For the coefficients ok*“e” terms we have
that goes beyond the static approximation used in this paper - -
to obtain analytic solutions as for nonlinear susceptibility _33J2J0(oaaB_RWMB):_333230(021_RM)EH_

and specific heat, and to understand more results of numeri- (AB)
cal simulations and experimental measurements of quantum
spin glasses. Variables introduced in the EgeA1)—(A6) are defined as
follows:
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HZ _
_ z 2) (—
Q—J DZH§+F2 tant(BVHZ+T2) (—a#p),

HZ
R=[ P2 i (—a=p).

4

3

H —
Olllzf Dz m tanr?(,B\/Hg—FFz) (<—a7ﬁ,u),
z

3

0= [ 2 g BT (),
»
xtant(BVHZ+T2) (—a# p,B#v),
y
X tanR(BVHZ+T2) (—a=pu, B+ v),

H4
P =sz—Z —a=p,B=v).
22 (H§+F2)2( m.B=v)
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(1) Consider an eigenvectar; of the form with elements
e*=a for all a, p*#=b for all (aB) and é**=c for all a.
Then the eigenvalue equations become

{A+(n—1)B—\la

J’_

(n—1)C+ %(n—l)(n—Z)S}b+ nHc=0,
{26+(n—2)5}a+{3+2(n—2)6

1 — _
+ E(n—Z)(n—S)R—)\ b+nGc=0,

_ 1 S —
nHa+En(n—1)Gb+{E+(n—1)F—7\}C:0v (A8)

which can be solved for three nondegenerate eigenvalues

{\{} in the limit n—0, as given by
A2—(A—B+P—4Q+3R)A+(A—B)(P—4Q+3R)
+2(C-D)%=0,
A=E—F. (A9)

(2) Consider another eigenvectar, of the form with el-
ements given by*=a for a=6, e*=b for a+ 6, n*#=c for
a or B=6, n*P=d for a, B#06, £**=e for a=6, and £*¢

=f for a# 6 so that each eigenvalue has-{1)-fold degen-

We obtain the stability condition for the replica- eracy. By orthogonality to the eigenvectar, we obtaina
symmetric solution in accordance with de Almeida and=—(n—1)b, c=—%(n—2)d ande=—(n—1)f. Then the

Thouless’ In the paramagnetic phase we have=Q=- - - eigenvalue equations become
=0, and the matrixA] becomes diagonal. The stability con-
dition against ferromagnetic ordering and spin-glass forma-
tion is given by 8J,=0 and (8J)?=0, respectively. The
paramagnetic phase is thus stable under the replica-
symmetric assumption.

Similarly, for generalizing to other phases, we need to find
all the eigenvalues of the matrpA]. The condition that all
these eigenvalues should be positive then gives the stability
of the replica-symmetric solutions. To find the eigenvalues of . . )
the matrix [A], it is necessary to exploit the permutation from which we can obtain threen(-1)-fold degenerate ei-
symmetry of the matrix elements. Since the matrix is reagenvalueg,} in the limit n—0 as given by
and symmetric, the matrix order is equal to the number of
linearly independent eigenvectors to be found. Hence the
matrix [A] will have the order on+in(n—1)+n=32n(n

(A—B—\)a+(n—1)(C—D)c=0,
{(n=2)/(n—=1)}(C-D)a+{P+(n-4)Q
—(n—3)R—\}c=0,
(E+F—\)e=0, (A10)

A2—(A—B+P—4Q+3R)\+(A—B)(P—4Q+3R)

~_N\2_
+3), with the eigenvector§u} given in the form +2(C-D)"=0,
[en) AN=E—F, (A11)
n= {n*P} (B<a=12,...n) (A7) which are the same as for the case of the eigenvecior
[gea) (3) Consider an eigenvectar; of the form with elements

given bye“=a for a=(6,¢), e*=b for a#(6,¢), n*#=c for
where{e%} and{£%?} are column vectors witm elements a=0, B=¢, 7*#=d for a=(6,¢) and B+ (6,¢), n*F=e for
and{ »*?} a column vector witn(n—1) elements. It turns  (a,B)#(6,¢), £**=f for a=(6,¢), and**=g for a+#(6,¢).
out that we can divide the complete set of eigenvectors int@®y orthogonality to the eigenvectoys, and u,, we obtain
three symmetry species by considering distinct eigenvaluethe conditiona=b=f=g=0, so that each eigenvalue has
in the limit n—0. $n(n—23)-fold degeneracy. The orthogonality to the eigen-
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vectors u; and u, also imposes conditions=—(n—2)d
and e=—3(n—3)d. Eigenvalue equations are then all re-
duced to give

A=P—2Q+R,
leading to3n(n—3)-fold degeneracy.

Thus we have a trivial solution ,=E—F=(8J)?=0
and three nontrivial solutions in the limit—0, given by

(A12)

A ,—(A—B+P—4Q+3R)A;,+(A—B)(P—4Q+3R)
+2(C-D)2=0,
A3=P—-2Q+R. (A13)

Numerical calculations show th#—B+P—4Q+3R and
(A—B)(P—4Q+3R)+2(C—D)? are always positive, and

PHYSICAL REVIEW B566, 054432 (2002

we thus have only the eigenvalug to be checked for the
stability condition of replica-symmetric solutions:

N3=P—2Q+R=(B3)2—(BI)*(Py— 2Py, + P1119)
— _ H4 _
=(BJ)*— (BJ)“f Dz—zrz)zsecl‘i(/}\/szﬂL r?).

(HZ+

(A14)

The stability condition of the replica-symmetric solution un-
der static approximation is thus given by

—_ Hs —
(BJ)_ZB f DZWSGCH(ﬂ\/H§+ FZ).
(A15)
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