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Planar triangular model with long-range interactions
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The effect of dipole and long-range antiferromagnetic isotropic interactions in a triangular planar rotator
model is investigated. The ground state is a ferromagiiEjiconfiguration for pure dipole interaction and a
120° three-sublattic€T) configuration for pure antiferromagnetic interaction decaying e wherer is the
spin-spin distance. In between the spins are placed in striped configurations wimms of spins parallel
alternate withn rows of spins antiparallel to a nearest neight®d{sl) direction for any integen provided that
L/n is an even numbet, being the lattice size. Monte Carlo simulation confirms the low temperature con-
figurations found by analytic calculation. Specific heat, staggered susceptibility and order parameter are inves-
tigated to get the phase diagram and the order of the transition to the paramagnetic phase. The order-disorder
phase transition is continuous only for tRephase(pure dipole interaction It is first order for any nonzero
long-range antiferromagnetic exchange interaction.
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[. INTRODUCTION sublattice Nel configuration with the spins pointing along
an arbitrary direction is stable for<07<0.210. The con-
The planar triangular model in which the magnetic mo-tinuous degene.rac'y is lifted by thermal fluctuatio'ns s!nce the
ments located on a triangular lattice are coupled by pur&lémentary excitation energy depends on the spin orientation
dipole interactions is characterized by a ferromagnégc ~ With respect to the underlying lattice. _
phase with long range ord¢tRO) at low temperaturé.On Low temperature expansion and Monte CaMC) simu-
the contrary, the minimum energy spin configuration for alatlon lead to an even richer phase diagram for a triangular

square lattice consists of alternating rows of spins up and Iatt.ice. The main feature is Fhe existence of stripgd configu-
down along a nearest neighb@dN) direction. The close- rations (A'ﬁ‘) ofn rowz of splnsbup and rOYrTVS of ?pln down

. . ' ointing along a NN direction between tfeconfiguration,
packed structure of the.trlangular lattice strongly affects th.é;table for 0< <0.086 at zero temperature, and Reon-
ground state spin configuration when an antiferromagneti

T G ; ﬁguration, stable only fom=1 in the thermodynamic limit.
coupling is present even though it is a short-range intera he AF1 phasdcorresponding to the C phase of the square

tiqn. Indeed'the ground §tate of the planar.triangular mode ttice?) is stable in the large range 0.086;<0.815, but all
with NN antiferromagnetic exchange coupling is characterypp, sriped configurations are stable for smaller and smaller
ized by afrustrated 120° three-sublattic€T) configuration, iniervals of, approaching th& configuration —x). The
whereas two-sublattice N long range order sets up in a continuous degeneracy of tife phase is lifted by thermal
square lattice. When the NN interaction is replaced by gjuctuations and a next nearest neightidNN) direction is
competing interaction extended to nexNNN) and third-  selected. The phase transition to the paramagnetic phase is
nearest neighbors a variety of new configurations is found.first order in contrast to the continuous phase transition
For short-range interaction any LRO at any finite temperafound for the same model on the square lattice. Only for pure
ture is prevented by the Mermin-Wagner theoreWivhen a  dipole interaction the phase transition is second order with
long-range antiferromagnetic interaction decaying as 1/ the critical exponents that agree with the critical exponents
wherer is the spin-spin distance is introduced no data abouof the square modél.
the ground state configuration or about the existence of LRO
at finite temperature are available. Il. THE MODEL

The aim of this paper is to investigate the ground state The model Hamiltonian is
configuration and the thermal behavior of a planar triangular

model with both dipole and isotropic long-range antiferro- wu? N "
magnetic interactions. The study of a planar square model H==3{Jot 37 2 aEB fA(rssl.,, (]
with both dipole and long-range antiferromagnetic exchange r#0

interactions brings to an unexpected rich phase diagram. lynere

terms of the parameten= u?/a%/(Jo+ n?/a), whereJ,

>0 is the isotropic antiferromagnetic interaction strength, rerB

is the magnetic momeng is the lattice constant, different feh(r)= r_3< 377_2_5a,ﬁ)- @)
kinds of order are found. The zero temperature spin configu- '

ration is affected by continuous degeneracy. A four sublatticé labels theL XL sites of a triangular lattice,=1,a; +1,a,
configuration in which the spins of an elmentary squargwith a;=u, anda,=1/2u,+ \/§/2uy) joins the sitel with a
make angle®, — 0, 7w+ 0, m— 6 with a NN direction,#  generic site of the latticey, B label thex,y components of
being arbitrary, is stable for 0.2%0p<1 and a two- the two-dimensional classical vectSrlocated on the sitg
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n=wu?a%(Jo+ p?/ad) runs from 0 to 1 =0 corresponds
to the pure antiferromagnetic casgs=1 corresponds to the
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Q=0Qc=(0,12),(1/20),(1/2,1/2),. . ., depending ory. In
particular we find D**(Qg)=DY¥(Qg)=16.551p—11.034

pure dipole interaction We assume that the ground state and D*Y(Qr)=0 in the ferromagnetioF) configuration,

configuration of our modahaybe characterized by a regular
helix so that we put

S=Hcod¢+Q-r+ ), sinp+Q-r+y)], (3

where Q is the pitch of the helix,¢ is an arbitrary phase
common to all spins of the lattice}, is a small deviation

D*X(Qq) = DYY(Qq) = —3.4987+ 2.332 andD*¥(Q;)=0 in
the 120° three-sublattic€T) configuration, andD**(Q¢)
=2.256p+1.839, DYY(Qc)=—7.7747+1.839, D*Y(Q.)
=0 for Qc=0Q;=(0,1/2), D*(Qc)=—5.266p+1.839,
DYY(Qc) = —0.251yp+1.839, D¥Y(Qc)=F4.343; for Qc
=Q,=(1/2,1/2) (upper sign and Qc=Q3;=(1/2,0) (lower

from the ground state configuration. At low temperature onesign in the collinear(C) configuration. For & 7<0.086 the

can expand Hamiltoniafl) in terms of ¢ and retain only
bilinear contributions so obtaining

2

1
H:Eo“l‘% E \]0+% Sz)\q(/fql//—qy (4)
where
2
— it 2| 2 XX, 1 XX
Eo——E(Jo+gg SL [[D (Q+D¥(Q)]+ >[D™(Q)

—D*(Q)]cog2¢) d2q,6+ D™ (Q)SIN(26) 29,6
©)
>\q=%[DXX(Q)— D¥(Q)+D™(Q~-q)
—D¥(Q—-q)lcog2¢)dx,6

1
+5[D(Q)+D¥(Q-)IsiN24) 50,6
1 1
+51D*(Q)~ 5[D*(Q+q)+D*(Q-q)]+D"(Q)

1
—5[D"(Q+a)+D*(Q—0)] (6)
with

f2B(r)e'Q,
0

D¥(Q)= ()

r+
and ¢ is the Fourier transform of, . No linear term iny,
appears in Eq(4) because its coefficient is proportional to
the derivative ofg, with respect top and we are only inter-
ested into the values ap that minimizeE,. Note the dis-
continuity of the ground state energy fQ=G/2 whereG
=la} +l,a5 [with a}=27(u—1//3u,) and a}

=47/ \/§uy] is a reciprocal lattice vector. We have investi-

ground state is

2

Jo—i-% SPL2(—3.4987+2.33) (8)

1
Eo(Qn)=—5

independent ofs. For 0.086< »<<0.901 the ground state is

2
o
JO+?

Eo(Qc)=— % S?L2(2.256p+1.839. (9)

For Qc=Q1,Q,,Q;, one finds that the minimum corre-
sponds top=0,27/3,7/3, respectively. The ground state en-
ergy of the C phase corresponds to alternating NN rows of
parallel spins pointing along the rows. The discrete degen-
eracy is related to the three equivalent directions. Finally, for

0.901< <1 the ground state energy is

2

1
Eo(Qr)=—5| Jo+ % S?1.%(16.551—11.034

(10

and it is independent ofp. The ¢ independence of the
ground state energy in the and T phases implies the exis-
tence of acontinuousdegeneracy. The continuous degen-
eracy cannot be removed in tiigphase within the harmonic
approximation because in this case thelependence of the
excitations energy as given in E¢) disappears. On the
contrary one expects that the continuous degeneracy is re-
moved in theF phase. To see this we choose=1 and
evaluate the harmonic free energy

ke T
27(Jo+ u?ad) S

ksTN

2In

Eo

KeT
+ T % |n()\q)
(11

We find that the free energy given by EdJl) is a periodic
function of ¢ having minima atp= 7/6+ k/3 correspond-

ing to NNN directions and maxima in correspondencepof
=k/3 (NN directions. The breaking of the continuous de-
generacy at finite temperature is the phenomenon of order by
thermal disordet.We think that the continuous degeneracy

gated the ground state energy evaluating the lattice sumf the T phase fory+0 should be lifted going to higher

given by Eq.(7) as function of the wave vect®) for several

order approximations since the dipole interaction breaks the

values of». No demagnetization factor is accounted for 2D continuous symmetry present only fg=0.

systems because it vanishes ak WhereL is the linear

dimension of the sample in contrast to the 3D case where the

demagnetization factor is finite fir— o and depends on the
shape of the sample. We find that the minimakgf corre-
spond toQ=Qr=0 orQ=Q;=(1/3,2/3,(2/3,1/3),. . ., or

IIl. CHECK OF THE GROUND STATE

To test whether the hypothesis of a regular helix is correct
we have performed analytic calculations assuming a triangu-
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lar lattice divided into four and three sublattices. The four-main advantage of this method is that no regular helix is
sublattice assumption is consistent with tBeand F phase, assumed. The main disadvantage is that only magnetic cells
the three-sublattice one is consistent with thandF con-  with a small number of spins can be studied because of the
figuration. This approach is very similar to the Luttinger- rapid increasing of the matrix dimension.

Tisza methofl applied to square and cubic latticedhe For a cell with four spins the energy is given by
L2 ,LL2
Eo=— I Jot 2 (SI1S:S3SiSISISES))
00 10 o1 o 0 0 Wi Wei| [SI
oW ows o owg oo 0wy -wi| [ S
Wor  Wor  Weo Wi —Woi Wi 0 0 S
y o1 o1 10 oo Woi ~Wei O 0 SH 12
0 0 —Wp Wy oo W owgl o wyl [ S|
0 0 Wpl —Woi Wi Wgp Wi Wy || &
~Wei Woi O 0 Wy We o0 WII || S
Woi —Wei 0 0 Wy Wi Wi o0 | S
|
where WXX=—1.379+2.068;, WXi=—3.218+7.334y, L2 2
5= —3.218r3.57%, WR=-3218r2.320, W  Eo=— | Jot 5 (S1S:S:519)SY)
= —3.218+6.081y, Wy=2.171y. The ground state energy
is easily written in terms of the eigenvaluesof the matrix WSS WX WX 0 0 0 X
given in Eq.(12) o o o y
00 10 10 0 0 0 SZ
1 2 XX XX XX 0 0 0 X
Eo=—5| Jo+ “—3 SPL2). (13 x| 0 e e = ,
a 0 0 0 Wy Wiy Wi S
The eigenvalues are 0 0 © 0 Woo Wip| | S
O 0 0 XX XX XX
Ne= WS+ WA+ 2WS= — 11.034+ 16,551  (14) o Wi Woo| | 3 a7

(ferromagnetic eigenvalue corresponding to a configuration o o
with all spins parallel pointing in an arbitrary direction WhereWgo=—2.123+3.1845, Wy,= —4.455+ 6.682. The
twice degenerate, eigenvalues are

Ng= WS WYY —2W=1.839-7.774y (15 N =Woo+2Wi5= —11.034+ 16.551y (18)

(columnar phase corresponding to a configuration with spinéferromagnetic eigenvaliiéwice degenerate, coincident with
pointing along the three equivalent NNN directiprisree  EQ. (14) and
times degenerate,
Ar=Wpgo— W g =2.332-3.498, (19
=W WX — XX_ 1 .

M= Woot Wig™2Wey = 183922567 (19 (triangular phase four times degenerate. SincEy(\7)
(columnar phase corresponding to a configuration with spins<Eqg(Ag) for »<2/3 the T phase is stable in the range 0
pointing along the three equivalent NN directiprthree < 7<2/3 with energy given by Eq(8). The spins make
times degenerate. The phase with spins pointing along NNMngles of 2r/3 each other but any direction of the first spin
rows is never stable becau&g(\g)>Ey(\c) for any 7. may be chosen. It is interesting to note that the 120° helix is
The C phase is stable forp<<0.901 and the ground state not distorted by the dipole anisotropic interaction. Fgpr
energyEq(\¢c) coincides with Eq(9). For »>0.901 theF  >2/3 theF phase is stable with energy given by E0).
phase is stable with enerdy,(\g) given by Eq.(10). The continuous degeneracy is confirmed for bdtland F

For a cell with three spins the energy reads phases.
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At variance with the square planar modéhe C phase TABLE I. Reduced ground state energy as functionyof
does not show continuous degeneracyTat0. For 7 in-
creasing from pure isotropic antiferromagnetic interaction®  Eo/[(Jo+w?/@)L*S]  n  E/[(Jo+ u?/a’)L?S?]
(n=0) to pure dipole interactionzf=1) T, C, andF phase

. . 1 —1.127947—0.91951 7 —5.85273+3.19513
are expected for the triangular lattice to be compared to thE —3.05887%+0.65364 8 —6.06700;+3.39679
AF, C, V, C phase found in the square lattite. ' ' ' '

) . 3 —4.10732+1.58432 9 —6.24287%+ 3.56284

The spin waves of th& phase are well defined farther on 4 4774290+ 219234 10 —6.39013:+3.70275

the region of stability of thd phase (6< 7<0.086). Indeed 5 75'239627+2'62245 1 76.51543]+3.82114
the stability region of spin waves is<0p<<2/3. For 7 ' 6+ 2. : 4p+3.

6 —5.585059)+2.94428 12 —6.62353)+3.92387

=2/3 the spectrum becomes very flat and the excitation en-
ergy very low. On the other hand ti& phase is stable for
7>0.086 so that thd configuration cannot affect the equi-
librium properties of the model for such values gf In
conclusion theT phase is stable for €9 #<0.086, C phase
for 0.086< 7<<0.901, andF phase for 0.90& »<1. The
present analysis confirms the ground state configurations and S(q) = E 2 S(my,m )e—iqx(m1+m2/2)e—iqy(\f‘§m2/2)
their stability range obtained in Sec. Il where only regular L mim, L '
helices have been considered. (21
An intriguing question arises about the spin wave spec-
trum in theF phase. Indeed except the case 1 (pure di-  For evenn Eqg. (20) becomes
pole interaction for any 0.90K »<1 the spin wave spec-
trum is not well defined pointing out an instability of the
ferromagnetic configuration.

wheres is an integer in the range (n+1)/2<s<(n—1)/
2 and

0 027 (s+1/2)
Eo= L2521 (H_EM an
(U o £

n< s=0 .
IV. STRIPED CONFIGURATIONS Sl

2
M

Jot =5
0 a3

o

H(S+ 1/2)}

Striped phases (AH with n rows of spins up alternating (22)
with n rows of spins down are good candidates to connect | .
the C phase(or AF1 configuration with the F phase. Pure while for oddn Eqg. (20) becomes
dipole interaction in the triangular lattice leads Fophase
and pure isotropic antiferromagnetic interaction supports theE __
T configuration. The hypothesis of a ground state configura- °
tion characterized by a regular helix or by a four spin mag-
netic cell leads to the AF1 configuration, but the possible DXx
existence of higher order striped phases has to be investi- 1 (b2
gated by a direct calculation of the energy of these striped X| = >
configurations. e s=0 G

The energy of a perfectly ordered striped configuration for
an Ising model on a square lattice was evaluated taking NN (23)
ferromagnetic exchange and dipole interaction into accbunt.

An analogous calculation for the Heisenberg model was peftn Table | we give the reduced ground state energy
formed in presence of uniaxial anisotrop{’ We have ex- Eo/[(Jo+ n?/a®)L?S?] as function of . In Table Il the
tended this approach to the planar triangular model assuminggjue of  at which the phase AfFis replaced by the phase
the spins to point along theaxis, one of the three equivalent AF(n+1) is given for I<n<11. As one can see AF
NN directions. For stripes af rows the ground state energy phases with any occur even though their range of stability
IS becomes narrower and narrower for increasing

u?

Jot+ 5 |L*S?

0 4 0277
V3n 3
2
%(s+ 1/2)} 2n

(s+1/2)| DX

TABLE Il. Values of » at which the phase AFis replaced by

2
Eo=— %(J(ﬁr % ; D*(g)S(g9)S(—q) the phase AR{+1).
1 u? L)2 n 7 n n

- E(JOJF a3 Sz% D(a) (ﬁ) 1 0.81471 7 0.94111
2 0.88768 8 0.94419
1 3 0.91170 9 0.94668
X ES: 8a,.00%, (4w Bn)(s+ 1) ' 4 0.92409 10 0.94874
sir? (st 1/2)} 5 0.93180 1 0.95047

6 0.93714

(20
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TABLE IIl. Values of 5 at which the phase Afset in forL 5 } 4 b
=24. /l}\& A/?\ /l}\a /1}\
I R T I
7 PN N A N ST -
AF1-AF2 0.81471 4 . b .« b - b
AF2-AF3 0.88768 g ] s }
AF3-AF4 0.91170 LA
AF4-AF6 0.92737 A T R
AF6-AF12 0.94329 R T T S
AF12-F 0.96436 I T T
Ty T Ay T Ay
G I I
In order to find the ground state energy for large stripes’ =« ™~y ™= x ™™ » ™

(n—«) an expansion obD**(Q, ») for small Q is in order. ) . ,
Such an expansion, obtained in the Appendix, reads FIG. 1. Snapshots of a triangular lattice of X122 spins ob-
' ' tained from MC simulation foff =0.02 and»n=0.05 after 16 MCS

4 from a random configuration.
™

T

DXX( 0 (s+ 1/2)) o
only a few AMm phases survivéi.e., AF1, AF2, AF3, AF4,

AF6, and AF12: the only striped phases that satisfy the pe-

A 4 1 riodic boundary conditions.
=16.551267—11.03418~ ﬁ(l_ 7) E<5+ §) The planar model involves two-component spin vectors
but it falls in the same class of symmetry of the Heisenberg
A 1\1? model with easy-plane anisotropy so that the ground state
+(0.79002—1.05336 E(er S| (24 configurations we find are the ground state configurations for

a relevant set of three-component spin models. Note that the
lattice structure, the long-range character of the exchange
interaction, and the easy-plane nature of the anisotropic long-
range dipole interaction are essential to get striped phases
with in-plane spin configurations. Indeed all models previ-
L282[8.275637—5.51709 ously considered concerning a square lattice with uniaxial
(Ising-like) anisotropy, NN exchange interaction, and dipole
interaction led to strip domains with only out-of-plane spin
configurations:'° On the other hand in-plane strip domains
were observed in ultrathin films of Co layers on Au
substrat?' when the dipole interaction dominates the
. uniaxial surface anisotropy, that is when the film thickness
reaches a critical number of monolayers. An analogous be-
(25)  havior was observed in Fe layers on Cu substfaubere the
onset of out-of-plane and in-plane striped configurations at
Note thatEy(«)=Er is the energy of the ferromagnetit  increasing the film thickness or the temperature is even more
phase. In the thermodynamic limit tiephase is restricted to impressive.
n=1 but for finiteL the question about the stability of tire
phase forp#1 is still open. Indeed in a sample afxL
spins the last striped configuration appearing before the fer-
romagnetic one is characterized by=L/2. Unfortunately We have performed Monte Carl®C) simulations onL
the assumption of periodic boundary conditions, crucial toXL triangular lattices with. =12, 18, 24, 36 following the
evaluate the expansion given in E84), prevents any appli- periodic “images” approach® Low temperature MC simu-
cation of Eq.(25) to sample in which the stripe widthis  lations confirm the kind of order expected on the basis of
comparable with the sample site The finite size effect is analytic calculations of Secs. Il and IV. In Fifj a snapshot
expected to open finite range of stability of theF phase, of a 12x 12 triangular lattice is shown fay=0.05 (T phase
which shrinks to a point in the thermodynamic limiL ( at T=0.02 where the temperature is in units)y(
—). If it was not so, it should become hard to explain the+ u?/a®)S?. In Fig. 2 the snapshot is taken at the same
ferromagnetic phase with spins out-of-plane observed in epremperature fory=0.5(AF1 phase In Fig. 3 the snapshot is
itaxial films of transition metals grown on gold, silver or shown for =0.85 (AF2 phas¢ at T=0.03. The snapshots
copper substratgs:? are taken after OMC steps for theT and AF1 phase and
In Table 11l we give the values ofy for which the AR after 10 MC steps for the AF2 phase starting from a random
phases are stable far=24, a lattice size chosen for the most configuration. Higher order striped configurations have ener-
part of MC simulation of the next section. As one can seegies so close and stability regions so narrow that the MC

Substitution of Eq(24) into Eq. (22) gives the ground state
energy of the striped phase for large

2

Eo(n—)=—{Jdo+ 73

167 0.57893+ (1/m)Inn
g n

16 In2
+ €(0.790027—1.053367+ e

V. MONTE CARLO SIMULATION
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<~ G g <
& o~ — -
T - < <

— = — —

NI SR T N R
LR TR N A B
AU B T A A
Py v b byt

O T R T A

T
FIG. 2. Snapshots of a triangular lattice of X122 spins ob-
tained from MC simulation folf =0.02 and»=0.5 after 16 MCS
from a random configuration. 1

imulati lls for | di ting ti to pick FIG. 4. Phase diagram of the planar triangular model as ob-
simutation calls for longer and longer computing ime 10 PICK 5500 4 from MC simulation on a 2424 lattice.T,P,F,AFn mean

out the Conflguratlon_expecteq on the basis of the groun 20° three-sublattice, paramagnetic, ferromagnetic, striped antifer-
state energy calculation. For instance, the AF3 phase, ©{omagnetic phase being the stripe width.

pected fory= 0.9 (see Table llI, is seen in a long MC simu-

lation but occasionally also the AF4 phase appears. Shapp) configuration of the previous temperature. This implies
shots of AF1 and AF2 configurations with the spins pointingthat a very long effective simulation is performed for tem-
along the other two equivalent NN directions as well asperatures in the critical region. At zero temperature The
snapshots of thé phase configuration fo=1 with spins  AFn (with n=1,2,3,4,6,12 and F configurations are ob-
pointing along any NNN direction have been recorded ingined by analytic calculations as shown in Table Ill. MC
other MC runs. simulations recover th&, AFn (with n=1,2,3, andF con-

_In Fig. 4 we show the phase diagram obtained by MCigyrations unambiguously while the identification of the
simulation on a 2424 lattice. The phase transition to the Afp configurations witm=4 is very delicate.

disorderec{paramagnetbp? phase has been located looking |, Figs. 5, 6, 7 the specific heat, the staggered suscepti-
at the peak of the specific heat bility and the order parameter

c=BA(H?) = (H)*)IL?, (26) y=(|M[)/L? (29)
and of the staggered susceptibility are shown versus temperature fpr=1 (F phasg. The size
_ N 22 scaling indicates the existence of a continuous phase transi-
.X(Q) (M= (MDA, @7 tion at T,=0.88. We find thatr=1 is consistent with the
whereM =3,e'%'S, andQ=0Q1,Qc,Q¢, for T,AF1, andF  size scaling of the temperature at which the susceptibility
phase, respectively. Simulations are performed averagingeaches its maximum. We obtaip=1.70-0.03 and B
over eight independent MC runs. In each ruff tbnfigura- =0.21+0.03 in agreement with the correspondent critical
tions over 18 MC steps are accounted for,%lfre discarded exponents obtained for the square mdddle have tested the
for thermalization assuming as starting configuration the fi-

s [T T T T
Fox 12x12 @ g
/ f /4/ ¢ ! /4/ 4 ! /4/ [+ 18x18 ;% 1
S veo [ e B
p P P P P p [ ¢ R4xR24 +®% 1
prr g P g [ - 36x36 ¥ ]
# £ ;¥ ) 125 gx B —
A A f oA A A L % -
Fagpg 2P0 b S ¢ A & ]
Prpa b lag P b d oo |- ¢ %5%2—:
boa P Pgg P g ¥ [ o %
bpop V50 087 ga : :
P/ / P/ 1; P/ p/ 0.75 _— 2 —_
oz i A7 C o 8 ]
s [ A4 4 r s« &% ]
77 A A FoA ¥ % | | |
4 P b i oo v ww ®T 0 0 0 1000 10 1
A A A7 A A 0 0.25 0.5 0.75 1 1.25
4 s I ¢ T
FIG. 3. Snapshots of a triangular lattice of X422 spins ob- FIG. 5. Specific heat c versus reduced temperature T for several
tained from MC simulation fof =0.03 andy=0.85 after 16 MCS lattice sizes as obtained from MC simulatidn=12 (crosses L
from a random configuration. =18 (vertical crosses L =24 (diamond$, L =36 (circles.
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BT T T T T 80 T
[ > 12x12 ° ] N o
5 + 18x18 °o - 25 [ $ =
o 24x24 o ] f % ]
20 — ® — 20 — —
[ ° 36x36 o ] N ]
X 15 ° = 15— ]
: 3%; ] X _ 3 2 o ]
- o %0 4 L i
10— 8 % — 10— % —
r S ] ' é ]
[ #+ i
S of t\’%‘w 7 S ]
i @*MQ; % x X X X
0_ TRy l & AAALOOQ?fT TR | TR R | 0_ L |||||||| ||||||| |||| Lo
0 0.25 0.5 0.75 1 1.25 1ol 10° 103 10 105
T N

FIG. 6. Susceptibilityy=x(Q=0) versus reduced temperature  FIG. 8. Sucseptibility forp=1 at T=0.89 for samples of size
T for several lattice sizes as obtained from MC simulatior.12 12X 12 (crosses 24x 24 (diamond$, and 36<36 (circles as a
(crosses L=18 (vertical crossgs L=24 (diamond$, L=36 functiion of N whereN is the number of configurations taken in the
(circles. MC average. We have omitted the vertical error bars when smaller
than the size of data points.

reliability of our MC data evaluating the susceptibility for ) ) N
n=1 at the transition temperature as function of the numbefurrence of a possible first order phase transition. To get
of MC steps starting from the ground state configuration aginambiguous identification of the order of the phase transi-
suggested by Ferrenbeetyal ** In Fig. 8 the susceptibility is tion we have followed the approach developed by Challa
shown as function oN whereN is the number of spin con- €t al'® This approach was applied to the 2D ten-state Potts
figurations used to evaluate the MC average. Each configunodel which is known to have a first order phase transifion
ration is taken every 10 MC steps. All data points of Fig. 810 assess the accuracy of the method. Indeed the time depen-
are obtained by an average over 8 independent MC runs. THnt behavior of the internal energy and of the order param-
asymptotic values of, for different lattice size as obtained ©ter near the transition temperature points out the phase co-
by the plateau of Fig. 8 arg;,~ 3.5~ 14,y3s=28 which ~ €xistence. A twq—peak structure of the probability
agree with the maximum values gfshown in Fig. 6. This is  distribution of the internal energ(E) and of the order
a strong indication that our MC simulations describe cor-ParameteP(y) at the transition temperature is a signature of
rectly the thermal equilibrium behavior of the model. a first order phase transition. _

In the triangular lattice the poing=1 appears to be very Flguzre g sgogvs the reduced internal enefigyeasured in
peculiar. Indeed we have found that the elementary excitatJo ©/2°)S°L" units and the order parameter for 7
tion spectrum is unstable for any# 1 in the thermodynamic = 0-85 (AF1 phasg versus time in MC simulation on a 24
limit. On the other hand the order parameter #p£ 1 falls

off abruptly at the transition temperature suggesting the oc- B A B AL B L
-1.65 — .
10 g7 L I T _1.703_ i
C L 1L LI $ s ] E ]
C S . ] -1.75 —
08 — X — ]
- 12x12 ] 180 B E
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- x&x N _1'85 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
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L Ogt‘%( 4 3]
Y L o 36x36 o . 0.8 =
C & ] ] ]
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C ¢ o] 02 —
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00 0 0.25 0.5 0.75 1 1.25 0 0.2 60.4 0.6 0.8 1

T t (in 10° MCsteps)

FIG. 7. Order parametey versus reduced temperature T for FIG. 9. Reduced internal ener@y(upper paneland order pa-
several lattice sizes as obtained from MC simulatian=12 rametery (lower panel versus time in MC simulations on a 24
(crossey L=18 (vertical crosses L=24 (diamond$, L=36 X 24 lattice atfT=0.32 for =0.85. The instantaneous valueskf
(circles. and ¢ are plotted after every 500 MC steps.
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P(¥)

FIG. 10. Probability distribution of the reduced internal energy
E (upper panegland of the order parameter (lower panel in MC

15 __II T T | T T T1T_T | L | T T T 7T T T II__
10 — —
5 —
0 _I 11 1 | 11 1 1 | 11 1 1 | 11 1 1 | 1 1 I_
-1.85 -18 -175 -17 -165 -1.
E

15 _II T T | L | L | T T T 7T | T T II__
11 | 11 1 1 | | . I.—l 11 1 I_

02 04 068 08 1

simulations on a 24 24 lattice atT =0.32 for =0.85.

X 24 lattice afT =0.32. The instantaneous valueskoand i
are plotted after every 500 MC steps. In spite of the smal
ness of the latent he&d,— E ,=0.12, the coexistence of
the AF2 configuration and of the (paramagneticphase is
clearly pointed outP(E) andP(¢) are shown in Fig. 10 as
obtained by MC simulation on a 2424 lattice atT=0.32

P(y)

FIG. 11. Probability distribution of the order paramegein MC
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FIG. 12. Probability distribution of the order parameein MC
simulations on a 24 24 lattice at temperatures about the first order
|_transition temperatureT(= 0.435) for»=0.7.

for »=0.85. The two-peak structure is clearly seen. Note
that only one peak in the probability distribution survives
when the temperature is slightly changedTte-0.32+ AT

with AT=0.005. The single peak below and above the tran-
sition temperature corresponds to the homogeneous ordered
and disordered phase, respectively.

For comparison in Fig. 11 the probability distribution of
the order parameter is shown fgre=1 where the phase tran-
sition is continuous. Always one peak is present moving
about the transition temperatuile.=0.88. The continuous
character of the transition fop=1 is consistent with the
above analysis of critical exponents. In Fig. P{¢) is
shown for»=0.7 where AF1 phase is stable. The two-peak
structure is present near the first order transition temperature
T=0.435 whereas only a single peak appears in the ordered
phase afl =0.42. Incidentally, for this value of the latent
heat is so small tha®(E) shows a singlébroad peak struc-
ture that can be explained by the overlap of two peaks too
close to be resolved. The same behavior is found for any
<0.7. For comparison the probability distribution of the re-
duced internal energy (E) and of the order parametex )
is shown in Fig. 13 forp=0.1 at the transition temperature
T=0.21 as obtained by MC simulation on a>224 lattice.

As one can see the two-peak structure is clearly se@q i)
(lower panel. On the contrary only a single broad peak is
seen inP(E) (upper paneglbecause the two peaks centered
at the internal energy of the AF1 and of tRephase are so
close that they cannot be resolved. This fact leads to the
conclusion that the latent heat of this “weak” first order

simulations on a 2424 lattice at temperatures about the critical phase transition is very small.
temperature T=0.88) for p=1.

In a first order phase transition the maximum of the spe-
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FIG. 13. Probability distribution of the reduced internal energy
E (upper pangland of the order parameter (lower panel in MC FIG. 15. Fourth order cumulant coefficievif as obtained from
simulations on a 24 24 lattice atT=0.21 for »=0.1. MC simulations on sample of different lattice sife2x12

(crossey 18x18 (vertical crosses 24x 24 (diamond$, 36X 36
cific heat grows a$. whered is the dimensionality of the (circles] for »=0.8 (left pane) and for »=1 (right pane}.
model and_ is the size of the sampl&.Such a behavior can . .
be obtained by inspection of Fig. 1%ft pane) for 7=0.8 the thermal average. Note that 9914 MC configurations con-

where the ordered phase is AF1. Indeed the maximum of thHibUte tq the yalua,/;z 0.87 atT=0.31, while the total of
specific heat scales by a factor 4 going frars12 to L MC configurations lead t¢y=0.02 atT=0.32. Even though
=24 and by a factor 9 going frorh=12 to L=36 as ex- a naive average of the data was takem at0.315, leading to
pected from the size scaling~L2 when a first order phase ¥~ 0-51, an abrupt fall of the order parame(grstead of a
transition occurs. In the right panel of Fig. 14 the order pa-discontinuity should have been found giving a strong indi-

rameter versus temperature is shown fp=0.8 and L cation ong|scontlnuous phase t.ransmon.
—24. As one can see the disappearance of LRO occurs An additional support to the first order character of the

abruptly. Note that at the transition temperattire0.315 we wransition is provided by the fourth order cumulant

have quoted two data points corresponding/te 0.86 (or- (HA)
dered phase ARland toy=0.02 (paramagnetic phaseln- VvV =1- 2" (29
deed 5892 MC configurations contribute to the first value, 3(H )

4108 to the second over 10AC configurations selected for which shows a very different temperature variation depend-

ing on the order of the phase transition. A pronounced mini-

B R R A R A T SRS N EERRN R mum appears at a first order phase transition wheveais
i 1 S %%% ] temperature independent with constant value 2/3 forx,
25 — 1 sl i when a continuous phase transition occirssigure 15
r ] T h . showsV, for »=0.8 as obtained by MC simulation fdr
a0 [ s i ] =12, 18, 24, 36. The minimum and its narrowing at increas-
r i o6 ] ing L is clearly seen as expectédor a first order phase
C ] C ] transition (left pane). Under the hypothesis that the phase
c 15 o - v L . coexistence can be described by a superposition of two
C B - Gaussians centered at the internal energies of the ordered and
10— ] C ] disordered phas&r; andEp, respectively, the value of the
C ] - 1 minimum of V| can be deduced in thermodynamic litit
5 = 3 ] 0.2 — ] 2 2 2
E ><?5X><XX ] : ] VA —— [Ep+2E/.\2F1] . (30
‘ % X% ] L - 12ESE
o Dk 0Beete ole] o Divwalu,, | ool PEAFL
026028 0'31‘3-32"'3““36 0= 0% 0'1? 0% 0% For y=0.8 we obtainEp=—1.52 andExr;=—1.63 atT

=0.32 by MC simulation on a 2424 lattice. Inserting these

FIG. 14. Specific heatleft pane) and order parameteright ~ data in Eq.(30) one obtainsV, |y,=0.6653 in good agree-
pane) versus temperature foj=0.8 in MC simulations on lattices ment with the minimum of Fig. 1%left pane). In the right
of size 12< 12 (crossey 24x 24 (diamonds, 36x 36 (circles. panel of Fig. 15 the thermal variation ¥f is shown foryn
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=1 where the phase transition is continuous. No minimum is elQr r)\2
present and the expected value 2/3 is approached increasing D*(Q,n)= E 3 37 T) -1y, (A1)
the lattice size. =0T
wherer is a dimensionless lattice vector. Consider the iden-
tities
VI. SUMMARY AND CONCLUSIONS
. . . . e’ 8 - * 2,2
The triangular planar model is considered when both iso- D —=—=2 €| dzZe’ "7, (A2
tropic antiferromagnetic long-range exchange interaction de- 0T 3\m 70 0
caying as I° and anisotropic dipole intraction are present. ior
Ground state configuration and elementary excitation energy e~ 4 ior [~ 2,2
. : . o > =—=>e dzZe "7,  (A3)
are obtained analytically while thermal behavige., spe- fzo 3 T 70 0
cific heat, staggered susceptibility, and order parameser
studied at any temperature by MC simulation for any value r2 52 el Qr
. . . L XalQr— _
of n, betweeny=0 (pure isotropic antiferromagnetic inter- 2 ;€7 = > 5 (A4)
r#0 r dQy r#0 1

action and »=1 (pure dipole interaction The phase dia-
gram in the plane 4,T) is shown in Fig. 4 for a 2424  Split integrals appear in EqéA2) and (A3) as follows
sample which shows the qualitative features of the phase

diagram for a generit. T, AFn (n=1,2,3...), andF or- “ 22 @ 1252 * 1252
dered phases are found. It is worthwile to compare this phase fo dzZe B JO dzZe + Ja dzZe '
diagram with that obtained for the same model on a square (A5)
lattice shown in Fig. 13 of Ref. 2. ThE phase replaces the . . .
AF phase, AF1 is the same as tfiephase, but the AF The second integral can bg easily expressed |n2terms of the
configurations wit=2 have not equivalent counterpart in complementary error function eréc(= 21w [e " dt giv-

a square lattice, where, on the other hand, a vortigal N9
phase was found. Finally, foj=1 F phase occurs instead of

the C phase of the square lattice. At zero temperature the fxdzfe‘rzzzz
continuous degeneracy affects tfieand F phase, not the

AFn phases at variance with the square planar model where
the continuous degeneracy is present for gmanother im-  Where

pressive difference entered by the close packed nature of 1 J7

lattice is that the order-disorder phase transition is first order Fo(X)= “xe ¥y —erfa(x) (A7)
except forp=1 where it is second order. On the contrary in 2 4
the square lattice the transition to the paramagnetic phase jgq
continuous for any value of. For =1 size scaling analy-

sis of susceptibility and order parameter gives the same criti- 1 3\/;
cal exponents for th&-P transition in the triangular model Fa(x)=5X 3
as for theC-P transition in the square model.

The in-plane striped Al configurations are a novelty of As for the first integral appearing in EGAS) it is more
our model with respect to similar models where a short ranggonvenient to transform before the sum over lattice veators
exchange interaction was considéted and only strip do- appearing in EqsiA2) and (A3) into a sum over reciprocal
mains with out of-plane spin configurations were foundlattice vectorsG according to the equality
when a sufficient uniaxial Ising-like anisotropy was intro-
duced. Note that no difference exists between the planar i 2 SZefszerriQ-r:pE e~ |1Q+G|4s? (A9)
model and the classical Heisenberg model as for ground state (O G
configurations because of the role of the dipole interaction
that acts as an easy-plane anisotropy favoring the in—plan\@{

—eiFalan), (A6)

3 2
S+x2|e X+

5 erfa(x). (A8)

herep=2/\/3 for the triangular lattice. This gives

spin configurations. In-plane strip domains were observed _ w - IQ+G|| aP*!
experimentally in ultrathin films of Co layers on Au > e'Q'rf dzPe " =mpaP 1, fo oa | o1’
substrat&! and of Fe layers on Cu substrateSimilar phases  7#0 0 G @ P+

are found in the planar triangular model with long-range iso- (A10)
tropic antiferromagnetic interaction along with anisotropicwhere
dipole interaction.

fo(x)=e " — Jmx erfo(x) (A11)
APPENDIX and

2
The Appendix illustrates a method to perform a sn@ll- 12 e 2 —
expansion of fa)=—5—e ™+ 3\/;x erfax).  (A12)
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By use of Eqs(A6) and(A10), Egs.(A3) and(A4) become  where
elQr 1 40 8Ba\w |G|
- |Q r_F r XX _ -
rE#:O r3 \/— 70 2ar) Do'()= \/_ \/— (1= 77)2 f2 a)
|Q+Gll) 1 C4mn o GF (G 87 Tk
a1, - erd oo | + 22 3, C<F ar
\/— G 3 \/§ GZOG 770 r° aler)
(A13) 4 1
and "I ;0 r—Fz(ar) (A17)
2 2
ry 8 ( 8
—e'Qrz— elQr ar)+ ——mpa’ A
770 r® 3w r;o Falar) 3w Dix(n)=ﬁ(1—n), (A18)
x> — e ~1Q+G|?/4a” ﬁ
G |2a? 4a® XX \/— Y 7G2/4a
DI (m=——=(1-m) 1+ 2
" Q+G|+<Qx+ex>2) flore @3
|Q+G| 2a - \/_ f G - \/; G_§
(A14) TG w23 &0 G
Using Egs.(A13) and(Al14), Eq. (Al) becomes « @~ G/4a? [6a2G§+G2(G§—2a2)]
40® 8a\mw Q+ G| G
D** = 1- fy — 2
Q. 7)= NG —( rzE [”E (ZG G)erfc( a)
2 2 2
4w (Qx+Gx)2 |Q+G| 4a Iy 2 ry
- -— Filar)+ — —=F,(ar).
3 % IQ+G| ~ ﬁ;o rs dat)+ \/;r;or3 2ar)
g (A19)
—7] E iQ r—F4(ar) Note that the nonanalytic term linear in the wave vector dis-
\/; r#0 appears when the pure dipole interaction is accounted for
4 (7=1). Numerical evaluation of Eq$A17), (A19) can be
- e r_|: S(ar). (A15) performed takingy_=2 and restricting the rapidly convergent
\/; r#0 sums over few lattice vectors and reciprocal lattice vectors.
Expansion of Eq(A15) for Q,=0, Q,—0 gives The result is
XX _
D*(Q,=0,Q,—0,7) Dy*(7)=—11.03417574 16.55126366),
=D’gx(n)+D’l‘x(n)|Qy|+D§X(7;)Qf,+ , (Al16) D%*(n)=—1.053355659 0.790016744. (A20)
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