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Planar triangular model with long-range interactions

E. Rastelli,* S. Regina, and A. Tassi
Dipartimento di Fisica dell’Universita` and Istituto Nazionale per la Fisica della Materia, Parco Area delle Scienze 7/A,

43100 Parma, Italy
~Received 16 May 2002; published 20 August 2002!

The effect of dipole and long-range antiferromagnetic isotropic interactions in a triangular planar rotator
model is investigated. The ground state is a ferromagnetic~F! configuration for pure dipole interaction and a
120° three-sublattice~T! configuration for pure antiferromagnetic interaction decaying as 1/r 3 wherer is the
spin-spin distance. In between the spins are placed in striped configurations wheren rows of spins parallel
alternate withn rows of spins antiparallel to a nearest neighbors~NN! direction for any integern provided that
L/n is an even number,L being the lattice size. Monte Carlo simulation confirms the low temperature con-
figurations found by analytic calculation. Specific heat, staggered susceptibility and order parameter are inves-
tigated to get the phase diagram and the order of the transition to the paramagnetic phase. The order-disorder
phase transition is continuous only for theF phase~pure dipole interaction!. It is first order for any nonzero
long-range antiferromagnetic exchange interaction.

DOI: 10.1103/PhysRevB.66.054431 PACS number~s!: 75.10.Hk, 75.30.Ds
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I. INTRODUCTION

The planar triangular model in which the magnetic m
ments located on a triangular lattice are coupled by p
dipole interactions is characterized by a ferromagnetic~F!
phase with long range order~LRO! at low temperature.1 On
the contrary, the minimum energy spin configuration fo
square lattice2 consists of alternating rows of spins up a
down along a nearest neighbor~NN! direction. The close-
packed structure of the triangular lattice strongly affects
ground state spin configuration when an antiferromagn
coupling is present even though it is a short-range inte
tion. Indeed the ground state of the planar triangular mo
with NN antiferromagnetic exchange coupling is charact
ized by afrustrated120° three-sublattice~T! configuration,
whereas two-sublattice Ne´el long range order sets up in
square lattice. When the NN interaction is replaced by
competing interaction extended to next-~NNN! and third-
nearest neighbors a variety of new configurations is foun3

For short-range interaction any LRO at any finite tempe
ture is prevented by the Mermin-Wagner theorem.4 When a
long-range antiferromagnetic interaction decaying as 1r 3

wherer is the spin-spin distance is introduced no data ab
the ground state configuration or about the existence of L
at finite temperature are available.

The aim of this paper is to investigate the ground st
configuration and the thermal behavior of a planar triangu
model with both dipole and isotropic long-range antiferr
magnetic interactions. The study of a planar square mo2

with both dipole and long-range antiferromagnetic excha
interactions brings to an unexpected rich phase diagram
terms of the parameterh5m2/a3/(J01m2/a3), where J0
.0 is the isotropic antiferromagnetic interaction strengthm
is the magnetic moment,a is the lattice constant, differen
kinds of order are found. The zero temperature spin confi
ration is affected by continuous degeneracy. A four sublat
configuration in which the spins of an elmentary squ
make anglesu, 2u, p1u, p2u with a NN direction,u
being arbitrary, is stable for 0.210,h,1 and a two-
0163-1829/2002/66~5!/054431~11!/$20.00 66 0544
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sublattice Ne´el configuration with the spins pointing alon
an arbitrary direction is stable for 0,h,0.210. The con-
tinuous degeneracy is lifted by thermal fluctuations since
elementary excitation energy depends on the spin orienta
with respect to the underlying lattice.

Low temperature expansion and Monte Carlo~MC! simu-
lation lead to an even richer phase diagram for a triangu
lattice. The main feature is the existence of striped confi
rations (AFn) of n rows of spins up andn rows of spin down
pointing along a NN direction between theT configuration,
stable for 0,h,0.086 at zero temperature, and theF con-
figuration, stable only forh51 in the thermodynamic limit.
The AF1 phase~corresponding to the C phase of the squa
lattice2! is stable in the large range 0.086,h,0.815, but all
AFn striped configurations are stable for smaller and sma
intervals ofh, approaching theF configuration (n→`). The
continuous degeneracy of theF phase is lifted by therma
fluctuations and a next nearest neighbor~NNN! direction is
selected. The phase transition to the paramagnetic pha
first order in contrast to the continuous phase transit
found for the same model on the square lattice. Only for p
dipole interaction the phase transition is second order w
the critical exponents that agree with the critical expone
of the square model.2

II. THE MODEL

The model Hamiltonian is

H52
1

2 S J01
m2

a3 D (
i ,r

rÞ0

(
ab

f ab~r !Si
aSi 1r

b , ~1!

where

f ab~r !5
1

r 3S 3h
r ar b

r 2
2da,bD . ~2!

i labels theL3L sites of a triangular lattice,r5 l 1a11 l 2a2

~with a15ux anda251/2ux1A3/2uy) joins the sitei with a
generic site of the lattice,a, b label thex,y components of
the two-dimensional classical vectorSi located on the sitei,
©2002 The American Physical Society31-1
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h5m2/a3/(J01m2/a3) runs from 0 to 1 (h50 corresponds
to the pure antiferromagnetic case,h51 corresponds to the
pure dipole interaction!. We assume that the ground sta
configuration of our modelmaybe characterized by a regula
helix so that we put

Sr5S@cos~f1Q•r1c r !,sin~f1Q•r1c r !#, ~3!

where Q is the pitch of the helix,f is an arbitrary phase
common to all spins of the lattice,c r is a small deviation
from the ground state configuration. At low temperature o
can expand Hamiltonian~1! in terms ofc and retain only
bilinear contributions so obtaining

H5E01(
q

1

2S J01
m2

a3 DS2lqcqc2q , ~4!

where

E052
1

2 S J01
m2

a3 DS2L2H @Dxx~Q!1Dyy~Q!#1
1

2
@Dxx~Q!

2Dyy~Q!#cos~2f!d2Q,G1Dxy~Q!sin~2f!d2Q,GJ ,

~5!

lq5
1

2
@Dxx~Q!2Dyy~Q!1Dxx~Q2q!

2Dyy~Q2q!#cos~2f!d2Q,G

1
1

2
@Dxy~Q!1Dxy~Q2q!#sin~2f!d2Q,G

1
1

2 H Dxx~Q!2
1

2
@Dxx~Q1q!1Dxx~Q2q!#1Dyy~Q!

2
1

2
@Dyy~Q1q!1Dyy~Q2q!#J ~6!

with

Dab~Q!5(
rÞ0

f ab~r !eiQ•r. ~7!

andcq is the Fourier transform ofc r . No linear term incq
appears in Eq.~4! because its coefficient is proportional
the derivative ofE0 with respect tof and we are only inter-
ested into the values off that minimizeE0. Note the dis-
continuity of the ground state energy forQ5G/2 whereG
5 l 1a1* 1 l 2a2* @with a1* 52p(ux21/A3uy) and a2*
54p/A3uy# is a reciprocal lattice vector. We have inves
gated the ground state energy evaluating the lattice
given by Eq.~7! as function of the wave vectorQ for several
values ofh. No demagnetization factor is accounted for 2
systems because it vanishes as 1/L where L is the linear
dimension of the sample in contrast to the 3D case where
demagnetization factor is finite forL→` and depends on th
shape of the sample. We find that the minima ofE0 corre-
spond toQ5QF50 or Q5QT5(1/3,2/3),(2/3,1/3),. . . , or
05443
e
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Q5QC5(0,1/2),(1/2,0),(1/2,1/2),. . . , depending onh. In
particular we find Dxx(QF)5Dyy(QF)516.551h211.034
and Dxy(QF)50 in the ferromagnetic~F! configuration,
Dxx(QT)5Dyy(QT)523.498h12.332 andDxy(QT)50 in
the 120° three-sublattice~T! configuration, andDxx(QC)
52.256h11.839, Dyy(QC)527.774h11.839, Dxy(QC)
50 for QC5Q15(0,1/2), Dxx(QC)525.266h11.839,
Dyy(QC)520.251h11.839, Dxy(QC)574.343h for QC
5Q25(1/2,1/2) ~upper sign! and QC5Q35(1/2,0) ~lower
sign! in the collinear~C! configuration. For 0,h,0.086 the
ground state is

E0~QT!52
1

2 S J01
m2

a3 DS2L2~23.498h12.332! ~8!

independent off. For 0.086,h,0.901 the ground state is

E0~QC!52
1

2 S J01
m2

a3 DS2L2~2.256h11.839!. ~9!

For QC5Q1 ,Q2 ,Q3, one finds that the minimum corre
sponds tof50,2p/3,p/3, respectively. The ground state e
ergy of the C phase corresponds to alternating NN rows
parallel spins pointing along the rows. The discrete deg
eracy is related to the three equivalent directions. Finally,
0.901,h,1 the ground state energy is

E0~QF!52
1

2 S J01
m2

a3 D S2L2~16.551h211.034!

~10!

and it is independent off. The f independence of the
ground state energy in theF andT phases implies the exis
tence of acontinuousdegeneracy. The continuous dege
eracy cannot be removed in theT phase within the harmonic
approximation because in this case thef dependence of the
excitations energy as given in Eq.~6! disappears. On the
contrary one expects that the continuous degeneracy is
moved in theF phase. To see this we chooseh51 and
evaluate the harmonic free energy

F5E02
kBTN

2
lnF kBT

2p~J01m2/a3!S2G1
kBT

2 (
q

ln~lq!.

~11!

We find that the free energy given by Eq.~11! is a periodic
function of f having minima atf5p/61kp/3 correspond-
ing to NNN directions and maxima in correspondence off
5kp/3 ~NN directions!. The breaking of the continuous de
generacy at finite temperature is the phenomenon of orde
thermal disorder.5 We think that the continuous degenera
of the T phase forhÞ0 should be lifted going to highe
order approximations since the dipole interaction breaks
continuous symmetry present only forh50.

III. CHECK OF THE GROUND STATE

To test whether the hypothesis of a regular helix is corr
we have performed analytic calculations assuming a trian
1-2
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lar lattice divided into four and three sublattices. The fo
sublattice assumption is consistent with theC and F phase,
the three-sublattice one is consistent with theT and F con-
figuration. This approach is very similar to the Luttinge
Tisza method6 applied to square and cubic lattices.7 The
y

tio
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in

N

e

05443
-main advantage of this method is that no regular helix
assumed. The main disadvantage is that only magnetic c
with a small number of spins can be studied because of
rapid increasing of the matrix dimension.

For a cell with four spins the energy is given by
E052
L2

8 S J01
m2

a3 D ~S1
xS2

xS3
xS4

xS1
yS2

yS3
yS4

y!

31
W00

xx W10
xx W01

xx W01
xx 0 0 2W01

xy W01
xy

W10
xx W00

xx W01
xx W01

xx 0 0 W01
xy 2W01

xy

W01
xx W01

xx W00
xx W10

xx 2W01
xy W01

xy 0 0

W01
xx W01

xx W10
xx W00

xx W01
xy 2W01

xy 0 0

0 0 2W01
xy W01

xy W00
xx W10

yy W01
yy W01

yy

0 0 W01
xy 2W01

xy W10
yy W00

xx W01
yy W01

yy

2W01
xy W01

xy 0 0 W01
yy W01

yy W00
xx W10

yy

W01
xy 2W01

xy 0 0 W01
yy W01

yy W10
yy W00

xx

2 1
S1

x

S2
x

S3
x

S4
x

S1
y

S2
y

S3
y

S4
y

2 , ~12!
h

0

in
x is
where W00
xx521.37912.068h, W10

xx523.21817.334h,
W01

xx523.21813.573h, W10
yy523.21812.320h, W01

yy

523.21816.081h, W01
xy52.171h. The ground state energ

is easily written in terms of the eigenvaluesl of the matrix
given in Eq.~12!

E052
1

2 S J01
m2

a3 D S2L2l. ~13!

The eigenvalues are

lF5W00
xx1W10

xx12W01
xx5211.034116.551h ~14!

~ferromagnetic eigenvalue corresponding to a configura
with all spins parallel pointing in an arbitrary direction!
twice degenerate,

lB5W00
xx1W10

yy22W01
yy51.83927.774h ~15!

~columnar phase corresponding to a configuration with sp
pointing along the three equivalent NNN directions! three
times degenerate,

lC5W00
xx1W10

xx22W01
xx51.83912.256h ~16!

~columnar phase corresponding to a configuration with sp
pointing along the three equivalent NN directions! three
times degenerate. The phase with spins pointing along N
rows is never stable becauseE0(lB).E0(lC) for any h.
The C phase is stable forh,0.901 and the ground stat
energyE0(lC) coincides with Eq.~9!. For h.0.901 theF
phase is stable with energyE0(lF) given by Eq.~10!.

For a cell with three spins the energy reads
n

s

s

N

E052
L2

6 S J01
m2

a3 D ~S1
xS2

xS3
xS1

yS2
yS3

y!

3S W00
xx W10

xx W10
xx 0 0 0

W00
xx W10

xx W10
xx 0 0 0

W10
xx W00

xx W10
xx 0 0 0

0 0 0 W00
xx W10

xx W10
xx

0 0 0 W10
xx W00

xx W10
xx

0 0 0 W10
xx W10

xx W00
xx

D S S1
x

S2
x

S3
x

S1
y

S2
y

S3
y

D ,

~17!

whereW00
xx522.12313.184h, W10

xx524.45516.682h. The
eigenvalues are

lF5W00
xx12W10

xx5211.034116.551h ~18!

~ferromagnetic eigenvalue! twice degenerate, coincident wit
Eq. ~14! and

lT5W00
xx2W10

yy52.33223.498h ~19!

~triangular phase! four times degenerate. SinceE0(lT)
,E0(lF) for h,2/3 the T phase is stable in the range
,h,2/3 with energy given by Eq.~8!. The spins make
angles of 2p/3 each other but any direction of the first sp
may be chosen. It is interesting to note that the 120° heli
not distorted by the dipole anisotropic interaction. Forh
.2/3 theF phase is stable with energy given by Eq.~10!.
The continuous degeneracy is confirmed for bothT and F
phases.
1-3
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At variance with the square planar model2 the C phase
does not show continuous degeneracy atT50. For h in-
creasing from pure isotropic antiferromagnetic interact
(h50) to pure dipole interaction (h51) T, C, andF phase
are expected for the triangular lattice to be compared to
AF, C, V, C phase found in the square lattice.2

The spin waves of theT phase are well defined farther o
the region of stability of theT phase (0,h,0.086). Indeed
the stability region of spin waves is 0,h,2/3. For h
52/3 the spectrum becomes very flat and the excitation
ergy very low. On the other hand theC phase is stable fo
h.0.086 so that theT configuration cannot affect the equ
librium properties of the model for such values ofh. In
conclusion theT phase is stable for 0,h,0.086, C phase
for 0.086,h,0.901, andF phase for 0.901,h,1. The
present analysis confirms the ground state configurations
their stability range obtained in Sec. II where only regu
helices have been considered.

An intriguing question arises about the spin wave sp
trum in theF phase. Indeed except the caseh51 ~pure di-
pole interaction! for any 0.901,h,1 the spin wave spec
trum is not well defined pointing out an instability of th
ferromagnetic configuration.

IV. STRIPED CONFIGURATIONS

Striped phases (AFn) with n rows of spins up alternating
with n rows of spins down are good candidates to conn
the C phase~or AF1 configuration! with the F phase. Pure
dipole interaction in the triangular lattice leads toF phase
and pure isotropic antiferromagnetic interaction supports
T configuration. The hypothesis of a ground state configu
tion characterized by a regular helix or by a four spin ma
netic cell leads to the AF1 configuration, but the possi
existence of higher order striped phases has to be inv
gated by a direct calculation of the energy of these stri
configurations.

The energy of a perfectly ordered striped configuration
an Ising model on a square lattice was evaluated taking
ferromagnetic exchange and dipole interaction into accou8

An analogous calculation for the Heisenberg model was p
formed in presence of uniaxial anisotropy.9,10 We have ex-
tended this approach to the planar triangular model assum
the spins to point along thex axis, one of the three equivalen
NN directions. For stripes ofn rows the ground state energ
is

E052
1

2 S J01
m2

a3 D(
q

Dxx~q!Sx~q!Sx~2q!

52
1

2 S J01
m2

a3 DS2(
q

Dxx~q!3S L

nD 2

3(
s

dqx ,0dqy ,(4p/A3n)(s11/2)

1

sin2Fpn ~s11/2!G ,

~20!
05443
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wheres is an integer in the range2(n11)/2,s<(n21)/
2 and

Sx~q!5
1

L (
m1 ,m2

Sx~m1 ,m2!e2 iqx(m11m2/2)e2 iqy(A3m2/2).

~21!

For evenn Eq. ~20! becomes

E052S J01
m2

a3 DL2S2
1

n2 (
s50

(n21)/2 DxxS 0,
4p

A3n
~s11/2!D

sin2Fpn ~s11/2!G ,

~22!

while for oddn Eq. ~20! becomes

E052S J01
m2

a3 DL2S2

3F 1

n2 (
s50

(n21)/2 DxxS 0,
4p

A3n
~s11/2!D

sin2Fpn ~s11/2!G 2

DxxS 0,
2p

A3
D

2n2 G .

~23!

In Table I we give the reduced ground state ene
E0 /@(J01m2/a3)L2S2# as function ofh. In Table II the
value ofh at which the phase AFn is replaced by the phas
AF(n11) is given for 1,n,11. As one can see AFn
phases with anyn occur even though their range of stabili
becomes narrower and narrower for increasingn.

TABLE I. Reduced ground state energy as function ofh.

n E0 /@(J01m2/a3)L2S2# n E0 /@(J01m2/a3)L2S2#

1 21.12794h20.91951 7 25.85273h13.19513
2 23.05887h10.65364 8 26.06700h13.39679
3 24.10732h11.58432 9 26.24287h13.56284
4 24.77422h12.19234 10 26.39013h13.70225
5 25.23966h12.62245 11 26.51544h13.82114
6 25.58505h12.94428 12 26.62353h13.92387

TABLE II. Values of h at which the phase AFn is replaced by
the phase AF(n11).

n h n h

1 0.81471 7 0.94111
2 0.88768 8 0.94419
3 0.91170 9 0.94668
4 0.92409 10 0.94874
5 0.93180 11 0.95047
6 0.93714
1-4



e

fe

t

he
e
r

st
e

e-

ors
erg
tate
for
the

nge
ng-
ses

vi-
xial
le
in
s
u
e
ss
be-

at
ore

of

e

s

m
er-
C

PLANAR TRIANGULAR MODEL WITH LONG-RANGE . . . PHYSICAL REVIEW B 66, 054431 ~2002!
In order to find the ground state energy for large strip
(n→`) an expansion ofDxx(Q,h) for small Q is in order.
Such an expansion, obtained in the Appendix, reads

DxxS 0,
4p

A3n
~s11/2!D

516.55126h211.034181
4p

A3
~12h!F 4p

A3n
S s1

1

2D G
1~0.79002h21.05336!F 4p

A3n
S s1

1

2D G 2

1•••. ~24!

Substitution of Eq.~24! into Eq. ~22! gives the ground state
energy of the striped phase for largen

E0~n→`!52S J01
m2

a3 DL2S2H 8.27563h25.51709

1
16p

3
~12h!F0.578931~1/p!ln n

n G
1

16

3
~0.79002h21.05336!

ln 2

n
1•••J .

~25!

Note thatE0(`)5EF is the energy of the ferromagneticF
phase. In the thermodynamic limit theF phase is restricted to
h51 but for finiteL the question about the stability of theF
phase forhÞ1 is still open. Indeed in a sample ofL3L
spins the last striped configuration appearing before the
romagnetic one is characterized byn5L/2. Unfortunately
the assumption of periodic boundary conditions, crucial
evaluate the expansion given in Eq.~24!, prevents any appli-
cation of Eq.~25! to sample in which the stripe widthn is
comparable with the sample sizeL. The finite size effect is
expected to open afinite range of stability of theF phase,
which shrinks to a point in the thermodynamic limit (L
→`). If it was not so, it should become hard to explain t
ferromagnetic phase with spins out-of-plane observed in
itaxial films of transition metals grown on gold, silver o
copper substrates.11,12

In Table III we give the values ofh for which the AFn
phases are stable forL524, a lattice size chosen for the mo
part of MC simulation of the next section. As one can s

TABLE III. Values of h at which the phase AFn set in for L
524.

h

AF1-AF2 0.81471
AF2-AF3 0.88768
AF3-AF4 0.91170
AF4-AF6 0.92737
AF6-AF12 0.94329

AF12-F 0.96436
05443
s
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only a few AFn phases survive~i.e., AF1, AF2, AF3, AF4,
AF6, and AF12!: the only striped phases that satisfy the p
riodic boundary conditions.

The planar model involves two-component spin vect
but it falls in the same class of symmetry of the Heisenb
model with easy-plane anisotropy so that the ground s
configurations we find are the ground state configurations
a relevant set of three-component spin models. Note that
lattice structure, the long-range character of the excha
interaction, and the easy-plane nature of the anisotropic lo
range dipole interaction are essential to get striped pha
with in-plane spin configurations. Indeed all models pre
ously considered concerning a square lattice with unia
~Ising-like! anisotropy, NN exchange interaction, and dipo
interaction led to strip domains with only out-of-plane sp
configurations.9,10 On the other hand in-plane strip domain
were observed in ultrathin films of Co layers on A
substrate11 when the dipole interaction dominates th
uniaxial surface anisotropy, that is when the film thickne
reaches a critical number of monolayers. An analogous
havior was observed in Fe layers on Cu substrate12 where the
onset of out-of-plane and in-plane striped configurations
increasing the film thickness or the temperature is even m
impressive.

V. MONTE CARLO SIMULATION

We have performed Monte Carlo~MC! simulations onL
3L triangular lattices withL512, 18, 24, 36 following the
periodic ‘‘images’’ approach.13 Low temperature MC simu-
lations confirm the kind of order expected on the basis
analytic calculations of Secs. II and IV. In Fig. 1 a snapshot
of a 12312 triangular lattice is shown forh50.05 (T phase!
at T50.02 where the temperature is in units (J0
1m2/a3)S2. In Fig. 2 the snapshot is taken at the sam
temperature forh50.5 ~AF1 phase!. In Fig. 3 the snapshot is
shown forh50.85 ~AF2 phase! at T50.03. The snapshot
are taken after 105 MC steps for theT and AF1 phase and
after 106 MC steps for the AF2 phase starting from a rando
configuration. Higher order striped configurations have en
gies so close and stability regions so narrow that the M

FIG. 1. Snapshots of a triangular lattice of 12312 spins ob-
tained from MC simulation forT50.02 andh50.05 after 105 MCS
from a random configuration.
1-5
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simulation calls for longer and longer computing time to pi
out the configuration expected on the basis of the gro
state energy calculation. For instance, the AF3 phase,
pected forh50.9 ~see Table III!, is seen in a long MC simu
lation but occasionally also the AF4 phase appears. Sn
shots of AF1 and AF2 configurations with the spins pointi
along the other two equivalent NN directions as well
snapshots of theF phase configuration forh51 with spins
pointing along any NNN direction have been recorded
other MC runs.

In Fig. 4 we show the phase diagram obtained by M
simulation on a 24324 lattice. The phase transition to th
disordered~paramagnetic! P phase has been located lookin
at the peak of the specific heat

c5b2~^H 2&2^H&2!/L2, ~26!

and of the staggered susceptibility

x~Q!5~^uM u2&2^uM u&2!/L2, ~27!

whereM5( re
iQ•rSr andQ5QT ,QC ,QF , for T, AF1, andF

phase, respectively. Simulations are performed avera
over eight independent MC runs. In each run 104 configura-
tions over 105 MC steps are accounted for, 103 are discarded
for thermalization assuming as starting configuration the

FIG. 2. Snapshots of a triangular lattice of 12312 spins ob-
tained from MC simulation forT50.02 andh50.5 after 105 MCS
from a random configuration.

FIG. 3. Snapshots of a triangular lattice of 12312 spins ob-
tained from MC simulation forT50.03 andh50.85 after 106 MCS
from a random configuration.
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nal configuration of the previous temperature. This impl
that a very long effective simulation is performed for tem
peratures in the critical region. At zero temperature theT,
AFn ~with n51,2,3,4,6,12!, and F configurations are ob-
tained by analytic calculations as shown in Table III. M
simulations recover theT, AFn ~with n51,2,3!, andF con-
figurations unambiguously while the identification of th
AFn configurations withn>4 is very delicate.

In Figs. 5, 6, 7 the specific heat, the staggered susce
bility and the order parameter

c5^uM u&/L2 ~28!

are shown versus temperature forh51 (F phase!. The size
scaling indicates the existence of a continuous phase tra
tion at Tc50.88. We find thatn51 is consistent with the
size scaling of the temperature at which the susceptib
reaches its maximum. We obtaing51.7060.03 and b
50.2160.03 in agreement with the correspondent critic
exponents obtained for the square model.2 We have tested the

FIG. 4. Phase diagram of the planar triangular model as
tained from MC simulation on a 24324 lattice.T,P,F,AFn mean
120° three-sublattice, paramagnetic, ferromagnetic, striped ant
romagnetic phase,n being the stripe width.

FIG. 5. Specific heat c versus reduced temperature T for sev
lattice sizes as obtained from MC simulation.L512 ~crosses!, L
518 ~vertical crosses!, L524 ~diamonds!, L536 ~circles!.
1-6
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reliability of our MC data evaluating the susceptibility fo
h51 at the transition temperature as function of the num
of MC steps starting from the ground state configuration
suggested by Ferrenberget al.14 In Fig. 8 the susceptibility is
shown as function ofN whereN is the number of spin con
figurations used to evaluate the MC average. Each confi
ration is taken every 10 MC steps. All data points of Fig
are obtained by an average over 8 independent MC runs.
asymptotic values ofxL for different lattice size as obtaine
by the plateau of Fig. 8 arex12.3.5,x24.14,x36.28 which
agree with the maximum values ofx shown in Fig. 6. This is
a strong indication that our MC simulations describe c
rectly the thermal equilibrium behavior of the model.

In the triangular lattice the pointh51 appears to be very
peculiar. Indeed we have found that the elementary exc
tion spectrum is unstable for anyhÞ1 in the thermodynamic
limit. On the other hand the order parameter forhÞ1 falls
off abruptly at the transition temperature suggesting the

FIG. 6. Susceptibilityx5x(Q50) versus reduced temperatu
T for several lattice sizes as obtained from MC simulation.L512
~crosses!, L518 ~vertical crosses!, L524 ~diamonds!, L536
~circles!.

FIG. 7. Order parameterc versus reduced temperature T f
several lattice sizes as obtained from MC simulation.L512
~crosses!, L518 ~vertical crosses!, L524 ~diamonds!, L536
~circles!.
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currence of a possible first order phase transition. To
unambiguous identification of the order of the phase tran
tion we have followed the approach developed by Cha
et al.15 This approach was applied to the 2D ten-state P
model which is known to have a first order phase transitio16

to assess the accuracy of the method. Indeed the time de
dent behavior of the internal energy and of the order para
eter near the transition temperature points out the phase
existence. A two-peak structure of the probabili
distribution of the internal energyP(E) and of the order
parameterP(c) at the transition temperature is a signature
a first order phase transition.

Figure 9 shows the reduced internal energyE measured in
(J01m2/a3)S2L2 units and the order parameterc for h
50.85 ~AF1 phase! versus time in MC simulation on a 2

FIG. 8. Sucseptibility forh51 at T50.89 for samples of size
12312 ~crosses!, 24324 ~diamonds!, and 36336 ~circles! as a
functiion of N whereN is the number of configurations taken in th
MC average. We have omitted the vertical error bars when sma
than the size of data points.

FIG. 9. Reduced internal energyE ~upper panel! and order pa-
rameterc ~lower panel! versus time in MC simulations on a 2
324 lattice atT50.32 forh50.85. The instantaneous values ofE
andc are plotted after every 500 MC steps.
1-7
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324 lattice atT50.32. The instantaneous values ofE andc
are plotted after every 500 MC steps. In spite of the sm
ness of the latent heatEP2EAF250.12, the coexistence o
the AF2 configuration and of theP ~paramagnetic! phase is
clearly pointed out.P(E) andP(c) are shown in Fig. 10 as
obtained by MC simulation on a 24324 lattice atT50.32

FIG. 11. Probability distribution of the order parameterc in MC
simulations on a 24324 lattice at temperatures about the critic
temperature (T50.88) forh51.

FIG. 10. Probability distribution of the reduced internal ener
E ~upper panel! and of the order parameterc ~lower panel! in MC
simulations on a 24324 lattice atT50.32 forh50.85.
05443
l-

for h50.85. The two-peak structure is clearly seen. No
that only one peak in the probability distribution surviv
when the temperature is slightly changed toT50.326DT
with DT50.005. The single peak below and above the tr
sition temperature corresponds to the homogeneous ord
and disordered phase, respectively.

For comparison in Fig. 11 the probability distribution o
the order parameter is shown forh51 where the phase tran
sition is continuous. Always one peak is present mov
about the transition temperatureTc50.88. The continuous
character of the transition forh51 is consistent with the
above analysis of critical exponents. In Fig. 12P(c) is
shown forh50.7 where AF1 phase is stable. The two-pe
structure is present near the first order transition tempera
T50.435 whereas only a single peak appears in the orde
phase atT50.42. Incidentally, for this value ofh the latent
heat is so small thatP(E) shows a single~broad! peak struc-
ture that can be explained by the overlap of two peaks
close to be resolved. The same behavior is found for anh
,0.7. For comparison the probability distribution of the r
duced internal energyP(E) and of the order parameterP(c)
is shown in Fig. 13 forh50.1 at the transition temperatur
T50.21 as obtained by MC simulation on a 24324 lattice.
As one can see the two-peak structure is clearly seen inP(c)
~lower panel!. On the contrary only a single broad peak
seen inP(E) ~upper panel! because the two peaks center
at the internal energy of the AF1 and of theP phase are so
close that they cannot be resolved. This fact leads to
conclusion that the latent heat of this ‘‘weak’’ first orde
phase transition is very small.

In a first order phase transition the maximum of the s

FIG. 12. Probability distribution of the order parameterc in MC
simulations on a 24324 lattice at temperatures about the first ord
transition temperature (T50.435) forh50.7.
1-8
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cific heat grows asLd whered is the dimensionality of the
model andL is the size of the sample.15 Such a behavior can
be obtained by inspection of Fig. 14~left panel! for h50.8
where the ordered phase is AF1. Indeed the maximum of
specific heat scales by a factor 4 going fromL512 to L
524 and by a factor 9 going fromL512 to L536 as ex-
pected from the size scalingc;L2 when a first order phas
transition occurs. In the right panel of Fig. 14 the order p
rameter versus temperature is shown forh50.8 and L
524. As one can see the disappearance of LRO oc
abruptly. Note that at the transition temperatureT50.315 we
have quoted two data points corresponding toc50.86 ~or-
dered phase AF1! and toc50.02 ~paramagnetic phase!. In-
deed 5892 MC configurations contribute to the first val
4108 to the second over 104 MC configurations selected fo

FIG. 13. Probability distribution of the reduced internal ener
E ~upper panel! and of the order parameterc ~lower panel! in MC
simulations on a 24324 lattice atT50.21 forh50.1.

FIG. 14. Specific heat~left panel! and order parameter~right
panel! versus temperature forh50.8 in MC simulations on lattices
of size 12312 ~crosses!, 24324 ~diamonds!, 36336 ~circles!.
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the thermal average. Note that 9914 MC configurations c
tribute to the valuec50.87 atT50.31, while the total of
MC configurations lead toc50.02 atT50.32. Even though
a naive average of the data was taken atT50.315, leading to
c50.51, an abrupt fall of the order parameter~instead of a
discontinuity! should have been found giving a strong ind
cation of a discontinuous phase transition.

An additional support to the first order character of t
transition is provided by the fourth order cumulant

VL512
^H 4&L

3^H 2&L

~29!

which shows a very different temperature variation depe
ing on the order of the phase transition. A pronounced m
mum appears at a first order phase transition whereasVL is
temperature independent with constant value 2/3 forL→`,
when a continuous phase transition occurs.15 Figure 15
showsVL for h50.8 as obtained by MC simulation forL
512, 18, 24, 36. The minimum and its narrowing at incre
ing L is clearly seen as expected15 for a first order phase
transition ~left panel!. Under the hypothesis that the pha
coexistence can be described by a superposition of
Gaussians centered at the internal energies of the ordered
disordered phase,EAF1 andEP, respectively, the value of the
minimum of VL can be deduced in thermodynamic limit15

VLumin512
@EP

2 1EAF1
2 #2

12EP
2EAF1

2
. ~30!

For h50.8 we obtainEP521.52 andEAF1521.63 at T
50.32 by MC simulation on a 24324 lattice. Inserting these
data in Eq.~30! one obtainsVLumin50.6653 in good agree
ment with the minimum of Fig. 15~left panel!. In the right
panel of Fig. 15 the thermal variation ofVL is shown forh

FIG. 15. Fourth order cumulant coefficientVL as obtained from
MC simulations on sample of different lattice size@12312
~crosses!, 18318 ~vertical crosses!, 24324 ~diamonds!, 36336
~circles!# for h50.8 ~left panel! and forh51 ~right panel!.
1-9



s

so
d
nt
rg

r
lu
r-

as

a
a

e

in

f
th

e

e
de
in

se

ri
l

f
ng

nd
o-
n
ta
io
la
ve
u

so
ic

-

n-

the

rs
l

E. RASTELLI, S. REGINA, AND A. TASSI PHYSICAL REVIEW B66, 054431 ~2002!
51 where the phase transition is continuous. No minimum
present and the expected value 2/3 is approached increa
the lattice size.

VI. SUMMARY AND CONCLUSIONS

The triangular planar model is considered when both i
tropic antiferromagnetic long-range exchange interaction
caying as 1/r 3 and anisotropic dipole intraction are prese
Ground state configuration and elementary excitation ene
are obtained analytically while thermal behavior~i.e., spe-
cific heat, staggered susceptibility, and order paramete! is
studied at any temperature by MC simulation for any va
of h, betweenh50 ~pure isotropic antiferromagnetic inte
action! and h51 ~pure dipole interaction!. The phase dia-
gram in the plane (h,T) is shown in Fig. 4 for a 24324
sample which shows the qualitative features of the ph
diagram for a genericL. T, AFn (n51,2,3, . . . ), andF or-
dered phases are found. It is worthwile to compare this ph
diagram with that obtained for the same model on a squ
lattice shown in Fig. 13 of Ref. 2. TheT phase replaces th
AF phase, AF1 is the same as theC phase, but the AFn
configurations withn>2 have not equivalent counterpart
a square lattice, where, on the other hand, a vortical~V!
phase was found. Finally, forh51 F phase occurs instead o
the C phase of the square lattice. At zero temperature
continuous degeneracy affects theT and F phase, not the
AFn phases at variance with the square planar model wh
the continuous degeneracy is present for anyh. Another im-
pressive difference entered by the close packed natur
lattice is that the order-disorder phase transition is first or
except forh51 where it is second order. On the contrary
the square lattice the transition to the paramagnetic pha
continuous for any value ofh. For h51 size scaling analy-
sis of susceptibility and order parameter gives the same c
cal exponents for theF-P transition in the triangular mode
as for theC-P transition in the square model.

The in-plane striped AFn configurations are a novelty o
our model with respect to similar models where a short ra
exchange interaction was considered8–10 and only strip do-
mains with out of-plane spin configurations were fou
when a sufficient uniaxial Ising-like anisotropy was intr
duced. Note that no difference exists between the pla
model and the classical Heisenberg model as for ground s
configurations because of the role of the dipole interact
that acts as an easy-plane anisotropy favoring the in-p
spin configurations. In-plane strip domains were obser
experimentally in ultrathin films of Co layers on A
substrate11 and of Fe layers on Cu substrate.12 Similar phases
are found in the planar triangular model with long-range i
tropic antiferromagnetic interaction along with anisotrop
dipole interaction.

APPENDIX

The Appendix illustrates a method to perform a smallQ
expansion of
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Dxx~Q,h!5(
rÞ0

eiQ•r

r 3 F3hS r x

r D 2

21G , ~A1!

wherer is a dimensionless lattice vector. Consider the ide
tities

(
rÞ0

eiQ•r

r 5
5

8

3Ap
(
rÞ0

eiQ•rE
0

`

dzz4e2r 2z2
, ~A2!

(
rÞ0

eiQ•r

r 3
5

4

Ap
(
rÞ0

eiQ•rE
0

`

dzz2e2r 2z2
, ~A3!

(
rÞ0

r x
2

r 5
eiQ•r52

]2

]Qx
2 (

rÞ0

eiQ•r

r 5
. ~A4!

Split integrals appear in Eqs.~A2! and ~A3! as follows

E
0

`

dzzpe2r 2z2
5E

0

a

dzzpe2r 2z2
1E

a

`

dzzpe2r 2z2
.

~A5!

The second integral can be easily expressed in terms of
complementary error function erfc(x)52/Ap*x

`e2t2dt giv-
ing

E
a

`

dzzpe2r 2z2
5

1

r p11
Fp~ar !, ~A6!

where

F2~x!5
1

2
xe2x2

1
Ap

4
erfc~x! ~A7!

and

F4~x!5
1

2
xS 3

2
1x2De2x2

1
3Ap

8
erfc~x!. ~A8!

As for the first integral appearing in Eq.~A5! it is more
convenient to transform before the sum over lattice vector
appearing in Eqs.~A2! and ~A3! into a sum over reciproca
lattice vectorsG according to the equality17

1

p (
r

s2e2s2r 21 iQ•r5r(
G

e2uQ1Gu2/4s2
~A9!

wherer52/A3 for the triangular lattice. This gives

(
rÞ0

eiQ•rE
0

a

dzzpe2r 2z2
5prap21(

G
f pS uQ1Gu

2a D2
ap11

p11
,

~A10!

where

f 2~x!5e2x2
2Apx erfc~x! ~A11!

and

f 4~x!5
122x2

3
e2x2

1
2

3
Apx3 erfc~x!. ~A12!
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By use of Eqs.~A6! and~A10!, Eqs.~A3! and~A4! become

(
rÞ0

eiQ•r

r 3
5

4

Ap
(
rÞ0

eiQ•r
1

r 3
F2~ar !

1
4

Ap
Fpra(

G
f 2S uQ1Gl u

2a D2
1

3
a3G

~A13!

and

(
rÞ0

r x
2

r 5
eiQ•r5

8

3Ap
(
rÞ0

eiQ•r
~r x!

2

r 5
F4~ar !1

8

3Ap
pra3

3(
G

F 1

2a2
e2uQ1Gu2/4a2

2
Ap

4a3

3S uQ1Gu1
~Qx1Gx!

2

uQ1Gu DerfcS uQ1Gu
2a D G .

~A14!

Using Eqs.~A13! and ~A14!, Eq. ~A1! becomes

DxxQ,h)5
4a3

3Ap
2

8aAp

A3
~12h!(

G
f 2S uQ1Gu

2a D
2

4ph

A3
(
G

~Qx1Gx!
2

uQ1Gu
erfcS uQ1Gu

2a D
1

8h

Ap
(
rÞ0

eiQ•r
r x

2

r 5
F4~ar !

2
4

Ap
(
rÞ0

eiQ•r
1

r 3
F2~ar !. ~A15!

Expansion of Eq.~A15! for Qx50, Qy→0 gives

Dxx~Qx50,Qy→0,h!

5D0
xx~h!1D1

xx~h!uQyu1D2
xx~h!Qy

21•••, ~A16!
0

h

.

T

ll
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where

D0
xx~h!5

4a3

3Ap
2

8aAp

A3
~12h!(

G
f 2S uGu

2a D
2

4ph

A3
(

GÞ0

Gx
2

G
erfcS G

2a D1
8h

Ap
(
rÞ0

r x
2

r 5
F4~ar !

2
4

Ap
(
rÞ0

1

r 3
F2~ar !, ~A17!

D1
xx~h!5

4p

A3
~12h!, ~A18!

D2
xx~h!5

2Ap

aA3
~12h!H 11 (

GÞ0
FGy

2

G2
e2G2/4a2

2aAp
Gx

2

G3
erfcS G

2a D G J 2
Ap

a3A3
h (

GÞ0

Gx
2

G4

3e2G2/4a2
@6a2Gy

21G2~Gy
222a2!#

2
2p

A3
h (

GÞ0

Gx
2

G5
~2Gy

22Gx
2!erfcS G

2a D
2

4a

Ap
(
rÞ0

r x
2r y

2

r 5
F4~ar !1

2

Ap
(
rÞ0

r y
2

r 3
F2~ar !.

~A19!

Note that the nonanalytic term linear in the wave vector d
appears when the pure dipole interaction is accounted
(h51). Numerical evaluation of Eqs.~A17!, ~A19! can be
performed takinga52 and restricting the rapidly convergen
sums over few lattice vectors and reciprocal lattice vector17

The result is

D0
xx~h!5211.03417574116.55126360h,

D2
xx~h!521.05335565910.790016744h. ~A20!
tt.

tt.
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